
HAL Id: hal-00013011
https://hal.science/hal-00013011v5

Preprint submitted on 1 Dec 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketch based Distributed Garbage Collection, Theory
and Empirical Elements

Joannès Vermorel

To cite this version:
Joannès Vermorel. Sketch based Distributed Garbage Collection, Theory and Empirical Elements.
2005. �hal-00013011v5�

https://hal.science/hal-00013011v5
https://hal.archives-ouvertes.fr

1

Sketch-based Distributed Garbage Collection,
Theory and Empirical Elements

Joannès Vermorel
Computational Biology Group, École des Mines de Paris

joannes.vermorel@ensmp.fr

Abstract— Object-Oriented Programming (OOP) is a pillar of
actual, and most probably future, software engineering. Within
the advances for OOP, Garbage Collection (GC) is one of
the major improvements that brought both large productivity
and reliability benefits. Yet, to our knowledge, no widely used
distributed systems benefit from a complete Distributed Garbage
Collector (DGC) at this time. We believe that this situation is
due, a least partly, to actual DGC performance issues.

In this paper, we introduce the idea of sketch-based DGC
where object-graph fragments are sketched rather than explic-
itly represented. We prove, under reasonable assumptions, that
sketched messages are smaller up to one order of magnitude than
their explicit counterparts. Those results apply to most of the
state-of-art DGC methods. In the case of the Veiga and Ferreira
DGC algorithm, the improvement is more than a factor 4 under
very limited assumptions.

I. INTRODUCTION

Object-Oriented Programming (OOP) is a pillar of actual,
and most probably future, software engineering. The founda-
tion of OOP consists of considering that computer programs
are collections of individual units called objects that com-
municate between each other rather than lists of instructions
executed by the computer. Since OOP is omnipresent in
modern software, this notion has been very naturally extended
as Object-Oriented Distributed Programming (OODP) in the
context of distributed systems. Widely used systems such as
CORBA [1], Java RMI [2] or Microsoft .Net Framework [3]
reflect the interest and the need for OODP. A key concept in
OODP is the notion of distributed objects (the term “network
object” is also found in the literature, see [4] for an extensive
review of the topic).

Within the OOP approach, the Garbage Collection (GC)
has been a major advance in terms of programmer’s pro-
ductivity and program’s reliability [5]. A GC identifies live
(or reachable) and dead (or unreachable) objects in the
application object graph. The GC removes the burden of
manual memory management from the developer to leave it
to an automated and more reliable process. Since Distributed
Garbage Collection (DGC) is the natural OODP equivalent
of the Local Garbage Collection (LGC) in the context of
distributed systems, it is natural to expect similar productivity
and reliability benefits from the DGC when it comes to the
design of distributed systems. Yet, DGCs are, at this time,
far from being widely used, even available, components in
OODP frameworks (see discussion below). We believe that
this limited diffusion is mostly due to the large amount of
challenging issues in the design of a DGC. Indeed if a

large literature (see [6], [7], [8], [9] for topic review) is
devoted to such algorithms, there are no, at this time, to
our knowledge, strong DGC implementations comparable, in
terms of performance, to the GC implementations commonly
available.

The analysis of the performance of a DGC algorithm
is a wide problem that includes many dimensions. Among
“architectural” properties, asynchronicity and completeness
are two highly desirable, yet very challenging properties
for a DGC algorithm. The asynchronicity states that no
synchronization should be required between more than two
machines at the same time. This property is critical for the
potential scalability of a DGC algorithm. If recent methods
are fully asynchronous[6], [10], many algorithms are not and
require a centralized architecture[11], [12], [13] or group
synchronization[14], [15], [16] or consensus[17] between the
processes. The completeness states that all unreachable but
only unreachable graphs, in particular cyclic graphs, must
be collected. Indeed distributed cycles are frequent [18], and
recent works seem to indicate that object-oriented designs tend
to generate scale-free graphs [19] (scale-free graphs are cyclic
with a very high probability). In this respect, it should be
noted that early DGC methods were not complete [20], [21].
Other architectural properties are also desirable, such as fault-
tolerance (robustness against message delay or loss), isolation,
(DGC implementation must not require modifications of LGC
or Remote Procedure Call (RPC) subsystems).

But the performance analysis of a DGC also includes
resource consumption properties such as memory, CPU and
bandwidth overheads. Additionally more subtle criterions
such as the non-disruptiveness (no pause in the application)
and the promptness (garbage should be promptly collected)
should also be considered.

In respect to this list of desirable properties for DGC
algorithms, we believe that the wide spectrum of Distributed
Cycle Detection Algorithms (DCDAs) ([6], [10] for recent
examples) constitutes the most scalable approach to tackle
the DGC problem. To our knowledge, all cycle detection
methods are relying on messages carrying subsets of object-
graphs in one form or another. We would like to emphasize
that global object-identifiers used in distributed systems are
expensive. The Table I illustrates the memory footprints of
global identifiers in various distributed systems. Since those
global identifiers need to be generated in a totally decentralized
fashion, we believe that 200bits is a reasonable lower bound
estimation of the global identifier size for present and future

2

TABLE I

GLOBAL IDENTIFIER MEMORY FOOTPRINTS

System Platform Global identifiers Size in bits
NGrid .Net System.Guid 1282

JoCaml SSPC Location 1283

ProActive Java VMID + UID 2884

Mozart Mozart Ticket > 400
Globus Java URLs > 500

large scale distributed systems1. Moreover, the ever-increasing
adoption of web-services [23] for distributed systems (Globus
[24] being one of the most well-known examples) involves
even longer identifiers (500bits is a reasonable lower bound
estimation for URL based identifiers) and accentuates even
further this issue.

