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Density of paths of iterated Lévy transforms ofBrownian motionMar MalriJune 24, 2009Abstrat : The Lévy transform of a Brownian motion B is the Brownianmotion B′
t =

∫ t

0

sgn (Bs) dBs. Call T the orresponding transformation onthe Wiener spae W . We establish that a. s. the orbit of w(∈ W ) under Tis dense in W for the ompat uniform onvergene topology.
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1 Lévy raisings, B-raised Brownian motions andrelated tools.Let (Ω,F ,P) be the probability spae where all random elements are de�ned,and (W,W, π) the Wiener spae. Any measurable map from Ω to any mea-sure spae, de�ned P−a.e., will be alled a random variable. If X is a r.v.with values in some measurable spae A, the probability measure P◦X−1 on
A is alled the law of X, and denoted by L(X). For instane, a W−valuedr.v. with law π is a Brownian motion.The Lévy transform T : W −→ W is de�ned π−a.e. and preserves π. Givena Brownian motion B, we denote by Bn its n−Lévy iterate, that is, theBrownian motion Bn = T

n ◦B.From now on, T > 0, ϕ ∈ C([0, T ],R) and ε > 0 are �xed, and B a Brownianmotion. The goal is to prove that the event E = Eε = {∀n ≥ 0, ‖Bn−ϕ‖∞ >
ε} is negligible, where ‖f‖∞ = ‖f|[0,T ]‖∞. It su�es in fat to show P(E) < ε,beause Eε1 ⊂ Eε2 when ε2 < ε1.The idea is to onstrut from B another stohasti proess Γ : Ω −→ W,whih depends on T , ϕ and ε, and has the following three properties :(i) The law of the proess Γ, i.e., the probability F −→ P(Γ−1F ) on

(W,W), is absolutely ontinuous w.r.t. the law π of B.(ii) For some deterministi r ≥ 0, one has Γr = Br, that is, Tr◦Γ = T
r◦B.(iii) P (∀n ≥ 0‖Γn − ϕ‖∞ > ε) < ε.Property (i) implies that T ◦ Γ an be (almost everywhere) de�ned, in spiteof T not being everywhere de�ned. Indeed, if T

′ : W −→ W is anotherversion of T, that is if T
′ = T a.e., the set {T′ 6= T} is π−negligible; hene,by (i), Γ−1{T′ 6= T} is P−negligible, and T

′ ◦ Γ = T ◦ ΓP−a.s.. Similarly,one an de�ne the stohasti proesses Γn = T
n ◦Γ, whih verify Γ0 = Γ and

T ◦ Γn = Γn+1.Proposition 1. For �xed G ∈ W and ε > 0, let us suppose that there existsa stohasti proess Γ : Ω −→ W satisfying properties (i), (ii) and(1) P (∀n ≥ 0,Γn ∈ G) < ε.Then :(2) P (∀n ≥ 0, Bn ∈ G) < ε.2



Proof Take G ∈ W and put F =
⋂
n≥0 T

−nG. Then, for r ≥ 0,(3) T
−rF =

⋂

n≥r

T
−nG ⊃

⋂

n≥0

T
−nG = F.But these two sets, F and T

−rF , inluded in one another, have the same
π−probability by T−invariane; so equality F = T

−rF holds up to π−negligibility.As the laws of Γ and B are absolutely ontinuous w.r.t. π (this is where (i)is used), we have Γ−1(F ) = Γ−1(T−rF ) and B−1F = B−1(T−rF ) up to
P−negligible events. In other words, almost surely, we have {Γ ∈ F} =
{Γr ∈ F} and {B ∈ F} = {Br ∈ F}. Consequently, hoosing r given by (ii)and using Γr = Br, we have {Γ ∈ F} = {B ∈ F} a.s.. That is to say :(4) P (∀n ≥ 0,Γn ∈ G) = P (∀n ≥ 0, Bn ∈ G)

�Speializing G = {w ∈ W ; ‖w − ϕ‖∞ > ε}, we obtain :
P(E) < εProposition 1 redues the proof of the approximation theorem to the on-strution of a proess Γ verifying (i), (ii), and (iii). We shall �rst hoose rin a suitable way, then work bakwards, in r steps, from Γr = Br to Γ = Γ0;eah step (alled a Lévy raise) will onstrut Γn−1 from its Lévy transform

Γn = T ◦ Γn−1. The sequene (Γr,Γr−1, ...,Γ0) is given a name :De�nition 1. Given r ∈ N, a sequene (Γr,Γr−1, ...,Γ0) is alled a sequeneof B−raised Brownian motions of index r if eah Γn is a W−valued r.v. withlaw absolutely ontinuous w.r.t. π, if Γr = Br, and if we have Γn = T ◦Γn−1for 0 < n ≤ r.In fat, for onveniene of exposition, let us enlarge the �ltered probabilityspae Ω, we suppose it ontains the whole sequene (B′n)n∈N of the Brownianiterates of B′, B.M. independent from B.So we an assert :Corollary 1. To prove the approximation theorem, it su�es to exhibit asequene (Γr,Γr−1, ...,Γ0) of B−raised Brownian motions of index r suhthat(5) P (‖Γn − ϕ‖∞ < ε for some n ∈ {0, ..., r}) > 1 − ε.3



Proof Properties (i) and (ii) of Proposition 1 are granted by the de�nitionof a sequene of B−raised Brownian motions, and (iii) is implied by (1).
�A Lévy raise starts with a given W−valued r.v. Γn, and yields some r.v.

Γn−1 with Lévy transform Γn. Given a W−valued r.v. V , how an one �nda r.v. U suh that V = T ◦ U? Knowing V is equivalent to knowing |U |, soto de�ne U one only needs to deide whih sign is assigned to eah exursionof |U | away from zero. To make this rigorous, we need a formal de�nition ofthe exursions of a path and of their signs.Notation 1. For w ∈ W and q > 0, denote by Z(w) = {s ≥ 0/w(s) = 0}the set of zeros of w, and de�ne gq(w) = sup ([0, q] ∩ Z(w)) ≥ 0 (last zerobefore q) and dq(w) = inf ([q,∞] ∩ Z(w)) 6= ∞ (�rst zero after q).Fix a dense sequene (qn) in [0,∞]. To eah w ∈ W, we an attah thesequene (ep) of disjoint, open intervals obtained from the sequene(6) ((gq1, dq1), (gq2, dq2), ..., (gqn, dqn), . . . )by deleting an interval whenever it already ours earlier in the sequene.The ep are the exursion intervals of w.π−almost surely, there are in�nitelymany of them, and they are the onneted omponents of the open set
[0,∞]\Z(w). The interval ep(w) will be alled the p-th exursion intervalof w; ep is an interval-valued measurable map, de�ned on (W,W) up to
π−negligibility.Sine w does not vanish on ep(w), its sign is onstant on this interval; thissign will be denoted by Sp(w), and the sequene (Sp) will be alled S. If Bis a Brownian motion, the sequene of r.v. S◦B = (Sp ◦B) is a oin-tossing ;this means, it is an i.i.d. sequene, with eah r.v. Sp◦B uniformly distributedon the set {−1,+1}. Moreover, Sp ◦B and |B| are independent. (See Chap.XII of [R,Y℄).Lemma 1. De�ne I : W −→ W by I(w)(s) = inf [0,s]w ; that is, |w| =
Tw − ITw for π−a.a. w.Proof Fix s ≥ 0. On [0, s], B1 = |B| − L ≥ −Ls = Lgs

