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Density of paths of iterated Lévy transforms ofBrownian motionMar
 Malri
June 24, 2009Abstra
t : The Lévy transform of a Brownian motion B is the Brownianmotion B′
t =

∫ t

0

sgn (Bs) dBs. Call T the 
orresponding transformation onthe Wiener spa
e W . We establish that a. s. the orbit of w(∈ W ) under Tis dense in W for the 
ompa
t uniform 
onvergen
e topology.
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1 Lévy raisings, B-raised Brownian motions andrelated tools.Let (Ω,F ,P) be the probability spa
e where all random elements are de�ned,and (W,W, π) the Wiener spa
e. Any measurable map from Ω to any mea-sure spa
e, de�ned P−a.e., will be 
alled a random variable. If X is a r.v.with values in some measurable spa
e A, the probability measure P◦X−1 on
A is 
alled the law of X, and denoted by L(X). For instan
e, a W−valuedr.v. with law π is a Brownian motion.The Lévy transform T : W −→ W is de�ned π−a.e. and preserves π. Givena Brownian motion B, we denote by Bn its n−Lévy iterate, that is, theBrownian motion Bn = T

n ◦B.From now on, T > 0, ϕ ∈ C([0, T ],R) and ε > 0 are �xed, and B a Brownianmotion. The goal is to prove that the event E = Eε = {∀n ≥ 0, ‖Bn−ϕ‖∞ >
ε} is negligible, where ‖f‖∞ = ‖f|[0,T ]‖∞. It su�
es in fa
t to show P(E) < ε,be
ause Eε1 ⊂ Eε2 when ε2 < ε1.The idea is to 
onstru
t from B another sto
hasti
 pro
ess Γ : Ω −→ W,whi
h depends on T , ϕ and ε, and has the following three properties :(i) The law of the pro
ess Γ, i.e., the probability F −→ P(Γ−1F ) on

(W,W), is absolutely 
ontinuous w.r.t. the law π of B.(ii) For some deterministi
 r ≥ 0, one has Γr = Br, that is, Tr◦Γ = T
r◦B.(iii) P (∀n ≥ 0‖Γn − ϕ‖∞ > ε) < ε.Property (i) implies that T ◦ Γ 
an be (almost everywhere) de�ned, in spiteof T not being everywhere de�ned. Indeed, if T

′ : W −→ W is anotherversion of T, that is if T
′ = T a.e., the set {T′ 6= T} is π−negligible; hen
e,by (i), Γ−1{T′ 6= T} is P−negligible, and T

′ ◦ Γ = T ◦ ΓP−a.s.. Similarly,one 
an de�ne the sto
hasti
 pro
esses Γn = T
n ◦Γ, whi
h verify Γ0 = Γ and

T ◦ Γn = Γn+1.Proposition 1. For �xed G ∈ W and ε > 0, let us suppose that there existsa sto
hasti
 pro
ess Γ : Ω −→ W satisfying properties (i), (ii) and(1) P (∀n ≥ 0,Γn ∈ G) < ε.Then :(2) P (∀n ≥ 0, Bn ∈ G) < ε.2



Proof Take G ∈ W and put F =
⋂
n≥0 T

−nG. Then, for r ≥ 0,(3) T
−rF =

⋂

n≥r

T
−nG ⊃

⋂

n≥0

T
−nG = F.But these two sets, F and T

−rF , in
luded in one another, have the same
π−probability by T−invarian
e; so equality F = T

−rF holds up to π−negligibility.As the laws of Γ and B are absolutely 
ontinuous w.r.t. π (this is where (i)is used), we have Γ−1(F ) = Γ−1(T−rF ) and B−1F = B−1(T−rF ) up to
P−negligible events. In other words, almost surely, we have {Γ ∈ F} =
{Γr ∈ F} and {B ∈ F} = {Br ∈ F}. Consequently, 
hoosing r given by (ii)and using Γr = Br, we have {Γ ∈ F} = {B ∈ F} a.s.. That is to say :(4) P (∀n ≥ 0,Γn ∈ G) = P (∀n ≥ 0, Bn ∈ G)

�Spe
ializing G = {w ∈ W ; ‖w − ϕ‖∞ > ε}, we obtain :
P(E) < εProposition 1 redu
es the proof of the approximation theorem to the 
on-stru
tion of a pro
ess Γ verifying (i), (ii), and (iii). We shall �rst 
hoose rin a suitable way, then work ba
kwards, in r steps, from Γr = Br to Γ = Γ0;ea
h step (
alled a Lévy raise) will 
onstru
t Γn−1 from its Lévy transform

Γn = T ◦ Γn−1. The sequen
e (Γr,Γr−1, ...,Γ0) is given a name :De�nition 1. Given r ∈ N, a sequen
e (Γr,Γr−1, ...,Γ0) is 
alled a sequen
eof B−raised Brownian motions of index r if ea
h Γn is a W−valued r.v. withlaw absolutely 
ontinuous w.r.t. π, if Γr = Br, and if we have Γn = T ◦Γn−1for 0 < n ≤ r.In fa
t, for 
onvenien
e of exposition, let us enlarge the �ltered probabilityspa
e Ω, we suppose it 
ontains the whole sequen
e (B′n)n∈N of the Brownianiterates of B′, B.M. independent from B.So we 
an assert :Corollary 1. To prove the approximation theorem, it su�
es to exhibit asequen
e (Γr,Γr−1, ...,Γ0) of B−raised Brownian motions of index r su
hthat(5) P (‖Γn − ϕ‖∞ < ε for some n ∈ {0, ..., r}) > 1 − ε.3



Proof Properties (i) and (ii) of Proposition 1 are granted by the de�nitionof a sequen
e of B−raised Brownian motions, and (iii) is implied by (1).
�A Lévy raise starts with a given W−valued r.v. Γn, and yields some r.v.

Γn−1 with Lévy transform Γn. Given a W−valued r.v. V , how 
an one �nda r.v. U su
h that V = T ◦ U? Knowing V is equivalent to knowing |U |, soto de�ne U one only needs to de
ide whi
h sign is assigned to ea
h ex
ursionof |U | away from zero. To make this rigorous, we need a formal de�nition ofthe ex
ursions of a path and of their signs.Notation 1. For w ∈ W and q > 0, denote by Z(w) = {s ≥ 0/w(s) = 0}the set of zeros of w, and de�ne gq(w) = sup ([0, q] ∩ Z(w)) ≥ 0 (last zerobefore q) and dq(w) = inf ([q,∞] ∩ Z(w)) 6= ∞ (�rst zero after q).Fix a dense sequen
e (qn) in [0,∞]. To ea
h w ∈ W, we 
an atta
h thesequen
e (ep) of disjoint, open intervals obtained from the sequen
e(6) ((gq1, dq1), (gq2, dq2), ..., (gqn, dqn), . . . )by deleting an interval whenever it already o

urs earlier in the sequen
e.The ep are the ex
ursion intervals of w.π−almost surely, there are in�nitelymany of them, and they are the 
onne
ted 
omponents of the open set
[0,∞]\Z(w). The interval ep(w) will be 
alled the p-th ex
ursion intervalof w; ep is an interval-valued measurable map, de�ned on (W,W) up to
π−negligibility.Sin
e w does not vanish on ep(w), its sign is 
onstant on this interval; thissign will be denoted by Sp(w), and the sequen
e (Sp) will be 
alled S. If Bis a Brownian motion, the sequen
e of r.v. S◦B = (Sp ◦B) is a 
oin-tossing ;this means, it is an i.i.d. sequen
e, with ea
h r.v. Sp◦B uniformly distributedon the set {−1,+1}. Moreover, Sp ◦B and |B| are independent. (See Chap.XII of [R,Y℄).Lemma 1. De�ne I : W −→ W by I(w)(s) = inf [0,s]w ; that is, |w| =
Tw − ITw for π−a.a. w.Proof Fix s ≥ 0. On [0, s], B1 = |B| − L ≥ −Ls = Lgs

