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Density of paths of iterated Lévy transforms of

Brownian motion

Marc Malric
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Abstract : The Lévy transform of a Brownian motion B is the Brownian
t

motion B; = / sgn (Bs) dBs. Call T' the corresponding transformation on
0

the Wiener space W. We establish that a. s. the orbit of w(€ W) under T
is dense in W for the compact uniform convergence topology.

Introduction

Let (B;)i>0 be a one-dimensional, issued from 0 Brownian motion, and (L;);>¢
its local time at 0. The Lévy transform of B is the Brownian motion

t
B} :/ sgn (B,) dB, = |By| — L.
0

Let T be the corresponding transformation in the Wiener space, which maps
B on B!, ie. w on Tw. At the end of chapter XII of [R,Y], Revuz and
Yor asked for the ergodicity of T. From up to now, in [D,S|, Dubins and
Smorodinsky established the ergodicity of the discrete Lévy transform, an
analog of T" for random walks.

Our goal is to establish that the orbit under 7" of almost every path is dense
in W equipped with the topology of uniform convergence on compact sets.
This is a necessary but not sufficient condition for the possible ergodicity of
Lévy transform, as it is the case for the density in R of the zeroes of the
iterated Lévy transforms of Brownian motion established in [M].

Otherwise, the present paper is the natural consequence of [M]. As in [M],
the strategy lies on the utilization of the "Lévy’s raises” : after being suffi-
ciently down in the iterations, i.e. going from 7™ B, for a big enough integer
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n, for at least one of TPB, p < n, vanishes on given interval, we proceed
for each raise from level n to level 0, by choosing a finite number of signs
of selected excursions in such a way that the raised path takes the desired
shape.

If the idea at the basis is simple, numerous difficulties arise when it is applied.
So we present at paragraph 1, the tools we need. In particular, we have cho-
sen to construct processes rather than events. Because their manipulation
is as simple as that of events in this way, and because they are more ade-
quate in the inductive reasonings. In any way, the processes so called raised
Brownian motions don’t seem to bring more difficulty. We present also in
this paragraph the technics of raising, which we illustrate with diagrams.
At paragraph 2, in order to avoid to handle too many difficulties at the same
time, it seemed more appropriate to put the methods in action, first in an
elementary situation, the one-time approximation. We treat it not for it-
self, but to prepare the ground for the future. So, the method used to prove
the one-time approximation is not the fastest but it describes in simple situ-
ation what will be done afterwards. Thus, we introduce in this paragraph an
algorithm which could be avoided, but it is the elementary form of the final
one.

Then, at paragraph 3, we consider a more complex situation, the d-time
approximation, where the induction is necessary. Here, it is impossible to
use the excursions near from time 0. On the contrary, we must find zeroes
between times t; and t4,1. In this context, a sophisticated algorithm is un-
avoidable.

Finally, at paragraph 4, when we come to our subject, the uniform ap-
proximation, the methods are in proper order, we still have to add the last
difficulty which needs a deeper analysis of the path, precisely the notion of
differential excursions.

In the end, I want to thank Marc Yor, Michel Emery, Jean-Pierre Thouvenot
and Christophe Leuridan for the good advices.

1 Preliminaries

Let (W, W., P) be the Wiener’s space of a Brownian motion B. As usual,
for all w € W, we call Lévy Transform of w, and we denote T'w, the map so
defined :

Vi (Tw) == |wy| — L(w)

where :

1 t
Lt(w) = lim —/ 1‘ws|<‘E ds
0
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is a possible definition of local time at 0 of w.
From Skorohod’s lemma,

Li(w) = sup{—(Tw);,0 < s <t} .

1 t
When w is a Brownian path, L;(w) = lin% 2—/ Ljw,|<eds, and when §3 is
E— £ 0

a Brownian motion, T is again a Brownian motion, the filtration of which
being that of |3|, the absolute value of 3.
We define inductively the iterated Lévy transforms of w :

Tw :=w,¥n € N, 7" w := T(T"w).

We also set :
VneN,B":=T1T"B,

and we will indifferently write 7"w or w™, T"W. or W.".

Because there is no loss of information, we consider the Lévy transform as a
fall. So we will say that w is a Lévy raise of Tw. Of course, two raises of
T'w have the same absolute value, and differ only by signs of excursions.
We say also that w is a Lévy raise of order n of w”.

We claim to begin the elementary result, which is at the basis of the consid-
erations to follow, as well as that of [M].

But let us call, as in [M], arg miny,, f resp. arg maxp,, f, the largest
t € [u,v] such that f(t) = ming,,) f, resp. f(t) = maxp,, f, for all f contin-
uous function on [u,v].

Throughout this work, we are using the usual notations :

g¢(w) is the first zero of w before ¢, and

di(w) is the first zero of w after ¢.

We will write r.v. as shorthand for random variable.

Lemma 1.

Let e be a positive excursion of Tw, w € W, g its beginning and d its end.

Then there exists a unique excursion € of w whose support contains this of

e. € begins at ¢’ := arg minTw and terminates at d' := inf{t > g, Tw, =
(0;9]

min{7Tws, s € [0,g]}}.

The height (in absolute value) h' of €' (i.e. sup{|ws|,s € [¢',d']}) is equal to

the sum of the height h of e and the height of the excursion of Tw where it

reaches its minimum on [0, g].



Proof of lemma 1.
It is an immediate consequence of Tanaka’s formula and Skorohod’s lemma.

The next result, as in [M], is essential because it allows us to "give" the good
signs to selected excursions.

Lemma 2. (issued from lemma 2 in [M], p.502)

Let be given an integer n®, a family (e] )1<i<po of excursions of B with disjoint
supports and beginnings (g;)1<i<no T B-measurable, and a family (€;)1<;<no0 of
{—1, 1}-valued, T B-measurable r.v.

Let E; = limy )| 5, Bg,++ the sign of the corresponding excursion. Then

o The event A :={Vi <n°, E; = ¢;} verifies :
P(A||B]) =2
e o(|B]|) and o(E;,i < n°) are independent.

e Furthermore, if we number the other excursions of B (for instance
by first arranging the excursions by decreasing heights € [0, 1], then
the excursions € [1,2[ and so on, ..., and finally by choosing a bi-
jection from N? to N) and if we introduce the r.v. Z correspond-
ing to the sequence of their signs, then Z is an independent comple-
ment of o(|B|) V o(E;,;i < n°) in o(B) (i.e. Z is independent of
o(|B|)Vo(E;,i <n®) and o(|B|)V o(E;,i <n’)Vo(Z) =o(B)).

Proof of lemma 2.

The theory of excursions ([R.Y], chapter XII) entails that the r.v. E; are
uniform on {—1,1}, independent among themselves, of o(|B|) and of the
signs of the other excursions : Z.

In particular, we have :

P(A||B|) = P(Ey =¢1,..., Bpo = ,0) =27

Finally, the formulas of reconstitution of Brownian motion from the excur-
sions allow to claim that Z is an independent complement of o (| B|)Vo (E;, i <
n®) in o(B).



This lemma is the key to the :

Proposition 1. and definition
Being given an integer r > 0 and three finite sequences of r.v. on (W, W., P) :
(Ys)o<s<r—1, (Yess)o<s<r—1 and (Z%)o<s<r—1 such that :

e Y, is the sequence of signs of a finite family of disjointed excursions
(€£)1<i<no whose beginnings, (9)1<i<no are a family of WiF'-measurable
r.0.

o Y_.. is a sequence of n® WS -measurable r.v. with values in {—1,1}

e /7 is the r.v.constituted by the signs of the other excursions of B®
conveniently numbered.

Then, for all s from 0 to r — 1, the map :
fo: WW2, P) — (WWL P) x (Y.(W),0(Ys), Pyr,) x (Z°(W),0(Z°), Pys)
w* — (™, Y(w*), Z*(w®))
where for all w € W, Yy(w) = Yy(w®) and Z(w) = Z*(w*).

is an isomorphism of measured spaces.

We will call sequence of B-raised motions of index r the sequence of processes
so defined :

o [":=B"
o Vs fromr to 1, I Y(w) = £ (I'*(w), iV/<s—1>(—]ﬂs(w))> Z° 1 (w))

We will say that (T'%) is a sequence of B —m.r.(r) and T° is a B — m.r.(r).
We have :
Vs € N, T = st

Furthermore,

Vse{r—1.,0lWue O [Vi= Yool I*(w) = B*(w) = v,

S=T—

the event _rlll[Y; = Y_,-] being W' -measurable and not negligible (of prob-

ability TT'_,_, 27"%).



Proof of Proposition 1.
It is an immediate consequence of a repeated use of the preceding lemma.

When we need to keep in memory some information not contained in W._,
we will rely on the following notion :
We call disjointed sum of B —m.r.(r) a family (I"*)o<s<, of processes, such
that there exists :

e A denumerable W, -measurable partition (H,),cn of W.

e For all v in N, a sequence of B —m.r.(r) (I'})p<s<, verifying :

Vs €{0,..,r = 1},T° =Y 15, T3,

veEN

We will denote Y, Y2 _, Z7, the r.v. associated to I,

Our strategy is to construct a B —m.r.(r) or a disjointed sum of B —m.r.(r)
which fulfill at level 0 some conditions. That returns to prove that these con-
ditions are realized with strictly positive probability by the Brownian path
itself. We have chosen the presentation through B —m.r.(r) because it seems
attractive to us to have a family of processes ranging from level r to level
0 which realizes the desired conditions, a family which necessitates nothing
but two r.v. at each level : Y, and Y_,-.

