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Density of paths of iterated Lévy transforms of

Brownian motion

Marc Malric
February 12, 2009

Abstract : The Lévy transform of a Brownian motion B is the Brownian
t

motion B = / sgn (Bs) dBs. Call T the corresponding transformation on
0

the Wiener space W. We establish that a. s. the orbit of w(€ W) under T
is dense in W for the compact uniform convergence topology.

Introduction

Let (B¢)i>0 be a one-dimensional, issued from 0 Brownian motion, and (L;):>o
its local time at 0. The Lévy transform of B is the Brownian motion

t
B} :/ sgn (B,) dB, = |By| — L.
0

Let T be the corresponding transformation in €, which maps B on B! : i.e.
won Tw. won Tw. At the end of chapter XII of [R,Y], Revuz and Yor asked
for the ergodicity of T'. From up to now, in [D,S|, Dubins and Smorodinsky
established the ergodicity of the discrete Lévy transform, an analog of 1" for
random walks.

Our goal is to establish that the orbit under 7" of almost every path is dense
in W equipped with the topology of uniform convergence on compact sets.
This is a necessary but not sufficient condition for the possible ergodicity of
Lévy transform, as it is the case for the density in R of the zeroes of the
iterated Lévy transforms of Brownian motion established in [M].

Otherwise, the present paper is the natural consequence of [M]. As in
[M], the strategy lies on the utilization of the "Lévy’s raises" : after being



sufficiently down in the iterations, i.e. going from 7™ B, for a big enough
integer n, for at least one of T?B, p < n, vanishes on given interval, we
proceed for each raise from level n to level 0, by choosing a finite number
of signs of selected excursions in such a way that the raised path takes the
desired shape.

If the idea at the basis is simple, numerous difficulties arise when it is applied.
So we present at paragraph 1, the tools we need, in a particularly simple
situation : the one time approximation. Here, we introduce the technics
of raisings which we illustrate with diagrams. Thus, we define the processes
which we call B-raised Brownian motions. These processes enable us to easily
manipulate the raisings, in particular on invariant events.

At paragraph 2, we come to a more elaborated situation, namely the d-
time approximation. Here we need induction on the number of times. And
we must act conditionnely on the hypothesis that none of the raised paths
vanishes on (tg,t4y1)-

Finally, at paragraph 3, we treat the continuous time approximation, when
we read all the previous technics and a more acute analysis of the excursion
straddling ¢.

In the end, I want to thank Marc Yor and Jean-Pierre Thouvenot for the
good advices.



1 One-time approximation theorem.

Let (Q2, F,P) be the probability space where all random elements are defined,
and (W, W, ) the Wiener space. Any measurable map from €) to any mea-
sure space, defined P—a.e., will be called a random variable. If X is a r.v.
with values in some measurable space A, the probability measure Po X! on
A is called the law of X, and denoted by £(X). For instance, a W —valued
r.v. with law 7 is a Brownian motion.

The Lévy transform T : W — W is defined m—a.e. and preserves m. Given
a Brownian motion B, we denote by B" its n—Lévy iterate, that is, the Brow-
nian motion B™ = T" o B. The one-time approximation theorem asserts that
for fized t > 0 and for almost all w, the sequence B}'(w) is dense in R.

From now on, t > 0, b € R and € > 0 are fixed, and a Brownian motion B is
given. The goal is to prove that the event £ = E* = {Vn > 0|B}' — b| > ¢}
is negligible. It suffices in fact to show P(F) < ¢, because E°' C E®* when
Eq < €1.

The idea is to construct from B another stochastic process I' : Q@ — W,
which depends on ¢, b and ¢, and has the following three properties :

(i) The law of the process T, i.e., the probability F — P(I'"'F) on
(W W), is absolutely continuous w.r.t. the law 7 of B.

(ii) For some deterministic 7 < 0, one has I'" = B", that is, T"ol' = T" 0 B.
(iii) P(Vn > 0|T} — b > ¢) <e.

Property (i) implies that T o I can be (almost everywhere) defined, in spite
of T not being everywhere defined. Indeed, if T/ : W — W is another
version of T, that is if T/ = T a.e., the set {T' # W} is m—negligible; hence,
by (i), I T # W} is P—negligible, and T' o' = T o 'P—a.s.. Similarly,
one can define the stochastic processes I = T" oI, which verify I'° = I' and
Tolm=TI"*

Proposition 1. For fited G € W and € > 0, let us suppose that there exists
a stochastic process I' : 0 — W satisfying properties (i), (ii) and

(1) P(Vn>0T"€qG)<e.
Then :
(2) P(vn>0,B"€G)<e.



Proof Take G € W and put F'=(,.,T™"G. Then, for r >0,

(3) T'F=()T"G>(|T"G=F.

n>r n>0

But these two sets, F' and T~ "F, included in one another, have the same
m—probability by T —invariance; so equality /' = T~"F holds up to m—negligibility.
As the laws of [ and B are absolutely continuous w.r.t. = (this is where (i)

is used), we have I"(F) = T"Y(T"F) and B™'F = B™(T™"F) up to

P —negligible events. In other words, almost surely, we have {I' € F'} =

{I'" e F} and {B € F'} = {B" € F'}. Consequently, choosing r given by (ii)

and using I'" = B", we have {I' € F'} = {B € F'} a.s.. That is to say :

(4) P(WVn>0,I"eG)=P(¥n<0,B" €q)

Specializing G = {w € W ; |w(t) — b| > €}, we obtain :
P(F)<e

Proposition 1 reduces the proof of the one-time approximation theorem to
the construction of a process I' verifying (i), (ii), and (iii). We shall first
choose r in a suitable way, then work backwards, in r steps, from I'" = B”
to I' = I'Y; each step (called a Lévy raise) will construct I'™~! from its Lévy
transform '™ = T o I™~!, The sequence (I'", "1 ..., T9) is given a name :

Definition 1. Given r € N, a sequence (I', "1, ... . T9) is called a sequence
of B—raised Brownian motions of index r if each T™ is a o(B™)—measurable,
W —valued r.v. with law absolutely continuous w.r.t. «, if I'" = B", and if
we have I =T o™ ! for0<n <r.

In fact, for convenience of exposition, let us enlarge the filtered probability
space ), we suppose it contains the whole sequence (B™),ez of the Brownian
iterates.

So the Lévy transform T is defined at each level n € Z and satisfies TB" =
B! for all n in Z. And we can generalize the preceding definition :

Definition 2. Given r € N, a sequence (I'),>, is called a sequence of
B—raised Brownian motions of index r if each I'™ is a o(B™)—measurable,
W —valued r.v. with law absolutely continuous w.r.t. «, if ' = B", and if
we have I'™ = T o™ ! for alln <7 .



With this definition, we can rephrase Proposition 1 :

Corollary 1. To prove the one-time approximation theorem, it suffices to
exhibit a sequence (I, T"71 ... ,T%) of B—raised Brownian motions of index
r such that

(5) P(I'} -0 <e for somen €{0,..,1})>1—c¢.

Proof Properties (i) and (ii) of Proposition 1 are granted by the definition
of a sequence of B—raised Brownian motions, and (iii) is implied by (1).

A Lévy raise starts with a given W—valued r.v. I'", and yields some r.v.
I™~1 with Lévy transform I'". Given a W—valued r.v. V, how can one find
ar.v. U such that V =T o U? Knowing V is equivalent to knowing |U]|, so
to define U one only needs to decide which sign is assigned to each excursion
of |U| away from zero. To make this rigorous, we need a formal definition of
the excursions of a path and of their signs.

Notation 1. For w € W and q > 0, denote by Z(w) = {s > 0/w(s) =0}
the set of zeros of w, and define g,(w) = sup ([0,¢] N Z(w)) > 0 (last zero
before q) and d,(w) = inf ([q, 00] N Z(w)) # oo (first zero after q).

Fix a dense sequence (g,) in [0, 00]. To each w € W, we can attach the
sequence (e,) of disjoint, open intervals obtained from the sequence

(6) ((gq17dq1>7(gq27dq2)7"'7 (g(thQn)?"')

by deleting an interval whenever it already occurs earlier in the sequence.
The e, are the excursion intervals of w.m—almost surely, there are infinitely
many of them, and they are the connected components of the open set
[0,00]\Z(w). The interval e,(w) will be called the p-th excursion interval
of w; e, is an interval-valued measurable map, defined on (W, W) up to
m—negligibility.
Since w does not vanish on e,(w), its sign is constant on this interval; this
sign will be denoted by S,(w), and the sequence (S,) will be called S. If B
is a Brownian motion, the sequence of r.v. So B = (S,0 B) is a coin-tossing;
this means, it is an i.i.d. sequence, with each r.v. S,oB uniformly distributed
on the set {—1,+1}. Moreover, S, o B and |B| are independent. (See Chap.
XIT of |R,Y]).



Lemma 1. Define I : W — W by I(w)(s) = infgqw ; that is, [w| =
Tw — ITw for m—a.a. w.

Proof Fix s > 0. On [0.s], B = B[~ L > ~L, = L, = B.. So
B;S = inf[(],s] Bl; and |Bs| - B; + LS = B; — inf[o’s] Bl.

Lemma 2. Let A, A" and A” be three measure spaces; let uy and ps be two
measures on A, [ a measurable map from A to A’, and v a measure on A”.
If py < o, then

(i) pof™ < pzo f7h

(11) 1 @V <K g @ v.

Proof (i) If I C A’ is measurable and if (g0 f~1)(F) = 0, then py(f~1F) =
0, 50 py o f7HEF) = m(f~'F) = 0.

(ii) If a measurable subset F' of A x A” is negligible for o ® v, then v—almost
all its sections F, verify us(F,) = 0. Hence they also verify p;(F,) = 0, and
consequently (11 @ v)(F) = [ i (F,)v(dy) = 0.

Lemma 3. Let 7 = (7,) be coin-tossing, 7" = (7,) a r.v. with values in
{=1,1} such that 7, = 7p for all but a.s. finitely many p, and X a r.v.
independent of T.

Then L(X,7') < L(X,T).

This lemma says that changing finitely many values of 7 does not perturb
too much the joint law of X and 7. For instance, it implies that a process
obtained from a Brownian motion by changing the signs of finitely many
excursions has a law absolutely continuous w.r.t. m. This is called ’principe
de retournement des excursions’ in [M].

