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A NOTE ON THE GROTHENDIECK RING

OF THE SYMMETRIC GROUP

CÉDRIC BONNAFÉ

Abstract. Let p be a prime number and let n be a non-zero natural number. We compute the

descending Loewy series of the algebra Fp ⊗Z Rn, where Rn denotes the ring of virtual ordinary

characters of the symmetric group Sn.

Let p be a prime number and let n be a non-zero natural number. Let Sn be the symmetric
group of degree n. Let Rn denote the ring of virtual ordinary characters of the symmetric group
Sn and let R̄n = Fp ⊗Z Rn. The aim of this paper is to determine the descending Loewy series
of R̄n (see Theorem A). In particular, we deduce that the Loewy length of R̄n is [n/p] + 1 (see
Corollary B). Here, if x is a real number, [x] denotes the unique r ∈ Z such that r 6 x < r + 1.

Let us introduce some notation. If ϕ ∈ Rn, we denote by ϕ̄ its image in R̄n. The radical of
R̄n is denoted by Rad R̄n. If X and Y are two subspaces of R̄n, we denote by XY the subspace
of R̄n generated by the elements of the form xy, with x ∈ X and y ∈ Y .

Compositions, partitions. A composition is a finite sequence λ = (λ1, . . . , λr) of non-zero
natural numbers. We set |λ| = λ1 + · · · + λr and we say that λ is a composition of |λ|. The
λi’s are called the parts of λ. If moreover λ1 > λ2 > . . . > λr, we say that λ is a partition of
|λ|. The set of compositions (resp. partitions) of n is denoted by Comp(n) (resp. Part(n)). We

denote by λ̂ the partition of n obtained from λ by reordering its parts. So Part(n) ⊂ Comp(n)

and Comp(n) → Part(n), λ 7→ λ̂ is surjective. If 1 6 i 6 n, we denote by ri(λ) the number of
occurences of i as a part of λ. We set

πp(λ) =

n∑

i=1

[ri(λ)

p

]
.

Recall that λ is called p-regular (resp. p-singular) if and only if πp(λ) = 0 (resp. πp(λ) > 1).

Note also that πp(λ) ∈ {0, 1, 2, . . . , [n/p]} and that πp(λ̂) = πp(λ). Finally, if i > 0, we set

Part
(p)
i (n) = {λ ∈ Part(n) | πp(λ) > i}.

Young subgroups. For 1 6 i 6 n − 1, let si = (i, i + 1) ∈ Sn. Let Sn = {s1, s2, . . . , sn−1}.
Then (Sn, Sn) is a Coxeter group. We denote by ℓ : Sn → N the associated length function. If
λ = (λ1, . . . , λr) ∈ Comp(n), we set

Sλ = {si | ∀ 1 6 j 6 r, i 6= λ1 + · · · + λj}.

Let Sλ =< Sλ >. Then (Sλ, Sλ) is a Coxeter group: it is a standard parabolic subgroup of Sn

which is canonically isomorphic to Sλ1 × · · · × Sλr
. Note that

(1) Sλ and Sµ are conjugate in Sn if and only if λ̂ = µ̂.
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2 C. Bonnafé

We write λ ⊂ µ if Sλ ⊂ Sµ and we write λ 6 µ if Sλ is contained in a subgroup of Sn conjugate
to Sµ. Then ⊂ is an order on Comp(n) and 6 is a preorder on Comp(n) which becomes an
order when restricted to Part(n).

Let Xλ = {w ∈ Sn | ∀ x ∈ Sλ, ℓ(wx) > ℓ(w)}. Then Xλ is a cross-section of Sn/Sλ. Now,
let Nλ = NSn

(Sλ) and W (λ) = Nλ∩Xλ. Then W (λ) is a subgroup of Nλ and Nλ = W (λ)⋉Sλ.
Note that

(2) W (λ) ≃ Sr1(λ) × · · · × Srn(λ).

Recall that, for a finite group G, the p-rank of G is the maximal rank of an elementary abelian
p-subgroup of G. For instance, [n/p] is the p-rank of Sn. So

(3) πp(λ) is the p-rank of W (λ).