Our task will now be precisely to construct these r.v.; and to perform this
task, we will base ourself on the possibility to have at our disposal reserves
of excursions, property that we express in the following :

Lemma 3.

Let be given e an excursion of B, with beginning g, and ¢' a r.v. such that
0<g <yg.

Then, if we arrange the family of excursions of B whose support lies in ¢, g],
(€:)ien, and if we call h; the height of e;, then :

(1) Z h, = oo, and

neN



(2) lim h, =0.

n—oo
In particular, the set of sums of heights of finite number of such excursions
is dense in RY.

Proof of lemma 3.
We know that :

ey 1
ll_)n% edi(t) = §L(t) a.s.

where d¢ designates the number of down crossings of [0, ] (see [R,Y], chapter

VI).

As g is an increasing limit of d,, r € QN [0, g], we deduce that limed? (g)
0

e—
is strictly positive, we call it Kg/ (here, d? (g) designates the number of done
crossings of [0, g] by wjy 4)-

Hence li_meNg' (e) > Eg’, where Ng' (¢) designates the number of excursions
e—0

greater than e, whose support lies in [¢/, g].

But : -
> hy :/0 NY (¢)de.

neN

Therefore,

Zhn = +00.

neN

The continuity of paths ensures the null limit at infinity.

We need the notion of plug excursion :

Being given an excursion e, that we want to preserve during the raising, we
put e positive and border it with € a negative excursion lower than all the
preceding ones, and anterior to e, and €’ a negative excursion, lower than all
the preceding ones and posterior to e : ¢ and e” are plug excursions for e.
This is the aim of :

Lemma 4.
Let (€]*)1<i<q. be a sequence of excursions of w® arranged in the reverse



chronological order, such that :

qs and all the beginnings (g;*)1<i<q, and heights (h;*)1<i<q, are Wi -measurable
..

Then there exists a sequence (ez‘sl)ogigqs of excursions of w® before t, a con-

stant such that supp(e;®) C [0, t[, verifying :

g;;f' < g < g;‘fl,l <.L.<gP< 935’ < gi(w?®)

(3)

R < B <L <Ry <e

for all constant £* > 0.

Proof of lemma 4.

We set : g™ = gy(w®), h*%| := ¢*, and g;*,; := 0. We use lemma 3, so it
suffices to choose, for %', 0 < i < ¢, the higher (in absolute value) excursion
of w* among its excursions whose support is included in [¢;¢;, ;] and height
lower than h**|.

For these choices, the measurability required for the plug excursions, as well
as (3), are obvious.

We introduce now the sequence (e;*); < i < v, obtained by the aggregation
of :

o (e/%)1<i<q.
o (e )o<i<q,

o (e!”)1<i<p, the finite sequence of all the other excursions of w*® before g,
whose height is greater than h;f', rearranged in the reverse chronological
order.

(The reason for introducing the (€/”)1<;<,, is the following :

when the plug excursions act their part of protecting the (e;*);<;<,,, all the
(€?*)1<i<y, must be positive).

The following lemma is showing up the hereditary character of the construc-
tion of these excursions families :



Lemma 5.

Let be given two sequences (€})1<i<q, and (€]°)1<i<,, verifying the hypothesis
of the preceding lemma. Then, on the event :

Es : "all the plug excursions and the excursions (e}*)1<i<x, are < 0, all the
other excursions of (e]*)1<i<,, are > 0" (where T4 is an integer valued con-
stant lower than qs, with the convention that, if 7y = 0, the condition on
(er%) is empty; in the sequel, s = Oorl),

then the excursions (€*)r,11<i<q, are "preserved” at level s — 1. This means
that there exists a unique family of excursions of w*™, we note it (e}* ) 1<i<q._,

with qs_1 = qs — 7, verifying :

*s—1

e supp (e;*" ") D supp (€3 ,;)Vi € [1,qs1]
o the supports of eX*~' are disjointed two-by-two.

Moreover, the beginnings of (€;* ') 1<i<q._, are W5 -measurable.

Proof of lemma 5.

Following lemma 1, because on E; each excursion of (€]*).,+1<i<q, is positive
and bordered by its two plug excursions, which are negative on E, (for, the
last minimum of w® before the beginning of e}* is attained on the support of
its left plug, the following minimum being attained on the support of its right
plug), e;kf;sl is the excursion of w*~! which begins at the instant when for the
last time,the left plug of e!® reaches its minimum, and ends at the instant
when, for the first time, the right plug excursion reaches the minimum of the
left plug excursion.

In order to have the heredity to be effective, we choose the (e}*')i<i<p. ,

arbitrarily among the excursions of w*~! on the complementary set of Ej,
but in the respect of W3 -measurability and disjointness of the support.

The following result establishes that the paths of different iterations of B,

restrained to an interval where there is no intermediate zero, deduce from
one another by isometry.

Lemma_>6._>
Let (0, i, j) be an orthonormal basis of the plan in which we represent
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paths. Let 70% be the vertical translation of vector (b — a)7> and 7, the

. . . . a+b
reflection along the horizontal azxis of equation : y = 5

Consider (t,k,p) € Rt x N2 such that w¥ = a and wi*? = b and denote ~,
the first time posterior to t when at least one of the iterated Lévy transforms
w?, k<s<k+p-—1, vanishes. Then we have :

i ' ktp—1
ﬁ+p] _ it OWy .y I:Ik w; >0
t, =
b Ty owﬁtk%} else
We will denote T,’;Lp(w) the plan transformation, which transforms wﬁmt] in

k+p
[[t,7e]*

Proof of lemma 6.
It is an immediate consequence of Tanaka’s formula, when p = 1.

In general case, we break up the displacement 7 which transforms wﬁt il

. k i —

in w" . under the form 7 = 7,07, ; 0 ... o 7y where 7; transforms w7
lé:[tv,?t} p p /[tv’yt}

in w /[jit]. From the preceding remark, each 7; is a vertical translation or a

reflection along an horizontal axis, according to the sign of wf™ . Then we
deduce the claim.

The notions to follow are just necessary for fine analysis of the Lévy raising.
For our needs, we will call excursion each map e : Rt — R whose support is
a not empty segment and which doesn’t vanish at any point of the interior
of the support. In particular, for w € W and ¢ > 0, we will call excursion
straddling ¢, and denote it by : e;(w), the map so defined :

0 ifiu € [0, g:(w)] U [ds(w), +00]

er(w) : RT - R, Vu € R, e4(w)(u) = {
We will introduce the map too de;(w) : RT — R defined by

0 if u € [0,t] U [Ri(w), +00]
Yu € Rt dey(w)(u) = where R;(w) = sup{u > t,Vs €|t, u], ws # w;}
w, — wy else

We denote them e; and de; when there is no ambiguity, and e; and de]
in the case of excursions of w?.

10



Lemma 7.
Let w € W and e a negative excursion of w, lower than all preceding it. Let
v be its beginning and ¢ its end. We set :

71 = argmin w®, y, = inf{t € supp(e);e(t) = w3 }, 73 = argmin e
[0,7] [7,9]

Then :

s7L| | and its support is [y1, Vo]

which begins at 3 and whose

des,  coincides with an excursion of |w

des, coincides with an excursion of [w

support contains |73, d]

5—1|
)

Furthermore, Yu € [ry2, 73], des coincides with an excursion of |w*™Y|, if, and
only if :
de; 18 a positive excursion
{ e(u) = inf{e(t), t € [y,u]}
It is the case in particular when de; is the first positive excursion of the form
des, v € [y9,73] to overflow a given value.

Proof of lemma 7.
From Tanaka’s formula :

w; ™| = wi + sup{—wj, u € [0,1]}

Therefore,
s—1| __ s s __
w3 | = wh —wl =0,

while, for all ¢ > ~4, sufficiently near :
wy > w?,.

So, de, is a positive excursion of [w*™!| which ends at 7,.
In the same way, w;y > w3, for all t € [v3, 9], therefore de?, is an excursion
of |w*™!| beginning at 3 whose support contains [vs, d].

Let ¢’ be an excursion of w*~! with support included in [y,, v3]. Its beginning

u, and its end v verify :

u = arg min w”® and v = arg min w’®
[0,0] [0,]
So we deduce : des = |€/|.

Reciprocally, let u € |79, 73] such that de? is a positive excursion and

11



u = arg min w?’.
[0,u]
Then, u = argmin w?®, where w is the end of de;, because de is positive.
[0,0]

Thus, ws™! = ws™! = 0, and for all ¢ €u, v[, wi~* # 0.

Consequently, de$ is an excursion of |w®™!|.

Let h > 0 be such that there exists u € [y, 73] verifying de? is the first
positive excursion of the form def, v € [y2,73], whose height overflows h.
Then, for all v < wu, the support of de; can’t contain this of de] without
denying the minimality of u.

2 One-time approximation

This paragraph and the following one are devoted to equip the reader with
two settings, the first simpler and the second more intricate, of the method
we are going to use in paragraph 4 where many difficulties are assembled.
So, the technic used to prove proposition 2 isn’t the most convenient, but
the nearest to that used for proposition 4.

