
HAL Id: hal-00013011
https://hal.science/hal-00013011v4

Preprint submitted on 29 Nov 2005 (v4), last revised 1 Dec 2005 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketch based Distributed Garbage Collection, Theory
and Empirical Elements

Joannès Vermorel

To cite this version:
Joannès Vermorel. Sketch based Distributed Garbage Collection, Theory and Empirical Elements.
2005. �hal-00013011v4�

https://hal.science/hal-00013011v4
https://hal.archives-ouvertes.fr

D
ra

ft

1

Sketch based Distributed Garbage Collection,
Theory and Empirical Elements

Joannès Vermorel
Computational Biology Group, École des Mines de Paris

joannes.vermorel@ensmp.fr

Abstract— Object-Oriented Programming (OOP) is a pillar of
actual, and most probably future, software engineering. Within
the advances for OOP, Garbage Collection (GC) is one the major
improvements that brought both large productivity and reliability
benefits. Yet, to our knowledge, no widely used distributed
systems benefit from a complete Distributed Garbage Collector
(DGC) at this time. We believe that this situation is due, a least
partly, to actual DGC performance issues.

In this paper, we introduce the idea of sketch based DGC
where object-graph fragments are sketched rather than explic-
itly represented. We prove, under reasonable assumptions that
sketched messages are smaller up to one order of magnitude
than their explicit counterparts. Those results apply to most of
state-of-art DGC methods. In the case of the Veiga and Ferreira
DGC algorithm, the improvement is more than a factor 4 under
very limited assumptions.

I. INTRODUCTION

Object-Oriented Programming (OOP) is a pillar of actual,
and most probably future, software engineering. The founda-
tion of OOP consists in considering that a computer programs
is a collections of individual units called objects that commu-
nicates between each other rather than a list of instructions
executed by the computer. Since OOP is omnipresent in
modern software, this notion has been very naturally extended
as Object-Oriented Distributed Programming (OODP) in the
context of distributed systems. Widely used systems such as
CORBA [1], Java RMI [2] or Microsoft .Net Framework [3]
reflect the interest and the need for OODP. A key concept in
OODP is the notion of distributed objects (the term “network
object” is also found in the literature, see [4] for an extensive
review of the topic).

Within the OOP approach, the Garbage Collection (GC) has
been a major advance in terms of programmer productivity and
program reliability [5]. A GC identifies live (or reachable) and
dead (or unreachable) objects in the application object graph.
The GC removes the burden of manual memory management
from the developer to leave it to an automated and more
reliable process. Since Distributed Garbage Collection (DGC)
is the natural OODP extension of the Local Garbage Collection
(LGC) in the context of distributed systems, it is natural to ex-
pect similar productivity and reliability benefits from the DGC
when it comes to the design of distributed systems. Yet, DGCs
are, at this time, far from being widely used, even available,
components in OODP framework (see discussion below). We
believe that this limited diffusion is mostly due to the large
amount of challenging issues in the design of a DGC. Indeed
if a large literature (see [6], [7], [8], [9] for topic review) is

devoted to such algorithms, there are still, to our knowledge,
no industrial-strength DGC implementations comparable, in
terms of performance, to the GC implementations commonly
available nowadays.

The analysis of the performance of a DGC algorithm is
a wide problem that includes many dimensions. Among “ar-
chitectural” properties, asynchronicity and completeness are
two highly desirable, yet very challenging properties for a
DGC algorithm. The asynchronicity states no synchroniza-
tion should be required between more than two machines
at the same time. This property is critical for the poten-
tial scalability of a DGC algorithm. If recent methods are
fully asynchronous[6], [10], many algorithms are not and
require a centralized architecture[11], [12], [13] or group
synchronization[14], [15], [16] or consensus[17] between the
processes. The completeness states that all unreachable but
only unreachable graphs, in particular cyclic graphs, must
be collected. Indeed distributed cycles are frequent [18], and
recent works seem to indicate that object-oriented design tends
to generates scale-free graphs [19] (scale-free graphs are cyclic
with a very high probability). In this respect, it should be
noted that early DGC methods were not complete [20], [21].
Other architectural properties are also desirable such as fault-
tolerance (robustness against message delay or loss), isolation,
(DGC implementation must not require modifications of LGC
or Remote Procedure Call (RPC) subsystems).