= B1
gs
. So

B1
gs

= inf [0,s]B
1, and |Bs| = B1

s + Ls = B1
s − inf [0,s]B

1.4



�Notation 2. If f is a ontinuous funtion on [u, v], we all arg min[u,v] f ,resp. arg max[u,v] f , the largest t ∈ [u, v] suh that f(t) = min[ u, v]f , resp.
f(t) = max[ u, v]f .
Lemma 2. Let A, A′ and A′′ be three measure spaes; let µ1 and µ2 be twomeasures on A, f a measurable map from A to A′, and ν a measure on A′′.If µ1 ≪ µ2, then(i) µ1 ◦ f−1 ≪ µ2 ◦ f−1;(ii) µ1 ⊗ ν ≪ µ2 ⊗ ν.Proof (i) If F ⊂ A′ is measurable and if (µ2◦f−1)(F ) = 0, then µ2(f

−1F ) =
0, so µ1 ◦ f−1(F ) = µ1(f

−1F ) = 0.(ii) If a measurable subset F of A×A′′ is negligible for µ2⊗ν, then ν−almostall its setions Fy verify µ2(Fy) = 0. Hene they also verify µ1(Fy) = 0, andonsequently (µ1 ⊗ ν)(F ) =
∫
µ1(Fy)ν(dy) = 0.

�Lemma 3. Let τ = (τp) be oin-tossing, τ ′ = (τ ′p) a r.v. with values in
{−1, 1}N suh that τ ′p = τp for all but a.s. �nitely many p, and X a r.v.independent of τ .Then L(X, τ ′) ≪ L(X, τ).This lemma says that hanging �nitely many values of τ does not perturbtoo muh the joint law of X and τ . For instane, it implies that a proessobtained from a Brownian motion by hanging the signs of �nitely manyexursions has a law absolutely ontinuous w.r.t. π. This is alled 'prinipede retournement des exursions' in [M℄.Proof If u = (u1, u2, ...) is an in�nite sequene, denote by up] the �nitesequene (u1, ..., up) and by u[p+1 the in�nite sequene (up+1, up+2, ...). Wehave (x, u) = fp(x, up], u[p+1) for some funtion fp.5



We have to show that if F is measurable set suh that P[(X, τ) ∈ F ] = 0,then P[(X, τ ′) ∈ F ] = 0. So assume P[(X, τ) ∈ F ] = 0. For p ∈ N, sine τp]takes values in {−1, 1}p, we an write(7) ∑

σ∈{−1,1}p

P
[
fp(X, σ, τ[p+1) ∈ F and τp] = σ

]
= P [(X, τ) ∈ F ] = 0.Using the independene of τp] and (X, τ[p+1), this beomes :(8) ∑

σ∈{−1,1}p

2−pP
[
fp(X, σ, τ[p+1) ∈ F

]
= 0;So for eah p ∈ N and eah σ ∈ {−1, 1}p, the event {fp(X, σ, τ[p+1 ∈ F}is negligible. Sine τ ′p(ω) = τp(ω) for all p larger than some N(ω), one has

P [(X, τ ′) ∈ F ] = lim
p→∞

P
[
(X, τ ′) ∈ F and τ ′[p+1 = τ[p+1

]

= lim
p→∞

∑

σ∈{−1,1}p

P
[
fp(X, σ, τ[p+1) ∈ F and τ ′p] = σ and τ ′[p+1 = τ[p+1

]
.This is null beause the event fp(X, σ, τ[p+1) ∈ F is negligible, as shownabove.

�Proposition 2. (mehanism of a Lévy raise)Suppose given the following three r.v. :(i) V , a W−valued r.v., suh that L(V ) ≪ π ;(ii) τ = (τp)p∈N, a oin-tossing independent of V ;(iii) τ ′ = (τ ′p)p∈N, a r.v. valued in {−1, 1}N, suh that the random set
p ∈ N τ ′p(ω) 6= τp(ω) is a.s. �nite.Then there exists a unique w−valued r.v. U suh that(9) |U | = V − I ◦ V and Sp ◦ U = τ ′p for each p.It is measurable w.r.t. the σ−�eld σ(V, τ ′) and we have L(U) ≪ π and

T◦U = V . For any n ≥ 0, we have U = Bn on the event {V = Bn+1 and τ ′ =
S ◦Bn}. 6



Proof We start from L(V ) ≪ π = L(B) = L(B1). Using Lemma 2 (i) wewrite L(V, V −I◦V ) ≪ L(B1, B1−I◦B1). By Lemma 2 (ii), the oin-tossing
τ (resp. S◦B) whih is independent of V (resp. B1) an be added on the left(resp. right), and we obtain L(V, V − I ◦ V, τ) ≪ L(B1, B1 − I ◦ B1,S ◦B);by Lemma 1, the right-hand side is L(B1, |B|,S ◦B). Lemma 3 allows us toreplae τ by τ ′ in the left-hand side, so we �nally have(10) L(V, V − I ◦ V, τ) ≪ L(B1, |B|,S ◦B)Now, we allW+ the set of non-negative paths and f : W

+×{−1, 1}N −→
W the measurable funtion suh that w = f (|w|,S(w)). We remark that
B = f (|B|,S ◦B) and we de�ne U = f(V − I ◦ V, τ ′); this is the unique r.v.
U suh that |U | = V − I ◦ V and S ◦ U = τ ′. To verify that L(U) ≪ π and
T◦U = V , we apply Lemma 2 (i) to (2) with the funtions g(x, y, σ) = f(y, σ)and h(x, yσ) = (f(y, σ), x). With g we obtain L(U) ≪ L(B), the �rst laim.With h we obtain L(U, V ) ≪ L(B,B1); this implies T ◦ U = V sine thejoint law L(B), (B1) is arried by the graph of T.Last, on the event {V = Bn+1andτ ′ = s ◦Bn}, using the de�nition of U andLemma 1 we have(11) U = f(V −I◦V, τ ′) = f(Bn+1−I◦Bn+1,S◦Bn) = f(|Bn|,S◦Bn) = Bn.

