\

Affine strategies in arena games

Russ Harmer

» To cite this version:

Russ Harmer. Affine strategies in arena games. 1st International Workshop on Games for Logic and
Programming Languages, 2005, Edinburgh, United Kingdom. hal-00013015

HAL Id: hal-00013015
https://hal.science/hal-00013015
Submitted on 2 Nov 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00013015
https://hal.archives-ouvertes.fr

Affine strategies in arena games

Russ Harmer

CNRS & Université de Paris 7

Abstract

We show how to extract an SMCC of arenas and affine strategies from the CCC of
arenas and innocent strategies, a process that essentially reverses the more usual
construction of a CCC from an SMCC and the ! of linear logic.

1 Introduction

Arena-based game semantics [1,4,5,7] has proved highly effective for con-
structing fully abstract models for a wide variety of sequential programming
languages. In contrast to many other game models (AJM, polarized, tree-
based, etc) its precise relation with linear logic remains rather unclear: one
typically considers a category of innocent (or single-threaded) strategies which
turns out to be a CCC with no further ado, in particular having no need for
the ! and & of linear logic to get a genuine categorical product [6].

In this paper, we show how to isolate a “lluf” subcategory of strategies which
behave in an “affine” manner. As well as clarifying the relation of arena games
to linear logic, this could prove useful for developing models of SCI (which
typically begin with the affine typing discipline of basic SCI) and also provides
a new axis (alongside the established notions of bracketing and rigidity) for
analysing the behaviour of innocent strategies. Most importantly, this work
marks the first step of an analysis of innocent interaction, focusing on a special
case which somewhat tames the combinatorial complexity of the general case.

2 Innocent game semantics

Let X be a countable set. A pointing string over X is a string s € ¥* with
pointers between the occurrences of s such that pointers always point to earlier
occurrences and we have at most one pointer from each occurrence. We write
s; for the ith symbol of s (assuming it has one), s, for the last occurrence of
s (again, if it has one), |s| for the length of s and e for the empty pointing
string (of length 0).

Preprint submitted to Elsevier Science 21 October 2005

We write s C t obvious extension of the prefix partial ordering to pointing
strings and s A t for the longest common prefir of s and t. Finally, if s is a
pointing string over ¥ and a € X then we write s - a for the pointing string
obtained by adding a to the end of s, pointing to the last occurrence of s.

If ' C X, we write s [Y for the restriction of s to Y, i.e. that pointing string
obtained by removing all symbols of s not from ', keeping pointers between
occurrences from Y’ and adding a pointer from s; to s; iff following pointers
from s; leads directly into the “forbidden zone” ¥ — 3 and remains there until
reemerging at s;.

2.1 Arenas, plays and strategies

Game semantics posits two protagonists, Opponent and Player, that can
take turns to play certain “moves” according to the rules of a “game”. We
formalize the ideas of “the rules of a game” and “play” as arenas and the legal
plays of a given arena.

An arena A is a tuple (M, A4, I4,F4) where

e M4 is a countable set of tokens.

o My : My — {O,P} x {Q,A} labels each m € My as belonging to either
Opponent or Player and as being a question or an answer. We write \Q”
(resp. A§*) for the composite with first (resp. second) projection and AR°
for the “inverted” labelling (exchange of O and P).

e [, is a subset of A\;*(OQ), the initial tokens of A.

e I, is a binary relation on M4, known as enabling, which must satisfy

(el) if m 4 n then AQP(m) # AQP(n)
(€2) if m 4 n where A% (n) = A then A3*(m) = Q

The simplest possible arena, written 1, has the empty set as its set of moves.

Given any countable set X, the flat game over X has one move q (labelled

0Q) and, for each z € X, a move x (labelled PA), the only initial token being

q. The enabling relation specifies q - x for all z € X. We write bool and nat

for the flat games over {t,ff} and {0, 1,2, ...} respectively.

A legal play of A is a pointing string s over alphabet M4 satisfying

e if s; points to s; then s; -4 s; and if s; has no pointer then s; € I4

e the underlying string of s satisfies alternation: if Us = symimsasy then

ARF (ma) # AGF (mo).

Each occurrence in a legal play s is an element m of M,, with or without
a pointer. If m has no pointer, we call it an initial move and note that
m € I4; otherwise, we call m plus its pointer a move of s. If s; points to
s; we sometimes say that s; justifies s;; more generally, if following pointers
back from s; arrives at s;, we say that s; hereditarily justifies s;. The first
move of a legal play must be initial (since it cannot point to any previous
move!) and hence is an O-move and so alternation just means: A§¥(s;) = O if,
and only if, ¢ is odd.

We write L4 for the set of all legal plays of A. Given s € L4, set ie(s) =
{te La|sCTtA|t|=]|s|+ 1}, the immediate extensions of s. We write
ip(s) for the immediate prefix of s (provided s # ¢) and (unless s is empty
or ends with an initial move) jp(s) for the justifying prefix of s, that prefix
of s ending with the move that justifies s,. Finally, for s,t € L4, we write
s CP t (vesp. s CO t) iff s is a prefix of ¢ ending with a P- (resp. O-) move. We
fix the convention that e TP s for any s € £4.

In game semantics, a legal play in arena A corresponds to a possible “execu-
tion trace” of a program of type A. This trace consists of alternate moves from
Opponent (representing the context of execution) and Player (representing the
program). We model programs as strategies: sets of P-ending legal plays. If s
is a legal play in such a set, we interpret this to mean: if, after Opponent’s last
move, the trace to date is ip(s) then Player responds with s, (plus the appro-
priate pointer). So, in game semantics, we think of a program as a “lookup
table” explaining how Player must respond to Opponent’s choice of moves:

A strategy for arena A is a non-empty set ¢ of P-ending legal plays of A
satisfying

e if s € o and s’ C**" s then s’ € o;
e if s,t €0 then sAt Eo.