Large identifiers, if explicitly carried over the network,
are an unavoidable hindering factor for large scale DGC
working over bandwidth constrained network. It should also
be noted that more bandwidth does necessarily solve the DGC
bandwidth requirements. Indeed, more bandwidth allows: first,
the design of finer-grained distributed objects (that simplifies
the developer’s life at the cost of a larger distributed object
graph); second, more distributed object migrations (achieving
a more effective load balancing at the cost of a more complex
distributed object graph). Those two elements adversely impact
the amount of work required from the DGC.

Therefore, the memory footprint of object identifiers calls
for more compact representations. This point will be discussed
more extensively in Section III but it should be noted that iden-
tifier compression is a weak solution to solve this problem. A
sketch refers to an approximate compact representation of the
data that fits certain pre-determined purposes. The sketching
idea, at the heart of the data streams domain (see [25] for
an introduction), states that keeping an explicit representation
of the data is, sometimes, neither required nor efficient, when
the underlying objective are only associated to some of the
data properties. Many sketches have been introduced in the
data stream literature. In this paper, we are focusing on set
approximations whose most famous representatives are the
bloom filters, originally introduced in [26]. Bloom filters have
been used to solve a large variety of network related problems
(although not for DGC to our knowledge), see [27] for a
survey. Recent works on bloom filters include the study of
compressed bloom filters [28], optimal replacements of bloom
filters [29], enhanced bloom filter with lookup capabilities [30]
or frequency estimations [31].

1 Considering the UUID standard [22], 128bits may seem a natural
estimation for a global identifier size. But it should be noticed that the
UUID standard assume that all actors (see Section 6 of [22]) are fully
trusted (no adversarial identifier generation). The price for a certain level
of security, that we believe unavoidable in large scale distributed systems,
is larger identifiers. Additionally the UUID standard also assumes a 48bits
spatial resolution based on 802 MAC compliant addresses; and consequently
admit no address resolution. Yet resolution can be a highly desirable property
for global identifiers (Globus, JoCaml, ProActive, Mozart identifiers provides
address resolution for example). In such case, 128bits IPv6 addresses will
probably be much more adequate for spatial resolution, requiring again larger
identifiers.

2See UUID discussion.
3Assume 32bits IPv4 addresses and a local 32bits machine.
4Assume 32bits IPv4 addresses.

A. Our results

We introduce the idea of performing garbage cycle detection
through sketched messages rather than explicit ones. This
approach states that object identifiers (and sometimes their
associated properties) can be sketched rather than explicitly
carried over the network. We do not extend the bloom filter
theory (that has been extensively studied), but we analyze and
adapt previously known results for the purpose of DGC. Under
reasonable assumptions, those sketches are up to one order of
magnitude smaller than their explicit counterparts in the case
of global identifier summarization.

Those sketches apply to most of the known DCDAs. In
particular, we discuss extensively how the Veiga and Ferreira
DCDA [6] can be improved through a sketch-based approach.
For this particular example, the overall gain in term of over-
all network transmission is roughly a factor 4 under weak
assumptions.

The theoretical elements to support our sketch-based ap-
proach are introduced in Section II. The application of those
elements to the DGC tasks is discussed in Section III.

II. SKETCHING SETS OF IDENTIFIERS

A memory footprint of 200bits per global identifier is an
hindering factor for any DGC algorithm relying on identifier
transmissions. Yet identifier transmissions are at the core of
most of the DGC algorithms (with the notable exception
of object-migration approaches). Nevertheless, the explicit
representation of identifiers is not a requirement (this point will
be extensively discussed in Section III). Often, requirements
on identifier sets are restricted to certain operations such
as inclusion testing, item insertion, set equality testing, . . .
In this section, we propose, through sketches, much more
compact representations than the explicit extensive listing.
Those sketches are approximate but the accuracy probability
can be precisely quantified. The consequences of relying on
possibly inexact identifier representations are very algorithm-
dependent and therefore left to the Section III.

Since the discovery of hashing, decades ago, it has been
known that sets can be represented in a more compact manner
than explicit listing if a certain degree of approximation is
tolerated. As we will see, even the very naive hashing sketch
can be very efficient and appropriate in the DGC context.
The hashing sketch is discussed in Section II-A. Although,
the hashing sketch has been dramatically improved with the
introduction of bloom filters (see [26]) that are known to be
within a factor 1.44 of the optimal set representation size. The
bloom filters are described in Section II-B. Nevertheless, the
bloom filters present a few shortcomings for the purpose of
DGC. Those shortcomings are addressed in Section II-C with
the introduction of incremental bloom filters.

A. The hashing sketch

When items are large, a naive, yet efficient, approach to set
sketching is simply to substitute a small hash to each item. The
hashing sketch is not new, it has been used for decades (see
[32]). This section introduces this structure with a perspective

3

that will be useful to evaluate it’s potential in the context of
DGC.

Formally let E be the identifier space (simply called item
space in the following). Let S = {s1, . . . , sn} ⊂ E be a set.
Let h : E → {0, 1}b be a random hash function that associates
a random bit-vector of length b to each item x ∈ E. We define
the hashing sketch of S with H = {h(s1), . . . , h(sn)}. Based
on this definition, several operations are very natural to define
such as

• inclusion test h(x) ∈ H as equivalent of s ∈ S,
• union H1 ∪ H2 as equivalent of S1 ∪ S2,
• intersection H1 ∩ H2 as equivalent of S1 ∩ S2.