�Proposition 3. Denote by Pf (N) the set of all �nite subsets of N. Fix rin N. For eah n ≤ r, let be given N n, a r.v. with values in Pf(N), and
Σn = (Σn

p , p ∈ N n), a r.v. taking its values in ⋃
M∈Pf (N){−1, 1}M, suh that

Σn(ω) ∈ {−1, 1}N
n(ω).Starting with Γr = Br, we an de�ne a sequene (Γn)n≤r suh that Γn−1 isthe W−valued r.v. U obtained in Proposition 2 from

V = Γn, τ = S ◦B′n−1, τ ′p =

{
Σn
p (ω) if p ∈ N n(ω)

τp(ω) elseThen the sequene (Γn)n≤r is a B-raised Brownian motions of index r.Proof First, we verify that the Γn an be onstruted stepwise. Assuming
Γn has already been onstruted, has a law absolutely ontinuous w.r.t. π,7



Proposition 2 applies to V = Γn−1 and τ = S ◦B′n−1 (they are independent.The r.v. Γn−1 = U yielded by Proposition 2 also satis�es L(Γn−1) ≪ π, andis measurable in σ(F , τ ′).The rest of the proof will exhibit a sequene (Γn)n≥r of B-raised motionssuh that ΓJ−n = Cn. Starting with Γr = Br, the other Γm will be indutivelyde�ned : if m < r, suppose Γm+1 has been de�ned, is σ(Bm+1)−measurable,and veri�es L(Γm+1 ≪ π; de�ne Γm as the r.v. U obtained in Proposition 2from(12)
V = Γm+1, τ = S ◦Bm, τ ′p =

{
ΣJ−m−1(ω) if p ∈ N J−m−1(ω)
τp(ω) elseThis is possible sine V and τ are independent and N J−m−1 is a.s. �nte;the result Γm veri�es L(Γn) ≪ π and T ◦ Γm = Γm+1. To show that Γmis σ(Bm)−measurable, it su�es to show that so is τ ′; this may be doneseparately on eah of the events {J ≤ m}, {J = m+1}, ..., {J = r}, beausethey form a σ(Bm)−partition of Ω. On {J ≤ m}, we have τ ′ = S ◦Bm; thisis σ(Bm)−measurable. To see what happens for other values of j, introdue

ϕn and ψn suh that N n = ϕn(BJ−n) and Σn = ψn(BJ−n) for 0 ≤ n < k.For j ∈ {m+ 1, ..., m+ k}, we have on {J = j}(13) τ ′ = ψn(BJ−n)1ϕn(BJ−n) + τ
(
1Ω − 1ψn(BJ−n)

)This is σ(Bm)−measurable too. We have established that Γr, ...,Γ0 existand form a sequene of B−raised motions; it remains to see that ΓJ−n = Cn.This is done in two steps. Firstly, by indution on m, we have Γm = Bmon {J ≤ m} : this holds for m = r, and if it holds for m + 1, it holds for
m too, owing to the last statement in Proposition 1. Consequently, Γm =
Bmon{J = m}, that is ΓJ = BJ = C0. Seondly, to proeed by indution on
n, we will assume that ΓJ−n = Cn for some n ≥ 0, and show ΓJ−n−1 = Cn+1.It su�es to show this equality on the event {J = j}; on this event, usingthe de�nition of Γm with m = j−n−1 and the inequality m = j−n−1 < j,the r.v. ΓJ−n−1 satis�es both T(Γj−n−1) = Γj−n = Cn = T(Cn+1) and(14) S ◦ Γj−n−1 =

{
Σn+1 on N n

S ◦Bj−n−1 else = S ◦ Cn+1.These two equalities entail ΓJ−n−1 = Cn+1 a.s. on {J = j}.
�8



Lemma 4. Let (j, k) ∈ N
2 and Q and R be two r.v. suh that k ≤ j− 1 and

0 ≤ Q ≤ R. On the event {∀n ∈ {k, ..., j − 1}Z ◦Bn ∩ (Q,R) = ∅} that the�rst iterates of B do not vanish between Q and R, there exists a (random)isometry i : R −→ R suh that Bj = i ◦Bk on the interval (Q,R).Proof By indution, it su�es to show that if Bj−1 does not vanish on theinterval (Q,R), then Bj = i ◦ Bj−1 on (Q,R), for some random isometry i.This is just Lemma 5 with j = k + 1 and Bj−1 instead of Bk, so we maysuppose that j = 1.On the event {Q = R}, the result is trivial. On {Q < R}∩{Z ◦B∩ (Q,R) =
∅}, the loal time L is onstant on [Q,R] beause its support is Z ◦ B, andthe sign of B is onstant on (Q,R); so B1 = |B|−L = i(B) on (Q,R), where
i is the random isometry x 7→ xsgn

(
B(Q+R)/2

)
− L(Q+R)/2.

�Notation 3. For w ∈ W, the p-th exursion interval ep(w) was de�nedearlier; the number hp(w) = max
s∈ep(w)

|w(s)| will be alled the height of theorresponding exursion.Lemma 5. Let X be a proess whose law is absolutely ontinuous w.r.t.Wiener measure. Almost surely,
• lim

p→∞
hp(X)1{ep(X)⊂[0,t]} = 0;

•
∑
p∈N

hp(X)1{ep(X)⊂[0,t]} = ∞;
• the set {

∑
p∈M

hp(X)1{ep(X)⊂[0,t]},M ∈ Pf (N)

}
is dense in [0,∞);

• between any two di�erent exursions of X, there exists a third one, withheight smaller than any given random variable η > 0.Proof By a hange of probability, we may suppose that X is a Brownianmotion. It is known (see Exerise (VI.1.19) of [RY℄) that when η → 0+,the number ∑
p

1{ep(X)⊂[0,t]}1{hp(X)>η} of downrossings of the interval [0, η]by |X| before t is a.s. equivalent to η−1Lt, where Lt is the loal time of X9



at 0. This easily implies (i) and (ii), wherefrom (iii) follows.Last, between any two exursions of X there are in�nitely many other ones(beauseX has no isolated zeroes) and, by (i), only �nitely many with heightsabove η, whene (iv).
�Notation 4. An exursion whose interval is inluded in [0, t] will be alleda t−exursion.It remains to desribe the N n and Σn, i.e., to hoose the signs of �nitelymany exursions when Lévy-raising from Γn to Γn−1. This will be done soon;we �rst need some notation and a lemma.Notation 5. If e′ and e′′ are two exursions of a path (or of a proess),

e′ ≺ e′′ means that e′ is anterior to e′′ : s′ < s′′ for all s′ ∈ e′ and s′′ ∈ e′′.For an exursion e of w, we denote by iwe := inf{ws; s ∈ [0, de]}.De�nition 2. An exursion e of a path w ∈ W is said to be tall if it ispositive (this implies that the proess Iw remains onstant during e); and iffor any exursion e′ of w suh that iwe′ = iwe and higher than e, then e′ = e.Formally, e is tall if it is positive and if(15) max (w(s); s ≥ 0, (Iw)(s) = iwe) = max (w(s); s ∈ e) .