= B1
gs
. So

B1
gs

= inf [0,s]B
1, and |Bs| = B1

s + Ls = B1
s − inf [0,s]B

1.4



�Notation 2. If f is a 
ontinuous fun
tion on [u, v], we 
all arg min[u,v] f ,resp. arg max[u,v] f , the largest t ∈ [u, v] su
h that f(t) = min[ u, v]f , resp.
f(t) = max[ u, v]f .
Lemma 2. Let A, A′ and A′′ be three measure spa
es; let µ1 and µ2 be twomeasures on A, f a measurable map from A to A′, and ν a measure on A′′.If µ1 ≪ µ2, then(i) µ1 ◦ f−1 ≪ µ2 ◦ f−1;(ii) µ1 ⊗ ν ≪ µ2 ⊗ ν.Proof (i) If F ⊂ A′ is measurable and if (µ2◦f−1)(F ) = 0, then µ2(f

−1F ) =
0, so µ1 ◦ f−1(F ) = µ1(f

−1F ) = 0.(ii) If a measurable subset F of A×A′′ is negligible for µ2⊗ν, then ν−almostall its se
tions Fy verify µ2(Fy) = 0. Hen
e they also verify µ1(Fy) = 0, and
onsequently (µ1 ⊗ ν)(F ) =
∫
µ1(Fy)ν(dy) = 0.

�Lemma 3. Let τ = (τp) be 
oin-tossing, τ ′ = (τ ′p) a r.v. with values in
{−1, 1}N su
h that τ ′p = τp for all but a.s. �nitely many p, and X a r.v.independent of τ .Then L(X, τ ′) ≪ L(X, τ).This lemma says that 
hanging �nitely many values of τ does not perturbtoo mu
h the joint law of X and τ . For instan
e, it implies that a pro
essobtained from a Brownian motion by 
hanging the signs of �nitely manyex
ursions has a law absolutely 
ontinuous w.r.t. π. This is 
alled 'prin
ipede retournement des ex
ursions' in [M℄.Proof If u = (u1, u2, ...) is an in�nite sequen
e, denote by up] the �nitesequen
e (u1, ..., up) and by u[p+1 the in�nite sequen
e (up+1, up+2, ...). Wehave (x, u) = fp(x, up], u[p+1) for some fun
tion fp.5



We have to show that if F is measurable set su
h that P[(X, τ) ∈ F ] = 0,then P[(X, τ ′) ∈ F ] = 0. So assume P[(X, τ) ∈ F ] = 0. For p ∈ N, sin
e τp]takes values in {−1, 1}p, we 
an write(7) ∑

σ∈{−1,1}p

P
[
fp(X, σ, τ[p+1) ∈ F and τp] = σ

]
= P [(X, τ) ∈ F ] = 0.Using the independen
e of τp] and (X, τ[p+1), this be
omes :(8) ∑

σ∈{−1,1}p

2−pP
[
fp(X, σ, τ[p+1) ∈ F

]
= 0;So for ea
h p ∈ N and ea
h σ ∈ {−1, 1}p, the event {fp(X, σ, τ[p+1 ∈ F}is negligible. Sin
e τ ′p(ω) = τp(ω) for all p larger than some N(ω), one has

P [(X, τ ′) ∈ F ] = lim
p→∞

P
[
(X, τ ′) ∈ F and τ ′[p+1 = τ[p+1

]

= lim
p→∞

∑

σ∈{−1,1}p

P
[
fp(X, σ, τ[p+1) ∈ F and τ ′p] = σ and τ ′[p+1 = τ[p+1

]
.This is null be
ause the event fp(X, σ, τ[p+1) ∈ F is negligible, as shownabove.

�Proposition 2. (me
hanism of a Lévy raise)Suppose given the following three r.v. :(i) V , a W−valued r.v., su
h that L(V ) ≪ π ;(ii) τ = (τp)p∈N, a 
oin-tossing independent of V ;(iii) τ ′ = (τ ′p)p∈N, a r.v. valued in {−1, 1}N, su
h that the random set
p ∈ N τ ′p(ω) 6= τp(ω) is a.s. �nite.Then there exists a unique w−valued r.v. U su
h that(9) |U | = V − I ◦ V and Sp ◦ U = τ ′p for each p.It is measurable w.r.t. the σ−�eld σ(V, τ ′) and we have L(U) ≪ π and

T◦U = V . For any n ≥ 0, we have U = Bn on the event {V = Bn+1 and τ ′ =
S ◦Bn}. 6



Proof We start from L(V ) ≪ π = L(B) = L(B1). Using Lemma 2 (i) wewrite L(V, V −I◦V ) ≪ L(B1, B1−I◦B1). By Lemma 2 (ii), the 
oin-tossing
τ (resp. S◦B) whi
h is independent of V (resp. B1) 
an be added on the left(resp. right), and we obtain L(V, V − I ◦ V, τ) ≪ L(B1, B1 − I ◦ B1,S ◦B);by Lemma 1, the right-hand side is L(B1, |B|,S ◦B). Lemma 3 allows us torepla
e τ by τ ′ in the left-hand side, so we �nally have(10) L(V, V − I ◦ V, τ) ≪ L(B1, |B|,S ◦B)Now, we 
allW+ the set of non-negative paths and f : W

+×{−1, 1}N −→
W the measurable fun
tion su
h that w = f (|w|,S(w)). We remark that
B = f (|B|,S ◦B) and we de�ne U = f(V − I ◦ V, τ ′); this is the unique r.v.
U su
h that |U | = V − I ◦ V and S ◦ U = τ ′. To verify that L(U) ≪ π and
T◦U = V , we apply Lemma 2 (i) to (2) with the fun
tions g(x, y, σ) = f(y, σ)and h(x, yσ) = (f(y, σ), x). With g we obtain L(U) ≪ L(B), the �rst 
laim.With h we obtain L(U, V ) ≪ L(B,B1); this implies T ◦ U = V sin
e thejoint law L(B), (B1) is 
arried by the graph of T.Last, on the event {V = Bn+1andτ ′ = s ◦Bn}, using the de�nition of U andLemma 1 we have(11) U = f(V −I◦V, τ ′) = f(Bn+1−I◦Bn+1,S◦Bn) = f(|Bn|,S◦Bn) = Bn.