If λ, µ ∈ Comp(n), we set

Xλµ = (Xλ)−1 ∩ Xµ.

Then Xλµ is a cross-section of Sλ\Sn/Sµ. Moreover, if d ∈ Xλµ, there exists a unique com-

position ν of n such that Sλ ∩ d
Sµ = Sν . This composition will be denoted by λ ∩ dµ or by

dµ ∩ λ.

The ring Rn. If λ ∈ Comp(n), we denote by 1λ the trivial character of Sλ and we set

ϕλ = IndSn

Sλ
1λ. Then, by (1), we have ϕλ = ϕλ̂. We recall the following well-known old result

of Frobenius:

(4) (ϕλ)λ∈Part(n) is a Z-basis of Rn.

Moreover, by the Mackey formula for tensor product of induced characters, we have

(5) ϕλϕµ =
∑

d∈Xλµ

ϕλ∩dµ =
∑

d∈Xλµ

ϕ
λ̂∩dµ

.

Let us give another form of (5). If d ∈ Xλµ, we define ∆d : Nλ∩
dNµ → Nλ×Nµ, w 7→ (w, d−1wd).

Let ∆̄d : Nλ ∩ dNµ → W (λ) × W (µ) be the composition of ∆d with the canonical projection
Nλ×Nµ → W (λ)×W (µ). Then the kernel of ∆̄d is Sλ∩dµ, so ∆̄d induces an injective morphism

∆̃d : W (λ, µ, d) →֒ W (λ)×W (µ), where W (λ, µ, d) = (Nλ∩
dNµ)/Sλ∩dµ. Now, W (λ)×W (µ) acts

on Sλ\Sn/Sµ and, if d ∈ Xλµ, then the stabilizer of SλdSµ in W (λ)×W (µ) is ∆̃d(W (λ, µ, d)).
Moreover, if d and d′ are two elements of Xλµ such that SλdSµ and Sλd′Sµ are in the same
(W (λ) × W (µ))-orbit, then Sλ∩dµ and Sλ∩d′µ are conjugate in Nλ. Therefore,

(6) ϕλϕµ =
∑

d∈X′

λµ

|W (λ)|.|W (µ)|

|W (λ, µ, d)|
ϕλ∩dµ,

where X ′
λµ denotes a cross-section of Nλ\Sn/Nµ contained in Xλµ.

The Loewy series of R̄n. We can now state the main results of this paper.

Theorem A. If i > 0, we have
(
Rad R̄n

)i
= ⊕

λ∈Part
(p)
i (n)

Fpϕ̄λ.

Corollary B. The Loewy length of R̄n is [n/p] + 1.

Corollary B follows immediately from Theorem A. The end of this paper is devoted to the
proof of Theorem A.
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Proof of Theorem A. Let R̄
(i)
n = ⊕

λ∈Part
(p)
i (n)

Fpϕ̄λ. Note that

0 = R̄([n/p]+1)
n ⊂ R̄([n/p])

n ⊂ · · · ⊂ R̄(1)
n ⊂ R̄(0)

n = R̄n.

Let us first prove the following fact:

(♣) If i, j > 0, then R̄(i)
n R̄(j)

n ⊂ R̄(i+j)
n .

Proof of (♣). Let λ and µ be two compositions of n such that πp(λ) > i and πp(µ) > j. Let

d ∈ X ′
λµ be such that p does not divide

|W (λ)|.|W (µ)|

|W (λ, µ, d)|
. By (6), we only need to prove that this

implies that πp(λ ∩ dµ) > i + j. But our assumption on d means that ∆̃d(W (λ, µ, d)) contains
a Sylow p-subgroup of W (λ) × W (µ). In particular, the p-rank of W (λ, µ, d) is greater than or
equal to the p-rank of W (λ)×W (µ). By (3), this means that the p-rank of W (λ, µ, d) is > i+ j.
Since W (λ, µ, d) is a subgroup of W (λ∩ dµ), we get that the p-rank of W (λ∩ dµ) is > i + j. In
other words, again by (3), we have πp(λ ∩ dµ) > i + j, as desired. �

By (♣), R̄
(i)
n is an ideal of R̄n and, if i > 1, then R̄

(i)
n is a nilpotent ideal of R̄n. Therefore,

R̄
(1)
n ⊂ Rad R̄n. In fact:

(♦) Rad R̄n = R̄(1)
n .