Lemma 6. Let η be a positive number, m ≥ 1 be an integer and w ∈ Wa path. Let e1, . . . , em+1 be m + 1 di�erent t−exursions of w, numberedin hronologial order : e1 ≺ · · · ≺ em+1; all h1, . . . , hm+1 their respetiveheights. Let f1, . . . , fp denote all exursions of w whih are anterior to em+1and whose heights are ≥ min(η, h1, . . . , hm+1), numbered in reverse hrono-logial order : let g1, . . . , gp be p exursions of w verifying fp ≺ gp ≺ · · · ≺
f1 ≺ g1 ≺ em+1.Suppose that

• the exursion em+1 is negative, and all t−exursions higher than em+1are positive;
• the exursions f1, . . . , fp are positive;10



• the exursions g1, . . . , gp are negative; and every negative exursion an-terior to gp is smaller than gq.We all the gi's the plug-exursions, and the ej's the proteted exursions.Then e1, . . . , em are tall, and |iwe1| < |iwe2| < · · · < |iwem| < η.Proof Firstly, |iwf1| < η beause f1 ≺ em+1 and any exursion anterior to
em+1 and having height ≥ η is one of the fq, hene positive.Seondly, for 1 ≤ q ≤ p, the exursion gq is negative and higher than anynegative exursion, anterior to it; so Iw is not onstant during gq, and on-sequently we have(16) |iwfp| < |iwfp−1| < · · · < |iwf1| < height of g1,where eah < sign is due to Iw varying on the orresponding gq.thirdly, ombining (20) with |iwf1| < η (�rst step), and notiing that, byde�nition of the fq, (e1, . . . , em) is a sub-sequene of (fp, . . . , f1), we obtain(17) |iwe1| < · · · < |iwem| < η.Last, it remains to establish that el is tall for 1 ≤ l ≤ m. Let e′ denote apositive exursion of w with height h′ ≥ hl and suh that iwe′ = iwel. From(13), we have |iwe′| = |iwel| < height of g1; so e′ is anterior to g1 and afortiori anterior to em+1. As h′ ≥ hl, e′ must be one of the fq (see theirde�nition). But el is also one of the fq and, due to (13), all iwfq are di�erent;so e′ = el. This means that el is tall.

�In the proof of Lemma 6, the negative exursions gq are used to separate the
fq from eah other. Yet, in the end, we are not interested in the behavior ofall fq but only in the el. It is possible to replae this lemma with a variant,where 2m exursions (instead of p ones, the gq) are made negative, eah elbeing �anked by two of them.Lemma 7. Let X be a proess with law absolutely ontinuous w.r.t. π, and
E a tall exursion of T ◦X with height H. There exists an exursion of X,with interval {s; (I ◦ T ◦X)(s) = iT◦XE}, and with height H + |iT◦XE|.Proof First, reall a.s., Brownian motion B does not reah its urrent min-imum I ◦ B in the interior of a time-interval where I ◦ B is onstant. (This11



is a onsequene of (I ◦ B)(s) < 0 for s > 0 and of the Markov property atthe �rst time that B = I ◦B after some rational).Put Y = T ◦X and all F the interval {s ≥ 0; (I ◦ Y )(s) = iXE}; Y reahesits urrent minimum I ◦ Y at both endpoints of F but not in the interior of
F (see above). Sine |X| = Y − I ◦ Y by Lemma 1, we have that F is thesupport of some exursion of X. The height of that exursion is

max(|Xs|; s ≥ 0, and (I ◦ Y )(s) = iYE)

= max (Ys − (I ◦ Y )(s); s ≥ 0, (I ◦ Y )(s) = iYE)

= max (Ys; s ≥ 0, (I ◦ Y )(s) = iYE) − iYE

= max (Ys; s ∈ E) − iYE because E is tall

= H + |iYE|.

�Lemma 8. Let (0,
−→
i ,

−→
j ) be an orthonormal basis of the plan in whih werepresent paths. Let τa+b be the vertial translation of vetor (b − a)

−→
j and

τa−b the re�etion along the horizontal axis of equation : y =
a+ b

2
.Consider (t, k, p) ∈ R

+
∗ × N

2 suh that wkt = a and wk+pt = b and denote γtthe �rst time posterior to t when at least one of the iterated Lévy transforms
ws, k ≤ s ≤ k + p− 1, vanishes. Then we have :

wk+p|[t,γt]
=





τa+b owk|[t,γt]
if k+p−1

Π
i=k

wit > 0

τa−b ow−k|[t,γt]
elseWe will denote τkk+p(w) the plan transformation, whih transforms wk|[t,γt]

in
wk+p|[t,γt]

.Proof It is an immediate onsequene of Tanaka's Lemma, when p = 1.In general ase, we break up the displaement τ whih transforms wk|[t,γt]in wk+p|[t,γt]
under the form τ = τp ◦ τp−1 ◦ ... ◦ τ1 where τi transforms wk+i−1|[t,γt]in wk+i|[t,γt]
. From the preeding remark, eah τi is a vertial translation or are�etion along an horizontal axis, aording to the sign of wk+i−1

t . Then wededue the laim. 12



�To onstrut the desired proess Γ, we will proeed by indution on dis-retized time, and so we will perform, from the level r, two types of raisings.In a �rst type, the so-alled horizontal raisings, at a level when the pathvanishes on[td, td+1], we protet the material furnished by the indution hy-pothesis on [0, td], namely Γ̃. And we prepare the path on [td, td+1] to giveit the form it ought to have at this level for being near to ϕ on the intervalwhen Γ is near to ϕ on [0, td].So we make positive the signi�ative exursions of the path alled here theproteted exursions, and insert between them small exursions alled theplug-exursions (see lemma 6). And on [td, td+1], we prepare exursions ,the building ones, whih we protet, and they will at, one by one, duringa suession of horizontal raisings, to give the path the previewed form (seeLemma 13 and Proposition 14), at the ondition the path, after that, willnot vanished on [td, td+1].In a seond type, the so alled vertial raisings, we give anew to the protetedexursions the signs they have before the horizontal raisings. Then we getup while the path doesn't vanish on [td, td+1]. In fat we must distinguishthe last raising of a suession of horizontal raisings, the so alled terminalhorizontal raising, when we leave to protet the proteted exursions andgive them the good signs.It is important to know the real level of the path, ie. the level without thehorizontal raisings. Preisely, we de�ne the r.v. indutively :
RLr(w) = r

and for all integer n ≤ r

RLn−1(w) =

{
RLn(w) if the step n− 1 → n orresponds to an horizontal raising
RLn(w) − 1 if it orresponds to a vertial raising.For our needs, we will all map-exursion, or simply exursion, eah map

e : R
+ → R whose support is a not empty segment and whih doesn't vanishat any point of the interior of the support. In partiular, for w ∈ W and

t > 0, we will all exursion straddling t, and denote it by : et(w), the mapso de�ned :
et(w) : R

+ → R, ∀u ∈ R
+, et(w)(u) =

{
0 if u ∈ [0, gt(w)] ∪ [dt(w),+∞[
wu elseWe will introdue the map det(w) : R

+ → R de�ned by13



∀u ∈ R
+, det(w)(u) =





0 if u ∈ [0, t] ∪ [Rt(w),+∞[where Rt(w) = sup{u > t, ∀s ∈]t, u], ws 6= wt}
wu − wt elseand we all it a di�erential exursion of w whenever its support is not empty,ie.