Since a hash function is non-injective, false positive in-
clusion can occur with the hashing sketch. The following
quantifies the False Positive Rate (FPR) of the hashing sketch.

Lemma 1 (FPR of the hashing sketch) Let H be the hash-
ing sketch equivalent of S ⊂ E with b bits allocated per item.
Let assume that |S| = n. Let x ∈ E. If x ∈ S then h(x) ∈ H.
If x 6∈ S then h(x) 6∈ H with a false positive probability of
1−

(

1 − 2−b
)n

(note: 2−bn can be used as a more practical
upper bound on this probability).

Proof: Immediate. �

Numerical illustration: By allocating 24bits per item for a
hashing sketch containing 1000 items, the false positive rate
is lower than 5.10−5.

For the purpose of sketch-based DCDA, it should be noticed
(this point will be more extensively discussed in Section III)
that the initial choice of b, the number of bits allocated per
item determines the number of items that can ultimately be
added to the sketch while maintaining a bounded collision
probability5. The following definition formalizes this concept.

Definition 1 (sketch ε-capacity) Let S be an empty sketch
where b bits are allocated per item on average. The ε-capacity
of S is defined as the number of items that can be added to S

while maintaining a collision probability lower than ε for the
insertion of the next item.

The following theorem provides some insights on the ε-
capacity of the hashing sketch.

Theorem 1 (hashing sketch ε-capacity) Let H be a hashing
sketch with b bits allocated per item. The ε-capacity of H is
equal to 2bε.

Proof: Based on the Lemma 1, if N is a lower bound of
the hashing sketch capacity, the capacity definition implies that
2−bN < ε. This expression can be rewritten N < 2bε. �

As we will see in the following section, the Lemma 1 is
largely improved by the bloom filter sketch. Nevertheless, as
we will see in Section III, the simplicity of the hashing sketch
has many advantages for DGC purposes.

5We say that a collision happens when the insertion of an item into the
sketch does not modify the sketch (although it should).

B. The bloom filter sketch

In this section, we analyze the bloom filter sketch6 that
is known to provide better performance than the hashing
sketch. More efficient, yet more complicated structures exist
such as the compressed bloom filters [28]. Because of their
complexities, those structures are beyond the scope of the
present work.

We define7 a bloom filter sketch M = (v1, . . . , vp) as a
matrix comprising p bit-vectors of length q. Each bit-vectors
is associated to a random hash function hi : E 7→ {1, . . . , q}
available a priori8. In the following, such sketch M is refered
as a (p, q) sketch. The empty set is associated, by definition,
to M∅ = (0, . . . , 0). Let 1i be the bit-vector where the ith bit
is the sole bit set to 1. The singleton sketch associated to the
element x ∈ E, is defined with Mx = (1i1 , 1i2 , . . . , 1ip

) where
ik = hk(x). The union-equivalent ⊕ operation is defined with

(v1, . . . , vp) ⊕ (w1, . . . , wp) = (OR(v1, w1), . . . , OR(vp, wp))

Based on the previous discussion, it’s clear that (M,⊕) verifies
the union properties. The inclusion-equivalent test, based on
M is defined with

x C M ⇔ (AND(1i1 , s1), . . . , AND(1ip
, sp)) 6= M∅

There is a possibility of false positive inclusion, the following
lemma characterizes the FPR of the bloom filter sketch.

Lemma 2 (FPR of the bloom filter sketch) Let (M,⊕,C)
be the a (p, q) sketch equivalent to (S,∪,∈) a set with n
elements. Then x ∈ S implies xCS and x 6∈ E implies x 6CM

with a probability9

P (p, q, n) =

(

1 −

(

1 −
1

q

)n)p

Proof: Immediate, see also [27]. �

Numerical illustration: Let P (k, n) = minpq=k P (p, q, n)
we have P (5 ∗ 16, 5) < 0.001. This result can be inter-
preted link this: with only 16bits per identifier, the sketch
of 5 elements can accurately assert elements inclusion with
a probability lower than 1

1000 . The memory footprint of the
explicit listing is 1.000bits, assuming a reasonable 200bits per
element, whereas the memory footprint of the bloom filter

6We do not exactly introduce the bloom filters as originally presented in
[26]. Instead, we are presenting a variant (see [27]), that slightly improves
the bloom filter performance but provides the same asymptotic bounds.

7In comparison, the original bloom filter is a single bit-vector of length m

associated to k hash functions (taking the usual notations of the literature).
The bit-matrix can be viewed as a single vector of length m = p×q. In both
cases, there are two parameters: the size of the structure and the number of
hash functions.

8It has been emphasized in the literature that hash functions are not free and
require memory as well (see [29] for recent work on that matter). Nevertheless,
in the case of DGC, the total number of hash functions required in practice is
very limited. Moreover hash functions can be pooled and reused. In practice,
hash functions’ memory costs are negligible in the case of DGC.

9Notice the similarity with the FPR of the original bloom filter that is equal
to

P (k, m, n) =

�
1 − � 1 −

1

m � kn � k

4

sketch is only 80bits. The sketch is more than 10 times smaller
than the initial set.

The design of a bloom filter sketch depends on the two
parameters p and q. Nevertheless, as the Lemma 2 suggests,
for a fixed bit allocation p× q, it exists an optimal repartition.
The following theorem characterizes this optimality.