Our aim is, going from an iterated B.M. of level sufficiently deep, to construct
a procedure, which we call configuration process, enabling the path raised at
level 0 to approach, at precision ¢ , the value of an arbitrary fixed path ¢ at
an arbitrary fixed time ¢ > 0.

The configuration process elaborates a B—m.r.(r) : I, and this is done along
two stages.

In the first stage, the paths of I' are compelled to approach zero at time t,
by working on the excursion of w" straddling ¢. This necessitates a random
number of raises. Before raising from level r, we choose excursions of w",
with supports in [0,¢] and whose sum of heights approaches |p(t)|. We call
them the building excursions.

In the second stage, the purpose is to put in action the selected excursions
to obtain the desired effect. But to do so, we must, from raise to raise, pro-
tect the selected excursions which haven’t still been used. For this reason,
we introduce the notion of plug excursions : namely two "small" excursions,
which border the excursion to protect and separate it from the others, the
height of the first in time being smaller than that of the second. We call the
first one the left plug excursion, and the second one the right plug excursion.
But in a sequence of excursions to protect, arranged in the chronological or-
der, it suffices to equip each excursion excepted the last one, with a left plug
excursion : the left plug excursion of the following excursion of the sequence

12



acting the part of a right plug excursion for the considered excursion. For the
configuration process to do its work, we must straighten in the positive sense
the excursions to protect, in the negative sense the plug excursions and, if
we are in the building period, the first building excursion, and in the positive
sense all the other excursions before ¢ whose height is smaller than the first
plug excursion. This necessitates only the choice of a finite number of signs
at each raise. It is that we are doing in the following :

Proposition 2.
Let be given : (p,t,e) € W x R x R%. Then there exists an integer v and
a B-m.r.(r) : T such that :

P(L(t) —o(t)] > ) <e

Proof of Proposition 2.

We start by choosing an arbitrary integer r, large enough, that we will deter-
mine later. The proof consists essentially of four lemmas and an algorithm.
In the first lemma, we accomplish the main task for level r.

Lemma 8.
Let &' and (' be constants > 0 to be specified later on.

1) The following r.v. are functionals of |w"|jjoq, Wi -measurable :
( g 0., Wi

o to(w) = gi(w"), my(w) := sup{|w]|, u € [to(w), 1]};
o Vk € N, my1(w) := sup{my(w) — |w?|, u € [tx(w), t]};

ot 1(w) = argmax (my(w) — |w"|), the last time before t at which
[tk(w)vt}
the previous sup is reached.

The sequence (my(w))yen is strictly decreasing of null limit while
(tp(w))gen is strictly increasing of limit t a. s.

Let K(w) := 1 + inf{k € N[0 < m(w) < &'}.

Then K is an a. s. finite W.-measurable r.v.

13



(2) Let Qy(w) be the property : "there exists a sequence of excursions of
w” with supports in [0,to(w)], (€])i1<i<p, whose beginnings (G )1<i<p 1S
a strictly decreasing sequence with heights (hf)1<i<p such that :

p p
(4) Yo <l <D hi+p "
i=1 i=1

Let N(w) be the smallest integer p such that Q,(w) is true, else 0.
Then N is an a. s. finite W/ ™ -measurable r.v. Moreover, for any
finite W -measurable integer valued r.v. N’, on the set [N’ > N]|
there exists a sequence (e:’N,) which verifies the requirements of Qn+(w)
and whose beginnings (Gz’Nl)lgiSN/ are a decreasing sequence of Witt-
measurable r.v.

Proof of lemma 8.

e By construction, the sequence (my), and (¢ )y are respectively positive
decreasing and increasing, bounded from above by ¢. So they converge.
Set u the limit of (my) and 7 that of ().

Suppose i > 0. Then the oscillation of w” is infinite at the neighbor of
7, which is in contradiction with the continuity of w”". So p = 0.
Suppose 7 < t. Then w" is constant on [r,t], which again is a. s.
impossible. So 7 =t.

e Clearly, K is measurable and finite.

e Now we arrange the excursions of w” before o(w) by decreasing heights,
obtaining thus the sequence (é,)nen with heights (h,)nen.
From lemma 3, we have :

Zﬁn:oo, andlimﬁn:O.

Let P;(N) be the set of finite parts of N, and, for all n € N, P,(N) the
set of parts of N of cardinal n.

For all H € Pf(N), we set :



We introduce the event Cy := [Zy(w") < |p(t)| < Zy(w") + F].
Then we have, from lemma 3: Cy e Wl and |J Cyp=W.
HePy(N)

Let us set, foralln e N, C,, .= |J Chg.

HePn(N)
And N(w) :=inf{n € N/uw" € C,}.
Then, clearly, N is an a. s. finite WYT>°_-measurable r.v.
Let us provide with lexicographic order the denumerable set P, (N),
after identifying its elements with the strictly increasing sequences of
n integers.
Then, when w" € C,,, let H? be the smallest element H of P,(N) such
that w” € Cy.
We note (ej")1<i<, the sequence of the elements of (;);cpo arranged in
the reverse chronological order.

e Consider at last N’ an integral valued W/ !'-measurable r.v.
We set : eV = Z Lini—nye;", for all i € [0, N'].
=1

n—
We will omit, for sake of simplicity of notations, the superior index N’
if there is no ambiguity. By construction, the sequence (€] );<;<n- fulfill
all the desired conditions of the statement.

Now, we are in position to take the definition of the families of r.v. (Ys)o<s<r
and (Yess)o<s<r

This definition is based on an algorithm which will conveniently call the
preceding lemmas at appropriate times. To express this algorithm, we have
chosen to use a programming language, near Pascal language. It is not
necessary, in this paragraph, but doing so, we are preparing the ground for
the more complex algorithms of the following paragraphs.

In the first phase, we accomplish the first K raises : these raises ought to
plane the excursion straddling ¢t. Then the building excursions which were
protected during the preceding phase, are put to act one-by-one, for the N
following raises : it is the second phase.

Then we start the third phase : the desired result being obtained, it remains
to preserve it up to level 0. So, during the last raises, we are protecting the
excursion straddling ¢.

Before beginning to write the "programm", let us introduce the following
notation :

° t;N designates the beginning of eI, for all i from 0 to N.
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Variables

s, K, N, R of integers.

Y,, Yos of finite sequences of signs.

(e%);, (e1*); of finite sequences of excursions

j j
Mp of elements of W4,

Initialization

s:=r

(€57); = (een (w"))i V (er(w"))

For all s, do :

Y = (sgn(ef*);), ns(w) = (e;");.

End for.

For:=0,to K — 1, do:
(e;%); is the sequence associated to (e}*); by lemma 4.
Y.s~» = "the plug excursions and the excursion straddling t (it begins at
ti(w")) are < 0, all the other excursions of (¢]*); are > 0"
If Yy # Yoss do triv (w, s)

End if.
let (€3*~"); be associated to (e/*); by lemma 5.
do :
(€ 71)5 = (715 V (ee(w™))
Mp:=Mon[Y, =Ye.]
si=s—1,1:=1+4+1
End for.

(It is the end of the first phase : the excursion straddling t is planed)

Fort=0to N —1,do:
(e]®); is associated to (ex?); by lemma 4.
Y_4~ := "the plug excursions and the first building excursion are < 0, all the

other excursions of (¢;*); are > 0"
If Yy # Yoss do triv (w, s)
End if.
Let (e;fs_l)j be the sequence associated to (¢;°); by lemma 5.
MD = MD ﬂ [}/:9 — Y<S>]
si=s—1,1:=1+4+1
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End for.

(It is the end of the second phase, the excursion straddling t has now the pre-
viewed value, just before the start of the configuration process : the building
excursions have now do their work, i.e. the height of the excursion straddling
t is at the present level close to |p(t)|)

do R(w) := s (R(w) is keeping in memory the level from which the desired
result is obtained)
Fori:=0tor—N—-—K—1,do:
(e;%); is the sequence associated with (e;*); by lemma 4.
(Notice that (€}°); is the sequence reduced to the excursion straddling t)
Y_ss = "theplugexcusionsare < 0, alltheotherea:cursionsof(e;rs)jare > (7
If Yy # Yoss do triv (w, s)

End if.
Let (e5°~1); be associated to (e*); by lemma 5.
si=s—1,1:=1+4+1
End for.

(We are now at level 1, the third phase is nearly accomplished, it remains to
give the good sign to the excursion straddling t)

do (e]?);:=(ex(w)) (This family is reduced to one element)

Yoo = (sgn(e(t))), Mo := Mo N [Yy = Yo ]

End prog.

function triv(w, s)
fori=s—1t00,do:
(c) == 0

Yeis =0

End function.

function arranged (e(®))aca

where o € W, and (€,(¢))aca is a finite family of excursions of ¢.
let g, be the beginning of e,

G the set of all the g, of the finite family

v the end of G, N its cardinality

I' =G, v:=theend of T
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while §(I") > 0, do :

i=N-—tT)+1

e; :="the excursion of the family which begins at "
[:=T\{~}

End while.

do arranged (€a())aca = (€1, €2, ..., )

End function.

function (en(¢))aca V (es(¥))sen
do (ea(p))aca V (es(¢))sen = arranged (e,(p))yeaun

End function.

Now choose ¢’ = 3" := <.

To create this programm, we must suppose r finite. We are going to prove
that it is possible.