Proof If u = (uj,us,...) is an infinite sequence, denote by w, the finite
sequence (uy,...,u,) and by up4; the infinite sequence (upi1, Upyo,...). We

have (z,u) = f,(x,uy), up41) for some function f,.
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We have to show that if F' is measurable set such that P[(X,7) € F] = 0,
then P[(X,7') € F] = 0. So assume P[(X,7) € F| = 0. For p € N, since 7,
takes values in {—1,1}?, we can write

(7) Y Pf(X,0,7p41) € Fand 7 = 0] =P[(X,7) € F] = 0.
ce{-1,1}r
Using the independence of 7, and (X, 7p41), this becomes :
(8) Y 2P [f(X 0, 1p) € F] =05
ce{-1,1}r

So for each p € N and each o € {—1,1}?, the event {f,(X,0, 7,41 € F}
is negligible. Since 7,(w) = 7,(w) for all p larger than some N(w), one has

PI(X,7) € F] = lim P[(X,7) € F and i, = Tps1]
= lim Z P [fo(X,0,7p41) € F and 7y = 0 and 7,1 = Tjps] -
P—00
ce{-1,1}r

This is null because the event f,(X,0,7p1) € F is negligible, as shown
above.

|
Proposition 2. (mechanism of a Lévy raise)
Suppose given the following three r.v. :
(i) V, a W—valued r.v., such that L(V) < 7 ;
(it) T = (Tp)pen, @ coin-tossing independent of V' ;
(iii)) T = (7))pen, a r.v. valued in {—1,1}", such that the random set

peN T (w) # 1p(w) is a.s. finite.
Then there exists a unique w—uvalued r.v. U such that
(9) U=V =10V and S,oU =1, for each p.

It is measurable w.r.t. the o—field o(V,7') and we have L(U) < 7 and
ToU = V. Foranyn > 0, we have U = B™ on the event {V = B and ' =
So B"}.



Proof We start from £(V) < 7 = £L(B) = L(B'). Using Lemma 2 (i) we
write L(V,V —1oV) < L(B', B' —=To B'). By Lemma 2 (ii), the coin-tossing
7 (resp. So B) which is independent of V' (resp. B') can be added on the left
(resp. right), and we obtain L(V,V —T1oV,7) < L(B',B' —T0 B',So B);
by Lemma 1, the right-hand side is £(B',|B|,S o B). Lemma 3 allows us to
replace 7 by 7’ in the left-hand side, so we finally have

(10) L(V,V —10V,7) < L(B',|B|,So B)

Now, we call W the set of non-negative paths and f : W x{-1, 1} —
W the measurable function such that w = f (Jw|, S(w)). We remark that
B = f(|B|,S o B) and we define U = f(V —IoV,7'); this is the unique r.v.
U such that |U| =V —IoV and So U = 7. To verify that £(U) < 7 and
ToU =V, we apply Lemma 2 (i) to (2) with the functions g(z,y,0) = f(y,0)
and h(z,yo) = (f(y,0),z). With g we obtain £(U) < L(B), the first claim.
With h we obtain £(U,V) < L(B, B'); this implies T o U = V since the
joint law £(B)(B?) is carried by the graph of T.
Last, on the event {V = B""landr’ = s o B"}, using the definition of U and
Lemma 1 we have

(11) U = f(V=IoV,7) = f(B"™ ~IoB"™ SoB") = f(|B"|,SoB") = B".
]

In view of Corollary 1, we will now describe the construction of a sequence
of B—raised Brownian motions of index r, for some r € N to be chosen later.
The sequence of o—fields (0(B")), ., is decreasing; we may consider it as
a reverse filtration, and define a r.v. J with values in ZN] — oo, 7] to be a
stopping time if {J = n} belongs to o(B") for each n € ZN] — oo,r| (or
equivalently, {J > n} € o(B"), because the filtration is reverse). Naturally,
BY is defined by B’ = B" on {J = n}. If J is a stopping time and J < n,
then J — n is a stopping time too.

(Introducing such stopping times creates no ambiguity : we will never deal
with the filtration generated by B, or B", or '™, nor with stopping times for
such filtrations.)

Lemma 4. Let J be a stopping time such that J < r. The r.v. So B/~! is
a coin-tossing independent of B”.

Proof Call v the law of a coin-tossing (i.e., the law on {—1, 1} making the



coordinates independent and uniform on {—1,1}), and write, for arbitrary
bounded functionals ¢ and v

E[o(B))¢(So B’ )] = Y E[lyne(B")(SoB" )]
= Y E[Iy—me(B")| E[¢(SoB" )]

= Y E[Ly—mp(B")] v()=E[e(B’)].

Proposition 3. Denote by Ps(N) the set of all finite subsets of N. Fix r in
N, and let J be a stopping time with values < r. For each n > 0, let be given
N, a r.v. with values in Py(N), and X" = (X7,p € N™), a r.v. taking its
values in UMepf(N){—l, M, such that ¥"(w) € {—1,1}V"“) Suppose N
and X" are o(B7~")—measurable.

Starting with C° = B?, we can define a sequence (C™)nen such that C™ s
the W —walued r.v. U obtained in Proposition 2 from

p ; P
VIC", T:SOBJ_n_l, I/):{E(w) prEN(w)
m(w) else
C™ is o(B'™")—measurable, and there exists a sequence (I'"™),>, of B-raised
Brownian motions of indez r such that T/~ = C™ for all n € N.

Proof First, we verify that the C™ can be constructed stepwise. Assuming
C™ has already been constructed, has a law absolutely continuous w.r.t. m,
and is o(B’~")—measurable, Proposition 2 applies to V = C™ and 7 =
S o B’7"7! (they are independent by Lemma 4 applied to the stopping time
J—n). The r.v. C"™! = U yielded by Proposition 2 also satisfies L(C""!) <«
7, and is measurable in o(C™, 7). But this o—field is included in o(B’~™, So
B7771) and in o(B’~""1) because B’~" = T o B/=""!; 50 the construction
is possible.

The rest of the proof will exhibit a sequence (I'),,>, of B-raised motions such
that '/~ = C™. Starting with I'" = B", the other I'™ will be inductively



defined : if m < r, suppose I'"™*! has been defined, is o(B™"!)—measurable,
and verifies £(I'™! < 7; define I'™ as the r.v. U obtained in Proposition 2
from

(12
J—m—1 ; J—m—1
V=1 T=S80B", 7—]/7:{2 W) i peN (w)

T,(w) else

This is possible since V and 7 are independent and N/~™7! is a.s. finte;
the result I'™ verifies L(I'™) < 7 and T o '™ = I'™*!. To show that I'™
is o(B™)—measurable, it suffices to show that so is 7/; this may be done
separately on each of the events {J < m}, {J =m~+1}, ..., {J = r}, because
they form a o(B™)—partition of 2. On {J < m}, we have 7/ = S o B™; this
is o(B™)—measurable. To see what happens for other values of j, introduce
¢" and 9" such that N = ¢"(B’™) and X" = "(B’™) for 0 < n < k.
For j € {m+1,...,m+ k}, we have on {J = j}

(13) 7_/ — 77Dn(BJ—TL)]IWL(Ban) —I— T (]lg — ]lwn(BJ—n))

This is o(B™)—measurable too. We have established that I, ..., T'? exist
and form a sequence of B—raised motions; it remains to see that I'/=" = C™.
This is done in two steps. Firstly, by induction on m, we have I'* = B™
on {J < m} : this holds for m = r, and if it holds for m + 1, it holds for
m too, owing to the last statement in Proposition 2. Consequently, I' =
B™on{J = m}, that is 'Y = B/ = C°. Secondly, to proceed by induction on
n, we will assume that I'/=" = C" for some n > 0, and show I'/="~1 = O™+,
It suffices to show this equality on the event {JJ = j}; on this event, using the
definition of I'™ with m = 7 —n —1 and the inequality m = j—n—1 < j, the
r.v. T/ satisfies both T(I'V~""1) = T([V—""!) = T = C" = T(C™™)
and

: ¥+l oon N
—n—1 n+1
) el - { SoBi—"l  else So ¢

These two equalities entail I'/=""1 = C"*! a.s. on {J = j}.

Corollary 2. To prove the theorem, it suffices to find v, JN™, and X" as in
Proposition 3, such that

(15) P(|C] bl <e)>1—c.
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Proof In that case, the sequence (I, ..., T'°) of B—raised motions given by

Proposition 3 verifies P ([I'Y — b| <€) > 1 — ¢, so Corollary 1 applies.

Remark. Corollary 2 improves on Corollary 1 by enabling us to work with
Lévy raises from B’ up, with J random, instead of B" in Corollary 1. The
price to pay is that J must be a stopping time.

Practically, the N™ and Y5 used when performing the Lévy raise from C"
to C™L will be functionals of C™; this automatically makes them o(B7~")-
measurable, since so is C™. so the step C"* — C™*' will consist in choosing
finitely many excursions if C™ above its current minimum, and assigning
them a sign; these choices depend only on the behavior of the path of C™. The
other excursions of C™ above its minimum are given random signs, using the
signs of the excursions of B! as a source of randomness. The path of
C™*1 s obtained by putting all these signed excursions together.

Lemma 5. Let (7, k) € N? and Q and R be two r.v. such that k < j—1 and
0<Q<R. Onthe event {¥Vn € {k,....7 —1}Z o B"N(Q,R) = 0} that the
first iterates of B do not vanish between @ and R, there exists a (random)
isometry i : R — R such that B’ =i o B* on the interval (Q, R).

Proof By induction, it suffices to show that if B! does not vanish on the
interval (Q, R), then B’ = io B’~! on (Q, R), for some random isometry i.
This is just Lemma 5 with j = k + 1 and B’~! instead of B*, so we may
suppose that 7 = 1.

On the event {@Q = R}, the result is trivial. On {Q < R}N{ZoBN(Q,R) =
0}, the local time L is constant on [@, R] because its support is Z o B, and
the sign of B is constant on (@, R); so B! = |B|— L =i(B) on (Q, R), where
7 is the random isometry x +— xsgn (B(Q+R)/2) — Lg+Rr)2-

It will be convenient to work with £ instead of ¢; for notational simplicity,

we put &' = £.

11



Lemma 6. There exists a number j = j(t,e) > 1 (fized in the sequel) such
that the r.v. J. and J_ =sup{n € {1,....,j — 1};|B}| < &'} (with sup® =0)
and J, = J_+ 1, have the following four properties :

())1<Jy <j;0<J <j—1;

(ii) Jy and J_ are stopping times for the filtration (o(B’),o(B’71),...,a(B%));
(iii) P(J.=1) <é&;
(iv) on the event {J, > 1} = {J_ > 0}, we have |B] | < €.

Moreover, the law of the process B’- depends only upon j, t and €, and is
absolutely continuous w.r.t. the Wiener measure .