�Proposition 3. Denote by Pf (N) the set of all �nite subsets of N. Fix rin N. For ea
h n ≤ r, let be given N n, a r.v. with values in Pf(N), and
Σn = (Σn

p , p ∈ N n), a r.v. taking its values in ⋃
M∈Pf (N){−1, 1}M, su
h that

Σn(ω) ∈ {−1, 1}N
n(ω).Starting with Γr = Br, we 
an de�ne a sequen
e (Γn)n≤r su
h that Γn−1 isthe W−valued r.v. U obtained in Proposition 2 from

V = Γn, τ = S ◦B′n−1, τ ′p =

{
Σn
p (ω) if p ∈ N n(ω)

τp(ω) elseThen the sequen
e (Γn)n≤r is a B-raised Brownian motions of index r.Proof First, we verify that the Γn 
an be 
onstru
ted stepwise. Assuming
Γn has already been 
onstru
ted, has a law absolutely 
ontinuous w.r.t. π,7



Proposition 2 applies to V = Γn−1 and τ = S ◦B′n−1 (they are independent.The r.v. Γn−1 = U yielded by Proposition 2 also satis�es L(Γn−1) ≪ π, andis measurable in σ(F , τ ′).The rest of the proof will exhibit a sequen
e (Γn)n≥r of B-raised motionssu
h that ΓJ−n = Cn. Starting with Γr = Br, the other Γm will be indu
tivelyde�ned : if m < r, suppose Γm+1 has been de�ned, is σ(Bm+1)−measurable,and veri�es L(Γm+1 ≪ π; de�ne Γm as the r.v. U obtained in Proposition 2from(12)
V = Γm+1, τ = S ◦Bm, τ ′p =

{
ΣJ−m−1(ω) if p ∈ N J−m−1(ω)
τp(ω) elseThis is possible sin
e V and τ are independent and N J−m−1 is a.s. �nte;the result Γm veri�es L(Γn) ≪ π and T ◦ Γm = Γm+1. To show that Γmis σ(Bm)−measurable, it su�
es to show that so is τ ′; this may be doneseparately on ea
h of the events {J ≤ m}, {J = m+1}, ..., {J = r}, be
ausethey form a σ(Bm)−partition of Ω. On {J ≤ m}, we have τ ′ = S ◦Bm; thisis σ(Bm)−measurable. To see what happens for other values of j, introdu
e

ϕn and ψn su
h that N n = ϕn(BJ−n) and Σn = ψn(BJ−n) for 0 ≤ n < k.For j ∈ {m+ 1, ..., m+ k}, we have on {J = j}(13) τ ′ = ψn(BJ−n)1ϕn(BJ−n) + τ
(
1Ω − 1ψn(BJ−n)

)This is σ(Bm)−measurable too. We have established that Γr, ...,Γ0 existand form a sequen
e of B−raised motions; it remains to see that ΓJ−n = Cn.This is done in two steps. Firstly, by indu
tion on m, we have Γm = Bmon {J ≤ m} : this holds for m = r, and if it holds for m + 1, it holds for
m too, owing to the last statement in Proposition 1. Consequently, Γm =
Bmon{J = m}, that is ΓJ = BJ = C0. Se
ondly, to pro
eed by indu
tion on
n, we will assume that ΓJ−n = Cn for some n ≥ 0, and show ΓJ−n−1 = Cn+1.It su�
es to show this equality on the event {J = j}; on this event, usingthe de�nition of Γm with m = j−n−1 and the inequality m = j−n−1 < j,the r.v. ΓJ−n−1 satis�es both T(Γj−n−1) = Γj−n = Cn = T(Cn+1) and(14) S ◦ Γj−n−1 =

{
Σn+1 on N n

S ◦Bj−n−1 else = S ◦ Cn+1.These two equalities entail ΓJ−n−1 = Cn+1 a.s. on {J = j}.
�8



Lemma 4. Let (j, k) ∈ N
2 and Q and R be two r.v. su
h that k ≤ j− 1 and

0 ≤ Q ≤ R. On the event {∀n ∈ {k, ..., j − 1}Z ◦Bn ∩ (Q,R) = ∅} that the�rst iterates of B do not vanish between Q and R, there exists a (random)isometry i : R −→ R su
h that Bj = i ◦Bk on the interval (Q,R).Proof By indu
tion, it su�
es to show that if Bj−1 does not vanish on theinterval (Q,R), then Bj = i ◦ Bj−1 on (Q,R), for some random isometry i.This is just Lemma 5 with j = k + 1 and Bj−1 instead of Bk, so we maysuppose that j = 1.On the event {Q = R}, the result is trivial. On {Q < R}∩{Z ◦B∩ (Q,R) =
∅}, the lo
al time L is 
onstant on [Q,R] be
ause its support is Z ◦ B, andthe sign of B is 
onstant on (Q,R); so B1 = |B|−L = i(B) on (Q,R), where
i is the random isometry x 7→ xsgn

(
B(Q+R)/2

)
− L(Q+R)/2.

�Notation 3. For w ∈ W, the p-th ex
ursion interval ep(w) was de�nedearlier; the number hp(w) = max
s∈ep(w)

|w(s)| will be 
alled the height of the
orresponding ex
ursion.Lemma 5. Let X be a pro
ess whose law is absolutely 
ontinuous w.r.t.Wiener measure. Almost surely,
• lim

p→∞
hp(X)1{ep(X)⊂[0,t]} = 0;

•
∑
p∈N

hp(X)1{ep(X)⊂[0,t]} = ∞;
• the set {

∑
p∈M

hp(X)1{ep(X)⊂[0,t]},M ∈ Pf (N)

}
is dense in [0,∞);

• between any two di�erent ex
ursions of X, there exists a third one, withheight smaller than any given random variable η > 0.Proof By a 
hange of probability, we may suppose that X is a Brownianmotion. It is known (see Exer
ise (VI.1.19) of [RY℄) that when η → 0+,the number ∑
p

1{ep(X)⊂[0,t]}1{hp(X)>η} of down
rossings of the interval [0, η]by |X| before t is a.s. equivalent to η−1Lt, where Lt is the lo
al time of X9



at 0. This easily implies (i) and (ii), wherefrom (iii) follows.Last, between any two ex
ursions of X there are in�nitely many other ones(be
auseX has no isolated zeroes) and, by (i), only �nitely many with heightsabove η, when
e (iv).
�Notation 4. An ex
ursion whose interval is in
luded in [0, t] will be 
alleda t−ex
ursion.It remains to des
ribe the N n and Σn, i.e., to 
hoose the signs of �nitelymany ex
ursions when Lévy-raising from Γn to Γn−1. This will be done soon;we �rst need some notation and a lemma.Notation 5. If e′ and e′′ are two ex
ursions of a path (or of a pro
ess),

e′ ≺ e′′ means that e′ is anterior to e′′ : s′ < s′′ for all s′ ∈ e′ and s′′ ∈ e′′.For an ex
ursion e of w, we denote by iwe := inf{ws; s ∈ [0, de]}.De�nition 2. An ex
ursion e of a path w ∈ W is said to be tall if it ispositive (this implies that the pro
ess Iw remains 
onstant during e); and iffor any ex
ursion e′ of w su
h that iwe′ = iwe and higher than e, then e′ = e.Formally, e is tall if it is positive and if(15) max (w(s); s ≥ 0, (Iw)(s) = iwe) = max (w(s); s ∈ e) .