Consider the r.v. R is Z-valued (it suffices to work momentanously in the
filtered probability space of (B™),cz).

So, because r — R does not depend upon r, there exists a positive integer r
such that :

P(A%) > 1-%

where
Af :=[R > 0]
From now on, r is thus chosen (for instance, the smallest integer with this

property).
Otherwise, the r.v. ng(w) being N-valued, there exists a sequence of deter-
ministic integers (n?)o<,<, verifying :

P(A}) >1—¢

where
A5 = A7 N (N _g[ns < nY]).

This enables us to "bring" the r.v. Y;,0 < s < r, at the cardinality n? + 1.
If necessary, we complete the (¢;*) < j < ngy(w) to (¢]*)o < j < ny :

e By adding excursions of w® with beginnings after time 14 ¢ and chosen
W:tlmeasurably,
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e Else by truncation, we preserve only the first n? + 1 excursions.

We do similarly with the Y_s > by adding as many ” 4 1”7 as necessary, or
by truncation.

Thus modified, the programm yields now sequences (Y;) and (Y.) which
satisfy all the conditions of Proposition 2. In other words the construction
of the B —m.r.(r) is achieved. But, with arbitrary parameter £*, it does not
fulfill the requirements we need.

So we define the parameter €* in the following way :

g e

" .(: 2r(r+1)

)

Indeed the N building excursions are affected by as many plug excursions
as their intervention order, and finally, during the last raises, the excursion
straddling ¢ is affected by one plug excursion at each raise.

We are now in a position to state the

Lemma 9.
For all w € A5, we have with the preceding choice of €* :

D) — ()] <e

Proof of lemma 9.

The choice of €* ensures that the intervention of the various plug excursions

during the r raises doesn’t affect the path from more than &’. The difference

from zero, when the first building excursion is put to act, is also lower than
/

¢’. Finally the sum of heights of the building excursions approaches |p(?)]
with precision &’.

|
So the proof of proposition 1 is achieved.
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3 d-times approximation

The raises we have realized on the Brownian path, in paragraph 1, can be
called "elementary" raises : we prepare, at level r, the excursions which
enable the path to approach ¢(t) at time ¢, then we put them in action suc-
cessively while holding up the remaining excursions among the selected ones.
Now we must proceed by induction. But a new difficulty appears : the neces-
sity of protecting, which has been obtained at the first d-times. This time,
we can’t anymore be satisfied with elementary raises. First, only excursions
with support in [tg4, t411] can be used, so it is necessary to rely on the density
of zeroes [M|. Then, going from an iteration which vanishes somewhere be-
tween t4 and t4,1, we achieve "horizontal” raises to correctly configure the
path at time t;,q, at the considered level, in the manner of lemmas 4 and
5 : during these raises, we maintain the main excursions in [0,¢4] hold up
to preserve the path up to time t4, while we correctly configure the path at
time 4,1, obtaining thus a path of "essential” level, this of the beginning of
the configuration process. Then we come back to usual raises which we call
"vertical” raises. We give to the main excursions the sign they had before the
horizontal raises (this compels us to replace the B — m.r. by a disjoint sum
of such processes to keep these signs in memory). But the estimated value
of the path at time ¢, is based upon the hypothesis that no later vertical
raise will vanish on [ty4, t4,1]. In the opposite case, the configuration process
must return to its beginning. We are facing a complex algorithm which we
treat in programming.

It’s that we are doing in the following :

Proposition 3.

Let be given : € > 0, (t1,....tq) € R such that 0 < t; < ... < tq and @ a map
from R — R. Then there exists an integer v and a disjoint sum (T'")o<;<,
of B —m.r.(r) such that

P(HFO(tlu "'7td) - @(th 7td>||00 > 8) <é

(with the convention that f(ti,...,tq) designates the vector of coordinates
(F(tr), -, F(ta)), for all map f from R — R.)

Proof of Proposition 3.

We proceed by induction on d.

Let P,(e) be the property stated in the Proposition.

At the first rank, the result yields from Proposition 2. In this case, the dis-
jointed sum is nothing but a single B — m.r.(r).
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Suppose Py(e) true.

We will apply this hypothesis to the B.M. B* for an integer sy to be deter-
mined later. We will denote w the generic path of B* : w := w®.

Thus there exists a disjointed sum of B* — m.r.(ry), I', such that :

P(AS) > 12,
6
where
A = [|ID(ty, oo ta) — @(t1s s ta)]oo < €]

As usual, we will denote : Vi € N, IV = @'
By definition, Vi > rq, w0 = w®*,
Then we introduce the r.v. :

ex(w) i= (& — [|T(t1, ooy ta) — o(t1, oo ta)||oo)-

This r.v. is strictly positive on Aj.

Otherwise, from the theorem on density of zeroes, ([M]), there exists a.s.
an integer ¢ such that @’ vanishes at least one time on [ta, tar1]-
Let L(w) be the smallest of these integers ¢. L is a r.v. almost surely finite.
So there exists an integer ¢y which we will choose > 7, such that :

Pm@>1—zg

where
AT = AN L < {y).

Our aim is to raise the path w®, which is nothing but w**%, from level sq+¢,
to level 0, in such a way that the raised path approaches ¢ on [t4,t441], while
remaining at the proximity of ¢ on [0, t4] acquired at level sy, with the usual
measurability conditions.

For this to be realized without damage, we will introduce the family of pro-
tecting excursions of w¥ : (éfog.k))lgjgpk. This family is constituted by the
excursions of w* with beginning before ¢; and height greater than %, and
arranged in the reverse chronological order, for all £ from 0 to ;.

The p, 0 < k < £y, are finite r.v. Let (p?)o<r<s, be a sequence of determin-
istic integers verifying :

Pm9>1—3g
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where
€ € L 0

Now, we can modify the protecting excursions : (éjog.k))ogjgpg is constituted
of the excursion straddling ¢, and of the p? highest excursions before t,4,
arranged in the reverse chronological order.

We set :

A = {(Mo<k<to ), M € {1 +1}{0 ,,,,, Y _ H{ ] +1}{0 _____ )
A = {[nB, (n+1)8[; n € 2} O

The partition (H2*!) from which we are going to construct I is so defined :
Ngi1:= A x A x N is denumerable ;
V(A 6, n) € A x A x N*,

HE =, ([@gn(é}o?))oggpg _ ] Al e oK)

)
33 1= NV (som(@ocsapp = M)l € 507 ) N featw) <0
(Hx 5,0 VA5 =10)
To simplify the notations, we will omit the indices A, 4, n.

Set : bd(k), the beginning of the interval §(k) and e(\, k) := 'Ho)\i(o)'

Lemma 10.
On H;\jfg}n the displacements 70(w) and :g(lg)) k) dzﬁer from at most 2.

Proof of lemma 10.
From lemma 6, these displacements are of the same nature , vertical trans-

lations or reflections along the horizontal axis.
e In the case of a translation, (A, k) = +1, we have :
. b3(0) e(A\,k
Yy R, [m(@)(y) — Ty " W) = |wtd — @y, — (b6 (k) — b5 (0))|

@y, — b3 (k) — (@, — b5(0))|
B

IA
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e In the case of a reflection, (A, k) = —1, we have :

Yy R, T(@)(y) — Ty W) = |<wtd+wtd—y> (b3(k) + b5 (0)
= [(@}, = b3(k)) + (@, — b3(0))]
< 25

This lemma allows us to replace the value to be anticipated 70 (w)(¢(t411)),

which doesn’t have the good measurability by Tbé(( ))(go(td+1)) on Hys.

The purpose of the following lemma is to prepare, at level s, when the iter-
ated Brownian motion vanishes on |t4,t441], the excursions which will allow
the correctly raised path to approach ¢ at level 0 on |t4, t4.1[. It is the analog
of lemma 8.

We set : Z; := {w € W/w*vanishesatleastonetimeon|ty, tai1| }

Lemma 11.
For all w € Z,, €. being a W3 -r.v. to be specified later, we have :

1) The following r.v. are functionals of \w5||[td’td+l] :

o 1j(w) = giyp, (w?), mi(w) = sup{|wy], u € [t5(w), tara]}

o Vn € N, while t; < t41 we set :

my i (w) = sup{m; — |w;|,u € [t7,ta1]}
tr 1 (w) = argmax(m;, — |w?|)
[t2,ta41]

—9)|

the last time before ty.1 at which the previous sup is reached.

The sequence (mj(w))ken is strictly decreasing of null limit, while (¢ (w))ken
is strictly increasing of limit ty1 a.s.

Let Ky(w) :=1+1inf{k € N,0 < mj < e.}.

Then K is an a.s. finite r.v. W -measurable.

2) Let Qéw) be the property : “ there exists a sequence of excursions of

w® with supports in [t4, 5], (€])1<i<p, Whose beginnings (G7); are a strictly
decreasing sequence, with heights (h{); such that :

s b6(0) e s
(5) Zh < ‘Tbé(es)slévelg Pltart) ) Zh ~|»ﬁ "

where the r.v. esslevel(s) will soon be defined, and w € H ™.
Let Ny(w) be the smallest integer p such that Q,(w) is true when w € Z,
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else 0.
Then Ny is an a.s. finite Wi -measurable r.v.