Proof We shall first exhibit j and a r.v. K, with values in {1,...,j — 1},
such that

e P(K=1)<¢
e on the event {K > 1}, we have |BX| < ¢’

Set P = sup{s € [0,t];|B?> — B?| > €'}, with supf) = 0. We have |B? —
B?| < ¢’ on the (random) non-empty interval (P,t). Put g" = g; o B" =
sup (Z o B"N[0,t]), and call H the first n > 2 such that g > P. This H
is a.s. finite because sup,,~, 97" =t a.s. (see |M]). On the event {H = n},
there are no zeroes of B2, ..., B"~! in the interval (¢gf*,t). On this event, we
have g7 € (P,t) and

|Bf| = |Bi'=By| by definition of g’
2 p2

‘Bt - Bgzl

= <& because |B* — B| < & on (P,t).

by Lemma 5 applied to B' and the interval (g}',t)

As H is a.s. finite, there exists j > 1, depending only upon ¢ and ¢, such
that P(H > j) < €’; so the r.v. K = H verfies

1<K <y, P(K=1)<¢, and |BF| <& on{K >1};

in other words, (iii’) and (iv’) hold for j and K.

The mere existence of such a K immediately implies that the random variable
Jy =1+sup{n € {1,....j —1}; 07| < &'} verifies (iii) and |B]* ™| < & on
{J; > 1}, whence (iv). Moreover, J is a stopping time because, for n > 1,
one has J; > nif and only if |B]""*| < &’ for some m € {n, ..., j}, and because

12



o(|B™ ) = o(B™). And J_ is a stopping time too since J_ = J, — 1.
The law of B’- depends only on j, ¢, and ¢ because B’- is constructed
using nothing but B j, t, and e. This law is absolutely continuous w.r.t. m,

j—1
because B/~ = Z B"1(; _, implies L(B’-) < Y L(B") = jm.
n=0

Notation 2. For w € W, the p-th excursion interval e,(w) was defined
earlier; the number h,(w) = max) lw(s)| will be called the height of the
s€ep(w
corresponding excursion.
Lemma 7. Let X be a process whose law is absolutely continuous w.r.t.
Wiener measure. Almost surely,
o lim hy(X)L, oo = 05

p—00

o > h,(X)Li,x)cp) = 00;

peN

peEM

o the set { > h, (X)L, x)coy, M € Pf(N)} is dense in [0,00);

o between any two different excursions of X, there exists a third one, with
height smaller than any given random variable n > 0.

Proof By a change of probability, we may suppose that X is a Brownian

motion. It is known (see Exercise (VI.1.19) of |[RY]) that when n — 0T,

the number > e (x)cfo,) Lin,(x)>n of downcrossings of the interval [0, 7]
p

by |X| before t is a.s. equivalent to n~'L;, where L, is the local time of X
at 0. This easily implies (i) and (ii), wherefrom (iii) follows.

Last, between any two excursions of X there are infinitely many other ones
(because X has no isolated zeroes) and, by (i), only finitely many with heights
above 7, whence (iv).

Notation 3. An excursion whose interval is included in [0,t] will be called
a t—excursion.
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Lemma 8. There erists a o(B’+)—measurable, N*—valued r.v. K such
that for each r.v. K' o(B’+)—measurable and N*—valued r.v., there ex-
ists, on the event [K' > K|, K' —1 r.v. Py,...,Pxi_y with values in N
and o(B’+)—measurable, such that :

(i) the K' — 1 excursion intervals ep,(B’-),... ep., (B’-) are disjoint
and included in [0, t);

(i) the heights hp (B’-),... hp , (B’") of the K' —1 excursions of B’~
verify

(16)  [b| —& <hp (B )+---+hp, (B")<[b|+&  as.

Proof Lemma 7 (iii) applies to B/~ (whose law is absolutely continuous by
Lemma 6) implies that we can find random finite sets of t—excursions of B’-
the sum of whose heights is % close to |b]. Among them there is a set of
minimal cardinality :

denote by K the (random) number of its elements. And the same Lemma 7
(iii) implies that, for every o(B’-)—measurable, N* r.v. verifying K’ > K
a.s., we can find a random finite set of t—excursions of B’- of cardinality K’
satisfying (1).

All these choices can be made o(B’+)—measurably, because they depend
only on | B7-|, which is o(B’+)—measurable since it equals B’+ —Io B’+ by
Lemma 1.

These K — 1 excursions with heights adding up to |b| &= &’ are called the
building excursions; we will see in the proof of Proposition 5 how a Lévy raise
can be performed so as to add height of a building excursion to the value at
t. So, starting with an almost zero value at t (this is granted by Lemma 6
(iv)) and using Lemma 8, we can end up close to b after K’ — 1 raises, in
view of Corollary 2. In fact, for a technical reason (Lemma 10), we will need
an extra raise; all in all, there will be K’ of them, as in Proposition 3 and
its corollary. In virtue of the enlargement of the probability space, it is now
possible that K’(w) > J(w) with strictly positive probability. But our goal
is to obtain the final result for B itself. So a simple way to achieve that is to
apply Lemma 6, not to the initial Brownian motion B, but to its k-th Lévy
iterate B* for k to be specified later. The filtration in Lemma 6 (ii) becomes
(U(Bk“), . .,O’(Bk)) and the time-scale is shifted by k, yielding stopping
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times with values in {k, ;k + j}. Observe that there is no vicious circle here
: Lemma 6 gives a 7 which depends upon the constants ¢ and € only, then
Lemma 8 refers to the stopping times from Lemma 6 but the constant & there
depends only upon the other fixed constants, so we may licitly first fix all the
constants €,, 7, k, and only then apply Lemma 6 to the Brownian motion
B* which depends on k.

Corollary 3. Putr =k+j. Ther.v. J=1+sup{n;k <n <rand |B}'| <
e’} (with sup ) = k) has the following properties :

(i) k+1<J<r;
(ii) J is a stopping time for the filtration (o(B"),...,o(BY));

(iii) the event Qy = {|B’7Y| < &'} belongs to o(B’) and verifies P(Qg) >
1—-¢;

(iv) there exists an integer v large enough and depending only on m,b,t, e,
such that on some event 0y € o(B”) having probability P() > 1—¢,
B77! has J — 1 different t—excursions which are measurable in o(B”),
and whose heights Hy, ..., H;_y (numbered in chronological order of the
excursions) verify

(17) |Hy 4+ Hyjq — |b]] < €.

Proof (i), (ii) and (iii) are immediate by calling J the stopping time J; from
Lemma 6 applied to B* instead of B, rephrasing accordingly Lemma 6.

For (iv), with the preceding choice of .J, there exists an integer k such that
P ([K <k]) > 1—¢". Call Q the event [K < k] for such a k. There we choose
K" = J, we rephrase accordingly Lemma 6 and 8, and order J — 1 excursions
in chronological order (H; is the height of the first of these excursions, Ho
the height of the second one and so on).

Corollary 2 will be applied to these k,r and J. It remains to describe the
N™and X", i.e., to choose the signs of finitely many excursions when Lévy-
raising from C™ to C™*!. This will be done soon; we first need some notation
and a lemma.

Notation 4. If ¢ and €” are two excursions of a path (or of a process),
e/ <€’ means that €' is anterior to " : s < §" for all 8 € € and s" € ¢”.
For an excursion e of w, we denote by ie := inf{ws; s € [0,d.]}.
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Definition 3. An excursion e of a path w € W s said to be tall if it is
positive (this implies that the process Iw remains constant during e); and if
for any excursion € of w such that i€ = i,e and higher than e, then ¢/ = e.
Formally, e is tall if it is positive and if

(18) max (w(s); s > 0, (Iw)(s) = i,e) = max (w(s);s € e) .

Lemma 9. Let n be a positive number, m > 1 be an integer and w € W
a path. Let ey, ...,epnr1 be m + 1 different t—excursions of w, numbered
in chronological order : ey < -+ < ema1; call hy, ..., hynoy their respective
heights. Let f1,..., f, denote all excursions of w which are anterior to €41
and whose heights are > min(n, hy, ..., hyy1), numbered in reverse chrono-
logical order : let g1,...,g, be p excursions of w verifying f, < g, < -+ <
J1 <91 < emnq1-

Suppose that

o the excursion e, 1S negative, and all t—excursions higher than e,
are positive;

o the excursions fi,..., f, are positive;

e the excursions gi, ..., g, are negative; and every negative excursion an-
terior to g, is smaller than g,.

Then ey, ..., ey are tall, and |iyer] < |iwes| < -+ < |iwen| < 7.

Proof Firstly, |i, fi| < 1 because f; < e,,+1 and any excursion anterior to
em+1 and having height > 7 is one of the f,, hence positive.

Secondly, for 1 < ¢ < p, the excursion g, is negative and higher than any
negative excursion, anterior to it; so Iw is not constant during g¢,, and con-
sequently we have

(19) |wap| < |iwfp—l| << |wa1| < hezyht Of g1,

where each < sign is due to Iw varying on the corresponding g,.
thirdly, combining (20) with |i, fi| < n (first step), and noticing that, by
definition of the f,, (eq,...,en) is a sub-sequence of (f,,...,d;), we obtain

(20) liwer] < -+ <|iwem| <n.
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Last, it remains to establish that ¢; is tall for 1 < [ < m. Let ¢’ denote a
positive excursion of w with height A’ > h; and such that i,e’ = i,e;. From
(20), we have |i,€'| = |iye| < height of g1; so € is anterior to ¢g; and a
fortiori anterior to e;41. As h' > h;, ¢ must be one of the f, (see their
definition). But ¢; is also one of the f; and, due to (20), all i,, f, are different;
so ¢/ = ¢;. This means that ¢; is tall.

In the proof of Lemma 9, the negative excursions g, are used to separate the
fq from each other. Yet, in the end, we are not interested in the behavior of
all f, but only in the ¢;. It is possible to replace this lemma with a variant,
where 2m excursions (instead of p ones, the g,) are made negative, each ¢
being flanked by two of them.

We will now perform the k Lévy raises C© — C! — ... — C* described
in Corollary 2. The first one is the construction of C! from C° = B”.

Notation 5. We put ¢” = j—; = 3

Proposition 4. With the notation of Corollary 3, NV and ¥° can be chosen
so that, on the event )y,

(i) 0<C <&
(i) —(To CY)(y) = Hy;

(iii) C' has J — 2 tall t—excursions By < Ey < -+ < Ej_o, with respective
hewghts Hy, ..., Hy_ o, and verifying

(21) ‘iclE1| <0 < |’iclEJ_2| < 6//

Proof Since To C! = C% = B/ = T o B/~ we have |C| = | B’} regard-
lessly of how A/° and X0 are chosen. This choice will be described now; it will
be o(B”’)—measurable because it depends only on |B’~!|. (In the rest of the
proof, "we choose" is to be understood as "we choose o(B”)—measurably").
By Proposition 3, choosing N° and X% means choosing the signs of finitely
many excursions of C', whose absolute value is observed.

