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Density of paths of iterated Lévy transforms ofBrownian motionMar MalriMay 12, 2007Abstrat : The Lévy transform of a Brownian motion B is the Brownianmotion B′
t =

∫ t

0

sgn (Bs) dBs. Call T the orresponding transformation onthe Wiener spae W . We establish that a. s. the orbit of w(∈ W ) under Tis dense in W for the ompat uniform onvergene topology.IntrodutionLet (Bt)t≥0 be a one-dimensional, issued from 0 Brownian motion, and (Lt)t≥0its loal time at 0. The Lévy transform of B is the Brownian motion
B1

t =

∫ t

0

sgn (Bs) dBs = |Bt| − Lt.Let T be the orresponding transformation in the Wiener spae, whih maps
B on B1, i.e. w on Tw. At the end of hapter XII of [R,Y℄, Revuz andYor asked for the ergodiity of T . From up to now, in [D,S℄, Dubins andSmorodinsky established the ergodiity of the disrete Lévy transform, ananalog of T for random walks.Our goal is to establish that the orbit under T of almost every path is densein W equipped with the topology of uniform onvergene on ompat sets.This is a neessary but not su�ient ondition for the possible ergodiity ofLévy transform, as it is the ase for the density in R+ of the zeroes of theiterated Lévy transforms of Brownian motion established in [M℄.Otherwise, the present paper is the natural onsequene of [M℄. As in [M℄,the strategy lies on the utilization of the "Lévy's raises" : after being su�-iently down in the iterations, i.e. going from T nB, for a big enough integer1



n, for at least one of T pB, p ≤ n, vanishes on given interval, we proeedfor eah raise from level n to level 0, by hoosing a �nite number of signsof seleted exursions in suh a way that the raised path takes the desiredshape.If the idea at the basis is simple, numerous di�ulties arise when it is applied.So we present at paragraph 1, the tools we need. In partiular, we have ho-sen to onstrut proesses rather than events. Beause their manipulationis as simple as that of events in this way, and beause they are more ade-quate in the indutive reasonings. In any way, the proesses so alled raisedBrownian motions don't seem to bring more di�ulty. We present also inthis paragraph the tehnis of raising, whih we illustrate with diagrams.At paragraph 2, in order to avoid to handle too many di�ulties at the sametime, it seemed more appropriate to put the methods in ation, �rst in anelementary situation, the one-time approximation. We treat it not for it-self, but to prepare the ground for the future. So, the method used to provethe one-time approximation is not the fastest but it desribes in simple situ-ation what will be done afterwards. Thus, we introdue in this paragraph analgorithm whih ould be avoided, but it is the elementary form of the �nalone.Then, at paragraph 3, we onsider a more omplex situation, the d-timeapproximation, where the indution is neessary. Here, it is impossible touse the exursions near from time 0. On the ontrary, we must �nd zeroesbetween times td and td+1. In this ontext, a sophistiated algorithm is un-avoidable.Finally, at paragraph 4, when we ome to our subjet, the uniform ap-proximation, the methods are in proper order, we still have to add the lastdi�ulty whih needs a deeper analysis of the path, preisely the notion ofdi�erential exursions.In the end, I want to thank Mar Yor, Mihel Emery, Jean-Pierre Thouvenotand Christophe Leuridan for the good advies.1 PreliminariesLet (W,W., P ) be the Wiener's spae of a Brownian motion B. As usual,for all w ∈ W , we all Lévy Transform of w, and we denote Tw, the map sode�ned :
∀t (Tw)t := |wt| − Lt(w)where :
Lt(w) := lim

ε→0

1

2ε

∫ t

0

1|ws|<ε ds2



is a possible de�nition of loal time at 0 of w.From Skorohod's lemma,
Lt(w) = sup{−(Tw)s, 0 ≤ s ≤ t} .When w is a Brownian path, Lt(w) = lim

ε→0

1

2ε

∫ t

0

1|ws|<εds, and when β isa Brownian motion, Tβ is again a Brownian motion, the �ltration of whihbeing that of |β|, the absolute value of β.We de�ne indutively the iterated Lévy transforms of w :
T 0w := w, ∀n ∈ N, T n+1w := T (T nw).We also set :

∀n ∈ N, Bn := T nB,and we will indi�erently write T nw or wn, T nW. or W.n.Beause there is no loss of information, we onsider the Lévy transform as afall. So we will say that w is a Lévy raise of Tw. Of ourse, two raises of
Tw have the same absolute value, and di�er only by signs of exursions.We say also that w is a Lévy raise of order n of wn.We laim to begin the elementary result, whih is at the basis of the onsid-erations to follow, as well as that of [M℄.But let us all, as in [M℄, arg min[u,v] f resp. arg max[u,v] f , the largest
t ∈ [u, v] suh that f(t) = min[u,v] f , resp. f(t) = max[u,v] f , for all f ontin-uous funtion on [u, v].Throughout this work, we are using the usual notations :
gt(w) is the �rst zero of w before t, and
dt(w) is the �rst zero of w after t.We will write r.v. as shorthand for random variable.Lemma 1.Let e be a positive exursion of Tw, w ∈ W , g its beginning and d its end.Then there exists a unique exursion e′ of w whose support ontains this of
e. e′ begins at g′ := arg min

[0;g]

Tw and terminates at d′ := inf{t > g, Twt =

min{Tws, s ∈ [0, g]}}.The height (in absolute value) h′ of e′ (i.e. sup{|ws|, s ∈ [g′, d′]}) is equal tothe sum of the height h of e and the height of the exursion of Tw where itreahes its minimum on [0, g].
3



Proof of lemma 1.It is an immediate onsequene of Tanaka's formula and Skorohod's lemma.
�The next result, as in [M℄, is essential beause it allows us to "give" the goodsigns to seleted exursions.Lemma 2. (issued from lemma 2 in [M℄, p.502)Let be given an integer n0, a family (e+

i )1≤i≤n0 of exursions of B with disjointsupports and beginnings (gi)1≤i≤n0 TB-measurable, and a family (εi)1≤i≤n0 of
{−1, 1}-valued, TB-measurable r.v.Let Ei := limt�gi

Bgi+t the sign of the orresponding exursion. Then
• The event A := {∀i ≤ n0, Ei = εi} veri�es :

P (A| |B|) = 2−n0

• σ(|B|) and σ(Ei, i ≤ n0) are independent.
• Furthermore, if we number the other exursions of B (for instaneby �rst arranging the exursions by dereasing heights ∈ [0, 1[, thenthe exursions ∈ [1, 2[ and so on, ..., and �nally by hoosing a bi-jetion from N2 to N) and if we introdue the r.v. Z orrespond-ing to the sequene of their signs, then Z is an independent omple-ment of σ(|B|) ∨ σ(Ei, i ≤ n0) in σ(B) (i.e. Z is independent of

σ(|B|) ∨ σ(Ei, i ≤ n0) and σ(|B|) ∨ σ(Ei, i ≤ n0) ∨ σ(Z) = σ(B)).Proof of lemma 2.The theory of exursions ([R.Y℄, hapter XII) entails that the r.v. Ei areuniform on {−1, 1}, independent among themselves, of σ(|B|) and of thesigns of the other exursions : Z.In partiular, we have :
P (A| |B|) = P (E1 = ε1, ..., En0 = εn0) = 2−n0Finally, the formulas of reonstitution of Brownian motion from the exur-sions allow to laim that Z is an independent omplement of σ(|B|)∨σ(Ei, i ≤

n0) in σ(B). 4



�This lemma is the key to the :Proposition 1. and de�nitionBeing given an integer r > 0 and three �nite sequenes of r.v. on (W,W., P ) :
(Ys)0≤s≤r−1, (Y<s>)0≤s≤r−1 and (Zs)0≤s≤r−1 suh that :

• Ys is the sequene of signs of a �nite family of disjointed exursions
(es

i )1≤i≤n0
s
whose beginnings, (gs

i )1≤i≤n0
s
are a family of Ws+1

∞ -measurabler.v.
• Y<s> is a sequene of n0

s Ws+1
∞ -measurable r.v. with values in {−1, 1}

• Zs is the r.v.onstituted by the signs of the other exursions of Bsonveniently numbered.Then, for all s from 0 to r − 1, the map :
fs : (W,Ws

∞, P ) → (W,Ws+1
∞ , P ) × (Ys(W ), σ(Ys), PYs

) × (Zs(W ), σ(Zs), PZs)

w s → (w s+1 , Ỹs(w
s), Z̃ s(w s))where for all w ∈ W , Ys(w) = Ỹs(w

s) and Zs(w) = Z̃ s(w s).is an isomorphism of measured spaes.We will all sequene of B-raised motions of index r the sequene of proessesso de�ned :
• Γr := Br

• ∀s from r to 1, Γs−1(w) = f −1

s−1
(Γ s(w), Ỹ<s−1>(Γ s(w)),Z s−1 (w))We will say that (Γs) is a sequene of B − m.r.(r) and Γ0 is a B − m.r.(r).We have :

∀s ∈ N, TΓs = Γs+1.Furthermore,
∀s ∈ {r − 1, ..., 0}∀w ∈

i

∩
s=r−1

[Ys = Y<s>],Γ s(w) = B s(w) = w s ,the event i
∩

s=r−1
[Ys = Y<s>] being W i

∞-measurable and not negligible (of prob-ability ∏i

s=r−1 2−n0
s). 5



Proof of Proposition 1.It is an immediate onsequene of a repeated use of the preeding lemma.
�When we need to keep in memory some information not ontained inWr
∞,we will rely on the following notion :We all disjointed sum of B − m.r.(r) a family (Γs)0≤s≤r of proesses, suhthat there exists :

• A denumerable W∞-measurable partition (Hν)ν∈N of W .
• For all ν in N , a sequene of B − m.r.(r) (Γs

ν)0≤s≤r verifying :
∀s ∈ {0, ..., r − 1}, Γs =

∑

ν∈N

1Hν
Γs

ν .We will denote Y ν
s , Y ν

<s>, Zs
ν , the r.v. assoiated to Γs

ν .Our strategy is to onstrut a B−m.r.(r) or a disjointed sum of B−m.r.(r)whih ful�ll at level 0 some onditions. That returns to prove that these on-ditions are realized with stritly positive probability by the Brownian pathitself. We have hosen the presentation through B−m.r.(r) beause it seemsattrative to us to have a family of proesses ranging from level r to level
0 whih realizes the desired onditions, a family whih neessitates nothingbut two r.v. at eah level : Ys and Y<s>.Our task will now be preisely to onstrut these r.v.; and to perform thistask, we will base ourself on the possibility to have at our disposal reservesof exursions, property that we express in the following :Lemma 3.Let be given e an exursion of B, with beginning g, and g′ a r.v. suh that
0 < g′ < g.Then, if we arrange the family of exursions of B whose support lies in [g′, g],
(ei)i∈N, and if we all hi the height of ei, then :(1) ∑

n∈N

hn = ∞ , and6



(2) lim
n→∞

hn = 0 .In partiular, the set of sums of heights of �nite number of suh exursionsis dense in R+.Proof of lemma 3.We know that :
lim
ε→0