3) For any finite W3t -measurable integral valued r.v. N, on the set [N >
N], then there exists a sequence (ef’N/)i which verifies the requirements of
Qn (w) and whose beginnings (Gf’N,>1SZ'SN/ is a decreasing sequence of Wirt-
measurable r.v.

Proof of lemma 11.
Essentially, this lemma differs from lemma 8 only by notations. So the proof
is exactly the same.

Now, with the help of lemmas 4 and 5, we are in a position to take on the
definition of the families of r.v. (Vi) Jocscsoree and (YT . ocs<sorto-
As in the preceding paragraph, this definition is based on the following algo-
rithm, which will conveniently call the lemmas 4, 5, 11 at appropriate times.
Before beginning to write the programm, let us introduce the notations :

. t§’8°+k designates the beginning of éb;k), for all j from 0 to p§.

° tj’NS designates the beginning of ef’Ns, for all ¢ from 0 to N;.

The algorithm goes from level r4,1 := sq+¥y. In the first stage, i.e. before the
B —m.r.(rqy1) vanishes on |tg, t4,1[, we just impose the signs of the protect-
ing excursions (epj), namely the excursions of w*® of sufficient height, which
are straddling times ¢7°. Thus we arrive at level s when the B —m.r.(r41)
vanishes : the second stage is beginning. For the first time, we put in ac-
tion the configuration process. We start the K, + N, horizontal raises : the
first K, ones ought to plane the excursion straddling ¢4, 1; then the build-
ing excursions which were protected during the preceding phase are put to
act, one-by-one, during the following N, raises. Thus at level s — K, — N,
the path has nearly the same form on [0, 4] than at level s, and approaches
the s-level desired value at time t4,,. Therefore we qualify these K + N;
raises horizontal ones. And we say that the essential level corresponding to
level s — Ky — Ny is s. Now, it’s the first stage. It is composed of vertical
raises : the desired value at time ¢4, supposes that the path doesn’t vanish
on [tg,t4r1], because of lemma 6, when it is the case, we raise the path. If it
is not the case, we must stop, and begin again a new configuration process,
and so on.
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Variables

s, esslevel(s), #(s), ns, K5, Ng, R, level(M) (where M € W,,) of integers
(£(s) represents the number of starts of the configuration process before level
s).

0, OJ; of strings

YA+ Y2 of finite sequences of signs.

(ep5);, (ecs);, (€5%)5, (€)°); of finite sequences of excursions

My, Mg, Mp, of elements of W,

B, A of finite set of strings (B represents the set of levels where the starts
took place, and A the genealogy of the path w).

Initialization

s := s + Ly, esslevel (s):= sq+ ly

My := (B>t =Tt |

l10,¢4) l10,¢4]

For all s, do :

(e5%); := (ep}); V (ecs);

(the first ones are the protecting excursions and the second the building ex-
cursions).

Y= (sgn(e;);), ns(w) = #(e;”);-

End for.
If wé¢ My, do triv (w, so+ o)
End if.
While no zero of w® occurs on (tg4, t441), do
(e%); = (ews (w®));
Vi,
s:=s—1, esslevel (s) :=s—1
End while.

(It is the end of the first stage, we have encountered the first zero.)

do O := s — sg, Mg := My N [3u € (L4, tgr1), BE = 0]
level(Mp) := s, A:={s—so}, B:={s}, #(s) =1
Label 1
do : (ep3); := arranged (etgesszevd(s) (w®));, B:=BuU{O}, t(s) :=1+f(s—1)
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(ecj)j = (ethS (w*));
o= s.
Fort:=0,to K, —1,do:

(e;%); is the sequence associated to (e;*); by lemma 4

Y2l .= "the plug excursions and the excursion beginning at ¢; are < 0, all

the other excursions of (e]*); are > 0"
If YO+ £ Y2 do triv (w, s)

End if.

let (€3°~"); be associated to (¢/*); by lemma 5
do :
()5 = (&7 1); V (erg (w*™h))
do O, := 0, O := Oh (h like horizontal)
Mg := Mp, N[V = Y4, level(Mp) = s,
s:=s —1, esslevel(s) := esslevel(o), i := i+ 1, #(s) := (o)

End for.

(It is the end of the first phase in the second stage : the excursion straddling
tar1 is planed.)

Fori=0to N, — 1, do:

(e)%); is associated with (ex?); by lemma 4
Y2l := "the plug excursions and the first building excursion are < 0, all the

other excursions of (¢;*); are > 0"
If Y& £ YA do triv (w, s)

<s>
End if.
let (ejs_l)j be the sequence associated to (¢;°); by lemma 5
Uy =0, 0:=0h
Mg := Mp, N [Y& = Y4, level(Mp) == s, A := AU {0}
s:=s — 1, esslevel(s) := esslevel(o), i := i+ 1, #(s) := (o)
End for.

(It is the end of the second phase of the second stage : the excursion strad-
dling tqy1 has now the desired value.)

do (e;*); is the sequence associated with (e}*); by lemma 4

Y<d;—>1 = )\esslevel(U)*So
If Y& £ Y4l do triv (w, s)

<s>
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End if.

do O, := 0, O := Ov, (v like vertical)
Mp := Mp, N [Y& = Y4, level(Mn) == s, A := AU {0}, t(s) == (o)
while no zero of w® occurs on (¢4, t441) and esslevel (s) > s, do :

s:=s — 1, esslevel(s) :=esslevel(s + 1) — 1, £(s) := #(0)

(ejL‘;)] = aI‘I‘anged (etpesslevel(s)(ws))
J

J
Y<d:>1 = )\esslevel(S)fso
If Y& £ Y4t do triv (w, s)

<s>

End if.
do Uy :=0, O:= 0o
Mp := Mp, N [Y& = Y4, level(Mp) == s, A:= AU {0}

End while.
(At this stage, the configuration process must return to its debut.)
if esslevel(s) > sg, go to Label 1
End if.

(the horizontal raises have correctly configured the path if no following vertical
raise vanishes on (tq, tqr1), else the procedure must return to the beginning).
do R(w) :=s, s := s — 1, esslevel(s) :=essmevel(s + 1) — 1

(R(w) represents the level from which the path takes a good form. The fol-
lowing raises have nothing to do but protecting this form.)

while s > 0, let :

(€5°); be the sequence associated to (e;r(sﬂ))j by lemma 5

(e,%); be the sequence associated to (e}*); by lemma 4

Y2+l .= "all the plug excursions are < 0, the others > 0"
If YO+ £ Y2 do triv (w, s)
End if.
do Uy :=0, O:= 0o
Mp := Mp, N[V = Y4, level(Mp) == s, A := AU {00}
s:=s—1, esslevel(s) :=esslevel(s + 1) — 1, #(s) == (s + 1)
End while.

27



let (e3%); be the sequence associated to (ejl)j by lemma 5

(e7°); == (&)
Y<d8L>1 = X
if p(tq)e(tar1) <0, do : (ejo)j = (e;ro)j V (€, (w0))
Y<do+>1 = Y<do+>1 V (sgn(e(tari)))
if Yyt #£ Y4 do triv (w, 0)
End if.

do Uy :=0, O:= 0o
Mp == Mp, N [Yg+ = Y2, level(Mp) == 0, A := AU {00}

<0>

End prog.

function triv(w, s)
fori=s—11%00, do:

(ef) =0
YA

End function.

function arranged (eq(®))aca

where o € W, and (€,(¢))aca is a finite family of excursions of ¢.
let g, be the beginning of e,

G the set of all the g, of the finite family

v the end of G, N its cardinality

I' =G, v:=theend of T

while §(I") > 0, do :

i:=N-—§T)+1

e; :="the excursion of the family which begins at "

I=T\{~}

End while.

do arranged (e4(¥))aca := (e1,€2,...,en)

End function.

function (ea(¢))aca V (es(¢))sen
do (ea())aca V (es())sen := arranged (e, (¢))reaun

End function.
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Now choose for all s, e, =23 =" := 5 =¢'.

Namely :
e ¢ for the planning

e 23 for the estimation of the desired value at the level of the last start
of the configuration process.

e (' for the margin of the building excursions

e and a last &’ for the total effect due to the plug excursions.

The parameters we have introduced during the whole construction are of two
types : the preceding ones are acting only during the first ¢, vertical raises,
while the others concern only the plug excursions and are acting during all
the raises. We don’t choose the second ones before determining sy.

(See AL P$1o" e have a margin of e4(w) for all the t;, 1 < i < d, and during
the algorithm, four occasions of loosing precision because of the various starts
of the configuration process).

To create this programm we must suppose sy finite. We are now going to
prove that it is possible.

We begin by choosing a finite part IT of Ny, such that :

P(AS) > 1— 42

where

(A,0,n)€ll

A = A;m( U (Hm,n))

Then we consider that each r.v. R*" is Z-valued. (It suffices momentarily
to work in the filter probability space of (B"),ez).

So, because so+{y— RM™ doesn’t depend on sy, there exists a natural integer
sp such that :

P(AS) > 1— 5%

where

AS = A5N U (HysnN[RM™ >0
i (9 (a0 9 2 0))

From now on, sq is thus determined.

Otherwise, the r.v. n)"(w) being N-valued, there exists a sequence of de-

. . . . 0 . . .
terministic integers (n})o<s<r,,, verifying :

P(A}) >1—¢
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where

. 00 (A0, 0,

This enables us to bring the r.v. Y/\d}; , at the cardinality n? + 1 :

o If necessary, we complete the (") ;. ran t0 (€/")o<j<ne by adding
excursions of w® with beginnings after time #;,; and chosen W$'l-

measurably.

e Else, by truncation, we preserve only the first n? + 1 excursions.