∃ε > 0, ∀u ∈ (t, t+ ε), wu 6= wεWe denote them et and det when there is no ambiguity, and est and dest inthe ase of exursions of ws.Lemma 9. Let w ∈W and e a negative m−exursion of Tw, lower than allpreeding it. Let γ be its beginning and δ its end. We set :
γ1 = arg min Tw

[0,γ]

, γ2 = inf{t ∈ supp(e); e(t) = Twγ1}, γ3 = arg min e
[γ,δ]Then :






deγ1 oinides with an exursion of |w|, and its support is [γ1, γ2]
deγ3 oinides with an exursion of |w|, whih begins at γ3 and whosesupport ontains [γ3, δ]Furthermore, ∀u ∈ [γ2, γ3], deu oinides with an exursion of |w|, if, andonly if : {

deu is a positive exursion
e(u) = inf{e(t), t ∈ [γ, u]}It is the ase in partiular when deu is the �rst positive exursion of the form

dev, v ∈ [γ2, γ3] to over�ow a given value.ProofFrom Tanaka's formula :
|wt| = Twt + sup{−Twu, u ∈ [0, t]}Therefore,

|wγ1 | = Twγ1 −Twγ1 = 0,while, for all t > γ1, su�iently small :
Twt > Twγ1.So, deγ1 is a positive exursion of |w| whih ends at γ2.In the same way, Twt > Twγ3, for all t ∈ [γ3, δ], therefore deγ3 is an exursion14



of |w| beginning at γ3 whose support ontains [γ3, δ].Let e′ be an exursion of w with support inluded in [γ2, γ3]. Its beginning
u, and its end v verify :

u = arg
[0,v[

min Tw and v = arg
[0,v]

min Tw.So we dedue : deu = |e′|.Reiproally, let u ∈ [γ2, γ3] suh that deu is a positive exursion and
u = arg

[0,u]

min Tw.Then, u = arg
[0,v[

min Tw, where v is the end of deu, beause deu is positive.Thus, wu = wv = 0, and for all t ∈]u, v[, wt 6= 0.Consequently, deu is an exursion of |w|.Let h > 0 be suh that there exists u ∈ [γ2, γ3] verifying deu is the �rstpositive exursion of the form dev, v ∈ [γ2, γ3], whose height over�ows h.Then, for all v < u, the support of dev an't ontain this of deu withoutdenying the minimality of u.
�As an immediate onsequene, we observe :Corollary 2. The exursions of w oinide with the positive di�erential ex-ursions of Tw, beginning at arg min[0,t](Tw) for all t ∈ [0,+∞[.

15



2 Density of orbitsIn this paragraph, we want the raised path to approah the map ϕ uniformlyon [0, T ]. Preisely :Whatever ε stritly positive, and ϕ ∈W|[0,T ]
, there exists Γ a B−raised Brow-nian motion suh that :

P

(
‖Γ|[0,T ]

− ϕ|[0,T ]
‖∞ < ε

)
> 1 − εWe onsider a modulus of uniform ontinuity α0 assoiated to (ε

4
, ϕ, [0, T ]

)and a real number α1 suh that P (A0 ε) > 1 −
ε

2
where

A0 ε =
[
sup{|Bt − Bu|, (t, u) ∈ [0, T ]2 and |t− u| < α1} <

ε

2

]
,then we set α := min(α0, α1), d0 :=

[
T
α

]
+1, and for all d ∈ N, td = (dα)∧T .We set again, for all integer d ∈ [1, ..., d0],

Adε :=
[
sup{|Bt − Bu|, (t, u) ∈ [td, T ]2, |t− u| < α} <

ε

2

]
.Our aim is to show, by indution on d, the following property Pd : " For all

ε > 0, there exists an integer rd and Γ a B−raised Brownian motion of index
rd suh that :
P

([
‖Γ|[0,td]

− ϕ|[0,td]
‖∞ < ε

]
∩ [|Γtd − ϕ(td)| < ε1] ∩ A

d
ε

)
> 1−ε

(
1 +

d

d0

)
”Notie that P0 immediately yields from the hoie of ϕ whih vanishes at

0. We suppose now Pd true. We are going to apply this hypothesis to theBrownian motion Bs0, for an integer s0 whih, as the real number ε1, will belater spei�ed.As Adε ⊂ [
sup{|Bt − Bu|, (t, u) ∈ [td, td+1]

2} < ε
2

]
∩Ad+1

ε , and from the inde-pendene of the inrements of Brownian motion, we an dedue the existeneof a disjointed sum Γ̃ of Bs0−raised Brownian motions of index rd suh that:
P(Aε0) > 1 − ε

(
1 +

d

d0

)
,where

Aε0 :=
[
‖Γ̃|[0,td]

− ϕ|[0,td]
‖∞ <

ε

2

]
∩

[
|Γ̃td − ϕ(td)| < ε1

]
...

... ∩
[
sup{|Bs0+rd

t −Bs0+rd
u |, (t, u) ∈ [td, td+1]

2} <
ε

2

]
∩Ad+1

ε16



(It su�es to apply Pd with ε
2
instead of ε).We will denote : ∀i ∈ N, Γ̃i = w̃i. By de�nition, ∀i > rd, w̃

i = ws0+i.From the theorem of density of zeroes ([M℄), there exists a.s. an integer ℓsuh that w̃ℓ vanishes at least one time on [td, td+1].Let L(w) be the smallest of these integers ℓ. L is a r.v. almost surely �nite.Then there exists an integer ℓ0 whih we will hoose > rd suh that :
P(Aε1) > 1 − ε

(
1 +

d

d0

)
−

ε

2d0
où Aε1 := Aε0 ∩ [L ≤ ℓ0] .We set : r = s0 + max(rd, l0).De�nition 3. The proteting tree of Γ̃.Let N be a set of exursions of w|[0,dt(w)], w ∈ W, and ε > 0. We denote by

T
t,ε
w (N ) the set of exursions of Tw|[0,dt(Tw)] so de�ned :

e′ ∈ T
t,ε
w (N ) i� e′ is an exursion of Tw|[0,dt(Tw)] whih appears in the dif-ferential exursions dE of Tw orresponding to an exursion E ∈ N , and

h(e′) > ε
4
(we all them exursions of the �rst type) or the support of e′ontains arg max of the di�erential exursion dE, we all them exursionsof the seond type, and all the exursions e′′ of Tw of height belonging to

[h(e′), h(e
′

−)], e′− being the preeding exursion of Tw of height > ε
4
, with

e
′

− < e′′ < e′, we all these exursions e′′ the third type exursions.
Lemma 10. When N is a �nite set, so is T

t,ε
w (N ).Proof We remark �rstly that the number of distint di�erential exur-sions of Tw orresponding to the elements ofN is �nite, equal to the ardinalof N . The number of exursions of the �rst type is �nite beause their heightis greater than ε

4
. The number of exursions of the seond type is �nite follow-ing the �rst remark. And for eah exursion of the seond type, the numberof exursions of the third type is �nite too.