Outside the event Q; we take N = (), that is, we do not fix the sign of any
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particular excursion. The proof will describe the choices to be made on the
o(B”)—event €, in order to ensure (i), (ii) and (iii); so we henceforth focus
on this event only.

By Corollary 3 (iv), B/~! has J — 1 different t—excursion F; < -+ < Ej_4
with respective heights Hy,..., H;_y. We choose to make excursion E;_;
negative in C, and to make positive all t—excursions higher than H;_; this
ensures (ii).

We also choose to make positive the excursion which straddles ¢; owing to
Corollary 3 (iii), this yields (i).

Now, consider all excursions which chronologically occur before E;_;, and
whose heights are > min(e”, Hy, Hy, ..., Hj_1); call Fy,... | F, these excur-
sions, in reverse chronological order : F, < --- < F} < E;_; (p is ran-
dom and o(B”)—measurable). We choose to make Fy, ... F), positive. Using
Lemma 7 (iv), we choose between F; and E;_; an excursion GG; smaller than
min(e”, Hy, Hs, ..., H;_1), its sign has not yet been assigned, so we choose
to make it negative, and to make positive all excursions higher than G; and
anterior to it. Then, we make negative an excursion G5 chosen between F,
and F; and smaller than G (such an excursion exists by Lemma 7 (iv) and
is too small to have previously been chosen). We also make positive all ex-
cursions occurring before GGy and higher than G5. And so on : we keep doing
this up to G).

Finally, we apply Lemma 9 with n = &” and m = J — 2 to the E;, F, and
G,. The hypotheses of this lemma are satisfied due to the properties of
(Ev, ..., Ej_1), to the definition of the F, and G, and to the signs we have
chosen. We obtain that, with these choices of signs, (iii) is satisfied for C*
whatever the signs of the other excursions of C*.

We have gone first step, from C° to C''. We will soon perform the next J —2
steps, from C* to C/~1; we first prove a lemma.

Lemma 10. Let X be a process with law absolutely continuous w.r.t. @, and
E a tall excursion of T o X with height H. There exists an excursion of X,
with interval {s;(Io T o X)(s) = itoxE}, and with height H + |itox E|.

Proof First, recall a.s., Brownian motion B does not reach its current min-
imum I o B in the interior of a time-interval where I o B is constant. (This
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is a consequence of (Io B)(s) < 0 for s > 0 and of the Markov property at
the first time that B = I o B after some rational).

Put Y = T o X and call F the interval {s > 0;(IoY)(s) = ixE}; Y reaches
its current minimum I o Y at both endpoints of F' but not in the interior of
F (see above). Since |X| =Y —IoY by Lemma 1, we have that F is the
support of some excursion of X. The height of that excursion is

max(|Xs|;s >0, and (IoY)(s) =iyE)
= max(Ys— (TIoY)(s);s>0,IoY)(s) =iyE)
= max (Y55 >0,(IoY)(s)=iyE) —iyFE
= max(Yys€ E)—iyE because E is tall
= H+|ivE|

Proposition 5. It is possible to define (partially) the sequences (N™) and
(X") on the event [n < J] in such a manner that, on the event Q1 NQN[J >
n], the process C™ satisfies :

(i) Hy_n < —(I0C™), < Hj_,, +ne’;

(i) On [J > n+1], C™ has J —n — 1 tall t-excursions B} < Ef < --- <
E% 1 such that

lign EY| < -+ <l|ignEj_n_1]| <€,
and whose heights H', ... H}_ | satisfy

H < H'<H +na”;

(m) HJ_n+"'+HJ_1<CZL<HJ_n+"'+HJ_1+5/+n2€N.

Proof Accordingly to Corollary 3, we consider the family of tall t-excursions
of B7 satisfying relation (18), the building excursions. It is this family we
have already chosen in Proposition 4 to define N°, X9 and C*.

Then Lemma 10 ensures the "heredity" of this family during the raisings.
Hence we obtain the first part of (ii). It remains to notice that, while the
building excursions are protected, each of them receives a "small" excursion.
So its height add to the height of the building excursion, which entails (i)
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and (ii).

For (iii), it suffices to remark that, each building excursion, before contribut-
ing to the height of the excursion of C" straddling ¢, had received a number
of "small" excursions lower than n.

Then we have to proceed to the last raising and verify the sequences (N"),
(3™) have the good mesurability properties. It is the aim of :

Proposition 6. We can define (entirely) the sequences (N™), ("), n <,
with the adequate mesurability properties in such a way that :

P(IC]—bl<e)>1—¢

Proof Firstly, we put N = () on [J < n], and X" is the set reduced to the
index of the excursion straddling ¢ on [J = n].

We begin by noticing that N € o(B’™™). The events [J > n|, [J =
n] and [J < n] belong to o(B’~").

Then, by defining 377! such that the excursion of C” straddling ¢ has the

sign of b, we obtain, applying Proposition 5, that in Q; Ny, |CY — b} < g,
with the preceding choices of ¢’ and &”.
Finally,
P(Qlﬂgg) >1-2/=1-¢.
|

Thus we deduce that
P (I} -0 <e)>e.

And, from Corollary 2, the theorem on one-time approximation is obtained.
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2 d-times approximation

The raises we have realized on the Brownian path, in paragraph 1, can be
called "elementary" raises : we prepare, at level r, the excursions which
enable the path to approach ¢(t) at time ¢, then we put them in action suc-
cessively while holding up the remaining excursions among the selected ones.
Now we must proceed by induction. But a new difficulty appears : the neces-
sity of protecting, which has been obtained at the first d-times. This time,
we can’t anymore be satisfied with elementary raises. First, only excursions
with support in [tg, t411] can be used, so it is necessary to rely on the density
of zeroes [M|. Then, going from an iteration which vanishes somewhere be-
tween ty and t;.1, we achieve "horizontal” raises to correctly configure the
path at time t;,q, at the considered level, in the manner of lemmas 4 and
5 : during these raises, we maintain the main excursions in [0,t4] hold up
to preserve the path up to time t4, while we correctly configure the path at
time t4.1, obtaining thus a path of "essential” level, this of the beginning of
the configuration process. Then we come back to usual raises which we call
"vertical” raises. We give to the main excursions the sign they had before the
horizontal raises (this compels us to replace the B—raised Brownian motion.
by a disjoint sum of such processes to keep these signs in memory). But
the estimated value of the path at time t;,; is based upon the hypothesis
that no later vertical raise will vanish on [t4,4.1]. In the opposite case, the
configuration process must return to its beginning.

It’s that we are doing in this paragraph :

Definition 4. We call the sequence (I'),<, a disjointed sum of B-raised
Brownian motions of index r if there exists

e a denumerable measurable partition of 0, (Hx)xea,

o for each A € A, a sequence (I'Y),<, of B—raised Brownian motions of
index r

such that
(22) Vn <rI" =Y iy,
AEA
We notice that : L(I™) < . For, for all F € W such that w(F) = 0, we
have :
PI"€F) = Y P(H\n[I} € F)
AEA

< Y Py er) =0
AEA
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Now the paragraph is devoted to proving the following :

Let P; be the property :
" Let be given : € > 0, (t1,....,tq) € R? such that 0 < t; < ... < tg and
a map from RT — R. Then there exists an integer r and a disjointed sum
(T')o<i<r of B—raised Brownian motions of index rq such that

P (||F0(t1, ...,td) — gp(tl, atd)Hoo > 8) <e€

(with the convention that f(ti,...,tq) designates the vector of coordinates
(f(t1),..., f(ta)), for all map f from R — R.) "

We proceed by induction on d.

At the first rank, the result yields from inequality in Corollary 4. In this case,
the disjointed sum is nothing but a single sequence of B—raised Brownian
motions.

Suppose Py true.

We will apply this hypothesis to the B.M. B*° for an integer sqg to be deter-
mined later. We will denote w the generic path of B* : w := w*.

Thus there exists a disjointed sum of B —raised Brownian motions of index

rq, I', such that :

€
P(AS) >1— =
( 0) 4’
where
A5 o= [Tty e ta) — 9(t, ooy ta) |oo < €]

As usual, we will denote : Vi € N, T = .
By definition, Vi > rq, 0" = w®*,

From the theorem on density of zeroes, ([M]), there exists a.s. an integer
¢ such that I''(w) vanishes at least one time on [ta, tas1)-
Let L(w) be the smallest of these integers ¢. L is a r.v. almost surely finite.
So there exists an integer ¢, which we will choose > r; such that :

PM@>1—22

where
AT = AN L < 4.

Our aim is to raise the path w*, which is nothing but w®*%, from level so+/
to level 0, in such a way that the raised path approaches ¢ on [t4, t441], while
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remaining at the proximity of ¢ on [0, t4] acquired at level sy, with the usual
measurability conditions.

For this to be realized without damage, we will introduce the family of pro-
tecting excursions of w" : (éfog-k))lgjgpk. This family is constituted by the
excursions of w* with beginning before t; and height greater than ¢, and
arranged in the reverse chronological order, for all £ from 0 to ;.

The py, 0 < k < £y, are finite r.v. Let (p?)o<r<s, be a sequence of determin-
istic integers verifying :

P(AS) > 1—3%,

where
€. A fo < 0
9 1= AN kgo[pk = pk] .

Now, we can modify the protecting excursions : (éjog-k))ogjgpg is constituted
of the excursion straddling ¢4 and of the p? highest excursions before ¢4, ar-
ranged in the reverse chronological order. We denote by tf’s"’Lk the beginning
of é]’9§-k), for all j from 0 to pk

We set :

0 4 .
A= {MWosksa} s M € {1, +1H1070 = kﬁo{—l, 130
A = {[nﬁ, (n + 1)ﬁ[7 n e Z}{Ov--,fo}

The partition (H™!) from which we are going to construct I' is so defined :
Ngi1:= A x A is denumerable ;
V(A §) e Ax A,

HE =0, ([<sgn<é@§>>o<j<pg _ N Ak e 5(@])

To simplify the notations, we will omit the indices A, 6 when there is no

ambiguity, or else replace them by v.
k—1

Set : bd(k), the beginning of the interval (k) and e(\, k) = 'HoAi(O)'

First let us begin by an improvement of Lemma 5 :

Lemma 11. Let (0, 7, 7) be an orthonormal basis of the plan in which we

represent paths. Let 0% be the vertical translation of vector (b — a)7 and
a+b

2
Consider (t,k,p) € Z x N? such that w* = a and wi*? = b and denote ~, the
first time posterior to t when at least one of the iterated Lévy transforms w?,

7, the reflection along the horizontal azis of equation : y =
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k<s<k+p-—1, vanishes. Then we have :

n X k+p—-1

a N 3

Wi =] Ty oW,y if I w; >0
|1t 7] o l =k

Tb Ow|[t,%} eLse

We will denote Tlerp(w) the plan transformation, which transforms wﬁt ] mn
WP
Oty
Proof It is an immediate consequence of Tanaka’s Lemma, when p = 1.
In general case, we break up the displacement 7 which transforms w}“[t vl
in wﬁjp} under the form 7 = 7, 07,1 o ... o7y where 7; transforms wf[ﬁ:}l
in wﬁjfﬁ]. From the preceding remark, each 7; is a vertical translation or a

reflection along an horizontal axis, according to the sign of wf™ 1. Then we
deduce the claim.