We do similarly with the Y/\‘f:{}% <> by adding as many +1 as necessary, or by
truncation.

So modified, the programm yields now r.v. (Y1 ) and (V7] _ ) which
satisfy all the conditions of proposition 1. In other words, the construction
of the disjointed sum of B — m.r.(rqy1) is achieved. But, with arbitrary
parameters of the second type, it doesn’t fulfill the requirements we need. So
we are going to define the €% in the following manner :

For all s from 0 to sq + £,

€ g

* .

€ Td+1

o A
2.2 <50 + ng;fil z) Py

- The first term is intended to allow the path to remain close to ¢ at pre-
cision € on [0,t4]. For the path, from level (so + £y) is going to sustain
ly vertical raises during each of which it will receive a negative excur-
sion, itself affected by as many plug excursions as horizontal raises soon
accomplished. It is also going to sustain sy horizontal raises with each
one plug excursion. The factor of 2.2" at the denominator represents
an upper bound for the total number of plug excursions which possibly

affected the path from level sy + ¢, to level 0. And, on H) s, gni1

a number lower than e9(w), the maximal total variation admissible for
the path.

is

- The second term is intended to allow the path to approach at time ¢4,
to ©(tg41) at precision 23. The n? building excursions being affected
by as many plug excursions as their intervention order, the following
raises are horizontal and everyone brings one plug excursion more. So
at most (sg + £y — nY) supplementary plug excursions.
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We are now in a position to state the

Lemma 12.
With the preceding choice of €%, we have, for all s from 0 to so+4oy, (A, 6,n) €
II and w € AN Hy s -

A,0,n
"F(tl,...,td+1)

(w) - So(th "'7td+1)”oo <e€

Proof of lemma 12.

Let O € Bysp, s :=levelMp, w € Mo (N YA = YA ).

With the help of lemma 11, it is easily verified inductively that ¢] is the be-
ginning of the last excursion of w*~%, before t;,;, and the excursion of w*~ s
straddling ¢4 is less high than &’.

Then, the height of the excursion straddling ¢, increases on the one hand, of
N, Ns

1
Z h; and on the other hand, of Zz = §NS(NS +1) plug excursions. Hence

i=1 =1
N, N
derives our choices of % and £’ : so Z hi <|T(tay1)| < Z hi+2e'+26+203,

' ' i=0 i=0
which entails :

p(tas)| — 4’ < [T(tarn)| < lo(tars)| + 4€’

which entails

T(tar1) — @(tapr)] < 4€ <

W o

For the values of I' at times ¢;, for all i from 1 to d, they differ from T'(¢;) of
at most : e9(w) (see the first term in €¥), so :

D) —p(ti)] <

This achieves the proof of the proposition.
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4 Density of orbits

In this paragraph, we want the raised path to approach the map ¢ uniformly
on [0,1]. The additional difficulty is twofold : first, to protect what has
already been obtained on the whole segment [0, t,]; secondly, to correctly
configure the path on the whole segment [t4,tq.1]. Only a more precise anal-
ysis of the Lévy Transform, obtained at lemma 7, enables a fruitful utilization
of the methods settled in the preceding paragraphs. Through a best knowl-
edge of raises, we can show at lemma 4 that the disjointed sum of B — m.r.
furnished by the algorithm come up to the requirements of the following :

Proposition 4.
Whatever ¢ strictly positive, and ¢ € 44t
of B —m.r. such that :

o there exists a disjointed sum T’

P (T = #llle <2) > 122

Proof of Proposition 4.

. . .. . €
We consider a modulus of uniform continuity o associated to (Z’ ©, [0, 1])

and a real number oy such that P(Ap.) > 1 — % where

AOa - |:Sup{|Bt - Bu|a (tau) € [Oa 1]2 a‘nd |t - u| < al} < %:| )

then we set a := min(ay, 1), dg := [é] +1,and foralld € N, t; = (da) A 1.

We set again, for all integer d € [1, ..., do],

Ad = [sup{|Bt ~ By, (t,u) € [ta, 12 |t —u| < a} < g] .

Our aim is to show, by induction on d, the following property Py(e) : "There
exists an integer r4 and a disjointed sum I' of B — m.r.(ry) such that :

d 2
P (1Tl = #lasglle < 2] NI — ot <ln ) > 12 (14 5 )

Notice that Py(e) immediately yields from the choice of a;. We suppose now
Pa(e) true. We are going to apply this hypothesis to the Brownian motion
B#°, for an integer sy which, as the real number €, will be later specified.
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As A? C [sup{|B: — Bu|, (t,u) € [ta, tar1]*} < §] N A and from the inde-
pendence of the increments of Brownian motion, we can deduce the existence
of a disjointed sum I' of B** — m.r.(r,) such that :

d
P(Ap) >1—5(1+—) ,
do
where

45 = [0y = Plouglle < ] 0 [T = w(ta)] < &1

A [sup B = B (1) € [hantan]?) <

o)

We will denote : Vi € N, I = @'. By definition, Vi > r4, @' = w®*+". Then :

) A (a1 = 1P = et

ea(w) = (6 B Hrho,td] ~ Plioeg

This r.v. is strictly positive.

Otherwise, from the theorem of density of zeroes (|]M]), there exists a.s. an
integer ¢ such that w* vanishes at least one time on [tg, t41].

Let L(w) be the smallest of these integers ¢. L is a r.v. almost surely finite.
Then there exists an integer ¢, which we will choose > r; such that :

d
PA)>1—c(1+2) =5 on A= AN[L<l).
do) ~ 5dy

Our aim is to raise the path w’, which is nothing but w**+% from level sy
to level 0, in such a way that the raised path approaches ¢ on [t4, t411] while
remaining at the proximity of ¢ on [0,%4] acquired at level sy, with usual
measurability condition. For this to be realized, without damage, we will in-
troduce the family of protecting excursions of w*, (éi)§k))1§j§pk, constituted
by the excursions of @w* with beginning before ¢; and height greater than
%Z)”) and arranged in the reverse chronological order, for all £ from 0 to /.
The pi, 0 < k < {4y, are finite r.v. Let (p)o<r<s, be a sequence of determin-

istic integers verifying :

d 2e
P(A; 1-— 1+— ) ——
( 2)> E( +d0) 5d0

where
€ € L 0
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We set :
A= {Aosksn}s M € (141000 = kﬁo{—l, 10t
A = {[ng, (n+1)B[;n e Z}{O ..... to}

The partition (H¢™) from which we are going to construct I is so defined :

Ngi1:= A x A x Nis denumerable;
V(A 6, n) € A x A x N,

Hi% = N ([(sgn(ébf))ogjgpg =X N [wf, € 5(k)]

.. N [i <52(

N———

S
~—
IN
[
HE)
Ju
[ R

H,C\lt;,lo = iozo ([(W”(@?))og;’gpg =] N [wfd € 4(k)]

(H)\,&o N A(e] - (Z))
Set : bd(k), the beginning of the interval 6(k) and (A, k) := II X;(0).

=0

N————
B
o

[N}

g
IA
)

Lemma 13. (analog of lemma 10)

On H;\jfg}n the displacements 70(w) and 7'5;((,8)) £(0k) differ from at most 2.

Proof of lemma 13.
See the proof of lemma 10.

|
This lemma allows us to replace the value to be anticipated 70 (w)(¢(tg41)),
which doesn’t have the good measurability by Té’;((lg))(@(tdﬂ)) on Hys.
The purpose of the following lemma is to prepare, at level s, when the iter-
ated Brownian motion vanishes on |t4, t441], the excursions which will allow
the correctly raised path to approach ¢ at level 0 on |tg4, t41[. It is the anal-
ogous of lemma 7.

We set : Z; .= {w € W [ wvanishesatleastonetimeonlty,tai1] }-

Lemma 14.
For allw € Z,, €. being a W -r.v. to be specified later, we have :

1) The following r.v. are functionals of |ws||[td’td+1] :

o t5(w) == gi,,, (0?), mi(w) = sup{|w|, v € [t§(w),tag1]} is the begin-
ning of the first excursion of w® with support in [ty,tey1], whose height
is greater than €., or tyyy if this set is empty.
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o Vn € N, while t < tyi1, we set :
inf{u € [t;; arg max|dej; [[, h(de;,) > € and sgn(de;) = —sgn(de;; ) }
s if this set is not empty,
LY else
arg max |deg, | At

The sequence (t5)ne matnoon S Strictly increasing and finite. Let 1 + KSA"S’"
its cardinality.

2) Let Q},w) be the property : "there exists a sequence of excursions of w?*
with supports in [t4, 5], (€5)1<i<p, Whose beginnings (G%); is a strictly de-
creasing sequence, with heights (hf); such that :

P P
s bd(0) e(\k s
(6) Z h'l < ‘Tbé((es)siévelzs)) (W(thrl))) < Z hz + ﬁ, "
1=1 1=1

where the r.v. esslevel(s) will soon be defined, and w € H ",

Let Ny(w) be the smallest integer p such that Q,(w) is true when w € Z,
else 0.

Then Ny is an a.s. finite W -measurable r.v.