Lemma 6. Let η be a positive number, m ≥ 1 be an integer and w ∈ Wa path. Let e1, . . . , em+1 be m + 1 di�erent t−ex
ursions of w, numberedin 
hronologi
al order : e1 ≺ · · · ≺ em+1; 
all h1, . . . , hm+1 their respe
tiveheights. Let f1, . . . , fp denote all ex
ursions of w whi
h are anterior to em+1and whose heights are ≥ min(η, h1, . . . , hm+1), numbered in reverse 
hrono-logi
al order : let g1, . . . , gp be p ex
ursions of w verifying fp ≺ gp ≺ · · · ≺
f1 ≺ g1 ≺ em+1.Suppose that

• the ex
ursion em+1 is negative, and all t−ex
ursions higher than em+1are positive;
• the ex
ursions f1, . . . , fp are positive;10



• the ex
ursions g1, . . . , gp are negative; and every negative ex
ursion an-terior to gp is smaller than gq.We 
all the gi's the plug-ex
ursions, and the ej's the prote
ted ex
ursions.Then e1, . . . , em are tall, and |iwe1| < |iwe2| < · · · < |iwem| < η.Proof Firstly, |iwf1| < η be
ause f1 ≺ em+1 and any ex
ursion anterior to
em+1 and having height ≥ η is one of the fq, hen
e positive.Se
ondly, for 1 ≤ q ≤ p, the ex
ursion gq is negative and higher than anynegative ex
ursion, anterior to it; so Iw is not 
onstant during gq, and 
on-sequently we have(16) |iwfp| < |iwfp−1| < · · · < |iwf1| < height of g1,where ea
h < sign is due to Iw varying on the 
orresponding gq.thirdly, 
ombining (20) with |iwf1| < η (�rst step), and noti
ing that, byde�nition of the fq, (e1, . . . , em) is a sub-sequen
e of (fp, . . . , f1), we obtain(17) |iwe1| < · · · < |iwem| < η.Last, it remains to establish that el is tall for 1 ≤ l ≤ m. Let e′ denote apositive ex
ursion of w with height h′ ≥ hl and su
h that iwe′ = iwel. From(13), we have |iwe′| = |iwel| < height of g1; so e′ is anterior to g1 and afortiori anterior to em+1. As h′ ≥ hl, e′ must be one of the fq (see theirde�nition). But el is also one of the fq and, due to (13), all iwfq are di�erent;so e′ = el. This means that el is tall.

�In the proof of Lemma 6, the negative ex
ursions gq are used to separate the
fq from ea
h other. Yet, in the end, we are not interested in the behavior ofall fq but only in the el. It is possible to repla
e this lemma with a variant,where 2m ex
ursions (instead of p ones, the gq) are made negative, ea
h elbeing �anked by two of them.Lemma 7. Let X be a pro
ess with law absolutely 
ontinuous w.r.t. π, and
E a tall ex
ursion of T ◦X with height H. There exists an ex
ursion of X,with interval {s; (I ◦ T ◦X)(s) = iT◦XE}, and with height H + |iT◦XE|.Proof First, re
all a.s., Brownian motion B does not rea
h its 
urrent min-imum I ◦ B in the interior of a time-interval where I ◦ B is 
onstant. (This11



is a 
onsequen
e of (I ◦ B)(s) < 0 for s > 0 and of the Markov property atthe �rst time that B = I ◦B after some rational).Put Y = T ◦X and 
all F the interval {s ≥ 0; (I ◦ Y )(s) = iXE}; Y rea
hesits 
urrent minimum I ◦ Y at both endpoints of F but not in the interior of
F (see above). Sin
e |X| = Y − I ◦ Y by Lemma 1, we have that F is thesupport of some ex
ursion of X. The height of that ex
ursion is

max(|Xs|; s ≥ 0, and (I ◦ Y )(s) = iYE)

= max (Ys − (I ◦ Y )(s); s ≥ 0, (I ◦ Y )(s) = iYE)

= max (Ys; s ≥ 0, (I ◦ Y )(s) = iYE) − iYE

= max (Ys; s ∈ E) − iYE because E is tall

= H + |iYE|.

�Lemma 8. Let (0,
−→
i ,

−→
j ) be an orthonormal basis of the plan in whi
h werepresent paths. Let τa+b be the verti
al translation of ve
tor (b − a)

−→
j and

τa−b the re�e
tion along the horizontal axis of equation : y =
a+ b

2
.Consider (t, k, p) ∈ R

+
∗ × N

2 su
h that wkt = a and wk+pt = b and denote γtthe �rst time posterior to t when at least one of the iterated Lévy transforms
ws, k ≤ s ≤ k + p− 1, vanishes. Then we have :

wk+p|[t,γt]
=





τa+b owk|[t,γt]
if k+p−1

Π
i=k

wit > 0

τa−b ow−k|[t,γt]
elseWe will denote τkk+p(w) the plan transformation, whi
h transforms wk|[t,γt]

in
wk+p|[t,γt]

.Proof It is an immediate 
onsequen
e of Tanaka's Lemma, when p = 1.In general 
ase, we break up the displa
ement τ whi
h transforms wk|[t,γt]in wk+p|[t,γt]
under the form τ = τp ◦ τp−1 ◦ ... ◦ τ1 where τi transforms wk+i−1|[t,γt]in wk+i|[t,γt]
. From the pre
eding remark, ea
h τi is a verti
al translation or are�e
tion along an horizontal axis, a

ording to the sign of wk+i−1

t . Then wededu
e the 
laim. 12



�To 
onstru
t the desired pro
ess Γ, we will pro
eed by indu
tion on dis-
retized time, and so we will perform, from the level r, two types of raisings.In a �rst type, the so-
alled horizontal raisings, at a level when the pathvanishes on[td, td+1], we prote
t the material furnished by the indu
tion hy-pothesis on [0, td], namely Γ̃. And we prepare the path on [td, td+1] to giveit the form it ought to have at this level for being near to ϕ on the intervalwhen Γ is near to ϕ on [0, td].So we make positive the signi�
ative ex
ursions of the path 
alled here theprote
ted ex
ursions, and insert between them small ex
ursions 
alled theplug-ex
ursions (see lemma 6). And on [td, td+1], we prepare ex
ursions ,the building ones, whi
h we prote
t, and they will a
t, one by one, duringa su

ession of horizontal raisings, to give the path the previewed form (seeLemma 13 and Proposition 14), at the 
ondition the path, after that, willnot vanished on [td, td+1].In a se
ond type, the so 
alled verti
al raisings, we give anew to the prote
tedex
ursions the signs they have before the horizontal raisings. Then we getup while the path doesn't vanish on [td, td+1]. In fa
t we must distinguishthe last raising of a su

ession of horizontal raisings, the so 
alled terminalhorizontal raising, when we leave to prote
t the prote
ted ex
ursions andgive them the good signs.It is important to know the real level of the path, ie. the level without thehorizontal raisings. Pre
isely, we de�ne the r.v. indu
tively :
RLr(w) = r

and for all integer n ≤ r

RLn−1(w) =

{
RLn(w) if the step n− 1 → n 
orresponds to an horizontal raising
RLn(w) − 1 if it 
orresponds to a verti
al raising.For our needs, we will 
all map-ex
ursion, or simply ex
ursion, ea
h map

e : R
+ → R whose support is a not empty segment and whi
h doesn't vanishat any point of the interior of the support. In parti
ular, for w ∈ W and

t > 0, we will 
all ex
ursion straddling t, and denote it by : et(w), the mapso de�ned :
et(w) : R

+ → R, ∀u ∈ R
+, et(w)(u) =

{
0 if u ∈ [0, gt(w)] ∪ [dt(w),+∞[
wu elseWe will introdu
e the map det(w) : R

+ → R de�ned by13



∀u ∈ R
+, det(w)(u) =





0 if u ∈ [0, t] ∪ [Rt(w),+∞[where Rt(w) = sup{u > t, ∀s ∈]t, u], ws 6= wt}
wu − wt elseand we 
all it a di�erential ex
ursion of w whenever its support is not empty,ie.