Lemma 12. On Hf\lfgl the displacements T (w) and bé(o) £(0k) differ from at

most 23.

Proof From lemma 11, these displacements are of the same nature , vertical
translations or reflections along the horizontal axis.

e In the case of a translation, e(\, k) = +1, we have :

Yy R, [m(0)(y) — Ty " W) = |wtd — @y, — (b6 (k) — b5 (0))|
@k, — bo(k) — (@, — b3(0))]
< B
e In the case of a reflection, (A, k) = —1, we have :
Yy € R, (@) (y) — momn) W) = |(@F, + @Y, —y) — (b3(k) + b3(0)
= [(@f, — bo(k)) + (i, — b3(0))]
< 23
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Lemma 13. Let be given a stopping time J of the reverse filtration (o(B"))n<,
(while values in Z N (—oo;r]), and K a o(B”)—measurable N—valued r.v. .
Then the r.v. J — K is a stopping time of (0(B"™))n<r-

Proof For every p € Z N (—oo;r], we have :

J-K=p= |J [J=4n[K=j-p|

JEZ, j>p

As [K = j—pl € o(BY), [J = JIN[K = j — p] € () C o(B)
Hence [J — K = p] € o(BP).

Lemma 14. Planing
Let w belong to W, and t,e' € Rf. We suppose there is no interval on which
w 18 constant.

Denote : il (w) = sup {|wg|; s € [g:(w), 1]}, to(w) = sup {s € [g:, t], |ws| = i (w)}.

VneN, i (w) = sup{i(w)—|w;s € [ta(w), 1]}
busa(w) = sup {s € [t (w), f: () — ] = it ()}

Then (if,(w)) strictly decreases towards 0 or strictly decreases before reaching
0, and (t,(w)) strictly increases towards t or strictly increases before reaching
t.

Furthermore K(w) = inf {n € N;i! (w) < &'} is a W—measurable N—valued
r.ov. .

Proof By construction, the sequences (i%) and (¢,) are respectively pos-
itive decreasing and increasing bounded from above by t. So they converge.
Set ¢ the limit of (i%) and 7 that of (¢,).

Suppose ¢ > 0. Then the oscillation of w is infinite at the neighbor of T,
which is in contradiction with the continuity of w. So ¢ = 0.
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Suppose T < t. Then w is constant in [7, t], which contradicts our hypothesis.
SoT =t

Now, if i, = i for some n in N, then, by construction, for all p > n,
it, = i, and it is the same thing for (t,).

Finally the measurability of K is immediate.

Now, the following proposition plays the part of Lemma 6 and proposition
4 (i) :
Proposition 7. (i) The r.v. Jy = 14+sup{n < so+ly, B" vanishes on (tq,ta+1)}
with sup ) = —oo, and Jy—1 are stopping times of (0(B™))n<so+io SUch
that Jo > sg + 14 on AJ.
For all (w,n) € Q X ZN (=00, so + o] verifying : Jo(w) < n, we define
: T"(w) = B"(w). So, To = B = (",
The r.v. K(B’™1) (notation of Lemma 14) is o(B’°)—measurable. So
s Jy=Jo—1— K(B%™Y) is a stopping time.

(ii) We can define N™(w), X" (w), C™(w) and |C"H(w)|, for alln < Jo—J}
on the event DS = [B%~! vanishes on (tg,tqr1)], in such a manner that

F;]fﬂ = ‘C’é:% < €' on this event which is of probability 1.
J! J "
HP\[&td] ~ Uo.a LO < Ke

On the complementary event of D5, we naturally set N™ = ).

Proof The first assertions are nothing but immediate consequences of defi-

nitions and Lemmas 13 and 14. Now we are going to show that a.s. Jy has

values in Z N (—o0, r].

For all integer n > 7 and all a, b reals such that a < b, let A,, = [i € [r,n], B* vanishes in (a,b)].
Then the sequence (A,),<, is decreasing (for the inclusion).

Let A._, = [Ji € [0,7 — n|, B vanishes in (a,b)]. The sequence (A._,)n<r

is itself decreasing.

Since (B);»isn and (B?)o<j<,—n have the same law,

Vn<r, P(A_)=P(A)

So,

P (3i € (—oo,r], B vanishes in (a,b)) = lim P(4,)= lim P(A]_,)
= P (3i€[0,+00), B vanishes in (a,b))
=1 from [M]
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In order to define properly A® and X° on D%, we apply Lemma 9, with
e1,...,en denoting the t;—excursions of B0~1 of height greater than ", the
excursion straddling t4,,, and t = t4.1, n = &’. This step defines N, X0, C*
and |C?|.

Then it remains to apply this method K(B”7~!)—times more in exactly the
same way, to define N, X" and C™™! for all n, on the event [n < Jy — J].
Then it is easily verified that, on Dj, we have :

/

Jl
;e | <ée.

tit1

Then we are coming to the analog of Lemma 8 and Proposition 4 (ii) :

Proposition 8. There exists a o(B’"")—measurable, N—valued r.v. K’
such that there exists K' — 1 r.v. Py, ..., Pgr_1 themselves with values in N
and o (B’ ) —measurable such that :

(i) the K'—1 excursion intervals ep (I0), ... ep_,  (I'0) are disjoint and
included in (tg,tgs1)-

(ii) the heights Hy, ..., Hygr_y of these K' — 1 excursions of I’ verify on
D5

b6(0) (XK b6(0) e(A,k
Tbé((Jg_Eio_i)(SO(tdq-l)) —&' < Hl‘l" : "I’HK’—l < Tbé((Jgf(l—s?))(SO(td"'l)) +€,.

Proof The transposition of Lemma 8 and Proposition 4 (ii) to this new
context is immediate because J is a stopping time.

|
So we have prepared the following raises. The following proposition indicates,

as Proposition 4 and 5, the mean by which the raised paths are realized,
namely the corresponding values of N™ and X".

Proposition 9. For all (n,w) such that Jo(w)—Jh(w) < n < Jo(w)—Ji(w)+
K'(w), N"(w) and ¥"(w) can be chosen so that :

(i) 0 <GP <o and [T 70 — O oo < (o — Jp)e”.

(ii) —(To C=70)(ty11) = Hgry
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(iii) C7=% has K' — 2 tall excursions included in (tg,ta1) : By < By <
oo < Egr_o with respective heights Hy, ..., Hgr_o verifying

"éCJO—JéEl’ < ’icjofj(’)EQ‘ <0 < ’Z.CJ()?J(’)EK’—2 .

(iv) HK’—n+1+"'+HK’—1 S Cn

tit1

(’U) Hygi_, < —(I o Cn)(td_H) < Hgi_,, + K'e".

<Hgrpi1+-+Hg_ 1+ +nK'e".

(vi) C™ has K' —n — 2 tall excursions included in (tg,tg1)E} < -+ <
E%, . o such that : |icnE}| < -+ < |icn Exr—n—o| < €", and whose
heights HY, ..., Hy/_,_, satisfy :

H <H!'<H+ne" forn+1<I<K —1.

Proof Here again, the proof is identical with that of Propositions 4 and 5.

Otherwise, at each of the Jy — J| raises, each protected t;—excursion of the
raised path (i.e. the f;’s) receives a small excursion (one of the g;’s) of height
lower than ¢” and during this procedure its support increases. So we can say
that the ép;°® of [/o=*0~1 are "conserved" with the meaning that for each of
them we can find an excursion of Fj(’) which contains its support and whose
height is that of the excursion of I'/o=%0=! increased of at most K (B'*/)
times &”. N
For the non protected t;—excursions of I'/=%0 = B/ they are not conserved
in general, but it is easily seen that, on the union of their supports, the height
of [0 never goes beyond K(B'*%) times ”, in the same manner,

At this point, it remains to give to the protected t;—excursions of the
next raise the sign, which is in memory, they had at level Jy, and to the

excursion straddling ¢, the sign of ng((ngg;\fi)(gp(tdﬂ)). It is the role of the

Proposition 10. (analog of Proposition 6)
It is possible to choose N™(w) and X" (w), for all (n,w) such that n = Jo(w)—
Ji(w) + K'(w), in order to have

Jo—Ji+ K" b5(0) e(Mk 1
@3) [l S OO (ot < &+ S - 1) (-2

Jo—J\+K' Jo—K'—s
(24) |G =T

< (Jo— J\+ K")e"

28



Proof In this last raise, the procedure differs only by the fact that we give to
the protected excursions the sign they had at level Jy — 1, and the excursion
straddling ¢4+, the convenient sign. so we deduce the claimed results in the
same manner.

Following Lemma 13, we remark once again that the r.v. J) — K’ is a stop-
ping time. We call it J; .

So we have achieved the last "horizontal" raise, whose aim was only to cor-
rectly configure the path at time ¢4, (without damage in [0,¢4]). Let us
consider that T (w) (or C”~70 (w)) as being really at level Jo — 1.

To formalize this idea, we introduce the partially (for the time...) defined
r.v. RL, :

RL,(w) = Jo(w)—1 if f Jolw)—1>n>J(w)
and RL,(w) = n iff n> Jy(w).

The following raises will be "vertical", i.e. will verify : RL,_;(w) = RL,(w)—
1 while the path I'(w) will not vanish in (t4,t441) and RL,(w) < so. The
corresponding procedure is expressed in the :

Proposition 11. It is possible to define N™(w), ¥"(w) and RLj,—pn_1 in-
ductively on the event [n > Joy — Jy| if C™(w) doesn’t vanish in (tg,tqr1) and
RLj,_n(w) > so, in such a way that :

< 2n—Jo+Jg8//(JO . J(’]’)

. n ~RLj,_n—50
(i) |[Chosa ~ oy

[e.e]

. n b5(0) e(M\k n— !
(”) ’Cthrl (w) o Tb&((R)LEJE)—n)—so)(So(td-f-l))’ < gl ot
Proof We first recall that when we know C"~!(w), we know also wether C™
vanishes in (t4,t441). If it isn’t the case, we put :

RLjyn-1(w) = RLjy—pn(w) — 1,

and define N"(w) and ¥"(w) as we do in Proposition 9; but this time the
counting of "errors" is radically different. It can happen between 0 and t4
that an excursion which was protected before become negative and, in the
following raise, is going to add to another protected excursion. So, at each
vertical raise, the "errors" are double of those of the preceding raise. Hence
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the result in (ii).