3) For any finite Wi -measurable integral valued r.v. N, on the set [N' >

N, then there exists a sequence (e

; /)i which verifies the requirements of

. . N’ . .
Qn'(w) and whose beginnings (G )i<i<n is a decreasing sequence of Wit
measurable r.v.

Proof of lemma 14.

1) By construction, the sequence (t2) is strictly increasing and lower than
tgr1. Suppose the number of its terms is infinite. In this case, it would
admit a limit ¢J < ¢4, and the oscillation of w?® at t; would be infinite, so
contradicting the continuity of w®. Then (¢7),, is finite.

The measurability and the finiteness of K, are immediate.

The remaining of the proof follows the same way as in the proof of lemma ?.

Now, with the help of lemmas 4 and 5, we are in a position to take on the def-
inition of the families of r.v. (Y{! )ocscsore, and (YL _ Vocs<sorto- As in
the preceding paragraph, this definition is based on the following algorithm,

which will conveniently call the lemmas 4, 5, 14 at appropriate times. We
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reproduce it, but it is exactly the same as this of the preceding paragraph.
Before beginning to write the programm, let us introduce the notations :

. t?’sﬁk designates the beginning of éj)&k), for all j from 0 to pk.
° t?’NS designates the beginning of ef’Ns, for all ¢ from 0 to N;.

The algorithm goes from level r4,1 := sq+¥y. In the first stage, i.e. before the
B —m.r.(rqy1) vanishes on |tg, t4.1[, we just impose the signs of the protect-
ing excursions (¢p;), namely the excursions of w® of sufficient height, which
are straddling times ¢"°. Thus we arrive at level s when the B —m.r.(rqy1)
vanishes : the second stage is beginning. For the first time, we put in ac-
tion the configuration process. We start the K, + N, horizontal raises : the
first K; ones ought to plane the excursions straddling ¢,4.1; then the building
excursions which were protected during the preceding phase are put to act,
one-by-one, during the following Ny raises. So at level s — K, — N, the
path has nearly the same form on [0,¢,] than at level s, and approaches the
s-level desired value at time t,,;. Therefore we qualify these K + N, raises
horizontal ones. And we say that the essential level corresponding to level
s — Ky — Ny is s. Now, it’s the first stage. It is composed of vertical raises
: the desired value at time t;,, supposes that the path doesn’t vanish on
[tq,tas1], because of lemma 6, if it is the case, we raise the path. If it is not
the case, we must stop, and begin again a new configuration process, and so
on.

The program to follow is exactly the same as this of paragraph 3.
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Variables

s, esslevel(s), #(s), ns, K5, Ng, R, level(M) (where M € W,,) of integers
(£(s) represents the number of starts of the configuration process before level
s).

0, OJ; of strings

YA+ Y2 of finite sequences of signs.

(ep5);, (ecs);, (€5%)5, (€)°); of finite sequences of excursions

My, Mg, Mp, of elements of W,

B, A of finite set of strings (B represents the set of levels where the starts
took place, and A the genealogy of the path w).

Initialization

s := s + Ly, esslevel (s):= sq+ ly

My := (B>t =Tt |

l10,¢4) l10,¢4]

For all s, do :

(e5%); := (ep}); V (ecs);

(the first ones are the protecting excursions and the second the building ex-
cursions).

Y= (sgn(e;);), ns(w) = #(e;”);-

End for.
If wé¢ My, do triv (w, so+ o)
End if.
While no zero of w® occurs on (tg4, t441), do
(e%); = (ews (w®));
Vi,
s:=s—1, esslevel (s) :=s—1
End while.

(It is the end of the first stage, we have encountered the first zero.)

do O := s — sg, Mg := My N [3u € (L4, tgr1), BE = 0]
level(Mp) := s, A:={s—so}, B:={s}, #(s) =1
Label 1
do : (ep3); := arranged (etgesszevd(s) (w®));, B:=BuU{O}, t(s) :=1+f(s—1)
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(ecj)j = (ethS (w*));
o= s.
Fort:=0,to K, —1,do:

(e;%); is the sequence associated to (e;*); by lemma 4

Y2l .= "the plug excursions and the excursion beginning at ¢; are < 0, all

the other excursions of (e]*); are > 0"
If YO+ £ Y2 do triv (w, s)

End if.

let (€3°~"); be associated to (¢/*); by lemma 5
do :
()5 = (&7 1); V (erg (w*™h))
do O, := 0, O := Oh (h like horizontal)
Mg := Mp, N[V = Y4, level(Mp) = s,
s:=s —1, esslevel(s) := esslevel(o), i := i+ 1, #(s) := (o)

End for.

(It is the end of the first phase in the second stage : the excursion straddling
tar1 is planed.)

Fori=0to N, — 1, do:

(e)%); is associated with (ex?); by lemma 4
Y2l := "the plug excursions and the first building excursion are < 0, all the

other excursions of (¢;*); are > 0"
If Y& £ YA do triv (w, s)

<s>
End if.
let (ejs_l)j be the sequence associated to (¢;°); by lemma 5
Uy =0, 0:=0h
Mg := Mp, N [Y& = Y4, level(Mp) == s, A := AU {0}
s:=s — 1, esslevel(s) := esslevel(o), i := i+ 1, #(s) := (o)
End for.

(It is the end of the second phase of the second stage : the excursion strad-
dling tqy1 has now the desired value.)

do (e;*); is the sequence associated with (e}*); by lemma 16

Y<d;—>1 = )\esslevel(U)*So
If Y& £ Y4l do triv (w, s)

<s>
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End if.

do O, := 0, O := Ov, (v like vertical)
Mp := Mp, N [Y& = Y4, level(Mn) == s, A := AU {0}, t(s) == (o)
while no zero of w® occurs on (¢4, t441) and esslevel (s) > s, do :

s:=s — 1, esslevel(s) :=esslevel(s + 1) — 1, £(s) := #(0)

(ejL‘;)] = aI‘I‘anged (etpesslevel(s)(ws))
J

J
Y<d:>1 = )\esslevel(S)fso
If Y& £ Y4t do triv (w, s)

<s>

End if.
do Uy :=0, O:= 0o
Mp := Mp, N [Y& = Y4, level(Mp) == s, A:= AU {0}

End while.
(At this stage, the configuration process must return to its debut.)
if esslevel(s) > sg, go to Label 1
End if.

(the horizontal raises have correctly configured the path if no following vertical
raise vanishes on (tq, tqr1), else the procedure must return to the beginning).
do R(w) :=s, s := s — 1, esslevel(s) :=essmevel(s + 1) — 1

(R(w) represents the level from which the path takes a good form. The fol-
lowing raises have nothing to do but protecting this form.)

while s > 0, let :

(€5°); be the sequence associated to (e;r(sﬂ))j by lemma 5

(e,%); be the sequence associated to (e}*); by lemma 4

Y2+l .= "all the plug excursions are < 0, the others > 0"
If YO+ £ Y2 do triv (w, s)
End if.
do Uy :=0, O:= 0o
Mp := Mp, N[V = Y4, level(Mp) == s, A := AU {00}
s:=s—1, esslevel(s) :=esslevel(s + 1) — 1, #(s) == (s + 1)
End while.
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let (e3%); be the sequence associated to (ejl)j by lemma 5

(e7°); == (&)
Y<d8L>1 = X
if p(tq)e(tar1) <0, do : (ejo)j = (e;ro)j V (€, (w0))
Y<do+>1 = Y<do+>1 V (sgn(e(tari)))
if Yyt #£ Y4 do triv (w, 0)
End if.

do Uy :=0, O:= 0o
Mp == Mp, N [Yg+ = Y2, level(Mp) == 0, A := AU {00}

<0>

End prog.

function triv(w, s)
fori=s—11%00, do:

(ef) =0
YA

End function.

function arranged (eq(®))aca

where o € W, and (€,(¢))aca is a finite family of excursions of ¢.
let g, be the beginning of e,

G the set of all the g, of the finite family

v the end of G, N its cardinality

I' =G, v:=theend of T

while §(I") > 0, do :

i:=N-—§T)+1

e; :="the excursion of the family which begins at "

I=T\{~}

End while.

do arranged (e4(¥))aca := (e1,€2,...,en)

End function.

function (ea(¢))aca V (es(¢))sen
do (ea())aca V (es())sen := arranged (e, (¢))reaun

End function.
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Now choose for all s, e, =23 =" := 5 =¢'.

Namely :

e ¢ for the planing

2 for the estimation of the desired value at the level of the last start
of the configuration process.

e (3’ for the margin of the building excursions

e and a last &’ for the total effect due to the plug excursions.

The parameters we have introduced during the whole construction are of two
types : the preceding ones are acting only during the first ¢, vertical raises,
while the others concern only the plug excursions and are acting during all
the raises. We don’t choose the second ones before determining sy.

(See AZ™ P51 \we have a margin of eo(w) for all the t;, 1 < i < d, and during
the algorithm, four occasions of loosing precision because of the various starts
of the configuration process).

To create this programm we must suppose sy finite. We are now going to
prove that it is possible.

We begin by choosing a finite part IT of Ny, such that :

d 3¢
P(AS 1-— 1+— ) ——
( 3) > € ( + do) 5d0
where

Then we consider that each r.v. RM™ is Z-valued. (It suffices momentarily
to work in the filter probability space of (B"),ez).
So, because so+{y— RM™ doesn’t depend on sy, there exists a natural integer

sp such that :
d 4e
P(AS 1-— 1+— ) ——
( 4)> E( +d0) 5d0

where
A =40 1 U (HysnN[RM™>0
4 3 (()\,é,n)eﬂ (Hysn 0 - ]))
From now on, sq is thus determined.