∃ε > 0, ∀u ∈ (t, t+ ε), wu 6= wεWe denote them et and det when there is no ambiguity, and est and dest inthe 
ase of ex
ursions of ws.Lemma 9. Let w ∈W and e a negative m−ex
ursion of Tw, lower than allpre
eding it. Let γ be its beginning and δ its end. We set :
γ1 = arg min Tw

[0,γ]

, γ2 = inf{t ∈ supp(e); e(t) = Twγ1}, γ3 = arg min e
[γ,δ]Then :






deγ1 
oin
ides with an ex
ursion of |w|, and its support is [γ1, γ2]
deγ3 
oin
ides with an ex
ursion of |w|, whi
h begins at γ3 and whosesupport 
ontains [γ3, δ]Furthermore, ∀u ∈ [γ2, γ3], deu 
oin
ides with an ex
ursion of |w|, if, andonly if : {

deu is a positive ex
ursion
e(u) = inf{e(t), t ∈ [γ, u]}It is the 
ase in parti
ular when deu is the �rst positive ex
ursion of the form

dev, v ∈ [γ2, γ3] to over�ow a given value.ProofFrom Tanaka's formula :
|wt| = Twt + sup{−Twu, u ∈ [0, t]}Therefore,

|wγ1 | = Twγ1 −Twγ1 = 0,while, for all t > γ1, su�
iently small :
Twt > Twγ1.So, deγ1 is a positive ex
ursion of |w| whi
h ends at γ2.In the same way, Twt > Twγ3, for all t ∈ [γ3, δ], therefore deγ3 is an ex
ursion14



of |w| beginning at γ3 whose support 
ontains [γ3, δ].Let e′ be an ex
ursion of w with support in
luded in [γ2, γ3]. Its beginning
u, and its end v verify :

u = arg
[0,v[

min Tw and v = arg
[0,v]

min Tw.So we dedu
e : deu = |e′|.Re
ipro
ally, let u ∈ [γ2, γ3] su
h that deu is a positive ex
ursion and
u = arg

[0,u]

min Tw.Then, u = arg
[0,v[

min Tw, where v is the end of deu, be
ause deu is positive.Thus, wu = wv = 0, and for all t ∈]u, v[, wt 6= 0.Consequently, deu is an ex
ursion of |w|.Let h > 0 be su
h that there exists u ∈ [γ2, γ3] verifying deu is the �rstpositive ex
ursion of the form dev, v ∈ [γ2, γ3], whose height over�ows h.Then, for all v < u, the support of dev 
an't 
ontain this of deu withoutdenying the minimality of u.
�As an immediate 
onsequen
e, we observe :Corollary 2. The ex
ursions of w 
oin
ide with the positive di�erential ex-
ursions of Tw, beginning at arg min[0,t](Tw) for all t ∈ [0,+∞[.

15



2 Density of orbitsIn this paragraph, we want the raised path to approa
h the map ϕ uniformlyon [0, T ]. Pre
isely :Whatever ε stri
tly positive, and ϕ ∈W|[0,T ]
, there exists Γ a B−raised Brow-nian motion su
h that :

P

(
‖Γ|[0,T ]

− ϕ|[0,T ]
‖∞ < ε

)
> 1 − εWe 
onsider a modulus of uniform 
ontinuity α0 asso
iated to (ε

4
, ϕ, [0, T ]

)and a real number α1 su
h that P (A0 ε) > 1 −
ε

2
where

A0 ε =
[
sup{|Bt − Bu|, (t, u) ∈ [0, T ]2 and |t− u| < α1} <

ε

2

]
,then we set α := min(α0, α1), d0 :=

[
T
α

]
+1, and for all d ∈ N, td = (dα)∧T .We set again, for all integer d ∈ [1, ..., d0],

Adε :=
[
sup{|Bt − Bu|, (t, u) ∈ [td, T ]2, |t− u| < α} <

ε

2

]
.Our aim is to show, by indu
tion on d, the following property Pd : " For all

ε > 0, there exists an integer rd and Γ a B−raised Brownian motion of index
rd su
h that :
P

([
‖Γ|[0,td]

− ϕ|[0,td]
‖∞ < ε

]
∩ [|Γtd − ϕ(td)| < ε1] ∩ A

d
ε

)
> 1−ε

(
1 +

d

d0

)
”Noti
e that P0 immediately yields from the 
hoi
e of ϕ whi
h vanishes at

0. We suppose now Pd true. We are going to apply this hypothesis to theBrownian motion Bs0, for an integer s0 whi
h, as the real number ε1, will belater spe
i�ed.As Adε ⊂ [
sup{|Bt − Bu|, (t, u) ∈ [td, td+1]

2} < ε
2

]
∩Ad+1

ε , and from the inde-penden
e of the in
rements of Brownian motion, we 
an dedu
e the existen
eof a disjointed sum Γ̃ of Bs0−raised Brownian motions of index rd su
h that:
P(Aε0) > 1 − ε

(
1 +

d

d0

)
,where

Aε0 :=
[
‖Γ̃|[0,td]

− ϕ|[0,td]
‖∞ <

ε

2

]
∩

[
|Γ̃td − ϕ(td)| < ε1

]
...

... ∩
[
sup{|Bs0+rd

t −Bs0+rd
u |, (t, u) ∈ [td, td+1]

2} <
ε

2

]
∩Ad+1

ε16



(It su�
es to apply Pd with ε
2
instead of ε).We will denote : ∀i ∈ N, Γ̃i = w̃i. By de�nition, ∀i > rd, w̃

i = ws0+i.From the theorem of density of zeroes ([M℄), there exists a.s. an integer ℓsu
h that w̃ℓ vanishes at least one time on [td, td+1].Let L(w) be the smallest of these integers ℓ. L is a r.v. almost surely �nite.Then there exists an integer ℓ0 whi
h we will 
hoose > rd su
h that :
P(Aε1) > 1 − ε

(
1 +

d

d0

)
−

ε

2d0
où Aε1 := Aε0 ∩ [L ≤ ℓ0] .We set : r = s0 + max(rd, l0).De�nition 3. The prote
ting tree of Γ̃.Let N be a set of ex
ursions of w|[0,dt(w)], w ∈ W, and ε > 0. We denote by

T
t,ε
w (N ) the set of ex
ursions of Tw|[0,dt(Tw)] so de�ned :

e′ ∈ T
t,ε
w (N ) i� e′ is an ex
ursion of Tw|[0,dt(Tw)] whi
h appears in the dif-ferential ex
ursions dE of Tw 
orresponding to an ex
ursion E ∈ N , and

h(e′) > ε
4
(we 
all them ex
ursions of the �rst type) or the support of e′
ontains arg max of the di�erential ex
ursion dE, we 
all them ex
ursionsof the se
ond type, and all the ex
ursions e′′ of Tw of height belonging to

[h(e′), h(e
′

−)], e′− being the pre
eding ex
ursion of Tw of height > ε
4
, with

e
′

− < e′′ < e′, we 
all these ex
ursions e′′ the third type ex
ursions.
Lemma 10. When N is a �nite set, so is T

t,ε
w (N ).Proof We remark �rstly that the number of distin
t di�erential ex
ur-sions of Tw 
orresponding to the elements ofN is �nite, equal to the 
ardinalof N . The number of ex
ursions of the �rst type is �nite be
ause their heightis greater than ε

4
. The number of ex
ursions of the se
ond type is �nite follow-ing the �rst remark. And for ea
h ex
ursion of the se
ond type, the numberof ex
ursions of the third type is �nite too.