Theorem 2 (Optimal allocation for the bloom filter sketch)
Let us consider a bloom filter sketch with b bits allocated per
item such that p.q = b.n. Let γ be such that q = γn then

lim
n→∞

min
γ

P (p, q, n) = 2−b ln(2)

and γ = 1
ln(2) = 1.442695041.. is the minimum.

Proof: Indication: limn→∞

(

1 − a
n

)n
= e−a. See [27] for

the proof. �

The result of the Theorem 2 can be interpreted like this:
for n items and b bits per item, we must choose p = b ln(2)
and q = n

ln(2) . Note that this choice is not exactly optimal, but
a more detailed numerical analysis indicates that the optimal
ratio is already very close to 1/ ln(2) for n not larger than 10.

Corollary 1 (ε-capacity of the bloom filter sketch) Let M

be a bloom filter sketch with b bits allocated per item. For
a carefully initially designed bloom filter sketch, if b >
ln(1

ε)/ ln(2)2 the ε-capacity of M is unbounded.

Proof: Based on the result provided by the Theorem 2, the
Definition 1 implies 2−b ln(2) < ε. Note that this expression
is valid for any number N of items. This expression can be
rewritten b > ln(1

ε)/ ln(2)2. �

The capacity bound of the bloom filter sketch is much better
than hashing sketch’s one because for a fixed amount of bits
allocated per item, there is no limit to the number of items
that can be inserted into the bloom filter sketch.

Although, the bloom filter sketch raises a new issue com-
pared to the hashing sketch: the ε-capacity is determined by the
sketch size as a whole in a non-incremental manner. Contrary
to the hashing sketch, the bloom filter sketch requires a full
initialization before the insertion of the first item. Intuitively,
this implies that a large capacity bloom filter sketch requires a
large amount of bits, even if the sketch contains initially a very
limited number of items. If used as such, this drawback defeats
the bloom filter sketch purpose of being a better replacement
for the hashing sketch.

C. Incremental sketches

In practice, the number n of items to be added in the sketch
is not known initially. Additionally, even if this number can be
known or estimated, the sketch may possibly be carried over
the network after each insertion, therefore a large initialization
defeats the sketch compacity purpose. Therefore, the sketch
size must incrementally increase when items are inserted.
Such behavior is very natural for the hashing sketch but more
troublesome for the bloom filter sketch. In this section, we

introduce a general method to incrementally adapt the sketch
size10.

Formally, let us consider the sketch list

S∗ = {S0, S1, . . . , Sk} (1)

=
{

(b,m); (b, α1m); (b, α2m); . . . ; (b, αkm)
}

(2)

where b is the number of bits allocated per item, and αim the
number of items of the ith sketch. The addition of a new item
is always performed on the last sketch Sk. The sketch Sk is
considered as full when it’s capacity is reached, i.e. after αkm
additions. At this point, a new empty sketch Sk+1 is added
(following the exponential allocation pattern). The inclusion
test x C S∗ is defined with

x C S1|x C S2| . . . |x C Sk (where | is the logical OR)

The choice of b, α and the base sketch type clearly de-
fines the incremental sketch capacity. The following theorem
quantifies its FPR.

Theorem 3 (FPR of incremental sketch) Let 2−bγ be an
upper bound of the FPR of the non-incremental base sketch
for b bits allocated per item. With b bits allocated per item, the
incremental sketch provides a FPR lower than 2−bγ/α logα(n)
where n is the total number of items in the incremental sketch.

Proof: In order to distinguish the number of bits allocated
per item for the base sketch from its incremental counterpart,
let b be the number of bits allocated per item for the base
sketch and β the number of bits allocated per item for
the incremental sketch. In terms of bit allocations for the
incremental sketch, the worst case corresponds to the step
where a kth base sketch has just been added (this kth base
sketch is still empty). The number of bits allocated per item
in the incremental sketch at this step can be expressed with

β =
αkmb +

∑k−1
i=0 αimb

∑k−1
i=0 αim

=
αk+1 − 1

αk − 1
b using

k
∑

i=0

αi =
αk+1 − 1

α − 1

=

(

α + θ

(

1

αk

))

b

Therefore, for an initial allocation of b bits per item, the
incremental sketch requires β = (α+o(1))b in the worst case.
In the following, for the sake of simplicity, we will consider
β ≈ αb since it is asymptotically equivalent. Let fi be the FPR
of the ith base sketch. The FPR of the incremental sketch is
defined by 1−

∏k−1
i=0 (1 − fi). Since we assume that the FPR

of the base sketch is upper bounded by 2−bγ , the FPR f of

10We are not aware of earlier introduction of the incremental bloom filter
sketch. Yet, bloom filters have been extensively studied for 3 decades and this
structure may have been already used (possibly left unpublished).

5

the incremental sketch can be bounded with

f = 1 −

k
∏

i=0

(1 − fi)

≤
k−1
∑

i=0

fi = 2−bγk

≤ 2−bγ logα(n) ≈ 2−βγ/α logα(n)

The third line is justified by the fact that the number of
items added to the incremental sketch can be expressed n =
∑k−1

i=0 αim = αk
−1

α−1 m. Thus n ≥ αk + o(1) for any m > 1,
and finally logα(n) ≥ k. �

Numerical illustration: considering an incremental bloom
filter sketch with α = 1.1 and allocating no more than 20bits
per item, we can incrementally add 1000 items with a FPR
staying below 0.012 at all time.