But the performance analysis of a DGC also include the
resource consumption properties such as the memory, CPU
and bandwidth overheads. Additionally more subtle criterion
such as the non-disruptiveness (no pause in the application)
and the promptness (garbage should be promptly collected)
should also be considered.

In respect to this list of desirable properties for DGC
algorithms, we believe the wide spectrum of Distributed Cycle
Detection Algorithm (DCDA) ([6], [10] for recent examples)
constitute the most scalable approaches for the DGC prob-
lem. To our knowledge, cycle detections methods are relying
on messages carrying object-graph subsets in one form or
an other. We would like to emphasize that global object-
identifiers used in distributed systems are expensive. The
Table I illustrates the memory footprints of global identifiers in
various distributed systems. Since those global identifiers need
to be generated in a totaly decentralized fashion, we believe
that 200bits is a reasonable lower bound estimation of the
global identifier size for present and future large scale dis-

D
ra

ft

2

TABLE I

GLOBAL IDENTIFIER MEMORY FOOTPRINTS

System Platform Global identifiers Size in bits
NGrid .Net System.Guid 1282

JoCaml SSPC Location 1283

ProActive Java VMID + UID 2884

Mozart Mozart Ticket > 400
Globus Java URLs > 500

tributed systems1. Moreover, the ever-increasing adoption of
web-services [23] for distributed systems (Globus [24] being
one of the most well-known example) involves even longer
identifiers (500bits is a reasonable lower bound estimation for
URL based identifiers) and accentuates ever further this issue.

Large identifiers, if explicitly carried over the network, is an
unavoidable hindering factor for large scale DGC working over
bandwidth constrained network. It should also be noted that
more bandwidth does necessarily solve the DGC bandwidth
requirements. Indeed, more bandwidth allows: first, the design
of finer-grained distributed objects (that simplify the developer
life at the cost of a larger distributed object graph); second,
more distributed object migrations (achieving a more effective
load balancing at the cost of a more complex distributed object
graph). Those two elements adversely impact the amount of
work required from the DGC.

Therefore, the memory footprint of object identifiers calls
for more compact representations. This point will be discussed
more extensively in Section III but it should be noted that
identifier compression is weak solution to solve this problem.
A sketch refers to an approximate compact representation of
the data fitting certain pre-determined purposes. The sketching
idea, at the heart of the data streams domain (see [25] for
an excellent introduction), states that keeping an explicit
representation of the data is, sometimes, neither required nor
efficient, when the underlying objective are only associated to
some the data properties. Many sketches have been introduced
in the data stream literature. In this paper, we are focusing
on set approximations whose most famous representatives are
bloom filters originally introduced in [26]. Bloom filters have
been used to solve a large variety of network related problems
(although not for DGC to our knowledge), see [27] for a
survey. Recent works on bloom filters includes the study of
compressed bloom filters [28], optimal replacements of bloom
filters [29], enhanced bloom filter with lookup capabilities [30]
or frequency estimations [31].

1 Considering the UUID standard [22], 128bits seems a natural estimation
for a global identifier size. But it should be noticed the UUID standard
assume that all actors (see Section 6 of [22]) are fully trusted (no adversarial
identifier generation). The price for a certain level of security, that we
believe unavoidable in large scale distributed systems, is larger identifiers.
Additionally the UUID standard also assumes a 48bits spatial resolution
based on 802 MAC compliant addresses; and consequently admit no address
resolution. Yet resolution can be a highly desirable property for global
identifiers (Globus, JoCaml, ProActive identifiers provides address resolution
for example). In such case, 128bits IPv6 addresses will probably be much
more adequate for spatial resolution, requiring again larger identifiers.

2See UUID discussion.
3Assume 32bits IPv4 addresses and a local 32bits machine.
4Assume 32bits IPv4 addresses.

A. Our results

We introduce, to our knowledge, the idea of performing
cycle detection through sketched messages rather than ex-
plicit ones. This approach states that object identifiers (and
sometimes their associated properties) can be sketched rather
than explicitly carried over the network. We do not extend the
bloom filter theory (that has been extensively studied), but we
analyze and adapt previously known results for the purpose of
DGC. Under reasonable assumptions, those sketches are up to
one order of magnitude smaller than their explicit counterparts
in the case of global identifier summarization.