We write dom(o) for U, ie(s), the domain of 0. The second condition says
that P has at most one response at any given moment—what we usually call
determinism.

Finally, we present three constructors on arenas of use later on. The product
of arenas A and B just inherits the structure of A and B whereas the arrow
constructor A = B must add in some new structure to deal with its inversion
of labelling on the LHS.

Mawg = Ma + Mpg, the disjoint union
AxB = [Aa, A, the copairing

Iyxp =1Ia+1Ip

Faxp = Fa + Fp, the sum of relations.

Maop = My+ Mp

Axp = [<>‘E§O’ >‘3A>7 AB]

Iavp =1Ip

s = (Fa+Fg)ULGnr(d),inl(a) | b€ In Aa € L}

We also write A~ for the “decapitated” arena obtained by removing the initial
moves of A, flipping the labelling function and setting the secondary tokens
of A—all those tokens enabled by some initial token—as the initial tokens:

My- = My — 14, the set difference

Ag- =)\E‘O | M 4, the restriction of /\ZO to M4-
14 :{mGMA_ |E|ZE[AZ|_Am}

Fa- = Fal(Ma- x My-)

2.2 The big SMCC of arenas and strategies

If we have strategies 0 : A= B and 7 : B=C, we can make them interact on
the “common ground” of B. We formalize this idea with the notion of a legal
interaction in arenas A, B and C: this is a pointing string u over alphabet
My + Mp + Mg such that u [A, B € Ly, u | B,C € Lg—¢c and u [A,C
alternates (it easily follows that u [A,C € L4-¢). This definition obviously
generalizes to any finite list of arenas. We write Z(A, B, C) for the set of all
legal interactions over A, B and C'.

Intuitively, a legal interaction consists of a sequence of “sandwiches” of the
form “O-move of A = C followed by moves of B, followed by a P-move of
A = C”. If the number of B-moves is odd, one of the outer moves comes from
A and the other from C whereas, if the number of B-moves is even, both outer
moves come from the “same side”. If A is the empty arena and C' a flat arena,
we call u € Z(A, B,C) a program interaction.

The composite of o : A= B and 7 : B = C is defined by setting
eo||lt={ueI(ABC)|ulA,BeohulB,CerT}

e o;7={ulA,Cluecol 1}

In words, o ; 7 consists of the external projections of all interactions that o
and 7 mutually accept. Note that all actual interaction between o and 7 gets

excised from their composite, leaving a sequence of external responses, by P
in A= C, to moves of O in A = C—the “bread” of the sandwiches.

Proposition 2.2.1 Ifo and T are strategies for A = B and B = C' respec-
tively then o ; T is a strategy for A = C.

The proof depends on the unique witness lemma [to show that determinism
is preserved by composition]:

Lemma 2.2.2 (unique witness) If o and 7 are strategies for A = B and
B = C respectively then, for all s € o;7, there exists a unique uw € Z(A, B,C)
such that s =u[A,C, ul[A,B€ o andu|[B,C € T.

We organize the above development into a category G. Its objects are arenas,
an arrow f : A — B is a strategy oy : A= B and the composite of arrows
or: A=DBand o, : B=Cis 0y;0,. The identity for A is the copycat strategy
on A = A and associativity of composition follows from the zipping lemma:

Lemma 2.2.3 Given v € IZ(A,C,D) and v € Z(A,B,C) such that u |
A,C = v | A C, there exists a unique w € Z(A,B,C,D) such that u =
wlA,C,D andv=wlA,B,C.

We extend the x constructor on arenas to a bifunctor by setting, for strategies
c:A=>Bando' : A= DB,

ox0 ={s€ Liaxay=mxp)|sIA,BeanslA,B €od'}.

Bifunctoriality follows, in a manner analogous to associativity of composition,
from a second zipping lemma.

The unit for x is the empty arena 1 equipped with evident copycat strategies
A1 xA=Aand py: Ax1= A Since 1 is a terminal object of G, we
have canonical projections from A x B. The associativity and commutativity
isomorphisms aspc and y4p come from the natural isomorphisms (M, +
Mp)+ Mc = My + (Mg + M) and My + Mg = Mg + M, in Set. Finally,
since the only difference between (A x B) = C and A = (B = () lies in
the tagging of the disjoint unions, G(A x B,C) = G(A, B = (), the familiar
currying isomorphism A(—). Uncurrying id 4. g yields e4p : (A = B) X A=B,
the evalation map of G satisfying, for any o : A x B=C, 0 = (A(0)xidp);epc.

This establishes that the category of arenas and strategies, once equipped with
the above-mentioned structure, is an SMCC.

2.8 Innocent strategies

In this section, we introduce the important subclass of innocent strategies as
being those strategies 0 whose response to some s € dom(c) depends only on
a partial history of s, the so-called P-view "s' of s, defined inductively:

o 's'=s,, if s, is an initial move
o "sT="jp(s)" sy, if s, is a non-initial O-move
o 5" ="ip(s)'sy, if s, is a P-move

In words, we follow pointers from O-moves, excising everything that lies “under
the arc” of the pointer, and “step over” P-moves, thus tracing out a subse-
quence of s where O always points to the previous occurrence. In the last
clause, s, points to a move in "ip(s)' iff it happens to point to that move
in s; if s, points outside of "ip(s)" in s, it doesn’t point anywhere in "s'. So
the P-view extracts a subsequence of the underlying string which preserves
pointers whenever it can.