εdc
ε(t) =

1

2
L(t) a.s.where dc

ε designates the number of down rossings of [0, ε] (see [R,Y℄, hapterVI).As g is an inreasing limit of dr, r ∈ Q ∩ [0, g], we dedue that lim
ε→0

εdg′

ε (g)is stritly positive, we all it ℓg′

g (here, dg′

ε (g) designates the number of donerossings of [0, ε] by w|[g′,g]).Hene lim
ε→0

εNg′

g (ε) ≥ ℓg′

g , where Ng′

g (ε) designates the number of exursionsgreater than ε, whose support lies in [g′, g].But : ∑

n∈N

hn =

∫ ∞

0

Ng′

g (ε)dε.Therefore, ∑

n∈N

hn = +∞.The ontinuity of paths ensures the null limit at in�nity.
�We need the notion of plug exursion :Being given an exursion e, that we want to preserve during the raising, weput e positive and border it with e′ a negative exursion lower than all thepreeding ones, and anterior to e, and e′′ a negative exursion, lower than allthe preeding ones and posterior to e : e′ and e′′ are plug exursions for e.This is the aim of :Lemma 4.Let (e∗si )1≤i≤qs

be a sequene of exursions of ws arranged in the reverse7



hronologial order, suh that :
qs and all the beginnings (g∗s

i )1≤i≤qs
and heights (h∗s

i )1≤i≤qs
areWs+1

∞ -measurabler.v.Then there exists a sequene (e∗s
′

i )0≤i≤qs
of exursions of ws before t, a on-stant suh that supp(e∗s1 ) ⊂ [0, t[, verifying :(3) 




g∗s′

qs
< g∗s

qs
< g∗s′

qs−1 < ... < g∗s
1 < g∗s′

0 < gt(w
s)

h∗s′

qs
< h∗s′

qs−1 < ... < h∗s′

0 < ε∗for all onstant ε∗ > 0.Proof of lemma 4.We set : g∗s′

−1 := gt(w
s), h∗s′

−1 := ε∗, and g∗s
qs+1 := 0. We use lemma 3, so itsu�es to hoose, for e∗s

′

i , 0 ≤ i ≤ qs, the higher (in absolute value) exursionof ws among its exursions whose support is inluded in [g∗s
i+1, g

∗s
i ] and heightlower than h∗s′

i−1.For these hoies, the measurability required for the plug exursions, as wellas (3), are obvious.
�We introdue now the sequene (e+s

i )1 ≤ i ≤ νs, obtained by the aggregationof :
• (e∗si )1≤i≤qs

• (e∗s
′

i )0≤i≤qs

• (eys
i )1≤i≤ps

the �nite sequene of all the other exursions of ws before gt,whose height is greater than h∗s′

qs
, rearranged in the reverse hronologialorder.(The reason for introduing the (eys

i )1≤i≤ps
is the following :when the plug exursions at their part of proteting the (e∗si )1≤i≤qs

, all the
(eys

i )1≤i≤νs
must be positive).The following lemma is showing up the hereditary harater of the onstru-tion of these exursions families :

8



Lemma 5.Let be given two sequenes (e∗si )1≤i≤qs
and (e+s

i )1≤i≤νs
verifying the hypothesisof the preeding lemma. Then, on the event :

Es : "all the plug exursions and the exursions (e∗si )1≤i≤πs
are < 0, all theother exursions of (e+s

i )1≤i≤νs
are > 0" (where πs is an integer valued on-stant lower than qs, with the onvention that, if πs = 0, the ondition on

(e∗si ) is empty; in the sequel, πs = 0or1),then the exursions (e∗si )πs+1≤i≤qs
are "preserved" at level s− 1. This meansthat there exists a unique family of exursions of ws−1, we note it (e∗s−1

i )1≤i≤qs−1,with qs−1 := qs − πs, verifying :
• supp (e∗s−1

i ) ⊃ supp (e∗sπs+i)∀i ∈ [1, qs−1]

• the supports of e∗s−1
i are disjointed two-by-two.Moreover, the beginnings of (e∗s−1

i )1≤i≤qs−1 are Ws
∞-measurable.Proof of lemma 5.Following lemma 1, beause on Es eah exursion of (e∗si )πs+1≤i≤qs

is positiveand bordered by its two plug exursions, whih are negative on Es (for, thelast minimum of ws before the beginning of e∗si is attained on the support ofits left plug, the following minimum being attained on the support of its rightplug), e∗s−1
i−πs

is the exursion of ws−1 whih begins at the instant when for thelast time,the left plug of e∗si reahes its minimum, and ends at the instantwhen, for the �rst time, the right plug exursion reahes the minimum of theleft plug exursion.
�In order to have the heredity to be e�etive, we hoose the (e∗s−1

i )1≤i≤ps−1arbitrarily among the exursions of ws−1 on the omplementary set of Es,but in the respet of Ws
∞-measurability and disjointness of the support.The following result establishes that the paths of di�erent iterations of B,restrained to an interval where there is no intermediate zero, dedue fromone another by isometry.Lemma 6.Let (0,

−→
i ,

−→
j ) be an orthonormal basis of the plan in whih we represent9



paths. Let τa+
b be the vertial translation of vetor (b − a)

−→
j and τa−

b there�etion along the horizontal axis of equation : y =
a + b

2
.Consider (t, k, p) ∈ R+ × N2 suh that wk

t = a and wk+p
t = b and denote γtthe �rst time posterior to t when at least one of the iterated Lévy transforms

ws, k ≤ s ≤ k + p − 1, vanishes. Then we have :
wk+p|[t,γt]

=





τa+
b o wk|[t,γt]

if k+p−1

Π
i=k

wi
t > 0

τa−
b o w−k|[t,γt]

elseWe will denote τk
k+p(w) the plan transformation, whih transforms wk|[t,γt]

in
wk+p|[t,γt]

.Proof of lemma 6.It is an immediate onsequene of Tanaka's formula, when p = 1.In general ase, we break up the displaement τ whih transforms wk|[t,γt]in wk+p|[t,γt]
under the form τ = τp ◦ τp−1 ◦ ... ◦ τ1 where τi transforms wk+i−1|[t,γt]in wk+i|[t,γt]
. From the preeding remark, eah τi is a vertial translation or are�etion along an horizontal axis, aording to the sign of wk+i−1

t . Then wededue the laim.
�The notions to follow are just neessary for �ne analysis of the Lévy raising.For our needs, we will all exursion eah map e : R+ → R whose support isa not empty segment and whih doesn't vanish at any point of the interiorof the support. In partiular, for w ∈ W and t > 0, we will all exursionstraddling t, and denote it by : et(w), the map so de�ned :

et(w) : R+ → R, ∀u ∈ R+, et(w)(u) =

{
0 if u ∈ [0, gt(w)] ∪ [dt(w), +∞[
wu elseWe will introdue the map too det(w) : R+ → R de�ned by

∀u ∈ R+, det(w)(u) =






0 if u ∈ [0, t] ∪ [Rt(w), +∞[where Rt(w) = sup{u > t, ∀s ∈]t, u], ws 6= wt}
wu − wt elseWe denote them et and det when there is no ambiguity, and es

t and des
tin the ase of exursions of ws. 10



Lemma 7.Let w ∈ W and e a negative exursion of w, lower than all preeding it. Let
γ be its beginning and δ its end. We set :

γ1 = arg min ws

[0,γ]

, γ2 = inf{t ∈ supp(e); e(t) = ws
γ1
}, γ3 = arg min e

[γ,δ]Then :




des
γ1

oinides with an exursion of |ws−1|, and its support is [γ1, γ2]
des

γ3
oinides with an exursion of |ws−1|, whih begins at γ3 and whosesupport ontains [γ3, δ]Furthermore, ∀u ∈ [γ2, γ3], des

u oinides with an exursion of |ws−1|, if, andonly if : {
des

u is a positive exursion
e(u) = inf{e(t), t ∈ [γ, u]}It is the ase in partiular when des

u is the �rst positive exursion of the form
des

v, v ∈ [γ2, γ3] to over�ow a given value.Proof of lemma 7.From Tanaka's formula :
|ws−1

t | = ws
t + sup{−ws

u, u ∈ [0, t]}Therefore,
|ws−1

γ1
| = ws

γ1
− ws

γ1
= 0,while, for all t > γ1, su�iently near :

ws
t > ws

γ1
.So, des

γ1
is a positive exursion of |ws−1

. | whih ends at γ2.In the same way, ws
t > ws

γ3
, for all t ∈ [γ3, δ], therefore des

γ3
is an exursionof |ws−1

. | beginning at γ3 whose support ontains [γ3, δ].Let e′ be an exursion of ws−1 with support inluded in [γ2, γ3]. Its beginning
u, and its end v verify :

u = arg
[0,v[

min ws and v = arg
[0,v]

min wsSo we dedue : des
u = |e′|.Reiproally, let u ∈ [γ2, γ3] suh that des

u is a positive exursion and11



u = arg
[0,u]

min ws.Then, u = arg
[0,v[

min ws, where w is the end of des
u, beause des

u is positive.Thus, ws−1
u = ws−1

v = 0, and for all t ∈]u, v[, ws−1
t 6= 0.Consequently, des

u is an exursion of |ws−1|.Let h > 0 be suh that there exists u ∈ [γ2, γ3] verifying des
u is the �rstpositive exursion of the form des

v, v ∈ [γ2, γ3], whose height over�ows h.Then, for all v < u, the support of des
v an't ontain this of des

u withoutdenying the minimality of u.
�2 One-time approximationThis paragraph and the following one are devoted to equip the reader withtwo settings, the �rst simpler and the seond more intriate, of the methodwe are going to use in paragraph 4 where many di�ulties are assembled.So, the tehni used to prove proposition 2 isn't the most onvenient, butthe nearest to that used for proposition 4.Our aim is, going from an iterated B.M. of level su�iently deep, to onstruta proedure, whih we all on�guration proess, enabling the path raised atlevel 0 to approah, at preision ε , the value of an arbitrary �xed path ϕ atan arbitrary �xed time t > 0.The on�guration proess elaborates a B−m.r.(r) : Γ, and this is done alongtwo stages.In the �rst stage, the paths of Γ are ompelled to approah zero at time t,by working on the exursion of wr straddling t. This neessitates a randomnumber of raises. Before raising from level r, we hoose exursions of wr,with supports in [0, t] and whose sum of heights approahes |ϕ(t)|. We allthem the building exursions.In the seond stage, the purpose is to put in ation the seleted exursionsto obtain the desired e�et. But to do so, we must, from raise to raise, pro-tet the seleted exursions whih haven't still been used. For this reason,we introdue the notion of plug exursions : namely two "small" exursions,whih border the exursion to protet and separate it from the others, theheight of the �rst in time being smaller than that of the seond. We all the�rst one the left plug exursion, and the seond one the right plug exursion.But in a sequene of exursions to protet, arranged in the hronologial or-der, it su�es to equip eah exursion exepted the last one, with a left plugexursion : the left plug exursion of the following exursion of the sequene12



ating the part of a right plug exursion for the onsidered exursion. For theon�guration proess to do its work, we must straighten in the positive sensethe exursions to protet, in the negative sense the plug exursions and, ifwe are in the building period, the �rst building exursion, and in the positivesense all the other exursions before t whose height is smaller than the �rstplug exursion. This neessitates only the hoie of a �nite number of signsat eah raise. It is that we are doing in the following :Proposition 2.Let be given : (ϕ, t, ε) ∈ W × R∗
+ × R∗