Those sketches apply to most of the known DCDA meth-
ods. In particular, we discuss extensively how the Veiga and
Ferreira DCDA [6] can be improved through through a sketch-
based approach. For this particular example, the overall gain
in term of overall network transmission is roughly a factor 4
under weak assumptions.

The theoretical elements to support our sketch-based ap-
proach are introduced in Section II. The application of those
elements to the DGC tasks is discussed in Section III.

II. SKETCHING SETS OF IDENTIFIERS

A memory footprint of 200bits per global identifier is
hindering factor for any DGC algorithm relying on identifier
transmissions. Yet identifier transmission is at the core of
most of the DGC algorithms (with the notable exception
of object-migration approaches). Nevertheless, the explicit
representation of identifiers is not a requirement (this point will
be extensively discussed in Section III). Often, requirements
on identifier sets are restricted to certain operations such as
inclusion testing, item insertion, set equality testing, . . . In this
section, we propose, through sketches, much more compact set
representations than explicit extensive listing. Those sketches
are approximate but the accuracy probability can be precisely
quantified. The consequences of relying on possibly inexact
identifier representations are very algorithm-dependent and
therefore left to the Section III.

Since the discovery of hashing decades ago, it has been
known that sets can be represented in more compact manner
than explicit listing if a certain degree of approximation is
tolerated. As we will see, even the very naive hashing sketch
can be very efficient and appropriate in the DGC context.
The hashing sketch is discussed in Section II-A. Although,
the hashing sketch has been dramatically improved with the
the introduction of bloom filters in [26] that are known to be
within a factor 1.44 of the optimal set representation size. The
bloom filters are described in Section II-B. Nevertheless the
bloom filters presents a few shortcomings for the purpose of
DGC. Those shortcomings are addressed in Section II-C with
the introduction of incremental bloom filters.

A. The hashing sketch

Since items are very large, a very naive, yet efficient,
approach to set sketching is simply to substitute a small hash
to each object identifier. The hashing sketch is not new (it has
been used for decades, see [32]). This section introduces this

D
ra

ft

3

structure with a perspective that will be useful to evaluate it’s
potential in the context of DGC applications.

Formally let E be the identifier space (simply called item
space in the following). Let S = {s1, . . . , sn} ⊂ E be a set.
Let h : E → {0, 1}b be a random hash function that associates
a random bit-vector of length b to each item x ∈ E. We define
the hashing sketch sketch of S with H = {h(s1), . . . , h(sn)}.
Based on this definition, several operations are very natural to
define such as

• inclusion test h(x) ∈ H as equivalent of s ∈ S,
• union H1 ∪ H2 as equivalent of S1 ∪ S2,
• intersection H1 ∩ H2 as equivalent of S1 ∩ S2.

Since a hash is non-injective function, false positive in-
clusion can occur with the hashing sketch. The following
quantifies the False Positive Rate (FPR) of the hashing sketch.

Lemma 1 (FPR of the hashing sketch) Let H be the hash-
ing sketch equivalent of S ⊂ E with b bits allocated per item.
Let assume that |S| = n. Let x ∈ E. If x ∈ S then h(x) ∈ H.
If x 6∈ S then h(x) 6∈ H with a false positive probability of
1−

(

1 − 2−b
)n

(note: 2−bn can be used as a more practical
upper bound on this probability).

Proof: Immediate. �

Numerical illustration: By allocating 24bits per item for a
hashing sketch containing 1000 items, the false positive rate
is lower than 5.10−5.

For the purpose of sketch based DCDA, it should be
noticed (this point will be more extensively discussed in
SectionIII) that the initial choice of b, the number of bits per
item determines the number of items that can ultimately be
added to the sketch while a maintaining a bounded collision
probability5. The following definition formalizes this concept.

Definition 1 (sketch ε-capacity) Let S be an empty sketch
where b bits are allocated per item on average. The ε-capacity
of S is defined as the number of items that can be added to S

while maintaining a collision probability lower than ε for the
insertion of the next item.

The following theorem provides some insights on the ε-
capacity of the hashing sketch.