Since pointers from P-moves can disappear when we calculate a P-view, the
P-view of a legal play need not itself be legal. We say that a legal play s
satisfies P-visibility iff "s'is a legal play; so no P-move of s that occurs in s’
loses its pointer in "s'. The P-views of arena A are those legal plays where
all of O’s moves point to the immediately preceding move.

Given a set of coherent P-views V—i.e. where, for all s,t € V, s At has even
length—we define a strategy tr(V'), all of whose plays satisfy P-visibility, where
the response of o to t € dom(o) depends only on "¢":

o To(V)={e}
o T, (V)={secL,|ip’(s) e Tp(V)ATs' €V}

o tr(V) = Unen Tn(V)

If all plays of a strategy o satisfy P-visibility then o itself is said to satisfy
P-visibility. Such a strategy determines a set of P-views "o = {"s" | s € o}.
In general, "¢' may be nondeterministic—even if ¢ is deterministic—but we

always have that o C tr("o").

A strategy satisfying P-visibility for which o = tr("o") is called an innocent
strategy. In this case, "o ' is itself a strategy, the view function of . Innocent
strategies can equivalently be characterized as those satisfying P-visibility plus

seo At edom(o)Alip(s)' ="' = match(s,t) € o

where match(s, t) is the unique extension of ¢ such that "s’ = "match(s, t)"; or
indeed as those strategies satisfying P-visibility plus

se€LaNip(s) edom(o)ATsTeo! = seo.

In words, the response of an innocent strategy depends only on the current P-
view (cf. the above definition of tr). One can go on to show that tr and fn form a
Galois connection: trofn is a closure operator (returning the smallest innocent
strategy containing its input) and fn o tr is an interior operator (returning the
largest view function contained in its input).

2.4 The CCC of innocent strategies

A move in a legal interaction u € Z(A, B, C') is a generalized O-move (resp.
generalized P-move) in component L (resp. R) iff it is an O- (resp. P-
Jmove of A = B (resp. B = (). So an O-move of A = C or any move of B is a
generalized O-move (in the appropriate component) while a P-move of A = C
or any move of B is a generalized P-move (in the appropriate component). A
move in B is thus a generalized O-move in one component and a generalized
P-move in the other. Note that a generalized P-move is always immediately
preceded by a generalized O-move in the same component. Finally, we say that
moves from A and C' are external moves of u and that moves from B are
internal moves of u.

We extend the notion of P-view to legal interaction u € Z(A, B, C') with the
following inductive definition.

e "u' = u,, if u, is an initial move of '

e "u'="jp(u)" uy,, if u, is an external O-move of u

o "u'="ip(u)'uy, if u, is a generalized P-move

Recall that a legal interaction can be viewed as a sequence of sandwiches:
O-move of A = C, moves of B, P-move of A = C. The P-view of a legal
interaction thus consists of a subsequence of sandwiches determined by the
pointers from external O-moves of u. Each sandwich of u is either removed
entirely or left untouched in the P-view.

Just as the P-view of a legal play can lose pointers from P-moves and so need
not itself be a legal play, "u' can lose pointers from its generalized P-moves and
so need not be a legal interaction. However, if u results from the interaction
of two P-vis strategies, i.e. all P-ending prefixes of both internal projections
ul A, B and u | B, C satisfy P-visibility, then the following lemma guarantees
that "u' is legal:

Lemma 2.4.1 [fu € Z(A,B,C) such that u| A,B € 0 andu | B,C € T
for P-vis 0 and 7, and m s a generalized P-move of u in component® X, then

'_U<m—l S I(A, B, C)

Proof By induction on the length of ug,,; two cases, depending on the
move n immediately preceding m in u. If n is a generalized P-move of u (nec-
essarily in component Y'), we apply the inductive hypothesis to get "u.,,' €
IZ(A,B,C). If n is an O-move of A = (| either it’s initial (in which case
the claim is trivial—this encompasses the base case) or it’s justified by ¢, in
which case we apply the inductive hypothesis to ug, to get "uc,,' ="ug'-n €
Z(A,B,C). So "uc,' € Z(A, B, C).

By P-visibility, m points in "u.,, [X . The last move of this, n, points to a
generalized P-move m’ in X which occurs in "u_,, . In turn, m’ is immediately
preceded by a generalized O-move in X, n’, which also occurs in "u.,,". If we
continue in this way, we find that "u.,, | X' is a subsequence of "u_,,'. Hence

we can attach m to the end of "u_,, ' with correct justification pointer, yielding
"u<m ' € Z(A, B, C) as required. [

Note that, for u € Z(A, B, C) satisfying the hypotheses of this lemma, "u' |
A,C ="ul A C". So, as an immediate corollary of this lemma, we have that
P-visibility is preserved by composition: the composite of P-vis ¢ : A= B and
7 : B = (C is again a P-vis strategy since, if s € ¢ ; 7, its unique witness u €
Z(A, B, C) satisfies the hypotheses of the above lemma; hence "u' € Z(A, B, C')
and so "s'="u'lA,C € Lac.

In the previous section, we gave a way of defining innocent strategies as those
(necessarily) P-vis strategies entirely determined by their view function—by
“completing” the P-vis strategy with the closure operator trofn. We also noted
an equivalent characterization: a P-vis strategy o is innocent iff

s € oAt edom(o)Alip(s)' ="' = match(s,t) € o

In this definition, the play s € o could be any legal play but in fact it suffices
to consider P-views (since match(s,t) = match("s", ¢)). This observation leads
to a third, perhaps simpler, characterization of innocence as P-visibility plus

s€ LaNip(s) Edom(o)ATsTe 0! = s€Eo.