�Then we 
all prote
ting tree of Γ̃, the tree 
onstituted by :
• at the 0-generation : the elements of Ñ 0, the set of dt(w̃0)-ex
ursionsof height > ε.
• and, for all n ∈ N, if we denote by Ñ n, the set of prote
ted ex
ursionsof w̃n whose elements, given in 
hronologi
al order, 
onstitute the nth17



generation of the tree, then at the (n + 1)th generation, the elementsof Ñ n+1 := T
td,ε/4

n

ewn

(
Ñ n

). As we have ordered ea
h Ñ n, whi
h isnow a �nite sequen
e of ex
ursions of w̃n, we 
an 
onsider Σ̃n the�nite sequen
e of their signs. And our next task is to de�nite N ′nthe sequen
e of prote
ted td-ex
ursions of Γn and Σ′n the asso
iatedsequen
e of their signs. We have de�ned the Ñ n's by getting down inthe iterations. We will de�ne the N ′n's by getting up from level r. Weput N ′r(ω) = Ñ r−s0(ω), and Σ′r(ω) = Σ̃r−s0(ω).If Γn+1 −→ Γn is an horizontal raising, then N 0,n+1 is 
onstituted bythe family of the ex
ursions of Γn whose absolute values have the same
arg max as the ex
ursions of N 0,n+2. Then we pro
eed as in lemma 6,
onsidering the elements of N 0,n+1 as the ei, 1 ≤ i ≤ m. We have nowto de�ne the r.v. η : let ηi be the minimal distan
e between the heightsof distin
t prote
ted ex
ursions of w̃i for i ∈ {0, . . . , r − s0} and ηm =
r−s0∧
i=0

ηi, ε̃i = ε ∧ ηm
1

4i+1 , for i ∈ {0, . . . , r − s0}, and εi = ε̃RL(i)−s0
1

4i′−i
,where i′ = sup{j > i/RL(j) = RL(i)}. Then we 
hoose for η the r.v.

εRL(n)−s0 . And we (
an) de�ne the set N ′n as the set of elements the
fj 's and the gj's. And Σ′n give sign −1 to the gj's and +1 to the fj 'sif Γn+1 −→ Γn is not a terminal horizontal raising.In the 
ase of a terminal horizontal raising, we put simply N ′n+1 = N 0,n+1.If Γn+1 −→ Γn is a verti
al raising, N n+1 is 
onstituted by the family of theex
ursions of Γn 
orresponding to the positive di�erential ex
ursions of Γn+1whose support en
ounters at least the support of an element of N 0,n+2 andbeginning at an arg min of Γn+1. In these two 
ases, to spe
ify Σ′n+1, weneed the following lemma. Let us 
all argext of an ex
ursion the arg max(resp. arg min) of this ex
ursion if it is positive (resp. negative).Lemma 11. If for all i from level r to n (with r ≥ n) the elements of N 0,iand ÑRL(i)−s0 have the same argext, whi
h implies |N 0,i| =

∣∣∣ÑRL(i)−s0

∣∣∣, andthe same signs, then the elements of N 0,n−1 and ÑRL(n−1)−s0 have the sameargext, hen
e these sets have the same 
ardinality, and the same hierar
hy,ie. the order of the heights between the respe
tive ex
ursions of ea
h set isthe same. So we put Σ0,n−1 = Σ̃RL(n−1)−s0 .Proof The distin
tion between Γ and Γ̃ is due to the introdu
tion ofhorizontal raises. If Γn+1 −→ Γn is an horizontal raising, ea
h prote
tedex
ursion gains in height the height of a plug ex
ursion, and its supportenlarges. So, during su
h a raising, the "error" between Γ and Γ̃ in
reased ofthe height of a plug ex
ursion. For the time, in this lemma, the "error" means18



the maximal distan
e between the heights of 
orresponding ex
ursions. If,on the other side, Γn+1 −→ Γn is a verti
al raising, a prote
ted ex
ursionof Γn is 
onstituted by at most two prote
ted ex
ursions of Γn+1. So duringsu
h a raise, the error between Γ and Γ̃ doubles. And it is easy, by meansof our 
hoi
e of the heights of the plug ex
ursions, to show that this error isalways majorized by ε ∧ η. Hen
e the lemma follows immediately.
�Now we 
an 
onsider (see Proposition 2) that Γ|[0,td] is 
orre
tly de�ned: for on
e RLw(n) = s0, we end the raises, if ne
essary, by horizontal ones: prote
ting all the material a
quainted. But is Γ near from Γ̃ ? To answerthis question, we have to 
onsider the error between Γ and Γ̃ now, as being

‖Γ|[0,td] − Γ̃|[0,td]‖∞.We have just built Γ|[0,td]. We have now to 
ontrol : ‖ΓN|[0,td] − Γ̃0
|[0,td]‖∞,where N = sup {n ∈ {0, . . . , r}/RL(n) − s0 = 0} (with N = −∞ if the setis empty). N is a r.v.Lemma 12. ‖ΓN|[0,td] − Γ̃0

|[0,td]‖∞ ≤ 2ε, on the event [N ≥ 0].Proof Let us �rst remark, from the pre
eding lemma, that, on the event
[N ≥ 0], we have prote
ted ex
ursions with the same argext, the same signs,and heights near at ε. The supports of the prote
ted ex
ursions of ΓN 
on-taining the supports of the 
orresponding prote
ted ex
ursions of Γ̃0. Fur-thermore, on the di�eren
e of their supports, ΓN and Γ̃0 di�er from at most
2ε, and likely outside the union of their supports.

�The purpose of the following lemma is to prepare, at level s, when theiterated Brownian motion vanishes on ]td, td+1[, the ex
ursions whi
h will al-low the 
orre
tly raised path to approa
h ϕ at level 0 on ]td, td+1[.Lemma 13. Full planing.Let w belong to W , and t, t′, ε′ ∈ R
+
∗ be su
h that t < t′. We suppose thereis no interval in whi
h w is 
onstant, and w vanishes in (t, t′).The following r.v. are fun
tionals of |w| :

• t0(w) = ginf{s>dt;|ws|≥ε′} ∧ t
′, with inf ∅ = +∞.

• ∀n ∈ N, while tn < t′, we set :
tn+1 :=






inf{u ∈ [tn; arg max |detn|[, h(deu) > ε′ and sgn(deu) = −sgn(detn)}if this set is not empty,else :
arg max |detn| ∧ t

′ 19



The sequen
e (tn)n∈N is stri
tly in
reasing and �nite. Let 1 + K(w) be its
ardinality.Proof By 
onstru
tion, the sequen
e (tn) is stri
tly in
reasing and lowerthan t′. Suppose the number of its terms is in�nite. In this 
ase, it wouldadmit a limit t∗ ≤ t′, and the os
illation of w at t∗ would be in�nite, so
ontradi
ting the 
ontinuity of w. Then (tn)n is �nite.The measurability and the �niteness of K are immediate.
�Let us remark that this Lemma gives us the possibility of planing the pathafter dt in K raises.For, during the �rst raise, we put negative the ex
ursion beginning at t0(w)and positive all the other ex
ursions in (t0(w), t′) of height greater than ε′.Then during the se
ond raise, we put negative the ex
ursion whose support
ontains this of det1 , and so on. At the end of su
h K raises, the path on

[t0, t
′] has an absolute value whi
h doesn't ex
eed ε′ + Kε

′′, and ε′ on theex
ursion straddling t′.So we are going now to analyze its behavior on (td, td+1). Let us denote
γtd the �rst time after td at whi
h one of the Γσ, 0 ≤ σ ≤ s0 + l0, vanisheson (td, td+1), and σ0 the 
orresponding level.Proposition 4. There exists a σ(Γσ