In the same manner the excursion straddling ¢, receives an excursion with
beginning in [0,%4]. So, to the errors soon acquainted at level Jé’, we must
add the error between 0 and ¢, of the preceding level which entails (i).

So we have defined RL,, on the event

n
/.

[Jo >n]N ﬂ [T™ doesn't vanish in (tq,tqe1)] | N [JO, —n < lo} ,

!

i=Jy —1
particularly on the event :

n
1"

[J, —1>nlN ﬂ [T™ doesn't vanish in (tq,tqe1)] | N [J(l)/ —n= lo} ,
i=Jy —1

RL, reaches sg. We set :
Ji = 1+sup {k < J(/)/, I'* vanishes in (tg,tg41) or RLy = 50} )

Let us notice that the procedure used for the raises from level Jy to J; can
be repeated as many times as RL,(w) > so. So, we set inductively : on

1

[RLJn71 = 80] ’Jn—l = Jn—l
else J,_, is constructed from J, 1, as J, was from Jy in Propositions 6 and
7, and :

J, =1+ sup {k < J;:_l, % vanishes in (ta,tas1) or RLy, = 50}

Let us denote hz,(w) (resp. vt,(w)) the number of horizontal (resp. vertical)
raises from level Jy to level Jy — n having affected the path C™(w).

So hz,(w) + vt,(w) = n.

Then we can state :

Proposition 12. (i) The r.v. RL, are o(B"™)—measurable, while the hz,
and vt, one’s are o(B7™")—measurable, and the J,, n € N, are stop-
ping times.

(ii) It is possible to define N™ and X" on the event [J,_; > n > Ji] in such

a manner that :
(a) HCﬁlovtd} B I e

(0.t .
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n b3(0) e(\k vtn
(6) |Cty = T (ltan))| < &+ hzas"2"

Proof

(i) From their very definition, the r.v. RL,, hz, and vt, are respectively
o(B") and o(B7~")—measurable. For the nature of the J,, we proceed
by induction. The result is known for n = 0 ; suppose it is true for
n — 1. Then, for all p € N, we have :

[J, =p] = [J,/;_l >p— 1] ﬂ[F”_l vanishes in (td,td+1)] U[RL,—1 > So]
From the hypothesis and Lemma 13, J,’;_l is a stopping time, which
entails :

[J;:_l >p— 1} € o(B?)
and from the fact that RL,_; is o(B?)—measurable,
[RL,—1 > so] € o(BP) too.
Finally we know that :
(L7~ vanishes in (tq, tas1)] € o(BP).
Hence [J,, = p] € o(BP), and J, is a stopping time.

(ii) We have already seen that, when a raise is horizontal, the error on the
interval [0, ¢,] increases of at most ”, but when a raise is vertical, we
must multiply it by two.

As there are hz, horizontal raises, and vt, vertical one’s, we majorize
the total error on [0,t,4] between levels Jy and Jy — n by :

Jo—n—+1
hzpe” + E 201 (hzy, ")

. 1"
1=J,

For the error at time ¢4, 1, it is lower than £’ at level Jl;/, if [J,: >Jo—n> Jk+1}.
Then, at each of the n — (Jy — J,, ) following raises, the excursion strad-

dling t441 receives an excursion from [0,¢,], hence the total error at

time t4,q is majored by :

1

Jo+(n—1) Jo—i—(n—l)—Jk N
t "+
/ vty _; moo_ vty " /
e+ E 290t (hzg,_e") = g 2 S0k (hZJo—J;:g ) +¢
i=J, k=0

vt " "
= 9 Jo—J <2Jo+n—Jk _ 1) (tho—J;'€//> +€/
< 2" (hzue”) + €.



Proposition 13. The r.v. S = sup{n € Z; RL, = so}, supl) = —o0, is a
stopping time.
Furthermore, the law of S — sq doesn’t depend upon sq and £".

Proof For all p € Z, [S = p| = [RL, = so] N [RLyy1 > So|- As RL, is
o(BP™)—measurable, we conclude [S = p] € o(BP), hence S is a stopping
time.

Furthermore the r.v. S—sg is one which counts the number of raises necessary
to obtain exactly [y vertical raises. Clearly its law doesn’t depend upon s
and ¢” (but it depends upon ¢’).

Otherwise at each level J,, (of return to its beginning of the raising process)
we notice that the r.v. vt increases at least one unity between levels J,, and
Jn_1. So S is finite. From this point, the last part of the statement is easily
deduced.

From Propositions 11 and 12, we can claim that there exists a sequence
(C™)n<go—s associated with N, ™ as in Proposition 3, at which we associate
the sequence (I'),<g, satisfying on A5 :

S 770
(25) Hfuo,td] ~ Doty

< hZJO_SéJ/ + 2l0hZJO_S€// = (1 + 2l0) €//hZJO_S

[e.e]

(26) |I7,, —¢(tan)| < & +2°("hzys).

Before completing the construction of the disjointed sum of Brownian
motions it is now necessary to restrain ourselves at a finite number of I',, in
order to define a sy large enough (but not infinite...) to put the S, > 0 with
a big probability.

As the (H,,),,eNd+1 constitute a denumerable partition of €2, it suffices to
choose a finite part II of Ny, such that :

3 € 3 3
P(A)) >1-— 41, where A = <U Hl,> N A3.

vell

Proposition 14. There exists an integer sg, such that :

Vvell, S,>0 on the event Aj
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Proof It is immediate since the law of each S, — s, v € II finite, doesn’t
depend upon sg.

n
From now on, we choose such a sy (the smallest...).

At this point, we pursue the construction of the (I') for all n > 0 and v € II
as in Proposition 6.

Proposition 15. On the event [S > n > 0], it is possible to define N,
No=n CJo=n qnd T in such a way that : on the event H,N[S >n > 0], v €

(27) T 000 — Dlosglle < 2(Sy — 1+ hzg-s,(2° +1)) &
(28) |F10/,td+1 —p(tam)| < 2 </5 +e +e(S+ QZOhZJo—Su)>

Proof At each raise from level S to level 1, it suffices to protect all the
excursions of C7/0~"~1 of height greater than ¢”. This condition, since S is
a stopping time, defines entirely N'70~"~! and ¥70—"1 so C’~" and I'" on
the event [S >n —1>0].

At each of these S raises, each protected excursion receives a small excursion
of height lower than . And this situation is the worse for a non protected
excursion. So :

_1 "
||Fﬁ07td+1} - Fﬁo,tdﬂ}”()o <e

Hence

1Tl = Tlosgllle < (S =14 hzjs(20 + 1)) &
0L =TI < & +e (S+2%hz-s) + 6.

tit1

Finally, for the last raise, we give to the protected excursions of I'! the sign
of the corresponding excursions of I'’, which determines N70, ¥/ C7 and
I'% in such a manner that :

TS 0.0 — Dlosglle < 2(S = L+ hzy_g(2° +1)) &’
T —o(tan)] < 2 (5 +e+e (S+ 2l°th0_S)) .

tit1

because each positive excursion receives a negative one, so the errors add one
by one, hence they multiply by two.
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Now we introduce the disjointed sum I' = Y 14, T',. Then we can rephrase
14
the preceding assertions :

on the event Aj

(29) TS0 — Thocalle < 280 (1+2°+1) g
(30) |P?d+1 —p(tan)] < 2(B+€ +s0(1+ 210)) e’

because on this event, lop < .5 < s,.

Proposition 16. The process I' we have thus defined is a disjointed sum of
B—raised Brownian motions of index r = sg + lo.

Proof It suffices to notice that the r.v. J, and S are stopping times of
the reverse filtration (o(B™)) Consequently the r.v. A™ and X" are
o(B7~")—measurable, as required by Proposition 3.

n<r-"

. ;L _ € "o €
Finally we choose ¢’ = 3 = ¢ and ¢ = o120y

The last choice is permitted because the law of S doesn’t depend upon €.
So we have proved the

Proposition 17. For every ¢ > 0, there exists a disjointed sum of B—raised
Brownian motions verifying :

P (‘F(tlv s 7td+1) - So(th s 7td+1)‘ < 26) >1—e

Proof It is immediate from the hypothesis of induction, inequalities (1) and
(2) and Proposition 14.

We deduce immediately that P, is true. Hence Py is true for every d € N.
Now we can state :

Theorem 1. (d—density of paths)
Ve > 0¥(ty, ..., tqq1) € (RF)?

P (Vn > 0,3 from 1tod, |B]' —¢(t;)] >¢) <e.
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Proof At this point, it is an immediate consequence of Proposition 1 : it
suffices to choose for G the complementary event of {w € W ||w(ty,...,ts) —
o(t1, ... tq)]|eo < €} and apply Proposition 15.
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3 Density of orbits

In this paragraph, we want the raised path to approach the map ¢ uniformly
on [0, 1]. The additional difficulty is twofold : first, to protect what has al-
ready been obtained on the whole segment [0, t4] (which has already begun in
the preceding paragraph, with the introduction of || ||); secondly, to cor-
rectly configure the path on the whole segment [ty,t441]. Only a more precise
analysis of the Lévy Transform, obtained at lemma 15, enables a fruitful uti-
lization of the methods settled in the preceding paragraphs. Through a best
knowledge of raises, we can show that the disjointed sum of B—Brownian
motions furnished by the algorithm come up to the requirements of the fol-
lowing property we propose to show in this paragraph :

Whatever € strictly positive, and p € W\, there exists a disjointed sum
I' of B—raised Brownian motions such that :

P (L)) = Glonlleo <2) > 1-2

. . .. . €
We consider a modulus of uniform continuity «q associated to (Z’ ©, [0, 1])

and a real number «; such that P(Ap.) > 1 — % where

AO{-: = [Sup{‘Bt - Bu‘u (tvu) S [07 1]2 and |t - u‘ < 041} < %} )

then we set a := min(«, aq), do := [ﬂ +1,and forall d € N, t; = (da) A 1.
We set again, for all integer d € [1, ..., do],
€
Ad = [sup{|Bt ~ By, (t,u) € [ta, 12 |t —u| < a} < 5] .
Our aim is to show, by induction on d, the following property P; : " For
all ¢ > 0, there exists an integer ry and a disjointed sum I' of B—raised
Brownian motions of index r4 such that :

R R B e L e G
Notice that Py immediately yields from the choice of a;. We suppose now
Py true. We are going to apply this hypothesis to the Brownian motion B*°,
for an integer sg which, as the real number 1, will be later specified.