To see the equivalence of these two definitions, let o be a P-vis strategy for
A. If o satisfies the first definition, suppose we have some s € L4 such that
ip(s) € dom(c) and "s' € "o". So, for some t € o, "t = s and hence s =
match(¢,ip(s)) € o as required. For the other direction, if s € o, t € dom(o)
where "ip(s)' = "¢ then match(s,t) € L4, ip(match(s,t)) = ¢ € dom(o) and
"match(s,t)' ="s' € "o'. Hence match(s,) € o as required.

* We use X as a metavariable ranging over {£, R} when we neither know nor care
which of the two components is being referred to, whence we use Y to denote the
other component.

The next lemma plays a vital role in showing that innocent strategies compose.

Lemma 2.4.2 [fu € Z(A,B,C) such that u| A,B € 0 and u | B,C € T
for P-vis o and T, and m is a generalized O-move of u in component X, then
"Ugm [X = Tugy, [X

Proof By induction on the length of ug,,. If m is an initial move of u [X
then "ug, [X' = m = Tug,' | X'. Otherwise, m is either an O-move of
A = C or a generalized P-move in component Y. In either case, the justifier

n of m occurs in "ug,, .

We finish by calculating

T [X7 =Tug, [X7+ m
=Tu ' [X'n-m
="uc, [X'n-m
="ug, [X" m

— I_Ugm rX—I

using the inductive hypothesis and the definition of P-view. []

Essentially, this lemma says that ™' not only witnesses "u [A, C" but that it
contains all the information needed for two interacting innocent strategies to
build a witness for "u] A, C".

This allows us to extend the function match to legal interactions. Suppose
we have u,v € o || 7 C Z(A, B,C) where o and 7 are innocent strategies,
u witnesses s € o ; 7 and v is the minimum witness of ¢ € dom(o;7)—a
legal interaction ending with an external O-move. Suppose further that "v' =
"trnct(u)' where trnct(u) is that legal interaction obtained by removing the
“tail” of generalized P-moves from wu, i.e. the minimum witness of ip(s).

Let X be the component where the last move of v occurs. By the above lemma,
we know that "v [X' = To' [X" = Ttrnct(u)' | X' = "u | X" Since o and T are
innocent, the response (in component X) to "v [X' is the same as to "u [X
This reasoning can be iterated, alternating between the two components, to
extend v with the same “tail” of generalized P-moves that was removed in
trnct(u). We thus end up with a legal interaction match(u,v) witnessing that
t' € ie(t) such that "t"' = "s".

Proposition 2.4.3 Ifo: A= B and 7 : B=-C are innocent strategies then
so is their composite o ;7 : A= C.

Proof We use the third (and final) characterization of innocence. Suppose
s € La—c where ip(s) € dom(c;7) and "s' € "o ; 7. Then we have some
t € o; 71, witnessed by v € o || 7, such that "t' = "s'. Moreover, we have a
minimum witness u for ip(s).

So u'l A, C = "ip(s)" = "ip(t)" = "trnct(v)' [A, C and, by the unique witness
lemma 2.2.2, we conclude that "u' = "trnct(v)'. Hence match(v,u) witnesses
match(¢,ip(s)) =s € o ;1. [

The resulting category I of arenas and innocent strategies is Cartesian closed
for general reasons [3] but, more concretely, it can readily be verified that
(0,7) ={s € LasBxc) | s[A,BcoAs|A C e 7} defines the appropriately
unique pairing of 0 : A= B and 7 : A= C. The diagonal transformation of
G, with components A4 = (id4,id4), is a natural transformation in I.

2.5 The wvisibility condition

The long O-view of s € L4, noted |s], is defined dually to the P-view: we
follow pointers from P-moves so this time O-moves can lose pointers:

o |c|=¢

o [s] = [jp(s)] - sw, if s, is a P-move

o |s] = |ip(s)] sw, if s, is an O-move

In contrast to a P-view which always has a unique initial move, a long O-
view may contain many initial moves. A play s € L4 satisfies O-visibility iff
|s] € L4—s0 we lose no O-pointers in |s|—and satisfies simply visibility iff
it satisfies P- and O-visibility.

Lemma 2.5.1 Leto: A= B and 7 : B= C be P-vis strategies and suppose
that w € o||T such that, for all external O-moves o of u, we have that ug, [A, C

satisfies O-visibility. Then, for a non-initial external move m in component
X, lugn Y] extends |jp(ugy) Y].

Proof By induction on the length of ug,, (for m an external move). The
base case for m a P-move consists of a single sandwich which has the required
property thanks to P-visibility in X. The base case for m an O-move consists
of a sandwich plus a single external O-move which trivially has the required
property.

If m is an external P-move in component X, its justifier occurs in "u., | X.
If we trace back |u<,, Y|, it starts out just like "u,, [X' until this latter
steps back onto an ezternal O-move o in X. At this point, we can apply the
inductive hypothesis to ug, so that |ug, [Y] extends |jp(us,) [Y]. (In other
words, following back the O-view of u¢, [Y can never jump past the justifier
of 0.) If we continue in this way, we eventually arrive at the last move of
jp(ugm) Y and so |ugy, [Y] extends |jp(ugm) [Y] as required.

If m is an external O-move in component X, external O-visibility implies
that its justifier lies in |u<,, [A,C]. As we trace back |ugy, [Y |, we apply
the inductive hypothesis to u, for all the external P-moves p of |u<, [A, C|
(in component X) that lie between m and its justifier. This establishes, at
each such point, that |ug, [Y] extends [jp(ug,) [Y]. Hence |ug,y, [Y] extends
ljp(ugm) Y] as required. |

This lemma basically says that the pointers from external moves in component
X constrain the pointers in component Y, even though external moves in X
cannot be seen from Y'!