′

0+1)−measurable, N−valued r.v., K ′

σ0su
h that there exists K ′

σ0
− 1 r.v. P1, . . . , PK ′

σ0
−1 themselves with values in

N and σ(Γσ0+1)−measurable, su
h that :(i) the K ′

σ0
− 1 ex
ursion intervals eP1(Γ

σ0), . . . , eP
K

′

σ0
−1

(Γσ0) are disjointand in
luded in (dtd(Γ
σ0), t0(Γ

σ0))(ii) the heights H1, . . . , HK ′−1 of these K ′ − 1 ex
ursions of Γσ0 satisfy on
[σ0 ≥ 0] :
∣∣∣τ 0
RLσ0−s0)

(w̃)(ϕ(td+1))
∣∣∣−ε′ < H1+· · ·+HK ′

σ0
−1 <

∣∣∣τ 0
RLσ0−s0)

(w̃)(ϕ(td+1))
∣∣∣+ε′.Proof Noti
ing that the pro
ess :

X =
∑

n∈N

Γn1[σ0=n]is absolutely 
ontinuous w.r.t. π, the proposition is an immediate 
onse-quen
e of lemma 5. 20



�Often in the sequel, we will denote K ′
σ0
simply by K', if there is no ambiguity.Set :

σ′
0 = σ0 −

(
K(Γσ−1) +K ′

σ0

)
.Proposition 5. For all (n, ω) su
h that σ0(ω) ≤ n < σ0(ω) − Kσ0(ω) −

K ′
σ0

(ω), N n(ω) and Σn(ω) 
an be 
hosen so that :(i) 0 ≤ Γσ0−K
td+1

< ε′ and ‖Γ̃RL(σ0−1)−s0
|[0,td] − Γσ0

|[0,td]‖∞ < Kε′′.(ii) −(I ◦ Γσ0)(td+1) = HK ′

σ0
−1(iii) Γσ0 has K ′ − 2 tall ex
ursions in
luded in (td, td+1) : E1 < E2 <

· · · < EK ′−2 with respe
tive heights H1, . . . , HK ′−2 verifying |iΓσ0E1| <
|iΓσ0E2| < · · · < |iΓσ0EK ′−2|.(iv) Hn+1 + · · · +HK ′

σ0
−1 ≤ Γσ0−K−n

td+1
< Hn+1 + · · ·+HK ′

σ0
+ ε′ + nK ′ε′′.(v) HK ′

σ0
−n < −(I ◦ Γσ0−K−n)(td+1) < HK ′

σ0
−n +K ′ε′′.(vi) Γσ0−Kσ0−n has K ′

σ0
− n − 2 tall ex
ursions in
luded in (td, td+1)E

n
1 <

· · · < En
K ′

σ0
−n−2 su
h that : |iΓσ0−Kσ0−nE1| < · · · <

∣∣∣∣iΓσ0−Kσ0−nEK′
σ0

−n−2

∣∣∣∣ <
ε′′, and whose heights Hn

1 , . . . , H
n
K ′

J0
−n−2 satisfy :

Hl ≤ Hn
l < Hl + nε′′ for n+ 1 ≤ l < K ′

σ0
− 1.

In our pursuit of the pro
edure, we 
an state :Proposition 6. It is possible to 
hoose N n(ω) and Σn(ω), for all (n, ω) su
hthat n = σ′
0, in order to have :

∣∣∣Γσ
′

0
td+1

− τ 0
RL(σ′0)−s0(ϕ(td+1))

∣∣∣ < ε′ +
1

2
(K ′

σ0
− 1)(K ′

σ0
− 2)ε′′Proof We noti
e that the building ex
ursions whi
h appear in Proposition 5,the eP0(Γ

σ0+Kσ0 )'s, are su

essively prote
ted. On
e prote
ted, ea
h of themre
eives a small ex
ursion of height lower than ε′′ at ea
h raise. So we dedu
ethe result. 21



�Proposition 7. It is possible to de�ne N n(ω), Σn(ω) and RLn(ω) indu
-tively on the event [n ≥ σ′
0] if Γn(ω) doesn't vanish in (td, td+1) and RLn(ω) >

s0, in su
h a way that :(i) ∥∥∥Γn|[t0(Bσ0 ),td+1] − Γntd+1

∥∥∥
∞
< ε′ +K(Bσ0)ε′′.(ii) ∣∣∣Γntd+1

− τ 0
RLn−s0(ϕ(td+1))

∣∣∣ < ε′ + 1
2
(K ′

σ0
− 1)(K ′

σ0
− 2)ε

′′

+ 2n−(σ0−σ′0)ε′′.Proof We �rst re
all that when we know Γn+1(ω), we know also wether Γnvanishes in (td, td+1). If it isn't the 
ase, we put :
RLn(ω) = RLn+1(ω) − 1,and de�ne N n(ω) and Σn(ω) as we do in previous propositions; but this timethe 
ounting of "errors" is radi
ally di�erent. It 
an happen between 0 and

td that an ex
ursion whi
h was prote
ted before be
ome negative and, in thefollowing raise, is going to add to another prote
ted ex
ursion. So, at ea
hverti
al raise, the "errors" are double of those of the pre
eding raise.In the same manner the ex
ursion straddling td+1 re
eives an ex
ursion withbeginning in [0, td]. So, to the errors soon a
quainted at level J ′′

0 we mustadd the error between 0 and td of the pre
eding level whi
h entails (ii).For (i) : here the raises whi
h are involved, are the planing one's, i.e. the
K(Γσ0) �rst raises. At most, at ea
h instant of the interval [t0(B

J0−1), td+1],the path Γn has re
eived K(Γσ0) small ex
ursions. Then, this part of thepath is just su

essively translated, whi
h entails (i).
�Then we de�ne σn, n ≥ 0, hzn and vtn in the following manner :

∀n ∈ N, σn+1 = sup (sup{p > σ′
n,Γ

p vanishes in (td, td+1)}, 0)

hzn (resp. vtn) is the number of horizontal (resp. verti
al) raisings o

urringbetween levels r and n. As before, S = sup{n ≤ r;RLn = s0}.Proposition 8. (i) For all n ∈ N, σn, hzn, vtn are r.v.(ii) It is possible to de�ne N n and Σn on the event [
σ

′

k−1 ≥ n ≥ σk
] in su
ha manner that : 22



(a) ∥∥∥Γn|[t0(Bσk−1 ),td+1]
− Γntd+1

∥∥∥
∞
< ε′ +K(Γσk)ε′′(b) ∣∣∣Γntd+1

− τ 0
RLn−s0)(ϕ(td+1))

∣∣∣ < ε′+ 1
2
(K ′

σk
−1)(K ′

σk
−2)ε

′′

+hznε
′′2vtnProof It is the same as in the previous proposition.For (a) we noti
e that, after the intervention of the planing ex
ursions, thispart of the path is merely translated, without being a�e
ted by any othermodi�
ation.