As A? C [sup{|B: — Bu|, (t,u) € [ta, tar1]*} < §] N A and from the inde-
pendence of the increments of Brownian motion, we can deduce the existence
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of a disjointed sum [ of B%0—raised Brownian motions of index r4 such that

P(A8)>1—5<1+i) ;
do

where

A5 = [T = Py llee < ] N [T = plta)] < ei]

15
A [supd [ Bretre = Bt () € [t tasa]?} < 5] 0 A2

We will denote : Vi € N, [ = @', By definition, Vi > rg, @' = w0+,

From the theorem of density of zeroes (|[M]), there exists a.s. an integer ¢
such that w* vanishes at least one time on [ty tq;1].

Let L(w) be the smallest of these integers ¢. L is a r.v. almost surely finite.
Then there exists an integer ¢y, which we will choose > r; such that :

PA) > 1—c(1+ L) =5 on A —Asn[L <ty
do)  3dy

Our aim is to raise the path w®, which is nothing but w**% from level sy £,
to level 0, in such a way that the raised path approaches ¢ on [t4, t441] while
remaining at the proximity of ¢ on [0,%4] acquired at level sy, with usual
measurability condition. For this to be realized, without damage, we will in-
troduce the family of protecting excursions of w*, (@gk))lgjgpk, constituted
by the excursions of @w* with beginning before t; and height greater than &
and arranged in the reverse chronological order, for all k£ from 0 to £.

The pi, 0 < k < {4y, are finite r.v. Let (p)o<r<s, be a sequence of determin-
istic integers verifying :

d 2¢e
P(A; 1-— 14— ) ——
( 2)> 6( +d0) 3d0

where
5 5 to 0
As = AT N kgo[pk < pk] .

The notions to follow are just necessary for fine analysis of the Lévy rais-
ing.
For our needs, we will call m—excursion each map e : Rt — R whose support
is a not empty segment and which doesn’t vanish at any point of the interior
of the support. In particular, for w € W and t > 0, we will call m—excursion
straddling ¢, and denote it by : e;(w), the map so defined :
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0 ifuel0,g(w)Uld(w),+oo]

ef(w) : RY — R, Vu € R, e(w)(u) = { w, else

We will introduce the map de;(w) : Rt — R defined by

0 if u e [0,t] U [Ry(w), 00|
Vu € R, dey(w)(u) = where R (w) = sup{u > t,Vs €]t, u], ws # w;}
w, — wy else
and we call it a differential m— excursion of w.
We denote them e; and de; when there is no ambiguity, and e; and de; in
the case of excursions of w?®.

Lemma 15. Let w € W and e a negative m—excursion of Tw, lower than
all preceding it. Let v be its beginning and o its end. We set :

1 = argmin Tw, v, = inf{t € supp(e); e(t) = Tw,, }, 73 = argmin e
[0.:7] [.0]

Then :

de,, coincides with an excursion of |w|, and its support is [y1, V2]
de,, coincides with an excursion of |w|, which begins at v3 and whose
support contains [, d]

Furthermore, Yu € |va,7s], de, coincides with an excursion of |w|, if, and
only if :

e(u) = inf{e(t), ¢ € [, u]}
It is the case in particular when de, 1s the first positive excursion of the form
de,, v € [y2,73] to overflow a given value.

{ de, 1s a positive excursion

Proof
From Tanaka’s formula :

|wt| = th + Sup{_Twua RS [O>t]}

Therefore,
lw,, | = Tw,, —Tw,, =0,

while, for all ¢ > 4, sufficiently small :

th > T'LU-yl.
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So, de,, is a positive excursion of |w| which ends at 7,.

In the same way, Tw; > Tw.,, for all t € |3, ¢], therefore de.,, is an excursion
of |w| beginning at 3 whose support contains [7s, d].

Let ¢ be an excursion of w with support included in [vs,~s]. Its beginning
u, and its end v verify :

u = argmin Tw and v = argmin Tw.
[0,v] [0,v]
So we deduce : de, = |€|.
Reciprocally, let u € |79, 3] such that de, is a positive excursion and

u = arg min Tw.
[0,u]
Then, v = argmin Tw, where w is the end of de,, because de, is positive.
[0,
Thus, w, = w, =0, and for all ¢ €]u, v[, wy # 0.
Consequently, de, is an excursion of |w|.
Let h > 0 be such that there exists u € [vs,73] verifying de, is the first
positive excursion of the form de,, v € [y2,73], whose height overflows h.
Then, for all v < wu, the support of de, can’t contain this of de, without

denying the minimality of u.

[ |
We set :

= _ Opll — 13 1 (0,00}
A= {()‘k)ogkgzo},)\ké{ 1,—|—1} k _IEO{ 1’4_1} &

A = {[nB, (n+1)8[; n € Z}Ofo)

The partition (H%*!) from which we are going to construct I' is so defined :

v e Ngpi
Ngi1 := A x A'is denumerable;
V(A 0) € A x A,
35 = OV (oo (@ ocsegy = M1 1 [0F, € 006 )
k-1
Set : bd(k), the beginning of the interval (k) and e(\, k) := l:[o)\i(()).
Lemma 16. (analog of lemma 12)
On H‘jj;l the displacements T2(w) and 7;);((13)) “OR)differ from at most 2.3.

Proof See the proof of lemma 10.
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This lemma allows us to replace the value to be anticipated 70 (w)(¢(t411)),
which doesn’t have the good measurability by 7';?((,3)) 6(’\’k)(go(td+1)) on Hys.

The purpose of the following lemma is to prepare, at level s, when the iter-
ated Brownian motion vanishes on |t4,t4y1], the excursions which will allow
the correctly raised path to approach ¢ at level 0 on |tg4, t441[. It is the anal-

ogous of lemma 14.

Lemma 17. Full planing.

Let w belong to W, and t, t', € € R be such that t <t'. We suppose there
is no interval in which w is constant, and w vanishes in (t,t").

The following r.v. are functionals of |w| :

hd to(w) = ginf{s>dt;\ws|251}.

e Vn € N, while t, <t', we set :
inf{u € [t,; arg max |dey,
iof this set is not empty,
else :

arg max |de, | At

[, h(de,) > €' and sgn(de,) = —sgn(de, )}

tn—l—l =

The sequence (t,)nen 1s strictly increasing and finite. Let 1 + K(w) be its
cardinality.

Proof By construction, the sequence (t,) is strictly increasing and lower
than t’. Suppose the number of its terms is infinite. In this case, it would
admit a limit ¢, < t/, and the oscillation of w at ¢, would be infinite, so
contradicting the continuity of w. Then (¢,), is finite.

The measurability and the finiteness of K are immediate.

The remaining of the proof follows the same way as in the proof of Lemma
14.

Let us remark that this Lemma gives us the possibility of planing the path
after d, in K raises.

For, during the first raise, we put negative the excursion straddling ¢ and
positive all the other excursions in (0,t") of height greater than . Then
during the second raise, we put negative the excursion whose support contains
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this of de;,, and so on. At the end of such K raises, the path on [to, ] has
an absolute value which doesn’t exceed &’ + K¢”, and &' on the excursion
straddling t'.

Now Proposition 7 applies with very few changes :

Proposition 18.

(it)

with sup ) = —oo, and Jy—1 are stopping times of (0(B™))n<so+io SUch
that Jo > so +rq on A3, and P(Jy = —o0) = 0.

For all (w,n) € Q x (ZN (=00, s¢ + ly]) verifying Jo(w) < n, we define
I'(w) = B"(w). So, [0 = B/ = (C°.

The r.v. K(B”™) (notation of Lemma 17) is o(B’°)—measurable. So
Jy=Jo—1— K(B”) is a stopping time.

We can define N™(w), ¥"(w), C™(w) and |C™"(w)| for alln < Jy— J,
on the event D = [B%~! vanishes on (tg,tqy1)], which is of probability

1, in such a manner that : F;{éﬂ = Cé:‘](; < &' on this event, and
we have
'F‘][évtd}_rf37td} o KB
and 'PJ[;;O(BJ“”M - Hcﬁfo_(ﬁ’ol),tdﬂ <€
F;]cé+1 < €.

Proof It is exactly the same as in Proposition 7, except the last point which
is an immediate consequence of Lemma 17.

Then we are coming to the analog of Proposition 8 :

Proposition 19. There exists a U(BJ(;“)—measumble, N—valued r.v., K}O
such that there exists K}O —1rv Pp,..., PK;] _, themselves with values in
0

N and U(BJ<;+1)—measurable, such that :

(i)

!

!/ . -
the K; — 1 excursion intervals ep (I'0), ..., ep,

) (FJ(;) are disjoint
Jo

and included in (tq,t4.1)
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(ii) the heights Hy, ..., Hgr_y of these K' — 1 excursions of I'%0 satisfy on
D! :

b5(0) £(\.k)
bs(Jy 0

(P(tasn)|—¢' < Hit - FHpor ) < |00 (o(ta)) |+,
Jo bd(J, )

Proof (See Proposition 8)
|

Often in the sequel, we will denote K} simply by K, if there is no ambiguity.
And likely we repeat word by word Proposition 9 :

Proposition 20. For all (n,w) such that Jo(w) — Ji(w) < n < Jo(w) —
Jy(w) + K'(w), N (w) and X" (w) can be chosen so that :

(i) 0 <GP <o and T 750 — Ol < (Jo — Jp)e”.

(ii) —(Lo CP=%)(tas) = Higy -1

(iii) C7~% has K' — 2 tall excursions included in (tg,te1) : By < Ey <
oo < Egr_o with respective heights Hy, ..., Hx/_o verifying ‘iCJO,Jé El’ <
‘Z’CJO,J(/)EIQ’ < e K ’iCJO,J(I)EK/_Q .

(iv) Hygr i+ +Hygy 1 < CZ:]O_JO < Hgr —ny1+---+Hg, +e'+
e ° ° °
(v) HKfIO—n < —(Io Cn+JO_J6)(td+1) < HKfIO—n + K"
vi) C™ has K, —n — 2 tall excursions included in (tg,tgq)E7 < -+ <
Jo 1

< ", and whose

E%Y, 5 such that : |icnEHy| < -+ <
Jo
heights HY, ..., an(f; o Satisfy :
0

zC”’LEK’ —n—2
Jo

H < H' <H +ne" forn+1<1<K) —1

Proof The same Proposition, the same proof.