In an innocent strategy, all plays satisfy P-visibility but not necessarily O-
visibility. In other words, an innocent strategy does not need its context to
respect P-visibility. However, in order to build a category of innocent, or just
P-vis, strategies, we have no need for this extra generality: when P-vis o and
T interact, o appears O-vis from 7’s point of view and 7 appears O-vis from
o’s point of view, so we can safely ignore all plays violating O-visibility:
Lemma 2.5.2 Leto: A= B and 7 : B= C be P-vis strategies and suppose
that w € o||T such that, for all external O-moves o of u, we have that ug, [A, C
satisfies O-visibility. Then, for any generalized O-move m of u in component
X, we have that ugy, | X satisfies O-visibility.

Proof If m is an external move, it’s either initial (whence we have nothing
to prove) or it points in |u,, [A,C] in component X. For each P-move of
|tuem [A, C'| in component Y, we apply the above lemma, thus establishing
that m points in |u,, [X | as required.

Otherwise, m is a generalized O-move in X which is also a generalized P-
move in Y and so, by P-visibility, points in "u.,, [Y. We apply the above
lemma to each external O-move of "u.,, [Y", thus establishing that m points
in |uey, [X | as required. |

This implies, for innocent (or just P-vis) strategies 0 : A= B and 7: B=C,
that any s € o ; 7 that happens to satisfy O-visibility necessarily comes from
an interaction between O-vis plays of o and 7. This enables us [G. McCusker,
private communication] to define a category of P- and O-vis strategies which,
qua category, differs inessentially from the category of P-vis strategies.

2.6 The annotated O-view

Earlier on, we defined the function match(s, t) to formalize what we intuitively
mean by “extend ¢ with the last move of s”. We now define a new function
match*(s, t) for P-ending, P-vis s € £4 and t € L, such that Tjp(s)' = "
match*(s, t) denotes the extension of ¢ with that suffix of the P-view of s that
lies underneath the pointer from s, to jp(s),. In other words, instead of adding
just the last move of s to ¢, this adds the last arch of the P-view of s to t.

The annotated (long) O-view of P- and O-vis s € L4, written |s], is
defined inductively:

o |c]=¢

. LAs] = |ip(s)]sw, if s, is an O-move

e |s| = match*(s, |jp(s)]), if s, is an P-move

In words, the annotated (long) O-view traces back the (long) O-view but,
instead of ezcising all moves underneath each P-to-O pointer, it retains that

suffix of the current P-view “enclosed” by the pointer—the last arch:

10

The assumption of O-visibility for s implies that E € L4. So @ in fact
consists of an interleaving of P-views of A. If s € o for an innocent o then

|s] exposes what input P-view o requires in order to produce |s] as output
O-view.

We previously defined match(u,v) to formalize what we mean by “extend v
with the tail of generalized P-moves of «”. In order to define match*(u,v),
consider u € o || 7 (for P-visoc : A= Band 7: B=C) and v € Z(A, B,C)
such that "jp(u)' = "v'. We define match*(u,v) to be the extension of v with
the last arch of the "u', i.e. extend v with the suffix of "u' lying underneath
the pointer from u,,,.

The P-view of a legal interaction picks out a subsequence of sandwiches ac-
cording to the following scheme: track back through the current sandwich until
we reach an external O-move o; then follow o’s pointer and recursively apply,
until we reach an initial O-move. The (long) O-view [defined below] of a legal
interaction u picks out its subsequence of sandwiches differently: it applies the
above procedure (for the P-view) but only until we reach that external O-move
o that justifies the last move of u—assumed to be an external P-move; then
move to the external P-move immediately preceding o and recursively apply.

Suppose that our v € o || 7 additionally satisfies external O-visibility: for all
external O-moves o of u, we have ug, | A,C € Lac. We define the (long)
O-view of u, written |u|, inductively:

o || =¢
o |u| = |ip(u)|uy, if u, is an external O-move
e |u| = match*(u, |jp(u)]), if u, is an external P-move

Note that |u] is an interleaving of P-views of legal interactions just as [s]
is an interleaving of P-views of legal plays. External O-visibility guarantees
that |u] € Z(A, B,C). Moreover, "u" is a subsequence of |u] and |u| clearly

—~——

witnesses |u[A, C].
2.7 Single-threaded and interference-free strategies

The theorem that establishes that innocent strategies form a CCC applies
more generally to single-threaded strategies [1,4]. These lie in one-two-one
correspondence with the comonoid homomorphisms, i.c. arrows o : A— B
satisfying

A—24 A% A A
BTEBXB B?l

where Ay : A— A x Ais (a component of) the diagonal transform. (In fact,
since 1 is terminal, the triangle always commutes.)

11

Briefly, a thread of an arena A is a legal play of A with (at most) one initial
move. We write [o] for the set of threads contained in strategy o. Given a
coherent set of even-length threads T, define

o STo(T) = {e}
o ST, ((T)={s€ L,|ip*(s) €STAT) A [s] € T}
e ST(T) = U;en ST(T).

In a manner analogous to the characterization of innocent strategies, we say
that o is single-threaded if, and only if, 0 = ST[o]. We refer to [o] as
the thread function of o (analogous to the view function of an innocent
strategy).

If 0 and T are composable single-threaded strategies, o;7 is also single-threaded
(comonoid homomorphisms can easily be seen to be closed under composition)
with thread function [0 ;7] = o ; [7]. Note that a single thread of o ; 7 may
depend on an arbitrary play, not necessarily just a thread, of o.