�Proposition 9. (i) S is a r.v. su
h that S−s0 doesn't depend upon s0 and
ε′′, and we 
an 
hoose s0 large enough for P(Aε2) > 1 − ε(1 + d

d0
)− ε

d0
,where Aε2 := Aε1 ∩ [S ≥ 0](ii) Let (Γn) be the sequen
e asso
iated to the N n and Σn. It satis�es on

Aε2 :
∥∥∥ΓS|[0,td] − Γ̃0

|[0,td]

∥∥∥
∞

< 2ε
∥∥∥ΓS|[t0(BσnS ),td+1]

− ΓStd+1

∥∥∥
∞

< ε′ +K(BσnS )ε′′, where nS = sup{n ≤ r/σn ≤ S}
∣∣∣ΓStd+1

− ϕ(td+1)
∣∣∣ < 2β + ε′ +

1

2
(hzn − 1)(hzn − 2)ε

′′

2l0 +
(
ε′′hzJ0−Sε

′′

)
.Proof For (i), see Lemma 12.Then (ii) follows immediately from pre
eding Propositions.

�Then Γ so de�ned is a B−raised Brownian motion.So, let us 
hoose : ε′ = ε
16

and ε′′ = ε
16( 1

2
(s0−1)(s0−2)+2l0s0

.From the independen
e of the r.v. S−s0, upon s0 and ε′′ , these 
hoi
es don't
reate any vi
ious 
ir
le, and we 
an 
laim :Proposition 10. For all ε > 0, there exists a B−raised Brownian motionsverifying on the event Aε2 :
∥∥Γ0

|[0,td] − ϕ|[0,td]

∥∥
∞

< ε(18)
∥∥∥Γ0

|[t0(BσnS ),td+1] − ϕ|[t0(B
σnS ),td+1]

∥∥∥
∞

<
ε

8
+
ε

4
(19)

∣∣∣Γ0
td+1

− ϕ(td+1)
∣∣∣ <

ε

4
.(20) 23



Proof We dedu
e immediately these in
reases from Proposition 25 sin
e
S ≤ s0, hzJ0−S ≤ s0, K(ΓJS−1) ≤ s0.

�At this point, the last task to a
hieve is to 
ontrol Γ0 between times t0(BJ0)and td+1.So we are going now to analyze more in details its behavior on (td, td+1).Let us denote γtd the �rst time after td at whi
h one of the Γσ, 0 ≤ σ ≤ s0+l0,vanishes on (td, td+1), and σ0 the 
orresponding level.Let us introdu
e the re
tangle Rectσ0 de�ned by the four straight lines withequations :
x = td , x = td+1 , y = inf τ 0

(RLσ0−s0)
(ϕ)|[td,td+1] and

y = sup τ 0
(RLσ0−s0)

(ϕ)|[td,td+1]

Rectσ0 
ontains by de�nition the path of τ 0
(RLσ0−s0)

(ϕ)|[td,td+1] and, from the
hoi
e of α0, its height is lower than ε

4
.Now 
onsider the path of Γ(w)σ

′

0|[td,td+1], it takes one of the two forms givenin the appendix.In the two 
ases by hypothesis, the total variation of ws0+rd on [td, td+1] islower than ε

2
. So, by lemma 5, and the de�nition of γtd , it is greater or equalto that of Γ(w)σ0, on [td, γtd]. Consequently the path wσ1 
an move againfrom Rectσ0 but at most from ε

4
+ ε

2
on the same interval.And rapidly, it is bound to join ϕ in Rectσ0 by the building ex
ursions, the�at part remaining �at.Therefore, the re
tangle RRσ0 with the same 
enter and verti
al straight linesbordering it, and height that of Rectσ0 + 3ε

2
, 
ontains the path wσ1 |[td,td+1].During the following raises, the re
tangle Rectσ0 , a

ording to lemma 5,moves by isometry. We 
all Rσ its new positions, and likewise RRσ that of

RRσ0 .We 
an easily 
he
k that, for all σ < σ1 
orresponding to a verti
al raise, thepath wσ|[td,td+1] is 
ontained in RRσ.Finally, for w ∈ Aε2 at level 0 we have the desired property :
∥∥Γ0

ν |[td,td+1] − ϕ|[td,td+1]

∥∥
∞
< εSo we have proved the following : 24



Proposition 11. For all ε > 0, there exists a disjointed sum of B−raisedBrownian motions su
h that : on Aε3,
∥∥Γ0|[td,td+1] − ϕ|[td,td+1]

∥∥ < ε(21) ∣∣∣Γ0
td+1

− ϕ(td+1)
∣∣∣ <

ε

4
.(22)Thus we establish that Pd+1 is true. So, by indu
tion, Pd is true for all

d ≤ d0, and we 
an 
laim :Proposition 12. For all ε > 0, there exists a disjointed sum of B−raisedBrownian motions su
h that :
P

([
‖Γ0

|[0,T ] − ϕ|[0,T ]‖∞ < ε
]
∩

[
|ΓT − ϕ(T )| <

ε

4

])
> 1 − 2ε.Then we 
an apply Proposition 1 to G =

[
‖w|[0,T ] − ϕ|[0,T ]‖∞ > ε

].So,
P

(
∀n ≥ 0,

∥∥Bn
|[0,T ] − ϕ|[0,T ]

∥∥
∞
> ε

)
< 2εWe dedu
e immediately :

P

(
∀n ≥ 0,

∥∥Bn
|[0,T ] − ϕ|[0,T ]

∥∥
∞
> ε

)
= 0.But this property is true again when we repla
e 1 by a, for all a > 0 : Thismeans :Theorem 1.For almost every ω ∈ Ω, the orbit of B(ω) :

orb(B(ω)) = {Bn(ω); , n ∈ N}is dense in W , equipped with the topology of uniform 
onvergen
e on 
ompa
tsets.Let us noti
e that if, in pla
e of restrain ourselves with the open sets B,we have shown :
∀B 
losed set in W ,

P(B) > 0 ⇒ P(orb(w) ∩ B 6= ∅) = 1Then every set A T-invariant, measurable and not negligible, would 
ontainthe event [orb(w)∩B 6= ∅] and so, would be almost sure. Therefore, T would25



be ergodi
.To end, we are going to 
laim in an equivalent way, following thus an inter-esting suggestion of J.P Thouvenot :
∀(ϕ, ε) ∈W |[0,1] × R

+
∗ ,the reverse martingale P(w ∈ B(ϕ, ε)|Wn

∞) admits a regular 
onditional ver-sion P(w ∈ B(ϕ, ε)|wn), and we have :Theorem 2.
P a.s. , lim

n→∞
P(w ∈ B(ϕ, ε)|wn) > 0Proof of theorem 3.Suppose the 
ontrary, and let :

A :=
[
w ∈W, lim

n→∞
P(w ∈ B(ϕ, ε)|wn) = 0

]As P(w ∈ B(ϕ, ε)|wn) = P(w ∈ B(ϕ, ε)|wn+1), be
ause T is measure-preserving. So we have :
w ∈ A⇔ Tw ∈ ASo A is T-invariant. Consequently :

E (1AP(w ∈ B(ϕ, ε)|wn)) = P (A ∩ [w ∈ B(ϕ, ε)]) = P (A ∩ [wn ∈ B(ϕ, ε)])But by hypothesis :
lim
n→∞

E (1AP(w ∈ B(ϕ, ε)|wn)) = 0Therefore,
P (A ∩ [orb(w) ∩ B(ϕ, ε) 6= ∅]) = 0whi
h, from theorem 1, entails that P(A) = 0

�Finally, let us remark that, if we 
ould show :
lim
n→∞

P
([
w ∈ B(ϕ, ε)

]
|wn

)
= P

([
w ∈ B(ϕ, ε)

])
,Than, not only T would be ergodi
 but exa
t whi
h means :

W∞
∞ := ∩

n∈N

Wn
∞ would be trivial.26
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