+. Then there exists an integer r anda B-m.r.(r) : Γ suh that :
P (|Γ(t) − ϕ(t)| > ε) < εProof of Proposition 2.We start by hoosing an arbitrary integer r, large enough, that we will deter-mine later. The proof onsists essentially of four lemmas and an algorithm.In the �rst lemma, we aomplish the main task for level r.Lemma 8.Let ε′ and β ′ be onstants > 0 to be spei�ed later on.(1) The following r.v. are funtionals of |wr||[0,t], Wr+1

t -measurable :
• t0(w) := gt(w

r), m0 (w) := sup{|w r

u
|, u ∈ [t0 (w), t ]};

• ∀k ∈ N, mk+1(w) := sup{mk(w) − |w r

u
|, u ∈ [tk(w), t ]};

• tk+1(w) := arg max (mk(w) − |w r

· |)
[tk (w),t ]

, the last time before t at whihthe previous sup is reahed.The sequene (mk(w))k∈N is stritly dereasing of null limit while
(tk(w))k∈N is stritly inreasing of limit t a. s.Let K(w) := 1 + inf{k ∈ N|0 < mk(w) < ε′}.Then K is an a. s. �nite Wr+1

∞ -measurable r.v.13



(2) Let Qp(w) be the property : "there exists a sequene of exursions of
wr with supports in [0, t0(w)], (er

i )1≤i≤p, whose beginnings (Gr
i )1≤i≤p isa stritly dereasing sequene with heights (hr

i )1≤i≤p suh that :(4) p∑

i=1

hr
i < |ϕ(t)| <

p∑

i=1

hr
i + β ′ "Let N(w) be the smallest integer p suh that Qp(w) is true, else 0.Then N is an a. s. �nite Wr+1

t -measurable r.v. Moreover, for any�nite Wr+1
∞ -measurable integer valued r.v. N ′, on the set [N ′ ≥ N ]there exists a sequene (er,N ′

i ) whih veri�es the requirements of QN ′(w)and whose beginnings (Gr,N ′

i )1≤i≤N ′ are a dereasing sequene of Wr+1
∞ -measurable r.v.Proof of lemma 8.

• By onstrution, the sequene (mk)k and (tk)k are respetively positivedereasing and inreasing, bounded from above by t. So they onverge.Set µ the limit of (mk) and τ that of (tk).Suppose µ > 0. Then the osillation of wr is in�nite at the neighbor of
τ , whih is in ontradition with the ontinuity of wr. So µ = 0.Suppose τ < t. Then wr is onstant on [τ, t], whih again is a. s.impossible. So τ = t.

• Clearly, K is measurable and �nite.
• Now we arrange the exursions of wr before t0(w) by dereasing heights,obtaining thus the sequene (ên)n∈N with heights (ĥn)n∈N.From lemma 3, we have :

∑

n∈N

ĥn = ∞ , and lim
n→∞

ĥn = 0 .Let Pf (N) be the set of �nite parts of N, and, for all n ∈ N, Pn(N) theset of parts of N of ardinal n.For all H ∈ Pf(N), we set :
ZH(wr) :=

∣∣∣wr
t − wr

tK(w)

∣∣∣ +
∑

n∈H

ĥn14



We introdue the event CH := [ZH(wr) < |ϕ(t)| < ZH(wr) + β ′] .Then we have, from lemma 3 : CH ∈ Wr+1
∞ and ⋃

H∈Pf (N)

CH = W .Let us set, for all n ∈ N, Cn :=
⋃

H∈Pn(N)

CH .And N(w) := inf{n ∈ N/wr ∈ Cn}.Then, learly, N is an a. s. �nite W∇+∞
∞-measurable r.v.Let us provide with lexiographi order the denumerable set Pn(N),after identifying its elements with the stritly inreasing sequenes of

n integers.Then, when wr ∈ Cn, let H0
n be the smallest element H of Pn(N) suhthat wr ∈ CH .We note (ern

i )1≤i≤n the sequene of the elements of (êi)i∈H0
n
arranged inthe reverse hronologial order.

• Consider at last N ′ an integral valued Wr+1
∞ -measurable r.v.We set : erN ′

i :=

∞∑

n=1

1[N ′=n]e
rn
i , for all i ∈ [0, N ′].We will omit, for sake of simpliity of notations, the superior index N ′if there is no ambiguity. By onstrution, the sequene (er

i )1≤i≤N ′ ful�llall the desired onditions of the statement.
�Now, we are in position to take the de�nition of the families of r.v. (Ys)0≤s≤rand (Y<s>)0≤s≤r.This de�nition is based on an algorithm whih will onveniently all thepreeding lemmas at appropriate times. To express this algorithm, we havehosen to use a programming language, near Pasal language. It is notneessary, in this paragraph, but doing so, we are preparing the ground forthe more omplex algorithms of the following paragraphs.In the �rst phase, we aomplish the �rst K raises : these raises ought toplane the exursion straddling t. Then the building exursions whih wereproteted during the preeding phase, are put to at one-by-one, for the Nfollowing raises : it is the seond phase.Then we start the third phase : the desired result being obtained, it remainsto preserve it up to level 0. So, during the last raises, we are proteting theexursion straddling t.Before beginning to write the "programm", let us introdue the followingnotation :

• tcNj designates the beginning of erN
i , for all i from 0 to N .15



Variables
s, K, N, R of integers.
Ys, Y<s> of �nite sequenes of signs.
(e∗sj )j, (e+s

j )j of �nite sequenes of exursions
M� of elements of W∞Initialization
s := r
(e∗rj )j := (et

cN
i

(wr))i ∨ (et(w
r))For all s, do :

Ys := (sgn(e+s
j )j), ns(w) = ♯(e+s

j )j. End for.For i = 0, to K − 1, do :
(e+s

j )j is the sequene assoiated to (e∗sj )j by lemma 4.
Y<s> := "the plug exursions and the exursion straddling t (it begins at
ti(w

r)) are < 0, all the other exursions of (e+s
j )j are > 0"If Ys 6= Y<s> do triv (w, s) End if.let (e∗s−1

j )j be assoiated to (e+s
j )j by lemma 5.do :

(e∗s−1
j )j := (e∗s−1

j )j ∨ (et(w
s−1))

M� := M� ∩ [Ys = Y<s>]
s := s − 1, i := i + 1 End for.(It is the end of the �rst phase : the exursion straddling t is planed)For i = 0 to N − 1, do :
(e+s

j )j is assoiated to (e∗s
j)j by lemma 4.

Y<s> := "the plug exursions and the �rst building exursion are < 0, all theother exursions of (e+s
j )j are > 0"If Ys 6= Y<s> do triv (w, s) End if.Let (e∗s−1

j )j be the sequene assoiated to (e+s
j )j by lemma 5.

M� := M� ∩ [Ys = Y<s>]
s := s − 1, i := i + 1 16



End for.(It is the end of the seond phase, the exursion straddling t has now the pre-viewed value, just before the start of the on�guration proess : the buildingexursions have now do their work, i.e. the height of the exursion straddling
t is at the present level lose to |ϕ(t)|)do R(w) := s (R(w) is keeping in memory the level from whih the desiredresult is obtained)For i := 0 to r − N − K − 1, do :
(e+s

j )j is the sequene assoiated with (e∗sj )j by lemma 4.(Notie that (e∗sj )j is the sequene redued to the exursion straddling t)
Y<s> := ”theplugexcusionsare < 0, alltheotherexcursionsof(e+s

j )jare > 0”If Ys 6= Y<s> do triv (w, s) End if.Let (e∗s−1
j )j be assoiated to (e+s

j )j by lemma 5.do M� := M� ∩ [Ys = Y<s>]
s := s − 1, i := i + 1 End for.(We are now at level 1, the third phase is nearly aomplished, it remains togive the good sign to the exursion straddling t)do (e+0

j )j :=(et(w)) (This family is redued to one element)
Y<0> := (sgn(ϕ(t))), M� := M� ∩ [Y0 = Y<0>] End prog.funtion triv(w, s)for i = s − 1 to 0, do :
(e+i

j ) := ∅
Y<i> := ∅ End funtion.funtion arranged (eα(ϕ))α∈Awhere ϕ ∈ W , and (eα(ϕ))α∈A is a �nite family of exursions of ϕ.let gα be the beginning of eα

G the set of all the gα of the �nite family
γ the end of G, N its ardinality
Γ := G, γ := the end of Γ 17



while ♯(Γ) > 0, do :
i := N − ♯(Γ) + 1
ei :="the exursion of the family whih begins at γ"
Γ := Γ\{γ} End while.do arranged (eα(ϕ))α∈A := (e1, e2, ..., eN) End funtion.funtion (eα(ϕ))α∈A ∨ (eβ(ϕ))β∈Bdo (eα(ϕ))α∈A ∨ (eβ(ϕ))β∈B := arranged (eγ(ϕ))γ∈A∪B End funtion.Now hoose ε′ = β ′ := ε

4
.To reate this programm, we must suppose r �nite. We are going to provethat it is possible.Consider the r.v. R is Z-valued (it su�es to work momentanously in the�ltered probability spae of (Bn)n∈Z).So, beause r − R does not depend upon r, there exists a positive integer rsuh that :

P (Aε
1) > 1 −

ε

2where
Aε

1 := [R > 0]From now on, r is thus hosen (for instane, the smallest integer with thisproperty).Otherwise, the r.v. ns(w) being N-valued, there exists a sequene of deter-ministi integers (n0
s)0≤s≤r verifying :

P (Aε
2) > 1 − εwhere

Aε
2 := Aε

1 ∩
(
∩r

s=0[ns ≤ n0
s]

)
.This enables us to "bring" the r.v. Ys, 0 ≤ s ≤ r, at the ardinality n0

s + 1.If neessary, we omplete the (e+s
j )0 ≤ j ≤ ns(w) to (e+s

j )0 ≤ j ≤ ns :
• By adding exursions of ws with beginnings after time 1+ t and hosen
Ws+1

∞ -measurably, 18



• Else by trunation, we preserve only the �rst n0
s + 1 exursions.We do similarly with the Y<s > by adding as many ” + 1” as neessary, orby trunation.Thus modi�ed, the programm yields now sequenes (Ys) and (Y<s>) whihsatisfy all the onditions of Proposition 2. In other words the onstrutionof the B −m.r.(r) is ahieved. But, with arbitrary parameter ε∗, it does notful�ll the requirements we need.So we de�ne the parameter ε∗ in the following way :

ε∗ :=
ε′

r∑

j=0

j

(=
ε′

2r(r + 1)
)Indeed the N building exursions are a�eted by as many plug exursionsas their intervention order, and �nally, during the last raises, the exursionstraddling t is a�eted by one plug exursion at eah raise.We are now in a position to state theLemma 9.For all w ∈ Aε