We say that a legal play is well-opened iff no initial move is ever repeated,
i.e. distinct initial moves are occurrences of different initial tokens. Beware
that this definition conflicts with much of the literature of game semantics
which conflates the concepts of thread and well-opened play.

We write £Y%° for the set of all well-opened plays of A and WO(o) for the
well-opened plays of 0. The well-opened plays of a single-threaded strategy o
thus give all possible “resource sensitive” interleavings of threads of o: we can
arbitrarily interleave threads provided their initial moves are different. So, in
composition, we have WO(o ; 7) = o ; WO(7) where, in general, we need a
non-well-opened play of o.

If single-threaded o has the property that, in no well-opened s € o do we
ever repeat a secondary move, then we say that ¢ is an interference-free
strategy. So the threads of o ; 7 are determined by interactions between well-
opened plays of ¢ and threads of 7, the idea being that 7 never opens more
than one copy of any given thread of o, a “no nesting” constraint. However,
this doesn’t suffice to explain the interference-free condition which further
requires that any well-opened interleaving of threads of T must appear well-
opened from o’s point of view, a typical non-example being A 4 which repeats
initial moves on the LHS. So, for composable interference-free ¢ and 7, we
have

WO(o ; 7) = WO(o) ; WO(T).

A simple calculation establishes that interference-free strategies are closed
under composition. The resulting category is an SMCC but fails to be a CCC:
unlike in the category G, where the diagonal transform exists but isn’t natural,
it doesn’t even exist in the category of interference-free strategies.

12

3 Affine strategies

In the general setting of single-threaded strategies, the notion of “interference-
free” isolates a class of “affine” strategies which correspond fairly closely to
basic SCI (provided we also ask for P-visibility). In this section, we turn to
the more specific case of innocent strategies and how to characterize those
definable in (some kind of simply-typed) affine A-calculus.

3.1 The short O-view

When two innocent strategies interact, each strategy receives input from the
other, computes its view and makes its response, which it promptly sends
back to the other who, in turn, does the same thing. We consider an innocent
strategy o to be “affine” iff, during this interaction, for as long as ¢’s context
T never repeats an input view for o, ¢ never repeats an input view for 7.

In order to formalize this idea of “repeating a view for the other strategy”,
we introduce a variant notion of O-view, in some sense dual to that of P-view.
The short O-view s, of a non-empty s € L4 is defined by:

e s5,=c¢,if s, is an initial move

o 5, = jp(s)," s, if s, is a P-move

e 5, = ip(s) 5w, if s, is a non-initial O-move

Note that tracing back s, always ends with a secondary move—so a short
O-view contains a unique secondary move, just as a P-view contains a unique
initial move. However, this means that s, can never be a legal play of A but,
if s, doesn’t lose the pointer from any of its non-initial O-moves, then s, is
a legal play of A™. In this case, if s was played by some strategy o for A, s,
determines the next input P-view for o’s context.

3.2 The SMCC of affine strategies

As mentioned above, an affine strategy never repeats an input view for its
context for as long as its context does the same. We formalize this idea as
imjectivity of use of the view function within a well-opened play: an innocent
strategy o for A is affine iff

s,teocNLY AN sCEt A s,=1t,€La- = Tip(s)' ="ip(t)".

So, if o does repeat an input view for its context, i.e. it plays ¢t with same
O-view as an earlier s, this means that its context just did the same thing, i.e.
ip(s)" ="ip(t)'. The requirement that ¢, be legal in A~ means that we never
lose pointers from t’s O-occurrences while tracing back its short O-view.

Proposition 3.2.1 Ifo: A= B and 7 : B=C are affine strategies then so
iso;T7: A=C.

13

Proof Suppose s,t € (o;7) N LY, - satisfying s C ¢ and s, = t,. By the
definition of composition, we have witnesses u,v € o || 7 for s and ¢. Assuming
that s # t (otherwise the claim is trivial), the fact that s, = ¢, implies that
some P-move e of ¢, rejoins s

T

o7 ... @5 ... @

Now, |u] € o || 7, since o and 7 are both innocent. Note that u [A,C, =

Lu, [A,C . We next perform the following surgery on v to obtain o € o || 7

satisfying .u, C v and v[A,C = v[AC

e follow back |v| until we reach the external P-move e that rejoins s,

e follow back "vg, ! until we reach an external O-move o that points in s (and
so in |u], by P-visibility at e,)

e delete the remaining moves strictly inbetween the end of u and o and prefix
the resulting sequence of moves with |u]; call this o.

By O- and P-visibility, all moves of v in the suffix of |v]| point either within
|v] orin |u]. Similarly, all moves of ¢ in the suffix of "v<, ' point either in "¢,
orin |u]. So © € Z(A, B,C). Moreover, by innocence of o and 7, 0 € o || 7.

Consider [u], and ?<., and suppose that the two es occur in component
X. So |u]g, X, = <, [X, By affinity in X, "Ju]_, [X' = "0, [X

|
and so |u]_, [Y, = 7, [Y . Carrying on in this way, we establish that
the last arch of |u], is exactly the same as the last arch of U, and so
[u]co, = |V<e,]- By repeatedly applying innocence (and determinism), we

find that the last arches of |u| are the exactly the same as those of |¢] and
indeed of |v] and so |u]| = |©] = |v]. Hence "ip(s)' = "ip(t)" as required. W
In essence, this proof says that, if P rejoins at some point, i.e. ¢, rejoins s,
then "ip(t) rejoins "ip(s) ', i.e. O rejoins at some previous point.