Theorem 1 (hashing sketch ε-capacity) Let H be a hashing
sketch with b bits allocated per item. The ε-capacity of H is
greater than 2bε.

Proof: Based on the Lemma 1, if N is a lower bound of
the hashing sketch capacity, the capacity definition implies that
2−bN < ε. This expression can be rewritten N < 2bε. �

As we will see in the following section, the Lemma 1 is
largely improved by the Bloom filters. Nevertheless, as we
will see in Section III, the simplicity of the hashing sketch
has many advantages for the DGC purposes.

5We says that a collision happen when the insertion of an item into the
sketch does not modify the sketch (although it should).

B. The bloom filter sketch

In this section, we introduce the bloom filter sketch6 that is
known to provide better performance than the hashing sketch.
More efficient, yet more complicated structures exist such as
the compressed bloom filters [28]. Because of their complexity
and additional computation requirements, those structures are
beyond the scope of this paper.

We define7 a bloom filter sketch M = (v1, . . . , vp) as a
matrix comprising p bit-vectors of length q. Each bit-vectors
is associated to a random hash function hi : E 7→ {1, . . . , q}
available a priori8. In the following, such sketch M is refered
as a (p, q) sketch. The empty set is associated, by definition,
with M∅ = (0, . . . , 0). Let 1i be the bit-vector where the ith

bit is the sole bit set to 1. The singleton sketch associated to the
object x ∈ E, is defined with Mx = (1i1 , 1i2 , . . . , 1ip

) where
ik = hk(x). The union-equivalent ⊕ operation is defined with

(v1, . . . , vp) ⊕ (w1, . . . , wp) = (OR(v1, w1), . . . , OR(vp, wp))

Based on the previous discussion, it’s clear that (M,⊕) verifies
the union properties. The inclusion-equivalent test, based on
M is defined with

x C M ⇔ (AND(s1, 1i1), . . . , AND(sp, 1ip
)) 6= M∅

The inclusion-equivalent test is not strictly equivalent because
there is the possibility of false positive, i.e. items not included
in S but declared as included in M. The following lemma
characterizes the false positive rate.

Lemma 2 (FPR of the bloom filter sketch) Let (M,⊕,C)
be the a (p, q) sketch equivalent to (S,∪,∈) a set with n
elements. Then x ∈ S implies xCS and x 6∈ E implies x 6CM

with a probability9

P (p, q, n) =

(

1 −

(

1 −
1

q

)n)p

Proof: Immediate, see also [27]. �

Numerical illustration: Let P (k, n) = minpq=k P (p, q, n)
we have P (5 ∗ 16, 5) < 0.001. This result can be interpreted
as: with only 16bits per identifier, the sketch of 5 objects
can accurately assert object inclusion with a probability lower
than 1

1000 . The memory footprint of the explicit is 1.000bits
assuming a reasonable 200bits per object whereas the memory

6We do not exactly introduce the bloom filters as originally presented in
[26]. Instead, we are presenting a variant (see [27]), that slightly improves
the bloom filter performance but provides the same asymptotic bounds.

7In comparison, a bloom filter is a single bit-vector of length m associated
to k hash functions (taking usual notations of the literature). The bit-matrix
of the bloom filter sketch can be viewed a single vector of length m = p×q.
In both case, there are two parameters: the size of the structure and the the
number of hash functions.

8It has been emphasized in the literature that hash functions are not free and
require memory as well (see [29] for recent work on that matter). Nevertheless,
in the case of DGC applications, the total number of hash functions required in
practice is very limited. Moreover hash functions can be pooled (and reused).
In practice, hash function costs are negligible in the case of DGC applications.

9Notice the similarity with the FPR of the original bloom filter that is equal
to

P (k, m, n) =

�
1 − � 1 −

1

m � kn � k

D
ra

ft

4

footprint of the bloom filter sketch is only 80bits. The sketch
is more than 10 times smaller than the initial set.

The design of a bloom filter sketch depends the two para-
meters p and q. Nevertheless, as suggest the Lemma 2, for a
fixed bit allocation p× q, it exists an optimal repartition. The
following theorem characterizes this optimality.