Corollary 2 (ε-capacity of the incremental sketch) Let S
∗

be an incremental sketch with b bits allocated per item. Let
N be a lower bound on the ε-capacity of S

∗, we have

logα(N) < 2bγ/αε

Numerical illustration: considering an incremental bloom
filter sketch with α = 1.1, allocating 32bits per item and with
a FPR lower than 1/1000, the capacity of the sketch is greater
than 1048.

Asymptotically, the ε-capacity of the incremental bloom
filter sketch is better than the hashing sketch one. In practice,
with α = 1.1, the incremental bloom filter sketch capacity
gets higher than the hashing sketch capacity for any b > 20.

III. SKETCH-BASED DGC

In this section, we will see how the sketches previously
introduced can be used to improve DGC performance.

Before, digging into sketch-based DGC, let us discuss why
compression is a weak solution for identifier transport. A sim-
ple experiment illustrates the problem: the GZip compression
of a stream built from the concatenation of 1000 UUID identi-
fiers (generated on the same machine and therefore including
an intrinsic redundancy due to identical spatial resolution)
produces a compressed stream of length roughly equal to
24Kbyte, whereas the base (uncompressed) stream is exactly
16Kbyte long11. In this example, an usual compression scheme
does not improve the situation but, on the contrary, makes it
worse. This situation is essentially due to the intrinsic nature of
object identifiers that are precisely designed to avoid collision.
Indeed the pseudo-random mechanisms used to generate object
identifiers make them “resistant” to compression schemes that
exploit information redundancy.

We will first introduce a very brief description of the
Veiga & Ferreira DCDA in Section III-A. This description
is followed by the introduction of an equivalent sketched

11The experiment has been performed under Microsoft .Net 2.0 using the
class System.Guid as a base implementation for the 128bits UUID stan-
dard and the class System.IO.Compression.GZipStream as GZip
implementation.

Cycle Detection Message (CDM) based on the hashing sketch
in Section III-B. The performance of this first approach is
detailed in Section III-C. We refine this sketched CDM in
Section III-D with the incremental bloom filter sketch. Finally
the practical implementation of such a DGC is detailed in
Section III-E.

A. Veiga & Ferreira DCDA

Veiga and Ferreira present in [6] an asynchronous, com-
plete DGC. Intuitively the DCDA proceeds by an initial
candidate selection (i.e. selecting an object estimated as
probable garbage) that is followed by a sequence of CDMs
send between the processes. CDMs are equivalent to the
graph summary here below (note that this data structure
is already optimized to avoid the duplication of identifiers).
In this section, we propose to leverage the compactness of
sketched CDMs to quickly detect garbage cycles (with a risk of
false positive detection) and to verify the detection correctness
afterwards through explicit CDMs. This approach has virtually
no impact on the DCDA, only the CDM encoding is really
affected.

type graph_summary = {
list of (

unique_id,
is_source_flag, is_target_flag,
timestamp);

}

Upon CDM delivery, only a limited list of operations are
performed12 on the graph summary. Those operations are
(a) insertion in the summary of a new timestamped identifier

either flagged as “source” or (exclusive) as “target”,
(b) test of equality between one of the summary timestamp

and another timestamp for a specified identifier,
(c) setting the second flag of an identifier to true,
(d) testing global equality between the set of identifiers

flagged as source and those flagged as target.
In terms of CDM memory footprint, we will consider the

identifier size equal to 200bits (see discussion in Section I).
The two flags require naturally 2bits. In [6], it is suggested
to code the timestamps as 32bits integers. Timestamps are
incremented on each object operation. Since 230 is already
the order of magnitude of the number of elementary operations
performed per second by an common desktop processor, we
believe that 32bits is too low to guarantee collision-free
timestamps in future large scale distributed systems. Based
on empirical hardware consideration, we believe that 64bits is
a more realistic timestamps size.

B. Veiga & Ferreira CDM sketching
We propose to sketch the graph summary using the

hashing sketch previously introduced. The CDM becomes

type graph_sketch = {

12When an identifier is added to the CDM list, the local invocation
counter timestamp must match, if present, its CDM counterparts; if not, a
race condition has been encountered and the CDM is terminated. The cycle
detection condition is defined as an equality between the items flagged as
source and the items flagged as target.

6

list of (
hash,
is_source_flag, is_target_flag);

}

The proposed graph sketch shares some similarities
with the original graph summary. As detailed below, the
timestamps are simply ignored. The sketch-equivalent opera-
tions are

(a) Insertion of the identifier hash flagged correspondingly.
Ignore timestamp.

(b) Always return true.
(c) Setting both flags of the identifier hash to true.
(d) No change.

Since the hashing sketch has no false negative, it can
easily be proved that the detection errors caused by the
graph sketch are restricted to false positive cycle detec-
tions. Therefore we propose the following mixed strategy:
when a candidate is chosen for cycle detection, start a DCDA
initiative based on sketched CDMs. In case of cycle detec-
tion, start a new DCDA initiative based on explicit CDMs,
taking the suspected object (from the cycle detection point)
as initiative candidate13. The proof is that this mixed strategy
is correct (i.e. all garbage but only garbage is collected) is
simple, but the detail is out the scope of this paper.

C. Sketched DCDA performance analysis

The per-item transportation cost of the explicit CDMs can
be straightforwardly estimated as ce = 266bits per item
(see discussion here above). In order, to estimate the relative
interest of the sketch-based approach, we need an estimation
of this cost when sketched and explicit CDMs are mixed
following the strategy described here above.