In a legal interaction, this property is iterated in order to establish that any
repeated external O-view ultimately stems from a repeated P-view by the
external Opponent.

We can thus form a category of arenas and affine strategies. This category can
be equipped with the SMCC structure of G but the diagonal transform, as in
the case of interference-free strategies, no longer exists: a typical well-opened
play of A4 repeats the trivial O-view consisting of just a secondary move:

A = (A x A
/“"‘CLZ

a
/Mar

a

14

3.8 The p-transform

If B; and B, are flat arenas, we have an important affine strategy up, g, for
(B = By) = (By = Bs) that transforms an innocent strategy into an affine
strategy by “compressing” all accesses to By into one single “shared” access:

(B1 By) (B1 By) (B Bs) (B1 Bs)
q Q\
q q
(bl (bl \
/”_“q q |
z b, /
b1 b2

If we have an innocent strategy o : [['] = (B; = By), it may interrogate its
argument B; multiple times. If we compose o with up, s,, this has the effect
of “linearizing” o in B;: up,p, acts as a kind of “delayed copycat” that first
evaluates the argument in B; “once and for all” and then, each time that o
subsequently requests that argument, pp, 5, simply repeats the value already
computed. In this way, the composite o ; up, g, satisfies affinity.

3.4 Affine PCF

The SMCC of affine strategies clearly harbours a model of affine A-calculus
extended with constants and special forms for arithmetic. We content ourselves
with the simple type hierarchy starting from base types B ::= bool | nat.

affine lambda

e:THEM:U
Le:The:T THX\e(M):T — U

TFM:T—U AFN:T
A+ (M)N:U

arithmetic
———neN
I'Ft:bool I' - £f : bool I'Fn:nat
' M :nat I'FM:nat AF N :nat

'k (succ M) : nat I'AF (equal? M N) : bool

We use equal? rather than pred and zero? to emphasize the “multiplicative”
format of binary rules.

15

3.4.1 Adding conditionals

In order to establish a definability result for [compact, well-bracketed] affine
strategies, we need to add special forms for conditionals (of types bool and
nat). However, the usual kind of typing rule

I'FEM:bo0l T'HFN:B TI'HL:B
(if M N else L): B

becomes problematic in an affine setting: such programming constructs first
evaluate their “guard” and then evaluate a “continuation” chosen on the basis
of the value of the guard. Even if the guard M and continuations N and L
to an if are all affine, the fact that they share (in the above rule) the same
free variables means that violations of affinity in (if M N else L) cannot be
ruled out. This suggests use of a “multiplicative” version of the typing rule,
although N and L can obviously safely share free variables since at most one
of them will be evaluated:

I'-M:bool AFN:B AFL:B
[VAF (if M N else L): B

Unfortunately, this leads to a loss of expressive power: if the value of the guard
depends on (some of) its free variables in I', the selected continuation will be
unable to recompute that value. This suggests that the value of the guard be
passed as an extra (CBV-style) parameter to the chosen continuation:

if/case
I'EM:bool A,z:boolkN:B A,z:boolk L:B
VAR (if [z = M] N else L)

' M :nat A,z:natl—ﬁ:B A, z:nat+-L:B
I'Al (case [z = M] N else L) : B

This allows us to rewrite a typical non-affine PCF term
f :nat — nat F An(case n 0 else (succ (succ (f)(pred n)))) : nat

to evaluate n “once and for all” and bind its value to z for the benefit of the
else continuation:

f :nat — nat F An(case [z = n| 0 else (succ (succ (f)(pred z)))) : nat

To clarify the difference between these terms, consider the big-step operational
semantics for if and case:

16

MUt Ni/2UV MU Lisf/z] LV
(if [r=M] Nelse L) ||V (if [r=M] Nelse L) | V

M{ym Npmwn/z]|V
(case [z =M]| Ny --- Npelse L) ||V
M{ym Lm/z]|V
(case [z=M| Ny --- Npelse L) ||V

0<m<k

k<m

Here we can clearly see the role of the free variable z in each continuation: it
reifies into our language the value (t, ff or some n) that provoked evaluation
of the continuation in question. In the absence of this, a continuation has no
knowledge of why it was selected.

On the semantic side, we must change the interpretation of if (and case),
using the p-transform to implement this “once and for all” evaluation of the
guard. If ' = M : bool and A,z : bool - N : B and A,z : bool - L : B,
define [(if [z = M| N else L)] by composing

[M] x (A(INT) 5 svoor, 5, A(LLD) 5 Hnoor,B)
with the following strategy for (bool x (bool = B) x (bool = B)) = B:
(bool (bool B) (bool B)) B
q
q

: /

b

Note how we apply the p-transform to our continuations N and L. This has
the effect of forcing the chosen continuation to immediately ask for the value
of the guard that caused its evaluation.

17

Returning to our example, the non-affine PCF term reevaluates n whenever
its else clause is selected—and yet the value of n (i.e. Sz) lies in the view!

/ Sx
1
/q
q
| g
Py

With the new definition of case, we don’t have this problem; the variable z
reifies Sz so that the reference to (pred z) returns the value that = stands for.

q
%‘

/ Sz
el q

q

x

C

In a uniform language like PCF or yPCF, it obviously makes no difference
for correctness whether we reevaluate or share. So, in PCF, the u-transform
improves efficiency without affecting expressive power whereas, in affine PCF,
we absolutely need some way to express sharing. We choose to do this with
the if and case special forms.

