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Abstract

The analytical derivation of equilibrium solutions described in Yoon and Lui

(2005) is discussed.
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In a recent article Yoon and Lui (2005) discuss a class of two-dimensional (2-D) kinetic

current sheet equilibria. This class is a 2-D extension of the initial 1-D work of Harris which

itself has been extended in different papers (in addition to those presented in Yoon and Lui

(2005), see Channell (1976); Mottez (2003); Génot et al. (2005)). This class of equi-

libria includes results derived by other authors (termed the Harris-Fadeev-Kan-Manankova

solution), a generalization of this solution, and new configurations for isolated X-line and

isolated magnetic island. In this comment, I want to address an issue related to the analyti-

cal derivation of equilibrium solutions. A mean to locate possible singularities of solutions

is presented with the aim to complement an aspect of the paper : the requirements with

respect to the extent of the smooth domain in typical applications.

The key point of the analytical approach at the heart of the paper is that the general

solution for the potentialΨ to the 2-D Grad-Shafranov equation

∆Ψ = e−2Ψ (1)

is obtained in terms of the generating functiong(ζ) with ζ = X + iZ whereX andZ are

two dimensionless spatial coordinates (we respect notations used in Yoon and Lui (2005)).

The formal solution to the previous equation is given by

e−2Ψ = 4|g′|2/(1 + |g|2)2 (2)

whereg′ = dg(ζ)/dζ. This solution probably appears for the first time in the literature in

Liouville (1853). However the generating functiong(ζ) is far from being arbitrary; indeed,

it must satisfy in any restricted domain of the complex planeC the following condition :

∆ln |g′| = 0 (3)

Let us briefly derive the necessary condition imposed by Equation 3. We suppose the

solution of Equation 1 to be of the form :

Ψ = −
1

2
ln

(

4|g′|2

(1 + |g|2)2

)

(4)

Taking the Laplacian (∆ = ∂2/∂X2 + ∂2/∂Z2 = 4∂2/∂ζ∂ζ̄) of this expression, we

obtain after some elementary algebra :

∆Ψ = −∆ ln |g′| + ∆ ln(1 + |g|2) = −∆ln |g′| +
4|g′|2

(1 + |g|2)2
(5)
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Finally, if we impose∆ ln |g′| = 0, Equation 5 reduces to :

∆Ψ =
4|g′|2

(1 + |g|2)2
(6)

In this case the second term of Equation 5 is exactlye−2Ψ and Equation 1 is exactly

solved. More accurately, the condition imposed by Equation 3 expresses the fact thatg′

must have no zero, pole or essential singularity. Thereforeg′ has to be an entire function

without zero; we recall that a complex function is said to be entire if it is analytic (or

holomorphic, to use a more mathematician terminology) at all finite points of the complex

plane. This condition is a strict limitation as any function of this type has the general form

exp(h(ζ)) whereh(ζ) is an arbitrary entire function. Thus, in a non restricted domain,

Equation 2 gives solutions which increase at infinity and finally are not very interesting

from a physical point of view. Two known physical solutions are the Bennett pinch and the

periodic pinch solutions (equivalent to Harris solution). They correspond to the particular

cases:h(ζ) = 0 and,h(ζ) = ζ. It is not excluded that other forms forh could be physically

interesting. Nevertheless, it seems unlikely that Equation 2 could lead to exact solutions

describing localized (non-periodical) structures embedded in the current sheet.

From the derivation above it is clear that the condition expressed by Equation 3 is intrin-

sically attached to the general form of the solution given by Equation 2. With this in mind,

it appears that Equation 3 gives a way to locate the singularities directly from properties of

the generating functiong; therefore one does not need to find them from the final expression

of Ψ which was done in sections 3.3 to 3.9 of the paper. It is particularly convenient when

Ψ takes a rather complicated form.

Not satisfying the condition expressed by Equation 3 corresponds to a somewhat different

problem. For instance, Tur and Yanosky (2004) considered the caseg′(ζ) = A(ζ − ζ0)
n,

meaning thatg′ hasnth order zero in pointζ0. Since

∆ln |ζ − ζ0|
n = 2πnδ(x − x0) (7)

(with δ standing for the Dirac distribution function andx0 the singularity coordinate), this

particular generating function plugged into Equation 2 gives a potentialΨ which satisfies

∆Ψ = e−2Ψ − 2πnδ(x − x0) (8)

The solutions of Equation 8 form a class of explicit exact stationary solutions to the

2-D Euler equation which describe vortex patterns in rotational shear flow. This also corre-
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sponds to solutions to the Grad-Shafranov equation to which a term representing an external

localized current distribution has been added.

To conclude, we note that the limitation imposed by the entire nature ofg′ is one of the

motivations which lead authors to propose asymptotic methods of resolution. This is done

in Schindler (1972) in which the analysis applies to the case where plasma boundaries can

be determined at once (as in laboratory plasmas). In a free boundary case, as in natural

plasmas, an asymptotic theory to find localized structures has been developed in Tur et al.

(2001).
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