The performance analysis of the mixed DCDA requires sev-
eral additional hypotheses. Let Pg be the a priori probability
of detecting a cycle for a DCDA initiative. In practice, the
value of Pg is highly dependent of the candidate generation
heuristics. The lack of widely used distributed object systems
providing complete DGC is an obstacle to provide a rigorous
estimation of Pg at this time. Nevertheless, we believe that
a good tradeoff between DGC promptness and DGC re-
source consumptions involves a majority of failures of DCDA
initiatives. This belief is motivated by the results of [18]
concerning the object age frequency distribution (no simple
behavior seems to govern the object-lifetime). Additionally,
the availability of much cheaper CDMs is, itself, a strong bias
in the estimation of Pg . Indeed, the cheaper the DCDA is, the
more detection initiatives can be started for a given amount of
network bandwidth dedicated to the DGC. Therefore cheaper
CDMs enable the improvement of both DGC promptness and
DGC bandwidth allocation by increasing the rate of cycle

13Furthermore, it is possible to exploit the information of the sketched
CDM in order to speed up the explicit DCDA execution. Indeed, the
graph exploration performed by the Veiga & Ferreira DCDA can be pruned
considering that items that are not contained in the hashing sketch cannot be
part of the cycle of garbage. Since the hashing sketch has no false negative, the
correctness of the DCDA would not be affected. Nevertheless, the approach
requires substantial modifications of the DCDA which go beyond the scope
of this paper.

detection initiatives (consequently lowering the value of Pg).
For the purpose of the analysis, we will rely on Pg = 10%
in the following. We believe this estimate to be quite high,
empirical evaluations may provide a lower success rate.

Let PT be the a priori probability of DCDA interruption
based on the timestamps matching. In the Veiga & Fer-
reira DCDA, timestamps are used to prevent race conditions
with local mutators that would break the DCDA validity. If
timestamps are critical in term of correctness, we believe
the DCDA interruptions based on timestamp matching is
too low14 to have any noticeable impact on performance in
practice. Indeed, a race condition involves a complicated root
displacement that must occur in a timely fashion with the
DCDA execution. Those elements lead us to strongly believe
that PT < 1/1000 (empirical evaluations may provide a
bound that is one or two orders of magnitude lower than
that). Therefore, in the following, those events will simply
be ignored.

Let Pn be the a priori probability for a DCDA initiative that
the graph summary reaches n items at a point of its execution.
As empirical measurements of scale-free graphs suggest (we
are considering the measurements of the size frequencies of
strongly connected components in [18]), small graphs are more
frequent than large ones. In the present analysis, the values
of Pn are important because they will be used in practice to
determine the initial capacity (see Definition 1) of the sketch.

Let ε be an upper bound of the false positive cycle detections
due to the FPR of the hashing sketch. A false positive cycle
detection can occur because one or more hash collision in the
graph sketch (recall: a cycle is detected if all identifiers
are flagged both as “source” and “target”). For the sketched
CDM, the worst case corresponds to the situation where the
cycle detection should fail because of a single unflagged
identifier. In such a case, we have ε lower or equal to the
FPR of the hashing sketch. Although, the worst case here is
an adverse assumption compared to the average case where the
cycle detection fails because of multiple unflagged identifiers.
we will consider ε = 2−bn (see Lemma 1) for the sake of
simplicity in the following.

Based on the previous considerations, if ε is the false
positive cycle detection rate when relying on an allocation of b
bits per item, the per-item cost cm for the whole mixed strategy
can be estimated with cm = b+2+(1 − (1 − Pg)(1 − ε))∗ce

(sum of the sketch per-item cost plus the explicit per-item
cost when it occurs). The Table II provides a list of numerical
values for cm depending on the various initial choices for b
and α (those values have been computed based on the results
of Section II-A). Notice that the higher b is initially chosen, the
higher the graph sketch capacity is. The results are limited to
a capacity of 5.106 items. This value may seem a bit low, but
two factors must be taken into account in the interpretation.
First, it should be noted that distributed objects are typically
“heavy” data-structures handling at least hundreds, usually

14Caution: we do not say that timestamps checking can be ignored for
performance. We say that race condition detections are too rare to impact the
overall DCDA performance. In the very preliminary experiments performed
with NGRID (see Section III-E), we have never observed so far any race
condition leading to a timestamp mismatch.

7

TABLE II

PER-ITEM COSTS OF HASHING SKETCH-BASED CDM.

bL ε capacity cm

10 0.009 10 41
14 0.006 100 44
17 0.008 1.000 48
20 0.010 10.000 51
24 0.006 100.000 54
27 0.007 1.000.000 58
32 0.011 5.000.000 64

Legend:
• bL is the number of bits allocated per item in the hashing sketch.
• ε is an upper bound of the false positive cycle detection rate.
• capacity is a lower bound on the maximal number of items that can be

incrementally added.
• cm is the average per-item CDM footprint in bits.

thousands, of regular objects. Second, the graph summary is
already, as the name suggests, a “summary” of the underlying
object graph. In [6], the authors estimate the graph summary
to be one or two orders of magnitude smaller than the original
graph.