Theorem 2 (Optimal allocation for the bloom filter sketch)
Let us consider a bloom filter sketch with b bits allocated per
item such that p.q = b.n. Let γ be such that q = γn then

lim
n→∞

min
γ

P (p, q, n) = 2−b ln(2)

and γ = 1
ln(2) = 1.442695041.. is the minimum.

Proof: Indication: limn→∞

(

1 − a
n

)n
= e−a. See [27] for

the proof. �

The result of the Theorem 2 can be interpreted with for n
items and b bits per items, we must choose p = b ln(2) and
q = n

ln(2) . Note that this choice is not exactly optimal, but
a more detailed numerical analysis indicates that the optimal
ratio is already very close to 1/ ln(2) for n not larger than 10.

Corollary 1 (ε-capacity of the bloom filter sketch) Let M

be a bloom filter sketch with b bits allocated per item. For
a carefully initially designed bloom filter sketch, if b >
ln(1

ε)/ ln(2)2 the ε-capacity of M is unbounded.

Proof: Based on the result provided by the Theorem 2, the
Definition 1 implies 2−b ln(2) < ε. Note that this expression
is valid for any number N of items. This expression can be
rewritten in b > ln(1

ε)/ ln(2)2. �

The capacity bound of the bloom filter sketch is much better
than hashing sketch’one because for a fixed amount of bits
allocated per item, there is no limit in the number of items
that can be inserted into the bloom filter sketch.

Although, the bloom filter sketch raises a new issue com-
pared to the hashing sketch: the ε-capacity is determined by the
sketch size as a whole in a non-incremental manner. Contrary
to the hashing sketch, the bloom filter sketch requires a full
initialization before the insertion of the first item. Intuitively,
this implies that a large capacity bloom filter sketch requires a
large amount of bits, even if the sketch contains initially a very
limited number of items. If used as such, this drawback defeats
the bloom filter sketch purpose of being a better replacement
for the hashing sketch.

C. Incremental sketches

In practice, the number n of items to be added in the sketch
is not known initially. Additionally, even if this number can be
known or estimated, the sketch may possibly be carried over
the network after each addition, therefore a large initialization
defeats the sketch compacity purpose. Therefore, the sketch
size must incrementally increase when items are added. Such
behavior is very natural for the hashing sketch but more
delicate for the the bloom filter sketch. In this section, we
introduce a general method to incrementally grow a sketch.

Formally, let us consider the sketch list

S∗ = {S0, S1, . . . , Sk} (1)

=
{

(b,m); (b, α1m); (b, α2m); . . . ; (b, αkm)
}

(2)

where b is the number of bits allocated per item, and αim
the number of items of the ith sketch. The addition of a new
element is always performed on the last sketch Sk. The sketch
Sk is considered as full when it’s capacity is reached, i.e.
after αkm additions. At this point, a new empty sketch Sk+1

is added (following the exponential allocation pattern). The
inclusion test x C S∗ is defined with

x C S1|x C S2| . . . |x C Sk (where | is the logical OR)

The choice of b and α for an incremental sketch clearly
defines it’s capacity. The following theorem quantifies the
false positive error rate.

Theorem 3 (FPR of incremental sketch) Let 2−bγ be an
upper bound on the FPR of the non-incremental base sketch
for b bits allocated per item. Then with b bits allocated per
item, the incremental sketch provides a false positive rate
lower than 2−bγ/α logα(n) where n is the total number of
items in the incremental sketch.

Proof: In order to distinguishes the number of bits allo-
cated per item for the base sketch from the its incremental
counterpart, let b be the number of bits allocated per item
for the base sketch and β the number of bits allocated per
item for the incremental sketch. In terms of bit allocations
for the incremental sketch, the worst case corresponds to the
step where a kth base sketch has just been added (this kth

base sketch is still empty). The number of bits allocated per
elements in the incremental sketch at this step can be expressed
with

β =
αkmb +

∑k−1
i=0 αimb

∑k−1
i=0 αim

=
αk+1 − 1

αk − 1
b using

k
∑

i=0

αi =
αk+1 − 1

α − 1

=

(

α + θ

(

1

αk

))

b

Therefore, for an initial allocation of b bits per items, the
incremental sketch requires β = (α+o(1))b in the worst case.
In the following, for the sake of simplicity, we will consider
β ≈ αb since it is asymptotically equivalent. Let fi be the FPR
of the ith base sketch, the FPR of the incremental sketch is
defined by 1−