�Then we all proteting tree of Γ̃, the tree onstituted by :
• at the 0-generation : the elements of Ñ 0, the set of dt(w̃0)-exursionsof height > ε.
• and, for all n ∈ N, if we denote by Ñ n, the set of proteted exursionsof w̃n whose elements, given in hronologial order, onstitute the nth17



generation of the tree, then at the (n + 1)th generation, the elementsof Ñ n+1 := T
td,ε/4

n

ewn

(
Ñ n

). As we have ordered eah Ñ n, whih isnow a �nite sequene of exursions of w̃n, we an onsider Σ̃n the�nite sequene of their signs. And our next task is to de�nite N ′nthe sequene of proteted td-exursions of Γn and Σ′n the assoiatedsequene of their signs. We have de�ned the Ñ n's by getting down inthe iterations. We will de�ne the N ′n's by getting up from level r. Weput N ′r(ω) = Ñ r−s0(ω), and Σ′r(ω) = Σ̃r−s0(ω).If Γn+1 −→ Γn is an horizontal raising, then N 0,n+1 is onstituted bythe family of the exursions of Γn whose absolute values have the same
arg max as the exursions of N 0,n+2. Then we proeed as in lemma 6,onsidering the elements of N 0,n+1 as the ei, 1 ≤ i ≤ m. We have nowto de�ne the r.v. η : let ηi be the minimal distane between the heightsof distint proteted exursions of w̃i for i ∈ {0, . . . , r − s0} and ηm =
r−s0∧
i=0

ηi, ε̃i = ε ∧ ηm
1

4i+1 , for i ∈ {0, . . . , r − s0}, and εi = ε̃RL(i)−s0
1

4i′−i
,where i′ = sup{j > i/RL(j) = RL(i)}. Then we hoose for η the r.v.

εRL(n)−s0 . And we (an) de�ne the set N ′n as the set of elements the
fj 's and the gj's. And Σ′n give sign −1 to the gj's and +1 to the fj 'sif Γn+1 −→ Γn is not a terminal horizontal raising.In the ase of a terminal horizontal raising, we put simply N ′n+1 = N 0,n+1.If Γn+1 −→ Γn is a vertial raising, N n+1 is onstituted by the family of theexursions of Γn orresponding to the positive di�erential exursions of Γn+1whose support enounters at least the support of an element of N 0,n+2 andbeginning at an arg min of Γn+1. In these two ases, to speify Σ′n+1, weneed the following lemma. Let us all argext of an exursion the arg max(resp. arg min) of this exursion if it is positive (resp. negative).Lemma 11. If for all i from level r to n (with r ≥ n) the elements of N 0,iand ÑRL(i)−s0 have the same argext, whih implies |N 0,i| =

∣∣∣ÑRL(i)−s0

∣∣∣, andthe same signs, then the elements of N 0,n−1 and ÑRL(n−1)−s0 have the sameargext, hene these sets have the same ardinality, and the same hierarhy,ie. the order of the heights between the respetive exursions of eah set isthe same. So we put Σ0,n−1 = Σ̃RL(n−1)−s0 .Proof The distintion between Γ and Γ̃ is due to the introdution ofhorizontal raises. If Γn+1 −→ Γn is an horizontal raising, eah protetedexursion gains in height the height of a plug exursion, and its supportenlarges. So, during suh a raising, the "error" between Γ and Γ̃ inreased ofthe height of a plug exursion. For the time, in this lemma, the "error" means18



the maximal distane between the heights of orresponding exursions. If,on the other side, Γn+1 −→ Γn is a vertial raising, a proteted exursionof Γn is onstituted by at most two proteted exursions of Γn+1. So duringsuh a raise, the error between Γ and Γ̃ doubles. And it is easy, by meansof our hoie of the heights of the plug exursions, to show that this error isalways majorized by ε ∧ η. Hene the lemma follows immediately.
�Now we an onsider (see Proposition 2) that Γ|[0,td] is orretly de�ned: for one RLw(n) = s0, we end the raises, if neessary, by horizontal ones: proteting all the material aquainted. But is Γ near from Γ̃ ? To answerthis question, we have to onsider the error between Γ and Γ̃ now, as being

‖Γ|[0,td] − Γ̃|[0,td]‖∞.We have just built Γ|[0,td]. We have now to ontrol : ‖ΓN|[0,td] − Γ̃0
|[0,td]‖∞,where N = sup {n ∈ {0, . . . , r}/RL(n) − s0 = 0} (with N = −∞ if the setis empty). N is a r.v.Lemma 12. ‖ΓN|[0,td] − Γ̃0

|[0,td]‖∞ ≤ 2ε, on the event [N ≥ 0].Proof Let us �rst remark, from the preeding lemma, that, on the event
[N ≥ 0], we have proteted exursions with the same argext, the same signs,and heights near at ε. The supports of the proteted exursions of ΓN on-taining the supports of the orresponding proteted exursions of Γ̃0. Fur-thermore, on the di�erene of their supports, ΓN and Γ̃0 di�er from at most
2ε, and likely outside the union of their supports.

�The purpose of the following lemma is to prepare, at level s, when theiterated Brownian motion vanishes on ]td, td+1[, the exursions whih will al-low the orretly raised path to approah ϕ at level 0 on ]td, td+1[.Lemma 13. Full planing.Let w belong to W , and t, t′, ε′ ∈ R
+
∗ be suh that t < t′. We suppose thereis no interval in whih w is onstant, and w vanishes in (t, t′).The following r.v. are funtionals of |w| :

• t0(w) = ginf{s>dt;|ws|≥ε′} ∧ t
′, with inf ∅ = +∞.

• ∀n ∈ N, while tn < t′, we set :
tn+1 :=






inf{u ∈ [tn; arg max |detn|[, h(deu) > ε′ and sgn(deu) = −sgn(detn)}if this set is not empty,else :
arg max |detn| ∧ t

′ 19



The sequene (tn)n∈N is stritly inreasing and �nite. Let 1 + K(w) be itsardinality.Proof By onstrution, the sequene (tn) is stritly inreasing and lowerthan t′. Suppose the number of its terms is in�nite. In this ase, it wouldadmit a limit t∗ ≤ t′, and the osillation of w at t∗ would be in�nite, soontraditing the ontinuity of w. Then (tn)n is �nite.The measurability and the �niteness of K are immediate.
�Let us remark that this Lemma gives us the possibility of planing the pathafter dt in K raises.For, during the �rst raise, we put negative the exursion beginning at t0(w)and positive all the other exursions in (t0(w), t′) of height greater than ε′.Then during the seond raise, we put negative the exursion whose supportontains this of det1 , and so on. At the end of suh K raises, the path on

[t0, t
′] has an absolute value whih doesn't exeed ε′ + Kε

′′, and ε′ on theexursion straddling t′.So we are going now to analyze its behavior on (td, td+1). Let us denote
γtd the �rst time after td at whih one of the Γσ, 0 ≤ σ ≤ s0 + l0, vanisheson (td, td+1), and σ0 the orresponding level.Proposition 4. There exists a σ(Γσ