In our pursuit of the procedure in paragraph 2, we are now rephrasing Propo-
sition 10 :
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Proposition 21. [t is possible to choose N™(w) and X" (w), for all (n,w)
such that n = Jo(w) — Jy(w) + K, (w), in order to have :

(i)
Jo—J4+ K,
110,t4]

~J'—K' —s
ERE < (s KL

[e.e]

o

(i)

Jo—Jy+K’ b6 Ak 1
’Ct 0oty Tba((ggf(so—i)((p(td—irl))‘ <+ _(K}O — 1)(Kf]0 - 2)6//

d+1 2
and
Jo—JH+K", ~Jo—J)+K/, , 1, , "
Hc(th) C = D01yt € + §(KJ0 — (K], —2)e

Proof For the additional part in (ii), we notice that the building excursions
which appear in Proposition 18, the ep,(I'”0)’s, are successively protected.
Once protected, each of them receives a small excursion of height lower than
e at each raise. So we deduce (ii).

Let us denote J; := Jj — K/ (w).
Similarly Proposition 11 becomes :

Proposition 22. It is possible to define N™(w), ¥"(w) and RLj,_,(w) in-
ductively on the event [n > Jo — Jy| if C™(w) doesn’t vanish in (tq,tqs1) and
RLj,_n(w) > so, in such a way that :

. n ~RLj _pn—S
(1) ‘C\[O,td]_r S

Ot < It e (Jy = ).

[e.e]

(ii) ‘qn cr

[to(BT0= 1) tgpq] ~ tar

<& + K(Bh Ve,

o0

tat1

(iii) |C —{;{gﬁi{?_so)(w(th))) < LK 1) (K —2)e" +2n—TotTo g,

Proof We first recall that when we know C"~!(w), we know also wether C™
vanishes in (¢4, tq.1). If it isn’t the case, we put :

RLJO_n_l(w) = RLJO_n(u)) - 1,
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and define N (w) and X"(w) as we do in Proposition 9; but this time the
counting of "errors" is radically different. It can happen between 0 and ¢,
that an excursion which was protected before become negative and, in the
following raise, is going to add to another protected excursion. So, at each
vertical raise, the "errors" are double of those of the preceding raise. Hence
the result in (ii).

In the same manner the excursion straddling ¢, receives an excursion with
beginning in [0,4]. So, to the errors soon acquainted at level .J; we must
add the error between 0 and ¢, of the preceding level which entails (i).

For (iii) : here the raises which are involved, are the planing one’s, i.e. the
K(B”’~1) first raises. At most, at each instant of the interval [to(B7~1), t4,4],
the path C™ has received K (B7°~!) small excursions. Then, this part of the
path is just successively translated, which entails (iii)

Then, without any change, we define J,,, n > 0, hz, and vt,,, and Proposition
12 takes place.

Proposition 23. (i) For alln € N, the r.v. J, are stopping times, while
the RL, are o(B""Y)—measurable, the hz, and vt,, o(B’~")—measurable.

(ii) It is possible to define N™ and X" on the event [J,;/_l >n > Jk] in such
a manner that :

n RLj;, _n,—s vtn
(a) HCHOM I 07T < hz,e2vt

0,t4] .
0 H T
(b) )’C‘[tO(BJk71)7td+1} - Ctd+1 HOO < 8/ + K(F k 1)6”
n b6(0) e(\k )
(C) )Ctd+1 B Tb&((R)Lii,n)_so)(@(tdﬂ))) < e+ %(K}O _ 1)(Kf,0 B 2)8 n
hz,e"2vtn

Proof It is the same as in Proposition 12.

For (b) we notice that, after the intervention of the planing excursions, this
part of the path is merely translated, without being affected by any other
modification.

As before, S = sup{n < r; RL, = s¢}.

Proposition 24. (i) S is a stopping time such that S — sy doesn’t depend
upon so and ”.
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(i1) Let (I'™) be the sequence associated to the C™ of Proposition 22. It
satisfies on Af :

Hrﬁo,td} - f\o[o,td} ‘OO < hzg_se” +20hzy_se" = (1+2°) e"hzyy_s

HrﬁtO(B‘lsfl),th} a FEIH o < e+ K(BJS_l)gﬂ
]_ 12 1"
Ffiﬂ - ¢(td+1)’ < 2B8+4+¢€+ §(hzn — 1)(hz, — 2)e 2" (5//hZJO_SE ) .

Proof For (i), see Proposition 12.
Then (ii) follows immediately from preceding Propositions.

We notice that, up to now, we have correctly defined the sequences (C"),<j,—s
and (I')n>5. Now we restrain the partition (H,),en,,, : there exists a finite
part 11 of Ngy1 such that :

(31)
d 3e d

+1
P(AS l—e(l4+—)——=1—¢(1 As = AS H
(A5) > g( —I—do) 34 e(1+ i Jwhere Aj 5N <V€LJH ,,)

And we set, as usual, S = ZueNdH Sy,
Then Proposition 13 remains unchanged : we choose such an integer s;.
Now Proposition 14 becomes :

Proposition 25. On the event [S > n > 0], it is possible to define N0,
sl Com and T7 in such a way that : on the event (g Hy) N[S >
n > 0], we have :

(32) HF\O[Qtd} - F|O[O,td}||oo < 2 (S -1+ hZJO_S(QlO + 1)) g’
(H%O(FJO),MH - ngﬂ ||°° < 6/ + K(FJS)g

1 1" "
(34) T2 —o(tan)] < &+ §(hzn —1)(hz, —2)e +28+ 2" hzy,_s.

tat1

Proof The same as in Proposition 14.
For (38) and (39), we use the arguments of Propositions 21 and 22.
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Then Proposition 15 remains unchanged :
I' so defined is a disjointed sum of B—raised Brownian motions.
RV — "
So, let us choose : ¢’ = &, =55, and e = 16(%(50—1)(650—2)—1-2%50'
From the independence of the stopping times S, — sg, and consequently to
the r.v. S, upon sq and €, these choices don’t create any vicious circle, and

we can claim :

Proposition 26. For all € > 0, there exists a disjointed sum of B—raised
Brownian motions verifying on the event A5 :

3

(35) o = Pi0sall,, < 3¢
0 £

(36) HFHto(BJO)vth}_SOHtO(BJO),th] o < 8
£

(37) Ty, —¢(tan)] < T

Proof We deduce immediately these increases from Proposition 24 since
S < 80, hzgy_s < 80, K(I'7s) < sq.

At this point, the last task to achieve is to control '’ between times to(B7)
and td+1.

So we are going now to analyze more in details its behavior on (¢4, t4.1).
Let us denote 7, the first time after ¢; at which one of the w?, 0 < o < 5o+,
vanishes on (t4,t411), and oq the corresponding level.

Notice that there exists an integer k such that g = Ji. Set :

01 = 0g — Z (K(FJk) + K}k) ]].o-ozjk.

keN

Let us introduce the rectangle Rect,, defined by the four straight lines with

equations :
b6(0) e(\,RLey)

r=t4,r =141,y = inf Tb5(RLoy) (30)|[td,td+1} and
B b6(0) e(A\.RLay)
Y = SUP Tys(RL,,) (90)|[td7td+1]

(0) e(\,RLey)

Rect,, contains by definition the path of Tgf(R)L (©)|tastars) and, from

o0)

€
the choice of «y, its height is lower than T
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Now consider the path of w”|
the appendix.
In the two cases by hypothesis, the total variation of w0 on [ty tq.1] is

tartass)> it takes one of the two forms given in

lower than —. So, by lemma 5, and the definition of v;,, it is equal to that

of w?, on [t4,v,]. Consequently the path w’' can move again from Rect,,
but at most from § + 5 on the same interval.

And rapidly, it is bound to join ¢ in Rect,, by the building excursions, the
flat part remaining flat.

Therefore, the rectangle RR,, with the same center and vertical straight lines
bordering it, and height that of Rect,, + %, contains the path w” |, .. .)-
During the following raises, the rectangle Rect,,, according to lemma 5,
moves by isometry. We call R, its new positions, and likewise RR, that of
RR,,.

We can easily check that, for all 0 > oy corresponding to a vertical raise, the
path w7y, 4, is contained in RR,.

Finally, for w € A5 N H”, v € 11, at level 0 we have the desired property :

HFS‘[tmtdﬂ] - 90|[td,td+1} HOO <e€

So we have proved the following :

Proposition 27. For all € > 0, there exists a disjointed sum of B—raised
Brownian motions such that : on A3,

e

(38) HF([)tdvthrl} - S0|[tdﬂtd+ﬂ < 35
19

(39) Lo — Sp(td+1)‘ < 7T

By replacing ¢ by %5, we have establish that Py, is true. So, by induction,
Py is true for all d < dy, and we can claim :

Proposition 28. For all € > 0, there exists a disjointed sum of B—raised
Brownian motions such that :

€
P ([ITfo — Proalle <] N I =)l < 7]) > 1 -2
Then we can apply Proposition 1 to G = [||w|[0,1] — )i0,1] /oo > 5}.

So,
P <V7’L > O, HB‘T[LOJ} — QDHO,”HOO > 8) < 2¢
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We deduce immediately :

P(vnzo,

Bﬁo,l] - @\[o,u”oo > 5) =0.

But this property is true again when we replace 1 by a, for all @ > 0 : This
means :

Theorem 2.
For almost every w € ), the orbit of B(w) :

orb(B(w)) = {B"(w); ,n € N}

s dense in W, equipped with the topology of uniform convergence on compact
sets.

Let us notice that if, in place of restrain ourselves with the open sets B,
we have shown :

VB closed set in W,
P(B)> 0= P(orb(w)NB#0) =1

Then every set A T-invariant, measurable and not negligible, would contain
the event [orb(w)NB # (] and so, would be almost sure. Therefore, T would
be ergodic.

To end, we are going to claim in an equivalent way, following thus an inter-
esting suggestion of J.P Thouvenot :

V(p,e) € W],y X R,

the reverse martingale P(w € B(p,¢)|W. ) admits a regular conditional ver-
sion P(w € B(p,¢)lw™), and we have :

Theorem 3.

P a.s., lim P(w € B(p,e)|w") >0

Proof of theorem 3.
Suppose the contrary, and let :

A= [w e W, lim P(w € B(yp,¢)|w") = 0]
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As P(w € B(p,e)|lw") = P(w € B(p,e)|w™™), because T is measure-
preserving. So we have :
weAsTweA

So A is T-invariant. Consequently :
E(14P(w € B(p,e)[w")) =P (ANw e Blp,e)]) = P (AN [w" € B(p,e)])
But by hypothesis :

lim F (14P(w € B(p,e)|w™)) =0

n—oo

Therefore,
P (AN orb(w) N B(p,e) #0]) =0

which, from theorem 1, entails that P(A) =0

Finally, let us remark that, if we could show :

lim P ([w € B(g,e)]|w") =P ([w e B(p,e)]) ,

n—oo

Than, not only T would be ergodic but exact which means :

WL = ﬂNW:o would be trivial.
ne
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