2, we have with the preeding hoie of ε∗ :
|Γ(t) − ϕ(t)| < εProof of lemma 9.The hoie of ε∗ ensures that the intervention of the various plug exursionsduring the r raises doesn't a�et the path from more than ε′. The di�erenefrom zero, when the �rst building exursion is put to at, is also lower than

ε′. Finally the sum of heights of the building exursions approahes |ϕ(t)|with preision ε′.
�So the proof of proposition 1 is ahieved.
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3 d-times approximationThe raises we have realized on the Brownian path, in paragraph 1, an bealled "elementary" raises : we prepare, at level r, the exursions whihenable the path to approah ϕ(t) at time t, then we put them in ation su-essively while holding up the remaining exursions among the seleted ones.Now we must proeed by indution. But a new di�ulty appears : the nees-sity of proteting, whih has been obtained at the �rst d-times. This time,we an't anymore be satis�ed with elementary raises. First, only exursionswith support in [td, td+1] an be used, so it is neessary to rely on the densityof zeroes [M℄. Then, going from an iteration whih vanishes somewhere be-tween td and td+1, we ahieve "horizontal" raises to orretly on�gure thepath at time td+1, at the onsidered level, in the manner of lemmas 4 and5 : during these raises, we maintain the main exursions in [0, td] hold upto preserve the path up to time td, while we orretly on�gure the path attime td+1, obtaining thus a path of "essential" level, this of the beginning ofthe on�guration proess. Then we ome bak to usual raises whih we all"vertial" raises. We give to the main exursions the sign they had before thehorizontal raises (this ompels us to replae the B − m.r. by a disjoint sumof suh proesses to keep these signs in memory). But the estimated valueof the path at time td+1 is based upon the hypothesis that no later vertialraise will vanish on [td, td+1]. In the opposite ase, the on�guration proessmust return to its beginning. We are faing a omplex algorithm whih wetreat in programming.It's that we are doing in the following :Proposition 3.Let be given : ε > 0, (t1, ..., td) ∈ Rd suh that 0 < t1 < ... < td and ϕ a mapfrom R+ → R. Then there exists an integer r and a disjoint sum (Γi)0≤i≤rof B − m.r.(r) suh that
P (||Γ0(t1, ..., td) − ϕ(t1, ..., td)||∞ > ε) < ε(with the onvention that f(t1, ..., td) designates the vetor of oordinates

(f(t1), ..., f(td)), for all map f from R → R.)Proof of Proposition 3.We proeed by indution on d.Let Pd(ε) be the property stated in the Proposition.At the �rst rank, the result yields from Proposition 2. In this ase, the dis-jointed sum is nothing but a single B − m.r.(r).20



Suppose Pd(ε) true.We will apply this hypothesis to the B.M. Bs0 for an integer s0 to be deter-mined later. We will denote w̃ the generi path of Bs0 : w̃ := ws0.Thus there exists a disjointed sum of Bs0 − m.r.(rd), Γ̃, suh that :
P (Aε

0) > 1 −
ε

6
,where

Aε
0 := [‖Γ̃(t1, ..., td) − ϕ(t1, ..., td)‖∞ < ε]As usual, we will denote : ∀i ∈ N, Γ̃i = w̃i.By de�nition, ∀i > rd, w̃i = ws0+i.Then we introdue the r.v. :

ε2(w) := (ε − ‖Γ̃(t1, ..., td) − ϕ(t1, ..., td)‖∞).This r.v. is stritly positive on Aε
0.Otherwise, from the theorem on density of zeroes, ([M ]), there exists a.s.an integer ℓ suh that w̃ℓ vanishes at least one time on [td, td+1].Let L(w) be the smallest of these integers ℓ. L is a r.v. almost surely �nite.So there exists an integer ℓ0 whih we will hoose > rd suh that :

P (Aε
1) > 1 − 2

ε

6
,where

Aε
1 := Aε

0 ∩ [L ≤ ℓ0].Our aim is to raise the path w̃ℓ0, whih is nothing but ws0+ℓ0 , from level s0+ℓ0to level 0, in suh a way that the raised path approahes ϕ on [td, td+1], whileremaining at the proximity of ϕ on [0, td] aquired at level s0, with the usualmeasurability onditions.For this to be realized without damage, we will introdue the family of pro-teting exursions of w̃k : (ẽp
(k)
j )1≤j≤pk

. This family is onstituted by theexursions of w̃k with beginning before td and height greater than ε2(w)
2ℓ0

, andarranged in the reverse hronologial order, for all k from 0 to ℓ0.The pk, 0 ≤ k ≤ ℓ0, are �nite r.v. Let (p0
k)0≤k≤ℓ0 be a sequene of determin-isti integers verifying :

P (Aε
2) > 1 − 3

ε

6
,21



where
Aε

2 := Aε
1 ∩

(
ℓ0
∩

k=0
[pk ≤ p0

k]

)
.Now, we an modify the proteting exursions : (ẽp

(k)
j )0≤j≤p0

k
is onstitutedof the exursion straddling td and of the p0

k highest exursions before td,arranged in the reverse hronologial order.We set :
Λ := {(λk)0≤k≤ℓ0} , λk ∈ {−1, +1}{0,...,p0

k
} =

ℓ0

Π
k=0

{−1, +1}{0,...,p0
k
}

∆ := {[nβ, (n + 1)β[; n ∈ Z}{0,...,ℓ0}The partition (Hd+1
ν ) from whih we are going to onstrut Γ is so de�ned :

Nd+1 := Λ × ∆ × N is denumerable ;
∀(λ, δ, n) ∈ Λ × ∆ × N∗ ,

Hd+1
λ, δ, n :=

⋂ℓ0
k=0

(
[(sgn(ẽpk

j ))0≤j≤p0
k

= λk] ∩[w̃k
td
∈ δ(k)]

)

... ∩
[

ε
2n

< ε2(w) ≤ ε
2n−1

]

Hd+1
λ, δ, 0 :=

⋂ℓ0
k=0

(
[(sgn(ẽpk

j ))0≤j≤p0
k

= λk] ∩[w̃k
td
∈ δ(k)]

)
∩ [ε2(w) ≤ 0]

(Hλ, δ, 0 ∩ Aε
0 = ∅)To simplify the notations, we will omit the indies λ, δ, n.Set : bδ(k), the beginning of the interval δ(k) and ε(λ, k) :=

k−1

Π
i=0

λi(0).Lemma 10.On Hd+1
λ,δ,n the displaements τ 0

k (w̃) and τ
bδ(0) ε(λ,k)
bδ(k) di�er from at most 2β.Proof of lemma 10.From lemma 6, these displaements are of the same nature , vertial trans-lations or re�etions along the horizontal axis.

• In the ase of a translation, ε(λ, k) = +1, we have :
∀y ∈ R , |τ 0

k (w̃)(y) − τ
bδ(0) ε(λ,k)
bδ(k) (y)| = |w̃k

td
− w̃0

td
− (bδ(k) − bδ(0))|

= |w̃k
td
− bδ(k) − (w̃td − bδ(0))|

≤ β22



• In the ase of a re�etion, ε(λ, k) = −1, we have :
∀y ∈ R , |τ 0

k (w̃)(y) − τ
bδ(0)−
bδ(k) (y)| = |(w̃k

td
+ w̃0

td
− y) − (bδ(k) + bδ(0) − y)|

= |(w̃k
td
− bδ(k)) + (w̃td − bδ(0))|

≤ 2β

�This lemma allows us to replae the value to be antiipated τ 0
k (w̃)(ϕ(td+1)),whih doesn't have the good measurability by τ

bδ(0)
bδ(k) (ϕ(td+1)) on Hλ,δ.The purpose of the following lemma is to prepare, at level s, when the iter-ated Brownian motion vanishes on ]td, td+1[, the exursions whih will allowthe orretly raised path to approah ϕ at level 0 on ]td, td+1[. It is the analogof lemma 8.We set : Zs := {w ∈ W/wsvanishesatleastonetimeon]td, td+1[ }.Lemma 11.For all w ∈ Zs, ε′s being a Ws+1

∞ -r.v. to be spei�ed later, we have :1) The following r.v. are funtionals of |ws||[td,td+1]
:

• ts0(w) := gtd+1
(ws), ms

0(w) := sup{|ws
u|, u ∈ [ts0(w), td+1]}

• ∀n ∈ N, while tsn < td+1 we set :




ms
n+1(w) := sup{ms

n − |ws
u|, u ∈ [tns , td+1]}

tsn+1(w) := arg max
[tns ,td+1]

(ms
n − |ws

· |)the last time before td+1 at whih the previous sup is reahed.The sequene (ms
k(w))k∈N is stritly dereasing of null limit, while (tsk(w))k∈Nis stritly inreasing of limit td+1 a.s.Let Ks(w) := 1 + inf{k ∈ N, 0 < ms

k < ε′s}.Then Ks is an a.s. �nite r.v. Ws+1
∞ -measurable.2) Let Q

(
pw) be the property : � there exists a sequene of exursions of

ws with supports in [td, t
s
0], (es

i )1≤i≤p, whose beginnings (Gs
i )i are a stritlydereasing sequene, with heights (hs

i )i suh that :
p∑

i=1

hs
i <

∣∣∣τ bδ(0) ε(λ,k)
bδ(esslevel(s)) (ϕ(td+1))

∣∣∣ <

p∑

i=1

hs
i + β ′ "(5)where the r.v. esslevel(s) will soon be de�ned, and w ∈ Hλ,δ,n.Let Ns(w) be the smallest integer p suh that Qp(w) is true when w ∈ Zs,23



else 0.Then Ns is an a.s. �nite Ws+1
∞ -measurable r.v.3) For any �nite Ws+1

∞ -measurable integral valued r.v. N ′, on the set [N ′ ≥

N ], then there exists a sequene (es,N ′

i )i whih veri�es the requirements of
QN ′(w) and whose beginnings (Gs,N ′

i )1≤i≤N ′ is a dereasing sequene of Ws+1
∞ -measurable r.v.Proof of lemma 11.Essentially, this lemma di�ers from lemma 8 only by notations. So the proofis exatly the same.

�Now, with the help of lemmas 4 and 5, we are in a position to take on thede�nition of the families of r.v. (Y d+1
λ,δ,n,s)0≤s≤s0+ℓ0 and (Y d+1

λ,δ,n,<s>)0≤s≤s0+ℓ0.As in the preeding paragraph, this de�nition is based on the following algo-rithm, whih will onveniently all the lemmas 4, 5, 11 at appropriate times.Before beginning to write the programm, let us introdue the notations :
• tp,s0+k

j designates the beginning of ẽp
(k)
j , for all j from 0 to pk

0.
• tc,Ns

j designates the beginning of es,Ns

i , for all i from 0 to Ns.The algorithm goes from level rd+1 := s0+ℓ0. In the �rst stage, i.e. before the
B −m.r.(rd+1) vanishes on ]td, td+1[, we just impose the signs of the protet-ing exursions (ẽps

j), namely the exursions of ws of su�ient height, whihare straddling times tp,s
j . Thus we arrive at level s when the B − m.r.(rd+1)vanishes : the seond stage is beginning. For the �rst time, we put in a-tion the on�guration proess. We start the Ks + Ns horizontal raises : the�rst Ks ones ought to plane the exursion straddling td+1; then the build-ing exursions whih were proteted during the preeding phase are put toat, one-by-one, during the following Ns raises. Thus at level s − Ks − Ns,the path has nearly the same form on [0, td] than at level s, and approahesthe s-level desired value at time td+1. Therefore we qualify these Ks + Nsraises horizontal ones. And we say that the essential level orresponding tolevel s − Ks − Ns is s. Now, it's the �rst stage. It is omposed of vertialraises : the desired value at time td+1 supposes that the path doesn't vanishon [td, td+1], beause of lemma 6, when it is the ase, we raise the path. If itis not the ase, we must stop, and begin again a new on�guration proess,and so on. 24



Variables
s, esslevel(s), ♯(s), ns, Ks, Ns, R, level(M) (where M ∈ W∞) of integers(♯(s) represents the number of starts of the on�guration proess before level
s).
�, �1 of strings
Y d+1

s , Y d+1
<s> of �nite sequenes of signs.