′

0+1)−measurable, N−valued r.v., K ′

σ0suh that there exists K ′

σ0
− 1 r.v. P1, . . . , PK ′

σ0
−1 themselves with values in

N and σ(Γσ0+1)−measurable, suh that :(i) the K ′

σ0
− 1 exursion intervals eP1(Γ

σ0), . . . , eP
K

′

σ0
−1

(Γσ0) are disjointand inluded in (dtd(Γ
σ0), t0(Γ

σ0))(ii) the heights H1, . . . , HK ′−1 of these K ′ − 1 exursions of Γσ0 satisfy on
[σ0 ≥ 0] :
∣∣∣τ 0
RLσ0−s0)

(w̃)(ϕ(td+1))
∣∣∣−ε′ < H1+· · ·+HK ′

σ0
−1 <

∣∣∣τ 0
RLσ0−s0)

(w̃)(ϕ(td+1))
∣∣∣+ε′.Proof Notiing that the proess :

X =
∑

n∈N

Γn1[σ0=n]is absolutely ontinuous w.r.t. π, the proposition is an immediate onse-quene of lemma 5. 20



�Often in the sequel, we will denote K ′
σ0
simply by K', if there is no ambiguity.Set :

σ′
0 = σ0 −

(
K(Γσ−1) +K ′

σ0

)
.Proposition 5. For all (n, ω) suh that σ0(ω) ≤ n < σ0(ω) − Kσ0(ω) −

K ′
σ0

(ω), N n(ω) and Σn(ω) an be hosen so that :(i) 0 ≤ Γσ0−K
td+1

< ε′ and ‖Γ̃RL(σ0−1)−s0
|[0,td] − Γσ0

|[0,td]‖∞ < Kε′′.(ii) −(I ◦ Γσ0)(td+1) = HK ′

σ0
−1(iii) Γσ0 has K ′ − 2 tall exursions inluded in (td, td+1) : E1 < E2 <

· · · < EK ′−2 with respetive heights H1, . . . , HK ′−2 verifying |iΓσ0E1| <
|iΓσ0E2| < · · · < |iΓσ0EK ′−2|.(iv) Hn+1 + · · · +HK ′

σ0
−1 ≤ Γσ0−K−n

td+1
< Hn+1 + · · ·+HK ′

σ0
+ ε′ + nK ′ε′′.(v) HK ′

σ0
−n < −(I ◦ Γσ0−K−n)(td+1) < HK ′

σ0
−n +K ′ε′′.(vi) Γσ0−Kσ0−n has K ′

σ0
− n − 2 tall exursions inluded in (td, td+1)E

n
1 <

· · · < En
K ′

σ0
−n−2 suh that : |iΓσ0−Kσ0−nE1| < · · · <

∣∣∣∣iΓσ0−Kσ0−nEK′
σ0

−n−2

∣∣∣∣ <
ε′′, and whose heights Hn

1 , . . . , H
n
K ′

J0
−n−2 satisfy :

Hl ≤ Hn
l < Hl + nε′′ for n+ 1 ≤ l < K ′

σ0
− 1.

In our pursuit of the proedure, we an state :Proposition 6. It is possible to hoose N n(ω) and Σn(ω), for all (n, ω) suhthat n = σ′
0, in order to have :

∣∣∣Γσ
′

0
td+1

− τ 0
RL(σ′0)−s0(ϕ(td+1))

∣∣∣ < ε′ +
1

2
(K ′

σ0
− 1)(K ′

σ0
− 2)ε′′Proof We notie that the building exursions whih appear in Proposition 5,the eP0(Γ

σ0+Kσ0 )'s, are suessively proteted. One proteted, eah of themreeives a small exursion of height lower than ε′′ at eah raise. So we deduethe result. 21



�Proposition 7. It is possible to de�ne N n(ω), Σn(ω) and RLn(ω) indu-tively on the event [n ≥ σ′
0] if Γn(ω) doesn't vanish in (td, td+1) and RLn(ω) >

s0, in suh a way that :(i) ∥∥∥Γn|[t0(Bσ0 ),td+1] − Γntd+1

∥∥∥
∞
< ε′ +K(Bσ0)ε′′.(ii) ∣∣∣Γntd+1

− τ 0
RLn−s0(ϕ(td+1))

∣∣∣ < ε′ + 1
2
(K ′

σ0
− 1)(K ′

σ0
− 2)ε

′′

+ 2n−(σ0−σ′0)ε′′.Proof We �rst reall that when we know Γn+1(ω), we know also wether Γnvanishes in (td, td+1). If it isn't the ase, we put :
RLn(ω) = RLn+1(ω) − 1,and de�ne N n(ω) and Σn(ω) as we do in previous propositions; but this timethe ounting of "errors" is radially di�erent. It an happen between 0 and

td that an exursion whih was proteted before beome negative and, in thefollowing raise, is going to add to another proteted exursion. So, at eahvertial raise, the "errors" are double of those of the preeding raise.In the same manner the exursion straddling td+1 reeives an exursion withbeginning in [0, td]. So, to the errors soon aquainted at level J ′′

0 we mustadd the error between 0 and td of the preeding level whih entails (ii).For (i) : here the raises whih are involved, are the planing one's, i.e. the
K(Γσ0) �rst raises. At most, at eah instant of the interval [t0(B

J0−1), td+1],the path Γn has reeived K(Γσ0) small exursions. Then, this part of thepath is just suessively translated, whih entails (i).
�Then we de�ne σn, n ≥ 0, hzn and vtn in the following manner :

∀n ∈ N, σn+1 = sup (sup{p > σ′
n,Γ

p vanishes in (td, td+1)}, 0)

hzn (resp. vtn) is the number of horizontal (resp. vertial) raisings ourringbetween levels r and n. As before, S = sup{n ≤ r;RLn = s0}.Proposition 8. (i) For all n ∈ N, σn, hzn, vtn are r.v.(ii) It is possible to de�ne N n and Σn on the event [
σ

′

k−1 ≥ n ≥ σk
] in suha manner that : 22



(a) ∥∥∥Γn|[t0(Bσk−1 ),td+1]
− Γntd+1

∥∥∥
∞
< ε′ +K(Γσk)ε′′(b) ∣∣∣Γntd+1

− τ 0
RLn−s0)(ϕ(td+1))

∣∣∣ < ε′+ 1
2
(K ′

σk
−1)(K ′

σk
−2)ε

′′

+hznε
′′2vtnProof It is the same as in the previous proposition.For (a) we notie that, after the intervention of the planing exursions, thispart of the path is merely translated, without being a�eted by any othermodi�ation.

�Proposition 9. (i) S is a r.v. suh that S−s0 doesn't depend upon s0 and
ε′′, and we an hoose s0 large enough for P(Aε2) > 1 − ε(1 + d

d0
)− ε

d0
,where Aε2 := Aε1 ∩ [S ≥ 0](ii) Let (Γn) be the sequene assoiated to the N n and Σn. It satis�es on

Aε2 :
∥∥∥ΓS|[0,td] − Γ̃0

|[0,td]

∥∥∥
∞

< 2ε
∥∥∥ΓS|[t0(BσnS ),td+1]

− ΓStd+1

∥∥∥
∞

< ε′ +K(BσnS )ε′′, where nS = sup{n ≤ r/σn ≤ S}
∣∣∣ΓStd+1

− ϕ(td+1)
∣∣∣ < 2β + ε′ +

1

2
(hzn − 1)(hzn − 2)ε

′′

2l0 +
(
ε′′hzJ0−Sε

′′

)
.Proof For (i), see Lemma 12.Then (ii) follows immediately from preeding Propositions.