Otherwise, the r.v. n}*"(w) being N-valued, there exists a sequence of de-

terministic integers (n?)o<s<r,,, verifying :

P(Ag)21—5<1+d+1)
do
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where

. 00 (A0, 0,

This enables us to bring the r.v. Y/\d}; , at the cardinality n? + 1 :

o If necessary, we complete the (") ;. ran t0 (€/")o<j<ne by adding
excursions of w® with beginnings after time #;,; and chosen W$'l-

measurably.

e Else, by truncation, we preserve only the first n? + 1 excursions.

We do similarly with the Y/\‘f:{}% <> by adding as many +1 as necessary, or by
truncation.

Thus modified, the programm yields now r.v. (Yf! ) and (Yy'7] _ ) which
satisfy all the conditions of proposition 1. In other words, the construction
of the disjointed sum of B — m.r.(rqy1) is achieved. But, with arbitrary
parameters of the second type, it doesn’t fulfill the requirements we need. So
we are going to define the €% in the following manner :

For all s from 0 to sq + £,

€ g

* .

€ Td+1

o A
2.2 <50 + ng;fil z) Py

- The first term is intended to allow the path to remain close to ¢ at pre-
cision € on [0, ¢4]. For the path, since level (so + £y) is going to sustain
ly vertical raises during each of which it will receive a negative excur-
sion, itself affected by as many plug excursions as horizontal raises soon
accomplished. It is going to sustain also sy horizontal raises with each
one plug excursion. The factor of 2.2" at the denominator represents
an upper bound for the total number of plug excursions which possibly

affected the path from level sy + ¢, to level 0. And, on H) s, gni1

a number lower than e9(w), the maximal total variation admissible for
the path.

is

- The second term is intended to allow the path to approach at time ¢4,
to ©(tg41) at precision 23. The n? building excursions being affected
by as many plug excursions as their intervention order, the following
raises are horizontal and every one brings one plug excursion more.
Thus a maximum of (sg + £y — n?) supplementary plug excursions.

S
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We are now in a position to state the

Lemma 15.
With the choice of €1 := § and the preceding choice of €, we have, for all s
from 0 to s+ £y, (\,0,n) € I and w € A5 N HOOm)

HPA’&n“O,th] o <'D|[O’td+l] HOO =¢

and

FA,J,n

tg41 (w) - @(tCH’l) S €1

Proof of lemma 15.

Being given the choice of the £%) and the help of lemma 14, it is easily shown
by induction, that ¢{ is the beginning of the first excursion of w*™* before
tay1, with height greater than ¢/, 0 < i < K, — 1. Indeed, the intermediate
excursions (those whose support lies in [t4, 7] and height is greater than the
height of the smallest plug excursion), during the K raises, being all posi-
tive, receive at each raise a plug excursion whose height has been estimated
such that the height of the compound excursion never goes beyond &’.
Thus, at the issue of the K, first raises, the path between ¢; and ¢;;; has
been planned, its height never overflowing &’.

In the same manner, during the N, following raises, for w € MpN(NXs,™ "1 [ydt! =
Yf:_li>]), the excursion straddling ¢, receives one after the other the build-
ing excursions, and so, succeeds in being close at time ¢4 to 70 ;(0(tgs1)),
at the precision e;.

Then, the height of the excursion straddling ¢, increases on the one hand, of
N, Ns

1
Z h; and on the other hand, of Zz = §N8(N8 + 1) plug excursions. Hence

i=1 =1
N, N
derive our choices of % and ¢’ : so Z hi <|T(tas1)] < Z hi+2&"+26+24,

_ _ i=0 i=0
which entails :

lp(tarr)| — 4" < T(tarn)] < lp(tapr)] + 4’

which entails

T (ta41) — @(tap)] < 4€ <

|

For the protecting excursions (epj’i)ogjgpg_i their variation is controlled dur-
ing the K + N, raises.
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Otherwise, as the excursions of w?® they don’t include are so low, that their
intervention will not allow the path to move from ¢ for more than e.

So now, we can claim that I'**", for all (\,d,n) € Ny, 1, is correctly defined
as a B—m.r.(rq11), and that, for all (A, 8,n) € I, w € A5 Hism), TV (w)
approaches ¢ at precision ¢ on [0,%4], and at precision €, at time ¢4, ;.

We are going now to analyze more in details its behavior on [ty,t4:1]. Let
us denote 7y, the first time after ¢4 at which one of the w?, 0 < o < 50 + 4y,
vanishes on [tg, t411], and og the corresponding level.

Set 01 := 09 — K,, — Ny, the rectangle Rect,, defined by the four straight
lines with equations :

. b6(0) e(\,esslevel (o
T=1q,r=1ta1,y = inf 7—b(S((es)salivel(00)) (o) (So)l[tdﬂfd-rl] and
o b6(0) e(Aesslevel(og))
Yy = sup Tb5(essievel(oo)) ’ (90>|[td,td+1}
Rect,, contains by definition the path of ng((fs)siii’:lfie)gd(ao)) (©)|1tastar) and,

from the choice of ag, its height is lower than T

Now consider the path of w”| it takes one of the two forms :

(diagram)

ta,tas1]s

In the two cases by hypothesis, the total variation of w4 is on [t4, t41]
€ .. _
lower than —, and by lemma 6, and the definition of 7, it is equal to that of

w, on [t4, V], the path w can move again from Rect,, but at most from
¢’. And rapidly, it is bound to join ¢ in Rect,, by the building excursions,
the flat part remaining flat.

Therefore, the rectangle RR,, with the same center and vertical straight lines
bordering it, and height that of Rect,, + ¢, contains the path w” |, .-
During the following raises, the rectangle Rect,,, according to lemma 6,
moves by isometry. We call R, its new positions, and likewise RR, that of
RR,,.

We can easily check that, for all o > oy corresponding to a vertical raise, the
path w7y, ¢, ] is contained in RR,.

Finally, for w € Af N HX™) at level 0 we have the desired property :

HF)\767n|[td,td+l](w) - 90|[tdvtd+1”|00 <€

We immediately deduce that P;.;(e) is true. Hence the property Py(e) is
established by induction, in particular for d = dy, which achieves the proof
of Proposition 5.
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We denote the :

Theorem 1.
For almost every w € W, the orbit of w

orb(w) = {T"w; n € N}

i1s dense in W, equipped with the topology of uniform convergence on compact
sets.

Proof of theorem 1.
We use the :

Lemma 16.
Let T be a disjointed sum of B.m — r(r).
Then, VF € Wi, P(F) > 0 = P(I(F)) > 0.

Proof of lemma 16.

Clearly, we can suppose that I' is a B.m — r(r). Then we show, with the
help of the definition, and by induction, that for all s from 7 to 0, ['*(F) is
not negligible.

Let us now reason by reductio ad absurdum :

Let ¢ € Wi and 8 > 0.

Suppose P(E) = a > 0 where E = {w € W/o(w)|p, N B(p, 8) = 0}.
Let € := min (%,ﬁ).

Then, with the notations of Proposition 4, we have :

P(F)>0, F:ZEﬂ[||1—‘|[071]—(,0|[071}||OO<6]

From lemma 16, P(I'(F)) > 0.

But, E is invariant under 7' (immediate verification), and T'(F') C T'(E) C
T-"T"(FE) = E[mod0].

Thus, P(I'(F)NE) > 0, which is contradictory, because in I'(#"), all the paths
belong to B(y, 3), while in E, the orbits of paths don’t encounter B(yp, (3).
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Let us notice that if, in place of restrain ourselves with the open sets B, we

have shown :
VB closed set in W,

P(B) > 0= P(orb(w)NB#0) =1

Then every set A T-invariant, measurable and not negligible, would contain
the event [orb(w)NB # (] and so, would be almost sure. Therefore, 7" would
be ergodic.

To end, we are going to claim in an equivalent way, following thus an inter-
esting suggestion of J.P Thouvenot :

V(p,e) € Wl x RY

the reverse martingale P(w € B(yp, )W) admits a regular conditional ver-
sion P(w € B(yp,¢)|w™), and we have :

Theorem 2.

Pa.s., lim P(w € B(p,e)|lw") >0

Proof of theorem 2.
Suppose the contrary, and let :

A:=[we W, lim Plwe B(p,e)|w"” =0]

n—oo

As P(w € B(yp,e)lw! = P(w € B(yp,e)|w™™, because T is measure-preserving.
So we have :
weAsTwe A

So A is T-invariant. Consequently :
E(1aP(w € B(p,e)[w")) = P(ANw € B(p,e)]) = P(AN [w" € B(p,e)])
But by hypothesis :

lim E(14P(w € B(p,e)|lw™)) =0

n—oo

Therefore,
P (AN [orb(w) N B(p,e) #0]) =0

which, from theorem 1, entails that P(A) =0
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Finally, let us remark that, if we could show :

lim P ([w € B(p,¢)]|w") = P ([w e Bly,e)]) ,

n—oo

Than, not only 7" would be ergodic but exact which means :

WP = mego would be trivial.
ne
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