(eps
j)j , (ecs

j)j, (e∗sj )j, (e+s
j )j of �nite sequenes of exursions

MΨ, M�, M�1 of elements of W∞

B, A of �nite set of strings (B represents the set of levels where the startstook plae, and A the genealogy of the path w).Initialization
s := s0 + ℓ0, esslevel (s) := s0 + ℓ0

MΨ := [Bs0+ℓ0
|[0,td]

= Γ̃ℓ0
|[0,td]

]For all s, do :
(e∗sj )j := (eps

j)j ∨ (ecs
j)j(the �rst ones are the proteting exursions and the seond the building ex-ursions).

Y d+1
s := (sgn(e+s

j )j), ns(w) = ♯(e+s
j )j . End for.If w /∈ MΨ, do triv (w, s0 + ℓ0) End if.While no zero of ws ours on (td, td+1), do

(e+s
j )j := (et

ps
j

(ws))j

Y d+1
<s> := λs

s := s − 1, esslevel (s) := s − 1 End while.(It is the end of the �rst stage, we have enountered the �rst zero.)do � := s − s0, M� := MΨ ∩ [∃u ∈ (td, td+1), B
s
u = 0]level(M�) := s, A := {s − s0}, B := {s}, ♯(s) := 1Label 1do : (eps

j)j := arranged (e
t
p esslevel(s)
j

(ws))j, B := B ∪ {�}, ♯(s) := 1 + ♯(s− 1)25



(ecs
j)j := (e

t
cNs
i

(ws))i

σ := s.For i = 0, to Kσ − 1, do :
(e+s

j )j is the sequene assoiated to (e∗sj )j by lemma 4
Y d+1

<s> := "the plug exursions and the exursion beginning at tsi are < 0, allthe other exursions of (e+s
j )j are > 0"If Y d+1

s 6= Y d+1
<s> do triv (w, s) End if.let (e∗s−1

j )j be assoiated to (e+s
j )j by lemma 5do :

(e∗s−1
j )j := (e∗s−1

j )j ∨ (etσi
(ws−1))do �1 := �, � := �h (h like horizontal)

M� := M�1 ∩ [Y d+1
s = Y d+1

<s> ], level(M�) := s,
s := s − 1, esslevel(s) := esslevel(σ), i := i + 1, ♯(s) := ♯(σ) End for.(It is the end of the �rst phase in the seond stage : the exursion straddling
td+1 is planed.)For i = 0 to Nσ − 1, do :
(e+s

j )j is assoiated with (e∗s
j)j by lemma 4

Y d+1
<s> := "the plug exursions and the �rst building exursion are < 0, all theother exursions of (e+s

j )j are > 0"If Y d+1
s 6= Y d+1

<s> do triv (w, s) End if.let (e∗s−1
j )j be the sequene assoiated to (e+s

j )j by lemma 5
�1 := �, � := �h
M� := M�1 ∩ [Y d+1

s = Y d+1
<s> ], level(M�) := s, A := A ∪ {�}

s := s − 1, esslevel(s) := esslevel(σ), i := i + 1, ♯(s) := ♯(σ) End for.(It is the end of the seond phase of the seond stage : the exursion strad-dling td+1 has now the desired value.)do (e+s
j )j is the sequene assoiated with (e∗sj )j by lemma 4

Y d+1
<s> := λesslevel(σ)−s0If Y d+1

s 6= Y d+1
<s> do triv (w, s) 26



End if.do �1 := �, � := �v, (v like vertial)
M� := M�1 ∩ [Y d+1

s = Y d+1
<s> ], level(M�) := s, A := A ∪ {�}, ♯(s) := ♯(σ)while no zero of ws ours on (td, td+1) and esslevel (s) > s0, do :

s := s − 1, esslevel(s) :=esslevel(s + 1) − 1, ♯(s) := ♯(σ)
(e+s

j )j := arranged (e
t
p esslevel(s)(ws)
j

)
j

Y d+1
<s> := λesslevel(s)−s0If Y d+1

s 6= Y d+1
<s> do triv (w, s) End if.do �1 := �, � := �v

M� := M�1 ∩ [Y d+1
s = Y d+1

<s> ], level(M�) := s, A := A ∪ {�} End while.(At this stage, the on�guration proess must return to its debut.)if esslevel(s) ≥ s0, go to Label 1 End if.(the horizontal raises have orretly on�gured the path if no following vertialraise vanishes on (td, td+1), else the proedure must return to the beginning).do R(w) := s, s := s − 1, esslevel(s) :=essmevel(s + 1) − 1(R(w) represents the level from whih the path takes a good form. The fol-lowing raises have nothing to do but proteting this form.)while s > 0, let :
(e∗sj )j be the sequene assoiated to (e

+(s+1)
j )j by lemma 5

(e+s
j )j be the sequene assoiated to (e∗sj )j by lemma 4

Y d+1
<s> := "all the plug exursions are < 0, the others > 0"If Y d+1

s 6= Y d+1
<s> do triv (w, s) End if.do �1 := �, � := �v

M� := M�1 ∩ [Y d+1
s = Y d+1

<s> ], level(M�) := s, A := A ∪ {�}
s := s − 1, esslevel(s) :=esslevel(s + 1) − 1, ♯(s) := ♯(s + 1) End while.27



let (e∗0j )j be the sequene assoiated to (e+1
j )j by lemma 5

(e+0
j )j := (e∗0j )j

Y d+1
<0> := λ0if ϕ(td)ϕ(td+1) < 0, do : (e+0

j )j := (e+0
j )j ∨ (etd+1(w0))

Y d+1
<0> := Y d+1

<0> ∨ (sgn(ϕ(td+1)))if Y d+1
0 6= Y d+1

<0> do triv (w, 0) End if.do �1 := �, � := �v
M� := M�1 ∩ [Y d+1

0 = Y d+1
<0>], level(M�) := 0, A := A ∪ {�} End prog.funtion triv(w, s)for i = s − 1 to 0, do :

(e+i
j ) := ∅

Y d+1
<i> := ∅ End funtion.funtion arranged (eα(ϕ))α∈Awhere ϕ ∈ W , and (eα(ϕ))α∈A is a �nite family of exursions of ϕ.let gα be the beginning of eα

G the set of all the gα of the �nite family
γ the end of G, N its ardinality
Γ := G, γ := the end of Γwhile ♯(Γ) > 0, do :
i := N − ♯(Γ) + 1
ei :="the exursion of the family whih begins at γ"
Γ := Γ\{γ} End while.do arranged (eα(ϕ))α∈A := (e1, e2, ..., eN) End funtion.funtion (eα(ϕ))α∈A ∨ (eβ(ϕ))β∈Bdo (eα(ϕ))α∈A ∨ (eβ(ϕ))β∈B := arranged (eγ(ϕ))γ∈A∪B End funtion.28



Now hoose for all s, ε′s = 2β = β ′ := ε
16

= ε′.Namely :
• ε′ for the planning
• 2β for the estimation of the desired value at the level of the last startof the on�guration proess.
• β ′ for the margin of the building exursions
• and a last ε′ for the total e�et due to the plug exursions.The parameters we have introdued during the whole onstrution are of twotypes : the preeding ones are ating only during the �rst ℓ0 vertial raises,while the others onern only the plug exursions and are ating during allthe raises. We don't hoose the seond ones before determining s0.(See Avarepsilon

0 we have a margin of ε2(w) for all the ti, 1 ≤ i ≤ d, and duringthe algorithm, four oasions of loosing preision beause of the various startsof the on�guration proess).To reate this programm we must suppose s0 �nite. We are now going toprove that it is possible.We begin by hoosing a �nite part Π of Nd+1, suh that :
P (Aε

3) > 1 − 4
ε

6where
Aε

3 := Aε
2 ∩

(
∪

(λ,δ,n)∈Π
(Hλ,δ,n)

)Then we onsider that eah r.v. Rλ,δ,n is Z-valued. (It su�es momentarilyto work in the �lter probability spae of (Bn)n∈Z).So, beause s0+ℓ0−Rλ,δ,n doesn't depend on s0, there exists a natural integer
s0 suh that :

P (Aε
4) > 1 − 5

ε

6where
Aε

4 := Aε
3 ∩

(
∪

(λ,δ,n)∈Π

(
Hλ,δ,n ∩ [Rλ,δ,n ≥ 0]

))From now on, s0 is thus determined.Otherwise, the r.v. nλ,δ,n
s (w) being N-valued, there exists a sequene of de-terministi integers (n0
s)0≤s≤rd+1

verifying :
P (Aε

5) ≥ 1 − ε29



where
Aε

5 := Aε
4 ∩

(
∪

(λ,δ,n)∈Π

(
Hλ,δ,n ∩ ∩s0+ℓ0

s=0 (nλ,δ,n
s ≤ n0,s0

s )
))

.This enables us to bring the r.v. Y d+1
λ,δ,n,s at the ardinality n0

s + 1 :
• If neessary, we omplete the (e+s

j )0≤j≤n
λ,δ,n
s

to (e+s
j )0≤j≤n0

s
by addingexursions of ws with beginnings after time td+1 and hosen Ws+1

∞ -measurably.
• Else, by trunation, we preserve only the �rst n0

s + 1 exursions.We do similarly with the Y d+1
λ,δ,n,<s> by adding as many +1 as neessary, or bytrunation.So modi�ed, the programm yields now r.v. (Y d+1

λ,δ,n,s) and (Y d+1
λ,δ,n,<s>) whihsatisfy all the onditions of proposition 1. In other words, the onstrutionof the disjointed sum of B − m.r.(rd+1) is ahieved. But, with arbitraryparameters of the seond type, it doesn't ful�ll the requirements we need. Sowe are going to de�ne the ε∗s in the following manner :For all s from 0 to s0 + ℓ0,