D. Improved sketched DCDA with bloom filters

In Section II-B, we have seen that the bloom filter sketch
is more efficient than the hashing sketch. Yet the bloom
filter sketch cannot efficiently handle the identifier flags like
the hashing sketch. Therefore we propose to improve the
graph sketch 15 by using a mix of the hashing sketch
and the bloom filter sketch. Intuitively, we propose to store
all single-flagged identifiers into the hashing sketch as we do
here above. But when an item becomes fully flagged, the item
is removed from the hashing sketch and moved into the bloom
filter sketch. Since the bloom filter sketch is more efficient than
the hashing sketch, smaller CDM footprint can be expected.
The more fully flagged items we have, the closer we are from
the bloom filter sketch performance.

In order to quantify this approach, we need to know P2

the average percentage of items being fully flagged during the
DCDA execution. It’s possible to prove that in case of random
insertions of items either flagged as “source” or “target”, we
have P2 = 2

3 .

Lemma 3 (Fully flagged item ratio for a cyclic graph)
Let G be an arbitrary cyclic graph with n vertices. Let
assume that we have an algorithm A that explores this graph,
and that visits each vertex exactly twice. Let assume that at
each step of the algorithm A, a vertex v is visited for the
first time or for the second time. Let V1,k (resp. V2,k) be the
set of vertices visited once (resp. twice). Then, considering a
random exploration, we have

lim
n→∞

E [|V1 ∩ V2|]

E [|V1 ∪ V2|]
=

2

3

15Since the graph summary can be seen as a lookup table associating two
bits to each identifier one can be tempted to rely on the bloomier filter
introduced in [30]. Unfortunately, bloomier filters, in the present situation,
are roughly 2 times larger (mostly due to constant factors) than the naive
hashing sketch approach.

TABLE III

PER-ITEM COSTS OF HASHING SKETCH AND BLOOM FILTER SKETCH

MIXED CDM.

bL bM ε capacity cm

14 18 0.007 10 46
16 20 0.007 100 48
18 22 0.005 1.000 50
22 22 0.007 10.000 51
24 22 0.009 100.000 53
26 23 0.014 1.000.000 54
29 24 0.007 5.000.000 55

Legend:
• bL (resp. bM) is the number of bits allocated per item for the hashing

sketch (resp. bloom filter sketch).
• ε is an upper bound of the false positive cycle detection rate.
• capacity is a lower bound on the maximal number of items that can be

incrementally added.
• cm is the average per-item CDM footprint in bits.

Proof: Let Pk be the probability at step k that a vertex, visited
at least once, has been visited twice. This probability can be
expressed with Pk = k−1

2n−1 for any k > 0. Therefore, the
“visited twice” ratio can be expressed with

∑2n
k=0 kPk

∑2n
k=0 k

Note that we are weighting the probability sum with the
cardinal of V1∪V2 (we have |V1∪V2| = k). This choice reflects
that the “weight” of the step is proportional to the overall size
of V1 plus V2. Considering

∑n
i=0 i = 1/2(n+1)2−1/2n−1/2

and
∑n

i=0 i2 = 1/3(n+1)3 − 1/2(n+1)2 +1/6n+1/6, this
ratio can be rewritten

1/3(2n + 1)3 − (2n + 1)2 + 4/3n + 2/3

(2n − 1)(1/2(2n + 1)2 − n − 1/2)

Considering the terms in n3, the limit of this expression when
n tends to infinity is clearly 2

3 . �

This result can be straightforwardly interpreted as P2 ≤ 2
3 .

In the following, we assume P2 = 2
3 for the sake of simplicity,

although we believe this estimate to be quite low. Indeed,
random insertions correspond to a bad situation (it’s not the
worst case though) whereas the DCDA execution is highly
biased in our favor (i.e. higher values for P2) because the
items flagged as “target” are explored first by the algorithm.
The numerical results, obtained with those assumptions, are
gathered in Table III. The improvement is roughly 15% over
the results of the pure hashing sketch approach presented in
Table II.

E. Practical implementation of sketched DCDAs

The sketch-based variant of the Veiga & Ferreira presented
in Section III-B has been implemented in C# and is available
as a part of the NGRID project16. Based on the results gathered
in Table II and practical considerations, the number of bits
allocated per item has been set to 32, thus the hashing sketch
relies on unsigned integers that can be efficiently managed.

16The NGRID project is a LGPL open source distributed computing
framework. See http://ngrid.sourceforge.net.

8

Yet, due to the very preliminary nature of the present work
and the very careful and precise methodology required to get
any significant empirical DGC evaluations (and therefore more
space than we can afford here), empirical results obtained with
NGRID have not been included in this paper.

IV. CONCLUSION AND FUTURE DIRECTIONS

OODP, although widely adopted for the design of distrib-
uted systems, is still usually lacking the GC benefits that have
been available for years for non-distributed applications. We
believe that the large footprint of distributed object identifiers,
estimated as more than 200 bits per identifier, is an hindering
performance factor for DGC implementations.

In this paper, we have introduced the idea of an approximate
representation of object identifiers through sketches for the
specific purpose of DGC. Considering one of the more recent
DGC at this time (see [6]), the improvement brought by the
sketched CDM is roughly a factor 4 under limited (partly
adversarial) assumptions. Since our approach is not specific
of this algorithm, we believe that similar improvements can
be obtained with most of the other DGCs. Moreover, due to
the preliminary nature of this work, it’s also probable that our
sketch-based approach can be improved by better sketches.

DGC is far from being the sole potential application of
the sketch-based approach for the purpose of OODP. In the
context of distributed objects, load balancing algorithms also
rely on object graph transmissions which make them good
candidates for the sketch-based approach.

V. ACKNOWLEDGEMENTS

I would like to thanks Jean-Philippe Vert and Franck Cap-
pello for their advice and their guidance that have made this
work possible.