�Then Γ so de�ned is a B−raised Brownian motion.So, let us hoose : ε′ = ε
16

and ε′′ = ε
16( 1

2
(s0−1)(s0−2)+2l0s0

.From the independene of the r.v. S−s0, upon s0 and ε′′ , these hoies don'treate any viious irle, and we an laim :Proposition 10. For all ε > 0, there exists a B−raised Brownian motionsverifying on the event Aε2 :
∥∥Γ0

|[0,td] − ϕ|[0,td]

∥∥
∞

< ε(18)
∥∥∥Γ0

|[t0(BσnS ),td+1] − ϕ|[t0(B
σnS ),td+1]

∥∥∥
∞

<
ε

8
+
ε

4
(19)

∣∣∣Γ0
td+1

− ϕ(td+1)
∣∣∣ <

ε

4
.(20) 23



Proof We dedue immediately these inreases from Proposition 25 sine
S ≤ s0, hzJ0−S ≤ s0, K(ΓJS−1) ≤ s0.

�At this point, the last task to ahieve is to ontrol Γ0 between times t0(BJ0)and td+1.So we are going now to analyze more in details its behavior on (td, td+1).Let us denote γtd the �rst time after td at whih one of the Γσ, 0 ≤ σ ≤ s0+l0,vanishes on (td, td+1), and σ0 the orresponding level.Let us introdue the retangle Rectσ0 de�ned by the four straight lines withequations :
x = td , x = td+1 , y = inf τ 0

(RLσ0−s0)
(ϕ)|[td,td+1] and

y = sup τ 0
(RLσ0−s0)

(ϕ)|[td,td+1]

Rectσ0 ontains by de�nition the path of τ 0
(RLσ0−s0)

(ϕ)|[td,td+1] and, from thehoie of α0, its height is lower than ε

4
.Now onsider the path of Γ(w)σ

′

0|[td,td+1], it takes one of the two forms givenin the appendix.In the two ases by hypothesis, the total variation of ws0+rd on [td, td+1] islower than ε

2
. So, by lemma 5, and the de�nition of γtd , it is greater or equalto that of Γ(w)σ0, on [td, γtd]. Consequently the path wσ1 an move againfrom Rectσ0 but at most from ε

4
+ ε

2
on the same interval.And rapidly, it is bound to join ϕ in Rectσ0 by the building exursions, the�at part remaining �at.Therefore, the retangle RRσ0 with the same enter and vertial straight linesbordering it, and height that of Rectσ0 + 3ε

2
, ontains the path wσ1 |[td,td+1].During the following raises, the retangle Rectσ0 , aording to lemma 5,moves by isometry. We all Rσ its new positions, and likewise RRσ that of

RRσ0 .We an easily hek that, for all σ < σ1 orresponding to a vertial raise, thepath wσ|[td,td+1] is ontained in RRσ.Finally, for w ∈ Aε2 at level 0 we have the desired property :
∥∥Γ0

ν |[td,td+1] − ϕ|[td,td+1]

∥∥
∞
< εSo we have proved the following : 24



Proposition 11. For all ε > 0, there exists a disjointed sum of B−raisedBrownian motions suh that : on Aε3,
∥∥Γ0|[td,td+1] − ϕ|[td,td+1]

∥∥ < ε(21) ∣∣∣Γ0
td+1

− ϕ(td+1)
∣∣∣ <

ε

4
.(22)Thus we establish that Pd+1 is true. So, by indution, Pd is true for all

d ≤ d0, and we an laim :Proposition 12. For all ε > 0, there exists a disjointed sum of B−raisedBrownian motions suh that :
P

([
‖Γ0

|[0,T ] − ϕ|[0,T ]‖∞ < ε
]
∩

[
|ΓT − ϕ(T )| <

ε

4

])
> 1 − 2ε.Then we an apply Proposition 1 to G =

[
‖w|[0,T ] − ϕ|[0,T ]‖∞ > ε

].So,
P

(
∀n ≥ 0,

∥∥Bn
|[0,T ] − ϕ|[0,T ]

∥∥
∞
> ε

)
< 2εWe dedue immediately :

P

(
∀n ≥ 0,

∥∥Bn
|[0,T ] − ϕ|[0,T ]

∥∥
∞
> ε

)
= 0.But this property is true again when we replae 1 by a, for all a > 0 : Thismeans :Theorem 1.For almost every ω ∈ Ω, the orbit of B(ω) :

orb(B(ω)) = {Bn(ω); , n ∈ N}is dense in W , equipped with the topology of uniform onvergene on ompatsets.Let us notie that if, in plae of restrain ourselves with the open sets B,we have shown :
∀B losed set in W ,

P(B) > 0 ⇒ P(orb(w) ∩ B 6= ∅) = 1Then every set A T-invariant, measurable and not negligible, would ontainthe event [orb(w)∩B 6= ∅] and so, would be almost sure. Therefore, T would25



be ergodi.To end, we are going to laim in an equivalent way, following thus an inter-esting suggestion of J.P Thouvenot :
∀(ϕ, ε) ∈W |[0,1] × R

+
∗ ,the reverse martingale P(w ∈ B(ϕ, ε)|Wn

∞) admits a regular onditional ver-sion P(w ∈ B(ϕ, ε)|wn), and we have :Theorem 2.
P a.s. , lim

n→∞
P(w ∈ B(ϕ, ε)|wn) > 0Proof of theorem 3.Suppose the ontrary, and let :

A :=
[
w ∈W, lim

n→∞
P(w ∈ B(ϕ, ε)|wn) = 0

]As P(w ∈ B(ϕ, ε)|wn) = P(w ∈ B(ϕ, ε)|wn+1), beause T is measure-preserving. So we have :
w ∈ A⇔ Tw ∈ ASo A is T-invariant. Consequently :

E (1AP(w ∈ B(ϕ, ε)|wn)) = P (A ∩ [w ∈ B(ϕ, ε)]) = P (A ∩ [wn ∈ B(ϕ, ε)])But by hypothesis :
lim
n→∞

E (1AP(w ∈ B(ϕ, ε)|wn)) = 0Therefore,
P (A ∩ [orb(w) ∩ B(ϕ, ε) 6= ∅]) = 0whih, from theorem 1, entails that P(A) = 0

�Finally, let us remark that, if we ould show :
lim
n→∞

P
([
w ∈ B(ϕ, ε)

]
|wn

)
= P

([
w ∈ B(ϕ, ε)

])
,Than, not only T would be ergodi but exat whih means :

W∞
∞ := ∩

n∈N

Wn
∞ would be trivial.26
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