ε∗s :=
ε

2.2n

(
s0 +

∑s0+ℓ0
i=s0+1 i

) ∧
ε′∑rd+1

j=1 j- The �rst term is intended to allow the path to remain lose to ϕ at pre-ision ε on [0, td]. For the path, from level (s0 + ℓ0) is going to sustain
ℓ0 vertial raises during eah of whih it will reeive a negative exur-sion, itself a�eted by as many plug exursions as horizontal raises soonaomplished. It is also going to sustain s0 horizontal raises with eahone plug exursion. The fator of 2.2n at the denominator representsan upper bound for the total number of plug exursions whih possiblya�eted the path from level s0 + ℓ0 to level 0. And, on Hλ,δ,n, ε

2n+1
isa number lower than ε2(w), the maximal total variation admissible forthe path.- The seond term is intended to allow the path to approah at time td+1to ϕ(td+1) at preision 2β ′. The n0

s building exursions being a�etedby as many plug exursions as their intervention order, the followingraises are horizontal and everyone brings one plug exursion more. Soat most (s0 + ℓ0 − n0
s) supplementary plug exursions.30



We are now in a position to state theLemma 12.With the preeding hoie of ε∗s, we have, for all s from 0 to s0+ℓ0, (λ, δ, n) ∈
Π and w ∈ Aε

5 ∩ H(λ,δ,n) :
‖Γλ,δ,n

(t1,...,td+1)
(w) − ϕ(t1, ..., td+1)‖∞ < εProof of lemma 12.Let � ∈ Bλ,δ,n, s :=levelM�, w ∈ M� ∩

(
∩Ks−1

i=0 [Y d+1
s−i = Y d+1

<s−i>]
).With the help of lemma 11, it is easily veri�ed indutively that tsi is the be-ginning of the last exursion of ws−i, before td+1, and the exursion of ws−Ksstraddling td+1 is less high than ε′.Then, the height of the exursion straddling td+1 inreases on the one hand, of

Ns∑

i=1

hi and on the other hand, of Ns∑

i=1

i =
1

2
Ns(Ns +1) plug exursions. Henederives our hoies of ε∗s and ε′ : so Ns∑

i=0

hi ≤ |Γ(td+1)| ≤
Ns∑

i=0

hi+2ε′+2β+2β ′,whih entails :
|ϕ(td+1)| − 4ε′ ≤ |Γ(td+1)| ≤ |ϕ(td+1)| + 4ε′whih entails

|Γ(td+1) − ϕ(td+1)| ≤ 4ǫ′ ≤
ε

4For the values of Γ at times ti, for all i from 1 to d, they di�er from Γ̃(ti) ofat most : ε2(w) (see the �rst term in ε∗s), so :
|Γ(ti) − ϕ(ti)| < ε

�This ahieves the proof of the proposition.
�
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4 Density of orbitsIn this paragraph, we want the raised path to approah the map ϕ uniformlyon [0, 1]. The additional di�ulty is twofold : �rst, to protet what hasalready been obtained on the whole segment [0, td]; seondly, to orretlyon�gure the path on the whole segment [td, td+1]. Only a more preise anal-ysis of the Lévy Transform, obtained at lemma 7, enables a fruitful utilizationof the methods settled in the preeding paragraphs. Through a best knowl-edge of raises, we an show at lemma 4 that the disjointed sum of B − m.r.furnished by the algorithm ome up to the requirements of the following :Proposition 4.Whatever ε stritly positive, and ϕ ∈ W|[0,1]
, there exists a disjointed sum Γof B − m.r. suh that :

P
(
‖Γ|[0,1]

− ϕ|[0,1]
‖∞ < ε

)
> 1 − 2εProof of Proposition 4.We onsider a modulus of uniform ontinuity α0 assoiated to (ε

4
, ϕ, [0, 1]

)and a real number α1 suh that P (A0 ε) > 1 −
ε

2
where

A0 ε =
[
sup{|Bt − Bu|, (t, u) ∈ [0, 1]2 and |t − u| < α1} <

ε

2

]
,then we set α := min(α0, α1), d0 :=

[
1
α

]
+ 1, and for all d ∈ N, td = (dα)∧ 1.We set again, for all integer d ∈ [1, ..., d0],

Ad
ε :=

[
sup{|Bt − Bu|, (t, u) ∈ [td, 1]2, |t − u| < α} <

ε

2

]
.Our aim is to show, by indution on d, the following property Pd(ε) : "Thereexists an integer rd and a disjointed sum Γ of B − m.r.(rd) suh that :

P

([
‖Γ|[0,td]

− ϕ|[0,td]
‖∞ < ε

]
∩ [|Γtd − ϕ(td)| < ε1] ∩ Ad

ε

)
> 1 − ε

(
1 +

d

d0

)
”Notie that P0(ε) immediately yields from the hoie of α1. We suppose now

Pd(ε) true. We are going to apply this hypothesis to the Brownian motion
Bs0 , for an integer s0 whih, as the real number ε1, will be later spei�ed.32



As Ad
ε ⊂

[
sup{|Bt − Bu|, (t, u) ∈ [td, td+1]

2} < ε
2

]
∩Ad+1

ε , and from the inde-pendene of the inrements of Brownian motion, we an dedue the existeneof a disjointed sum Γ̃ of Bs0 − m.r.(rd) suh that :
P (Aε

0) > 1 − ε

(
1 +

d

d0

)
,where

Aε
0 :=

[
‖Γ̃|[0,td]

− ϕ|[0,td]
‖∞ < ε

]
∩

[
|Γ̃td − ϕ(td)| < ε1

]
...

... ∩
[
sup{|Bs0+rd

t − Bs0+rd
u |, (t, u) ∈ [td, td+1]

2} <
ε

2

]
∩ Ad+1

εWe will denote : ∀i ∈ N, Γ̃i = w̃i. By de�nition, ∀i > rd, w̃i = ws0+i. Then :
ε2(w) :=

(
ε −

∥∥∥Γ̃|[0,td]
− ϕ|[0,td]

∥∥∥
∞

)
∧

(
ε1 − |Γ̃td − ϕ(td)|

)This r.v. is stritly positive.Otherwise, from the theorem of density of zeroes ([M℄), there exists a.s. aninteger ℓ suh that w̃ℓ vanishes at least one time on [td, td+1].Let L(w) be the smallest of these integers ℓ. L is a r.v. almost surely �nite.Then there exists an integer ℓ0 whih we will hoose > rd suh that :
P (Aε

1) > 1 − ε

(
1 +

d

d0

)
−

ε

5d0
où Aε

1 := Aε
0 ∩ [L ≤ ℓ0] .Our aim is to raise the path w̃ℓ0, whih is nothing but ws0+ℓ0 from level s0+ℓ0to level 0, in suh a way that the raised path approahes ϕ on [td, td+1] whileremaining at the proximity of ϕ on [0, td] aquired at level s0, with usualmeasurability ondition. For this to be realized, without damage, we will in-trodue the family of proteting exursions of w̃k, (ẽp

(k)
j )1≤j≤pk

, onstitutedby the exursions of w̃k with beginning before td and height greater than
ε2(w)
2ℓ0

and arranged in the reverse hronologial order, for all k from 0 to ℓ0.The pk, 0 ≤ k ≤ ℓ0, are �nite r.v . Let (p0
k)0≤k≤ℓ0 be a sequene of determin-isti integers verifying :

P (Aε
2) > 1 − ε

(
1 +

d

d0

)
−

2ε

5d0where
Aε

2 := Aε
1 ∩

(
ℓ0
∩

k=0
[pk ≤ p0

k]

)
.33



We set :
Λ := {(λk)0≤k≤ℓ0} , λk ∈ {−1, +1}{0,...,p0

k
} =

ℓ0

Π
k=0

{−1, +1}{0,...,p0
k
}

∆ := {[nβ, (n + 1)β[; n ∈ Z}{0,...,ℓ0} .The partition (Hd+1
ν ) from whih we are going to onstrut Γ is so de�ned :

Nd+1 := Λ × ∆ × N is denumerable;
∀(λ, δ, n) ∈ Λ × ∆ × N∗ ,

Hd+1
λ, δ, n :=

⋂ℓ0
k=0

(
[(sgn(ẽpk

j ))0≤j≤p0
k

= λk] ∩ [w̃k
td
∈ δ(k)]

)

... ∩
[

ε
2n

< ε2(w) ≤ ε
2n−1

]

Hd+1
λ, δ, 0 :=

⋂ℓ0
k=0

(
[(sgn(ẽpk

j ))0≤j≤p0
k

= λk] ∩ [w̃k
td
∈ δ(k)]

)
∩ [ε2(w) ≤ 0]

(Hλ, δ, 0 ∩ Aε
0 = ∅)Set : bδ(k), the beginning of the interval δ(k) and ε(λ, k) :=

k−1

Π
i=0

λi(0).Lemma 13. (analog of lemma 10)On Hd+1
λ,δ,n the displaements τ 0

k (w̃) and τ
bδ(0) ε(λ,k)
bδ(k) di�er from at most 2β.Proof of lemma 13.See the proof of lemma 10.

�This lemma allows us to replae the value to be antiipated τ 0
k (w̃)(ϕ(td+1)),whih doesn't have the good measurability by τ

bδ(0)
bδ(k) (ϕ(td+1)) on Hλ,δ.The purpose of the following lemma is to prepare, at level s, when the iter-ated Brownian motion vanishes on ]td, td+1[, the exursions whih will allowthe orretly raised path to approah ϕ at level 0 on ]td, td+1[. It is the anal-ogous of lemma ?.We set : Zs := {w ∈ W / wsvanishesatleastonetimeon]td, td+1[ }.Lemma 14.For all w ∈ Zs, ε′s being a Ws+1

∞ -r.v. to be spei�ed later, we have :1) The following r.v. are funtionals of |ws||[td,td+1]
:

• ts0(w) := gtd+1
(ws), ms

0(w) := sup{|ws
u|, u ∈ [ts0(w), td+1]} is the begin-ning of the �rst exursion of ws with support in [td, td+1], whose heightis greater than ε′s, or td+1 if this set is empty.34



• ∀n ∈ N, while tsn < td+1, we set :
tsn+1 :=





inf{u ∈ [tsn; arg max |des
tsn
|[, h(des

u) > ε′s and sgn(des
u) = −sgn(des

tsn
)}if this set is not empty,else :

arg max |des
tsn
| ∧ td+1The sequene (tsn)n∈ mathbbN is stritly inreasing and �nite. Let 1 + Kλ,δ,n

sits ardinality.2) Let Q
(
pw) be the property : "there exists a sequene of exursions of wswith supports in [td, t

s
0], (es

i )1≤i≤p, whose beginnings (Gs
i )i is a stritly de-reasing sequene, with heights (hs

i )i suh that :
p∑

i=1

hs
i <

∣∣∣τ bδ(0) ε(λ,k)
bδ(esslevel(s)) (ϕ(td+1))

∣∣∣ <

p∑

i=1

hs
i + β ′ "(6)where the r.v. esslevel(s) will soon be de�ned, and w ∈ Hλ,δ,n.Let Ns(w) be the smallest integer p suh that Qp(w) is true when w ∈ Zs,else 0.Then Ns is an a.s. �nite Ws+1

∞ -measurable r.v.3) For any �nite Ws+1
∞ -measurable integral valued r.v. N ′, on the set [N ′ ≥