∏k−1
i=0 (1 − fi). Since we assume that the FPR of

the base sketch can be upper bounded with 2bγ , then f the FPR
of the incremental sketch can be bounded with

f = 1 −

k
∏

i=0

(1 − fi)

≤
k−1
∑

i=0

fi = 2−bγk

≤ 2−bγ logα(n)

≤ 2−βγ/α logα(n)

D
ra

ft

5

The fourth line is justified by the fact that n the number of
items added to the incremental sketch can be expressed n =
∑k−1

i=0 αim = αk
−1

α−1 m. Thus n ≥ αk + o(1) for any m > 1,
and finally logα(n) ≥ k. �

Numerical illustration: considering an incremental bloom
filter sketch with α = 1.1 and allocating no more than 20bits
per items, we can incrementally add 1000 items with a false
positive rate staying below 0.012 at all time.

Corollary 2 (ε-capacity of the incremental sketch) Let S
∗

be an incremental sketch with b bits allocated per item. Let
N is a lower bound on the ε-capacity of S

∗, we have

logα(N) < 2bγ/αε

Numerical illustration: considering an incremental bloom
filter sketch with α = 1.1, allocating 32bits per items and
with a FPR lower than 1/1000, the capacity of the sketch is
greater than 1048.

Asymptotically, the ε-capacity of the incremental bloom
filter sketch is better than the hashing sketch one. In practice,
with α = 1.1, the incremental bloom filter sketch capacity
gets higher than hashing sketch capacity for any b > 20.

III. SKETCH BASED DCDA

Based on the approximate compact representations of iden-
tifier sets introduced in the previous section, we will now
discuss how the sketching approach can be used to improve
the performance of DGCs.

Before, digging into sketch-based DGC, let us discuss
why the compression is a weak solution for identifier trans-
port. A simple experiment illustrates the problem: the GZip
compression of a stream build from the concatenation of
1000 UUID identifiers (generated on the same machine and
therefore including a intrinsic redundancies due to an identical
spatial resolution) produces a compressed stream of length
roughly equal to 24kByte whereas the base (uncompressed)
stream is exactly 16kByte long10. In this example, an usual
compression scheme does not improve the situation but, at the
contrary, makes it worse. This situation is essentially due to the
intrinsic nature of object identifiers that are precisely designed
to avoid collision. Indeed the pseudo-random mechanisms
used to generate object identifiers make them “resistant” to
compression schemes that exploit information redundancy.

We will first introduce a very brief description of the
Veiga & Ferreira DCDA in Section III-A. This description
is followed by the introduction of an equivalent sketched
Cycle Detection Message (CDM) based on the hashing sketch
in Section III-B. The performance of this first approach is
detailed in Section III-C. We refine this sketched CDM in
Section III-D through the use of the incremental bloom filter
sketch. Finally the practical implementation of such a DGC is
detailed in Section III-E.

10The experiment has been performed under Microsoft .Net 2.0 using the
class System.Guid as a base implementation for the 128bits UUID stan-
dard and the class System.IO.Compression.GZipStream as GZip
implementation.

A. Veiga & Ferreira DCDA

Veiga and Ferreira present in [6] an asynchronous, com-
plete DGC. Intuitively the DCDA proceeds by an initial
candidate selection that is followed by a sequence of CDMs
send between the processes. CDMs are equivalent to the
GraphSummary data structure here below (note that the
graph summary, as presented in [6], is already optimized
to avoid the duplication of identifiers). In this section, we
propose to leverage the compactness of a sketch-based CDMs
to quickly detect cycles (with a risk of false positive detection)
and to verify the detection correctness afterwards through
explicit CDMs. This approach has virtually no impact on the
DCDA, only the CDM encoding is truly affected.

type graph_summary = {
list of (

unique_id,
is_source_flag, is_target_flag,
timestamp);

}

Upon CDM delivery, only a limited list of operations are
performed11 on the graph summary. Those operations are

(a) insertion in the summary of a new timestamped identifier
either flagged as source or (exclusive) as target,

(b) test of equality between one the summary timestamp and
an other timestamp for a specified identifier,

(c) setting the second flag of an identifier to true,
(d) testing global equality between the set of identifiers

flagged as source and those flagged as target.