Proof of (♦). First, note that Rad R̄n consists of the nilpotent elements of R̄n because R̄n is
commutative. Now, let ϕ be a nilpotent element of R̄n. Write ϕ =

∑
λ∈Part(n) aλϕ̄λ and let

λ0 ∈ Part(n) be maximal (for the order 6 on Part(n)) such that aλ0 6= 0. Then, by (6), the
coefficient of ϕλ0 in ϕr is equal to ar

λ0
|W (λ0)|

r−1. Therefore, since ϕ is nilpotent and aλ0 6= 0,

we get that p divides |W (λ0)|, so that λ0 ∈ Part
(p)
1 (n) (by (3)). Consequently, ϕ − aλ0ϕ̄λ0 is

nilpotent and we can repeat the argument to find finally that ϕ ∈ R̄
(1)
n . �

We shall now establish a special case of (5) (or (6)). We need some notation. If α =
(α1, . . . , αr) is a composition of n′ and β = (β1, . . . , βs) is a composition of n′′, let α ⊔ β denote
the composition of n′ + n′′ equal to (α1, . . . , αr, β1, . . . , βr). If 1 6 j 6 n and if 0 6 k 6 [n/j],
we denote by ν(n, j, k) the composition (n − jk, j, j, . . . , j) of n, where j is repeated k times (if
n = jk, then the part n − jk is omitted). If λ ∈ Comp(n), we set

M(λ) = {0} ∪ {1 6 j 6 n | p does not divide rj(λ)},

m(λ) = maxM(λ),

J(λ) = {0} ∪ {1 6 j 6 n | rj(λ) > p},

j(λ) = min J(λ)

and jm(λ) = (j(λ),m(λ)).

Let I = {0, 1, . . . , [n/p]}. Then jm(λ) ∈ I × I. Let us now introduce an order 4 on I × I. If
(j,m), (j′,m′) are two elements of I × I, we write (j,m) 4 (j′,m′) if one of the following two
conditions is satisfied:

(a) j < j′.
(b) j = j′ and m > m′.
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Now, let i > 1 and let λ ∈ Part
(p)
i+1(n). Let (j,m) = jm(λ). Then λ = α̂ ⊔ ν0, where α is a

partition of n−m− jp and ν0 = ν(m + jp, j, p). Let λ̃ = α⊔ (m + jp). Then πp(λ̃) = i (indeed,

rm+jp(λ̃) = 1 + rm+jp(α) = 1 + rm+jp(λ) and, by the maximality of m, we have that p divides
rm+jp(λ)) and

(♥) ϕ̄
ν(n,j,p)ϕ̄λ̃ ∈ ϕ̄λ +

(
⊕

µ∈Part
(p)
i+1(n)

jm(µ)≺(j,m)

Fpϕ̄µ

)
.

Proof of (♥). Let ν = ν(n, j, p). Since πp(λ) = i + 1 > 2, there exists j′ ∈ {1, 2, . . . , [n/p]} such
that rj′(λ) > p. Then j′ > j (by definition of j), so n > 2pj. In particular, n − pj > j, so
W (ν) ≃ Sp. Now, if m′ > m, then rm′(α) = rm′(λ), so

(♥′) ∀ m′ > m, rm′(α) ≡ 0 mod p.

Also

(♥′′) ∀ l 6= m + jp, rl(λ̃) = rl(α)

and

(♥′′′) rm+jp(λ̃) = rm+jp(α) + 1.

Now, keep the notation of (6). We may, and we will, assume that 1 ∈ X ′
νλ̃

. First, note that

ν ∩ λ̃ = α ⊔ ν0 and that the image of ∆̃1 in W (ν) × W (λ̃) is equal to W (ν) × W (α). But, by

(♥′), (♥′′) and (♥′′′), the index of W (α) in W (λ̃) is ≡ 1 mod p. Thus, by (6), we have

ϕ̄ν ϕ̄λ̃ = ϕ̄λ +
∑

d∈X′

νλ̃
−{1}

|W (ν)|.|W (λ̃)|

|W (ν, λ̃, d)|
ϕ̄ν∩dλ̃.