N ], then there exists a sequene (es,N ′

i )i whih veri�es the requirements of
QN ′(w) and whose beginnings (Gs,N ′

i )1≤i≤N ′ is a dereasing sequene of Ws+1
∞ -measurable r.v.Proof of lemma 14.1) By onstrution, the sequene (tsn) is stritly inreasing and lower than

td+1. Suppose the number of its terms is in�nite. In this ase, it wouldadmit a limit ts∗ ≤ td+1, and the osillation of ws at ts∗ would be in�nite, soontraditing the ontinuity of ws. Then (tsn)n is �nite.The measurability and the �niteness of Ks are immediate.The remaining of the proof follows the same way as in the proof of lemma ?.
�Now, with the help of lemmas 4 and 5, we are in a position to take on the def-inition of the families of r.v. (Y d+1

λ,δ,n,s)0≤s≤s0+ℓ0 and (Y d+1
λ,δ,n,<s>)0≤s≤s0+ℓ0. As inthe preeding paragraph, this de�nition is based on the following algorithm,whih will onveniently all the lemmas 4, 5, 14 at appropriate times. We35



reprodue it, but it is exatly the same as this of the preeding paragraph.Before beginning to write the programm, let us introdue the notations :
• tp,s0+k

j designates the beginning of ẽp
(k)
j , for all j from 0 to pk

0.
• tc,Ns

j designates the beginning of es,Ns

i , for all i from 0 to Ns.The algorithm goes from level rd+1 := s0+ℓ0. In the �rst stage, i.e. before the
B −m.r.(rd+1) vanishes on ]td, td+1[, we just impose the signs of the protet-ing exursions (ẽps

j), namely the exursions of ws of su�ient height, whihare straddling times tp,s
j . Thus we arrive at level s when the B − m.r.(rd+1)vanishes : the seond stage is beginning. For the �rst time, we put in a-tion the on�guration proess. We start the Ks + Ns horizontal raises : the�rst Ks ones ought to plane the exursions straddling td+1; then the buildingexursions whih were proteted during the preeding phase are put to at,one-by-one, during the following Ns raises. So at level s − Ks − Ns, thepath has nearly the same form on [0, td] than at level s, and approahes the

s-level desired value at time td+1. Therefore we qualify these Ks + Ns raiseshorizontal ones. And we say that the essential level orresponding to level
s − Ks − Ns is s. Now, it's the �rst stage. It is omposed of vertial raises: the desired value at time td+1 supposes that the path doesn't vanish on
[td, td+1], beause of lemma 6, if it is the ase, we raise the path. If it is notthe ase, we must stop, and begin again a new on�guration proess, and soon.The program to follow is exatly the same as this of paragraph 3.
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Variables
s, esslevel(s), ♯(s), ns, Ks, Ns, R, level(M) (where M ∈ W∞) of integers(♯(s) represents the number of starts of the on�guration proess before level
s).
�, �1 of strings
Y d+1

s , Y d+1
<s> of �nite sequenes of signs.

(eps
j)j , (ecs

j)j, (e∗sj )j, (e+s
j )j of �nite sequenes of exursions

MΨ, M�, M�1 of elements of W∞

B, A of �nite set of strings (B represents the set of levels where the startstook plae, and A the genealogy of the path w).Initialization
s := s0 + ℓ0, esslevel (s) := s0 + ℓ0

MΨ := [Bs0+ℓ0
|[0,td]

= Γ̃ℓ0
|[0,td]

]For all s, do :
(e∗sj )j := (eps

j)j ∨ (ecs
j)j(the �rst ones are the proteting exursions and the seond the building ex-ursions).

Y d+1
s := (sgn(e+s

j )j), ns(w) = ♯(e+s
j )j . End for.If w /∈ MΨ, do triv (w, s0 + ℓ0) End if.While no zero of ws ours on (td, td+1), do

(e+s
j )j := (et

ps
j

(ws))j

Y d+1
<s> := λs

s := s − 1, esslevel (s) := s − 1 End while.(It is the end of the �rst stage, we have enountered the �rst zero.)do � := s − s0, M� := MΨ ∩ [∃u ∈ (td, td+1), B
s
u = 0]level(M�) := s, A := {s − s0}, B := {s}, ♯(s) := 1Label 1do : (eps

j)j := arranged (e
t
p esslevel(s)
j

(ws))j, B := B ∪ {�}, ♯(s) := 1 + ♯(s− 1)37



(ecs
j)j := (e

t
cNs
i

(ws))i

σ := s.For i = 0, to Kσ − 1, do :
(e+s

j )j is the sequene assoiated to (e∗sj )j by lemma 4
Y d+1

<s> := "the plug exursions and the exursion beginning at tsi are < 0, allthe other exursions of (e+s
j )j are > 0"If Y d+1

s 6= Y d+1
<s> do triv (w, s) End if.let (e∗s−1

j )j be assoiated to (e+s
j )j by lemma 5do :

(e∗s−1
j )j := (e∗s−1

j )j ∨ (etσi
(ws−1))do �1 := �, � := �h (h like horizontal)

M� := M�1 ∩ [Y d+1
s = Y d+1

<s> ], level(M�) := s,
s := s − 1, esslevel(s) := esslevel(σ), i := i + 1, ♯(s) := ♯(σ) End for.(It is the end of the �rst phase in the seond stage : the exursion straddling
td+1 is planed.)For i = 0 to Nσ − 1, do :
(e+s

j )j is assoiated with (e∗s
j)j by lemma 4

Y d+1
<s> := "the plug exursions and the �rst building exursion are < 0, all theother exursions of (e+s

j )j are > 0"If Y d+1
s 6= Y d+1

<s> do triv (w, s) End if.let (e∗s−1
j )j be the sequene assoiated to (e+s

j )j by lemma 5
�1 := �, � := �h
M� := M�1 ∩ [Y d+1

s = Y d+1
<s> ], level(M�) := s, A := A ∪ {�}

s := s − 1, esslevel(s) := esslevel(σ), i := i + 1, ♯(s) := ♯(σ) End for.(It is the end of the seond phase of the seond stage : the exursion strad-dling td+1 has now the desired value.)do (e+s
j )j is the sequene assoiated with (e∗sj )j by lemma 16

Y d+1
<s> := λesslevel(σ)−s0If Y d+1

s 6= Y d+1
<s> do triv (w, s) 38



End if.do �1 := �, � := �v, (v like vertial)
M� := M�1 ∩ [Y d+1

s = Y d+1
<s> ], level(M�) := s, A := A ∪ {�}, ♯(s) := ♯(σ)while no zero of ws ours on (td, td+1) and esslevel (s) > s0, do :

s := s − 1, esslevel(s) :=esslevel(s + 1) − 1, ♯(s) := ♯(σ)
(e+s

j )j := arranged (e
t
p esslevel(s)(ws)
j

)
j

Y d+1
<s> := λesslevel(s)−s0If Y d+1

s 6= Y d+1
<s> do triv (w, s) End if.do �1 := �, � := �v

M� := M�1 ∩ [Y d+1
s = Y d+1

<s> ], level(M�) := s, A := A ∪ {�} End while.(At this stage, the on�guration proess must return to its debut.)if esslevel(s) ≥ s0, go to Label 1 End if.(the horizontal raises have orretly on�gured the path if no following vertialraise vanishes on (td, td+1), else the proedure must return to the beginning).do R(w) := s, s := s − 1, esslevel(s) :=essmevel(s + 1) − 1(R(w) represents the level from whih the path takes a good form. The fol-lowing raises have nothing to do but proteting this form.)while s > 0, let :
(e∗sj )j be the sequene assoiated to (e

+(s+1)
j )j by lemma 5

(e+s
j )j be the sequene assoiated to (e∗sj )j by lemma 4

Y d+1
<s> := "all the plug exursions are < 0, the others > 0"If Y d+1

s 6= Y d+1
<s> do triv (w, s) End if.do �1 := �, � := �v

M� := M�1 ∩ [Y d+1
s = Y d+1

<s> ], level(M�) := s, A := A ∪ {�}
s := s − 1, esslevel(s) :=esslevel(s + 1) − 1, ♯(s) := ♯(s + 1) End while.39



let (e∗0j )j be the sequene assoiated to (e+1
j )j by lemma 5

(e+0
j )j := (e∗0j )j

Y d+1
<0> := λ0if ϕ(td)ϕ(td+1) < 0, do : (e+0

j )j := (e+0
j )j ∨ (etd+1(w0))

Y d+1
<0> := Y d+1

<0> ∨ (sgn(ϕ(td+1)))if Y d+1
0 6= Y d+1

<0> do triv (w, 0) End if.do �1 := �, � := �v
M� := M�1 ∩ [Y d+1

0 = Y d+1
<0>], level(M�) := 0, A := A ∪ {�} End prog.funtion triv(w, s)for i = s − 1 to 0, do :

(e+i
j ) := ∅

Y d+1
<i> := ∅ End funtion.funtion arranged (eα(ϕ))α∈Awhere ϕ ∈ W , and (eα(ϕ))α∈A is a �nite family of exursions of ϕ.let gα be the beginning of eα

G the set of all the gα of the �nite family
γ the end of G, N its ardinality
Γ := G, γ := the end of Γwhile ♯(Γ) > 0, do :
i := N − ♯(Γ) + 1
ei :="the exursion of the family whih begins at γ"
Γ := Γ\{γ} End while.do arranged (eα(ϕ))α∈A := (e1, e2, ..., eN) End funtion.funtion (eα(ϕ))α∈A ∨ (eβ(ϕ))β∈Bdo (eα(ϕ))α∈A ∨ (eβ(ϕ))β∈B := arranged (eγ(ϕ))γ∈A∪B End funtion.40



Now hoose for all s, ε′s = 2β = β ′ := ε
16

= ε′.Namely :
• ε′ for the planing
• 2β for the estimation of the desired value at the level of the last startof the on�guration proess.
• β ′ for the margin of the building exursions
• and a last ε′ for the total e�et due to the plug exursions.The parameters we have introdued during the whole onstrution are of twotypes : the preeding ones are ating only during the �rst ℓ0 vertial raises,while the others onern only the plug exursions and are ating during allthe raises. We don't hoose the seond ones before determining s0.(See Avarepsilon

0 we have a margin of ε2(w) for all the ti, 1 ≤ i ≤ d, and duringthe algorithm, four oasions of loosing preision beause of the various startsof the on�guration proess).To reate this programm we must suppose s0 �nite. We are now going toprove that it is possible.We begin by hoosing a �nite part Π of Nd+1, suh that :
P (Aε

3) > 1 − ε

(
1 +

d

d0

)
−

3ε

5d0where
Aε

3 := Aε
2 ∩

(
∪

(λ,δ,n)∈Π
(Hλ,δ,n)

)Then we onsider that eah r.v. Rλ,δ,n is Z-valued. (It su�es momentarilyto work in the �lter probability spae of (Bn)n∈Z).So, beause s0+ℓ0−Rλ,δ,n doesn't depend on s0, there exists a natural integer
s0 suh that :

P (Aε
4) > 1 − ε

(
1 +

d

d0

)
−

4ε

5d0where
Aε

4 := Aε
3 ∩

(
∪

(λ,δ,n)∈Π

(
Hλ,δ,n ∩ [Rλ,δ,n ≥ 0]