REFERENCES

[1] “Common Object Request Broker Architecture (CORBA), Wikipedia,”
http://en.wikipedia.org/wiki/CORBA.

[2] “Java Remote Method Invocation (RMI)), Wikipedia,” http://en.
wikipedia.org/wiki/Java RMI.

[3] “Microsoft .Net Framework, Wikipedia,” http://en.wikipedia.org/wiki/
Microsoft .NET Framework.

[4] D. Caromel and L. Henrio, A Theory of Distributed Objects. Springer-
Verlag, 2005.

[5] P. R. Wilson, “Uniprocessor garbage collection techniques,” in Inter-
national Workshop on Memory Management. Saint-Malo, France:
Springer-Verlag Lecture Notes in Computer Science no. 637, 1992.

[6] L. Veiga and P. Ferreira, “Asynchronous Complete Distributed Garbage
Collection.” in 19th International Parallel and Distributed Processing
Symposium (IPDPS 2005). IEEE Computer Society, 2005.

[7] M. C. Lowry, “A new approach to the train algorithm for distributed
garbage collection.” Ph.D. dissertation, Adelaide University, 2004.

[8] S. E. Abdullahi and G. A. Ringwood, “Garbage collecting the Internet:
a survey of distributed garbage collection,” ACM Computing Surveys,
vol. 30, no. 3, pp. 330–373, 1998.

[9] M. Shapiro, F. L. Fessant, and P. Ferreira, “Recent Advances in Distrib-
uted Garbage Collection,” in Advances in Distributed Systems, Advanced
Distributed Computing: From Algorithms to Systems. London, UK:
Springer-Verlag, 1999, pp. 104–126.

[10] F. L. Fessant, “Detecting distributed cycles of garbage in large-scale
systems,” in PODC’01: Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing. New York, NY,
USA: ACM Press, 2001, pp. 200–209.

[11] P. Bishop, “Computer systems with a very large address space, and
garbage collection,” Massachusetts Institute of Technology, Technical
Report MIT/LCS/TR-178, May 1977.

[12] B. Liskov and R. Ladin, “Highly available distributed services and fault-
tolerant distributed garbage collection,” in PODC’86: Proceedings of the
fifth annual ACM symposium on Principles of distributed computing.
New York, NY, USA: ACM Press, 1986, pp. 29–39.

[13] U. Maheshwari and B. Liskov, “Collecting cyclic distributed garbage
by controlled migration,” in PODC’95: Proceedings of the fourteenth
annual ACM symposium on Principles of distributed computing. New
York, NY, USA: ACM Press, 1995, pp. 57–63.

[14] H. Rodrigues and R. Jones, “Cyclic Distributed Garbage Collection
with Group Merger,” in ECCOP’98: Proceedings of the 12th European
Conference on Object-Oriented Programming. London, UK: Springer-
Verlag, 1998, pp. 260–284.

[15] ——, “A Cyclic Distributed Garbage Collector for Network Objects,”
in WDAG ’96: Proceedings of the 10th International Workshop on
Distributed Algorithms. London, UK: Springer-Verlag, 1996, pp. 123–
140.

[16] B. Lang, C. Queinnec, and J. Piquer, “Garbage collecting the world,” in
POPL’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY, USA: ACM
Press, 1992, pp. 39–50.

[17] J. Hughes, “A distributed garbage collection algorithm,” in Proc. of
a conference on Functional programming languages and computer
architecture. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, pp. 256–272.

[18] N. Richer and M. Shapiro, “The Memory Behavior of the WWW, or The
WWW Considered as a Persistent Store,” in POS-9: Revised Papers from
the 9th International Workshop on Persistent Object Systems. London,
UK: Springer-Verlag, 2001, pp. 161–176.

[19] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-Free Geometry
in OO Programs,” Communications of the ACM, Volume 48, Number 5,
May 2005.

[20] A. Birell, D. Evers, G. Nelson, S. Owicki, and E. Wobber, “Distributed
Garbage collection for Network Objects,” digital - Systems Research
Center, Palo Alto, California, United States of America, Technical
Report 116, Dec. 1993.

[21] D. I. Bevan, “Distributed garbage collection using reference counting,”
in Volume II: Parallel Languages on PARLE: Parallel Architectures and
Languages Europe. London, UK: Springer-Verlag, 1987, pp. 176–187.

[22] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace, RFC 4122,” ftp://ftp.rfc-editor.org/in-notes/
rfc4122.txt, July 2005.

[23] “Web Services activity, World Wide Web Consortium,” http://www.w3.
org/2002/ws/.

[24] “The Globus Alliance,” http://www.globus.org.
[25] S. Muthukrisnan, “Data streams: Algorithms ans applications,” http://

www.cs.rutgers.edu/∼muthu/.
[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.
[27] A. Broder and M. Mitzenmacher, “Network Applications of Bloom

Filters: A Survey,” in Internet Mathematics, vol. 1, 2003.
[28] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,

vol. 10, no. 5, pp. 604–612, 2002.
[29] A. Pagh, R. Pagh, and S. S. Rao, “An optimal Bloom filter replace-

ment,” in SODA ’05: Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2005, pp. 823–829.

[30] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter: an
efficient data structure for static support lookup tables,” in SODA ’04:
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2004, pp. 30–39.

[31] S. Cohen and Y. Matias, “Spectral bloom filters,” in SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press, 2003, pp.
241–252.

[32] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