We could do this differently. For example, we could type terms of affine PCF
in split contexts I' | A where A is a context (containing only variable-base
type pairs) of “sharable variables”. The p-transform would then appear ex-
plicitly as the means of migrating x : B € I' across to A, i.e. the syntax for
saying “evaluate this input and save its value for later”, while if can be typed
“multiplicatively” for I' and “additively” for A. A term (with empty context
I') would then be evaluated in an “environment”, i.e. an assignment of values
to its sharable variables.

Ce:B|AFM:T
F'NAjx:BFux(M):T

F|AFM:bool I'|AFN:B I'|AFL:B
IT| AR (if M NelselL): B

This solution, while more general than adopting the variant syntax for if and
case, seems like overkill in the case of affine PCF. However, in the case of
general innocent strategies, the idea of making environments into first-class
objects seems rather natural as a way of formalizing when a given subterm
gets evaluated.

18

Theorem 3.4.1 Ifo is a compact, affine, well-bracketed strategy on an arena
of the form (Ty X --- x T,,) = T, where T and the T;s interpret types of affine
PCF, then there exists a term M of affine PCF such that o = [M].

Proof We follow the usual pattern of such definability results [2], the key
point being that, when we extract the argument and continuation strategies
args(o) and cnts(o), affinity of o guarantees that we can partition the context
[of M into I'y and I'y where args(o) uses only I'y and cnts(o) only uses I's.
(This partition need not be unique since some variables of I" might not be
used at all.) We can then “put o back together again” using if or case as
appropriate. |

Let us note a subtle point about the syntax of if and case: although we allow
all continuations to use a variable to reify the value of the guard, we only ever
really need this in the else continuation; the other continuations effectively
have this value hardwired.

In the above proof, we assume a compact ¢ and hence the else continuation
is always divergent and so we never need to explicitly reify the guard as a
fresh variable added to I'y. In other words, the naive affine typing of if and
case works perfectly adequately for “compact” terms; but once we have a non-
trivial else clause, as in the above example, we no longer have the guard’s
value hardwired and so we really need it to be passed in by if.

3.4.2 Recursion vs. iteration

In PCF, we introduce recursive definitions via the fixpoint special form that
“computes” F¥(Q) : T for F': T — T and so obviously violates affinity (in all
but trivial cases).
'-F:T—->T
I'F (fixpt F): T

Essentially, if F' can access one of its free variables and then make a recursive
call, we run the risk of reaccessing that same free variable in the new copy of
F—whence (fixpt F') would violate affinity. But, if F' is affine and moreover

never accesses any of its free variables, (fixpt F') remains affine. We could
thus add fixpt to affine PCF provided we only ever apply it to closed F.

Starting from the observation that accessing a free variable poses no problem,
as long as we don’t subsequently make a recursive call, we could instead add
a construct for iteration. This seems better adapted to the nature of affine
PCF: an iterative process consists of some term M; to build the initial state
and another term M, that describes the state transformation (together with
the termination conditions). We could thus allow M; to access as many free
variables as it likes but require that M; be closed. Such an iteration would
be guaranteed to preserve affinity—but would, of course, require a richer type
system, with products or lists, to be of any practical use.

19

4 Conclusions and further directions

We have shown that, in the setting of arena games, we can isolate the class
of affine strategies. A number of questions now arise. Firstly, can we define
the ! of linear logic as a comonad on this category to recover the original
CCC of innocent strategies? It seems likely that the ! would have to operate
(at the level of strategies) on well-opened plays, not on threads, to avoid the
ambiguities otherwise inherent in plays as below.

Assuming that q; and gy are occurrences of different moves, should we think
of this play as being one copy of a well-opened play (which happens to contain
two initial occurrences) or as an interleaving of two copies of two well-opened
plays (each of which actually happens to be a thread)?

A second interesting question concerns nondeterministic affine strategies. It
has been known for some time that [with the “obvious” definition] nondeter-
ministic innocent strategies fail to compose correctly, the failure of the unique
witness property being the main culprit. It turns out that affine strategies
reinstate this property, even in the absence of determinism: essentially, once
two interactions between nondeterministic affine o and 7 have separated (in
the “hidden” part of the interaction) they can never “come back together”
and hence must witness different plays.

The resulting category of nondeterministic affine strategies still seems to be
an SMCC and contains an erratic choice operator V : (A x A) — A which acts
as a one-sided inverse to A (i.e. Ay ; V4 = idy in the ambient category G).
This category presumably models some kind of “affine erratic PCF”. However,
it remains to be seen whether or not this sheds any light on the longstanding
question of how to correctly define innocent nondeterminism, the problem
essentially being how to make A and V peacefully coexist in an innocent
setting.

References

[1] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics
for general references. In Proceedings, Thirteenth Annual IEEE Symposium on
Logic in Computer Science, 1998.

[2] V. Danos and R. Harmer. The anatomy of innocence. In Proceedings, Tenth
Annual Conference of the Furopean Association for Computer Science Logic.
Springer Verlag, 2001.

20

[3] P. J. Freyd, P. W. O’Hearn, A. J. Power, M. Takeyama, R. Street, and
R. D. Tennent. Bireflectivity. Theoret. Comput. Sci., 228(1-2):49-76, 1999.
Mathematical foundations of programming semantics (New Orleans, LA, 1995).

[4] R. Harmer. Games and full abstraction for nondeterministic languages. PhD
thesis, University of London, 1999.

[5] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.
Information and Computation, 163:285-408, 2000.

[6] P.-A. Mellies. Categorical models of linear logic revisited. Theoretical Computer
Science, To appear.

[7] H. Nickau. Hereditarily sequential functionals. In Proceedings, Logical
Foundations of Computer Science, volume 813 of Lecture Notes in Computer
Science. Springer-Verlag, 1994.

21