))From now on, s0 is thus determined.Otherwise, the r.v. nλ,δ,n
s (w) being N-valued, there exists a sequene of de-terministi integers (n0
s)0≤s≤rd+1

verifying :
P (Aε

5) ≥ 1 − ε

(
1 +

d + 1

d0

)41



where
Aε

5 := Aε
4 ∩

(
∪

(λ,δ,n)∈Π

(
Hλ,δ,n ∩ ∩s0+ℓ0

s=0 (nλ,δ,n
s ≤ n0,s0

s )
))

.This enables us to bring the r.v. Y d+1
λ,δ,n,s at the ardinality n0

s + 1 :
• If neessary, we omplete the (e+s

j )0≤j≤n
λ,δ,n
s

to (e+s
j )0≤j≤n0

s
by addingexursions of ws with beginnings after time td+1 and hosen Ws+1

∞ -measurably.
• Else, by trunation, we preserve only the �rst n0

s + 1 exursions.We do similarly with the Y d+1
λ,δ,n,<s> by adding as many +1 as neessary, or bytrunation.Thus modi�ed, the programm yields now r.v. (Y d+1

λ,δ,n,s) and (Y d+1
λ,δ,n,<s>) whihsatisfy all the onditions of proposition 1. In other words, the onstrutionof the disjointed sum of B − m.r.(rd+1) is ahieved. But, with arbitraryparameters of the seond type, it doesn't ful�ll the requirements we need. Sowe are going to de�ne the ε∗s in the following manner :For all s from 0 to s0 + ℓ0,

ε∗s :=
ε

2.2n

(
s0 +

∑s0+ℓ0
i=s0+1 i

) ∧
ε′∑rd+1

j=1 j- The �rst term is intended to allow the path to remain lose to ϕ at pre-ision ε on [0, td]. For the path, sine level (s0 + ℓ0) is going to sustain
ℓ0 vertial raises during eah of whih it will reeive a negative exur-sion, itself a�eted by as many plug exursions as horizontal raises soonaomplished. It is going to sustain also s0 horizontal raises with eahone plug exursion. The fator of 2.2n at the denominator representsan upper bound for the total number of plug exursions whih possiblya�eted the path from level s0 + ℓ0 to level 0. And, on Hλ,δ,n, ε

2n+1
isa number lower than ε2(w), the maximal total variation admissible forthe path.- The seond term is intended to allow the path to approah at time td+1to ϕ(td+1) at preision 2β ′. The n0

s building exursions being a�etedby as many plug exursions as their intervention order, the followingraises are horizontal and every one brings one plug exursion more.Thus a maximum of (s0 + ℓ0 − n0
s) supplementary plug exursions.42



We are now in a position to state theLemma 15.With the hoie of ε1 := ε
4
and the preeding hoie of ε∗s, we have, for all sfrom 0 to s0 + ℓ0, (λ, δ, n) ∈ Π and w ∈ Aε

5 ∩ H(λ,δ,n) :
∥∥Γλ,δ,n|[0,td+1] − ϕ|[0,td+1]

∥∥
∞

≤ εand ∣∣∣Γλ,δ,n
td+1

(w) − ϕ(td+1)
∣∣∣ ≤ ε1Proof of lemma 15.Being given the hoie of the ε∗σ) and the help of lemma 14, it is easily shownby indution, that tsi is the beginning of the �rst exursion of ws−i before

td+1, with height greater than ε′, 0 ≤ i ≤ Ks − 1. Indeed, the intermediateexursions (those whose support lies in [td, t
s
i ] and height is greater than theheight of the smallest plug exursion), during the Ks raises, being all posi-tive, reeive at eah raise a plug exursion whose height has been estimatedsuh that the height of the ompound exursion never goes beyond ε′.Thus, at the issue of the Ks �rst raises, the path between ts0 and td+1 hasbeen planned, its height never over�owing ε′.In the same manner, during the Ns following raises, for w ∈ M�∩(∩Ks+Ns−1

i=0 [Y d+1
s−i =

Y d+1
<s−i>]), the exursion straddling td+1 reeives one after the other the build-ing exursions, and so, sueeds in being lose at time td+1 to τ 0

s−i(ϕ(td+1)),at the preision ε1.Then, the height of the exursion straddling td+1 inreases on the one hand, of
Ns∑

i=1

hi and on the other hand, of Ns∑

i=1

i =
1

2
Ns(Ns +1) plug exursions. Henederive our hoies of ε∗s and ε′ : so Ns∑

i=0

hi ≤ |Γ(td+1)| ≤
Ns∑

i=0

hi +2ε′+2β+2β ′,whih entails :
|ϕ(td+1)| − 4ε′ ≤ |Γ(td+1)| ≤ |ϕ(td+1)| + 4ε′whih entails

|Γ(td+1) − ϕ(td+1)| ≤ 4ǫ′ ≤
ε

4For the proteting exursions (eps−i
j )0≤j≤p0

s−i
their variation is ontrolled dur-ing the Ks + Ns raises. 43



Otherwise, as the exursions of ws they don't inlude are so low, that theirintervention will not allow the path to move from ϕ for more than ε.So now, we an laim that Γλ,δ,n, for all (λ, δ, n) ∈ Nd+1, is orretly de�nedas a B−m.r.(rd+1), and that, for all (λ, δ, n) ∈ Π, w ∈ Aε
5

⋂
H(λ,δ,n), Γλ,δ,n(w)approahes ϕ at preision ε on [0, td], and at preision ε1 at time td+1.We are going now to analyze more in details its behavior on [td, td+1]. Letus denote γtd the �rst time after td at whih one of the wσ, 0 ≤ σ ≤ s0 + ℓ0,vanishes on [td, td+1], and σ0 the orresponding level.Set σ1 := σ0 − Kσ0 − Nσ0 the retangle Rectσ1 de�ned by the four straightlines with equations :

x = td , x = td+1 , y = inf τ
bδ(0) ε(λ,esslevel(σ0))
bδ(esslevel(σ0)) (ϕ)|[td,td+1] and

y = sup τ
bδ(0) ε(λ,esslevel(σ0))
bδ(esslevel(σ0)) (ϕ)|[td,td+1]

Rectσ1 ontains by de�nition the path of τ
bδ(0) ε(λ,esslevel(σ0))
bδ(esslevel(σ0)) (ϕ)|[td,td+1] and,from the hoie of α0, its height is lower than ε

4
.Now onsider the path of wσ1|[td,td+1], it takes one of the two forms :(diagram)In the two ases by hypothesis, the total variation of ws0+rd is on [td, td+1]lower than ε

2
, and by lemma 6, and the de�nition of γtd, it is equal to that of

wσ0 , on [td, γtd], the path wσ1 an move again from Rectσ1 but at most from
ε′. And rapidly, it is bound to join ϕ in Rectσ1 by the building exursions,the �at part remaining �at.Therefore, the retangle RRσ1 with the same enter and vertial straight linesbordering it, and height that of Rectσ1 + ε, ontains the path wσ1|[td,td+1].During the following raises, the retangle Rectσ1 , aording to lemma 6,moves by isometry. We all Rσ its new positions, and likewise RRσ that of
RRσ1 .We an easily hek that, for all σ > σ1 orresponding to a vertial raise, thepath wσ|[td,td+1] is ontained in RRσ.Finally, for w ∈ Aε

5 ∩ H(λ,δ,n), at level 0 we have the desired property :
∥∥Γλ,δ,n|[td,td+1](w) − ϕ|[td,td+1]

∥∥
∞

≤ ε

�We immediately dedue that Pd+1(ε) is true. Hene the property Pd(ε) isestablished by indution, in partiular for d = d0, whih ahieves the proofof Proposition 5. 44



We denote the :Theorem 1.For almost every w ∈ W , the orbit of w

orb(w) = {T nw; n ∈ N}is dense in W , equipped with the topology of uniform onvergene on ompatsets.Proof of theorem 1.We use the :Lemma 16.Let Γ be a disjointed sum of B.m − r(r).Then, ∀F ∈ W∞, P (F ) > 0 ⇒ P (Γ(F )) > 0.Proof of lemma 16.Clearly, we an suppose that Γ is a B.m − r(r). Then we show, with thehelp of the de�nition, and by indution, that for all s from r to 0, Γs(F ) isnot negligible.
�Let us now reason by redutio ad absurdum :Let ϕ ∈ W |[0,1] and β > 0.Suppose P (E) = α > 0 where E =

{
w ∈ W/o(w)|[0,1] ∩ B(ϕ, β) = ∅

}.Let ε := min
(

α
2
, β

).Then, with the notations of Proposition 4, we have :
P (F ) > 0 , F := E ∩

[
|| Γ|[0,1] − ϕ|[0,1]||∞ < ε

]From lemma 16, P (Γ(F )) > 0.But, E is invariant under T (immediate veri�ation), and Γ(F ) ⊂ Γ(E) ⊂
T−rT r(E) = E[mod0].Thus, P (Γ(F )∩E) > 0, whih is ontraditory, beause in Γ(F ), all the pathsbelong to B(ϕ, β), while in E, the orbits of paths don't enounter B(ϕ, β).

�45



Let us notie that if, in plae of restrain ourselves with the open sets B, wehave shown :
∀B losed set in W ,

P (B) > 0 ⇒ P (orb(w) ∩ B 6= ∅) = 1Then every set A T -invariant, measurable and not negligible, would ontainthe event [orb(w)∩B 6= ∅] and so, would be almost sure. Therefore, T wouldbe ergodi.To end, we are going to laim in an equivalent way, following thus an inter-esting suggestion of J.P Thouvenot :
∀(ϕ, ε) ∈ W |[0,1] × R+

∗ ,the reverse martingale P (w ∈ B(ϕ, ε)|Wn
∞) admits a regular onditional ver-sion P (w ∈ B(ϕ, ε)|wn), and we have :Theorem 2.

P a.s. , lim
n→∞

P (w ∈ B(ϕ, ε)|wn) > 0Proof of theorem 2.Suppose the ontrary, and let :
A := [w ∈ W, lim

n→∞
P (w ∈ B(ϕ, ε)|wn = 0]As P (w ∈ B(ϕ, ε)|w1 = P (w ∈ B(ϕ, ε)|wn+1, beause T is measure-preserving.So we have :

w ∈ A ⇔ Tw ∈ ASo A is T -invariant. Consequently :
E (1AP (w ∈ B(ϕ, ε)|wn)) = P (A ∩ [w ∈ B(ϕ, ε)]) = P (A ∩ [wn ∈ B(ϕ, ε)])But by hypothesis :

lim
n→∞

E (1AP (w ∈ B(ϕ, ε)|wn)) = 0Therefore,
P (A ∩ [orb(w) ∩ B(ϕ, ε) 6= ∅]) = 0whih, from theorem 1, entails that P (A) = 046



�Finally, let us remark that, if we ould show :
lim

n→∞
P

([
w ∈ B(ϕ, ε)

]
|wn

)
= P

([
w ∈ B(ϕ, ε)

])
,Than, not only T would be ergodi but exat whih means :

W∞
∞ := ∩

n∈N

Wn
∞ would be trivial.

�
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