Now, let d be an element of Xνλ̃ such that p does not divide
|W (ν)|.|W (λ̃)|

|W (ν, λ̃, d)|
= xd and such that

jm(ν ∩ dλ̃) < jm(λ). It is sufficient to show that d ∈ NνNλ̃. Write α = (α1, . . . , αr). Then

ν ∩ dλ̃ = (n1, . . . , nr, n0) ⊔ j(1) ⊔ · · · ⊔ j(p),

where nk > 0 and j(l) is a composition of j with at most r +1 parts. Since p does not divide xd,
the image of Nν ∩

dNλ̃ in W (ν) contains a Sylow p-subgroup of W (ν) ≃ Sp. Let w ∈ Nν ∩
dNλ̃

be such that its image in W (ν) is an element of order p. Then there exists σ ∈ Nν such that

wσ normalizes Sν∩dλ̃. In particular, ĵ(1) = · · · = ĵ(p). So, if j(1) 6= (j), then j(ν ∩ dλ̃) < j(λ),

which contradicts our hypothesis. So j(1) = · · · = j(p) = (j). Therefore,

λ̃ ∩ d−1
ν = ν(α1, j, k1) ⊔ · · · ⊔ ν(αr, j, kr) ⊔ ν(m + jp, j, k0),

where 0 6 ki 6 p and
∑r

i=0 ki = p. Note that (n1, . . . , nr, n0) = (α1−k1j, . . . , αr −krj, α0−k0j)

where, for simplification, we denote α0 = m+jp. Also, j(λ̃∩ d−1
ν) 6 j and, since jm(λ̃∩ d−1

ν) <

(j,m), we have that m(λ̃ ∩ d−1
ν) 6 m. Recall that d−1wd ∈ Nλ̃. So two cases may occur:

• If the image of d−1wd in W (λ̃) has order p, this means that there exists a sequence 0 6 i1 <

· · · < ip 6 r such that 0 6= ki1 = · · · = kip (= 1) and such that αi1 = · · · = αip . So rl(λ̃∩ d−1
ν) ≡

rl(λ̃) mod p for every l > 1. In particular, rm+jp(λ̃ ∩ d−1
ν) ≡ 1 + rm+jp(α) ≡ 1 mod p by (♥′)

and (♥′′′). Thus, m(λ̃ ∩ d−1
ν) > m + jp > m, which contradicts our hypothesis.

• Therefore, the image of d−1wd in W (λ̃) has order 1. So there exists a unique i ∈ {0, 1, . . . , r}

such that ki = p. Consequently, ki′ = 0 if i′ 6= i. If αi > m + jp, then rαi
(λ̃ ∩ d−1

ν) =
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rαi
(λ̃) − 1 = rαi

(α) − 1 (by (♥′′)), so p does not divide rαi
(λ̃ ∩ d−1

ν) (by (♥′)), which implies

that m(λ̃∩ d−1
ν) > αi > m, contrarily to our hypothesis. If αi < m+jp, then rm+jp(λ̃∩

d−1
ν) =

rm+jp(λ̃) = rm+jp(α) + 1 (by (♥′′′)), so p does not divide rm+jp(λ̃ ∩ d−1
ν) (by (♥′)), contrarily

to our hypothesis. This shows that αi = m + jp. In other words, d ∈ Nλ̃Nν , as desired. �

By (♦), Theorem A follows immediately from the next result: if i > 0, then

(♠) R̄(1)
n R̄(i)

n = R̄(i+1)
n .

Proof of (♠). We may assume that i > 1. By (♣), we have R̄
(1)
n R̄

(i)
n ⊂ R̄

(i+1)
n . So we only need

to prove that, if λ ∈ Part
(p)
i+1(n) then ϕ̄λ ∈ R̄

(1)
n R̄

(i)
n . But this follows from (♥) and an easy

induction on jm(λ) ∈ I × I (for the order 4). �
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16 Route de Gray, 25030 Besançon Cedex, France
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