In terms of CDM memory footprint, we will consider the
identifier size equals to 200bits (see discussion in Section I).
The two flags require naturally 2bits. In [6], it is suggested
to code the timestamps as 32bits integers. Timestamps are
incremented on each object operation, since 230 is already
the order of magnitude the number of elementary operations
performed per second by an common desktop processor, we
believe that 32bits is too low to guarantee collision-free
timestamps in future large scale distributed systems. Based
on empirical hardware consideration, we believe that 64bits is
a more realistic timestamps size.

B. Veiga & Ferreira CDM sketching

We propose to sketch the graph summary based on the
set sketch previously introduced. The CDM becomes

type graph_sketch = {
list of (

hash,
is_source_flag, is_target_flag);

}

The proposed graph sketch is based on a hashing sketch
and shares some similarities with the original graph summary.

11When an identifier is added to the CDM list, the local invocation
counter timestamp must match, if present, its CDM counterparts; if not, a
race condition has been encountered and the CDM is terminated. The cycle
detection condition is defined as an equality between the items flagged as
source and the items flagged as target.

D
ra

ft

6

As detailed below, the timestamps are simply ignored. The
sketch-equivalent operations are
(a) Insertion of the identifier hash flagged correspondingly.

Ignore timestamp.
(b) Always return true.
(c) Setting both flags of the identifier hash to true.
(d) No change.

Since, the hashing sketch has no false negative, it can
easily be proved that the detection errors caused by the
graph sketch are restricted to false positive cycle detec-
tions. Therefore we propose following mixed strategy: when a
candidate is chosen for cycle detection, start a DCDA initiative
based on sketched CDMs. In case of cycle detection, start
a new DCDA initiative based on explicit CDMs, taking the
suspected object (from the cycle detection point) as initiative
candidate12. It’s easy to prove that this mixed strategy is
correct (i.e. all garbage but only garbage is collected).

C. Sketched DCDA performance analysis

The per-item cost for the explicit CDMs cost can be straight-
forwardly estimated as ce = 266bits per item (see discussion
here above). In order, to estimate the relative interest of the
sketch-based approach, we need an estimation of this cost
when sketch-based and explicit CDM s are mixed following
the strategy described here above.

The performance analysis of the mixed DCDA requires sev-
eral additional hypotheses. Let Pg be the a priori probability
of detecting a cycle for a DCDA initiative. In practice, the
value of Pg is highly dependent of the candidate generation
heuristics. The lack of widely used distributed object system
providing complete DGC is an obstacle to provide a rigor-
ous estimation of Pg at this time. Nevertheless, we believe
that a good tradeoff between DGC promptness and DGC
resource consumptions involve a majority of failures of DCDA
initiatives. This belief is motivated by the results of [18]
concerning the object age frequency distribution (no simple
behavior seems to govern the object-lifetime). Additionally,
the availability of much cheaper CDM is, itself, a strong bias
in the estimation of Pg. Indeed, the cheaper the DCDA, the
more detection initiatives can be started for a given amount of
network bandwidth dedicated to the DGC. Therefore cheaper
CDMs enable the improvement of both the DGC promptness
and DGC bandwidth allocation by increasing the rate of cycle
detection initiatives (consequently lowering the value of Pg).
For the purpose of the analysis, we will rely on Pg = 10%
in the following. We believe this estimate to be quite high,
empirical evaluations may provide a lower success rate.

Let PT be the a priori probability of DCDA interruption
based on the timestamps matching. Actually, timestamps in the
Veiga & Ferreira DCDA are used to prevent race conditions
with local mutator that would break the DCDA validity. If

12Furthermore, it is possible to exploit the information of the sketch CDM in
order to speed up the explicit DCDA execution. Indeed, the graph exploration
performed by the Veiga & Ferreira DCDA can be pruned based on the
items that are not contained in the hashing sketch. Since the hashing sketch
has no false negative, the correctness of the DCDA would not be affected.
Nevertheless, the approach requires substantial modifications of the DCDA
which go beyond the scope of this paper.

timestamps are critical in term of correctness, we believe the
DCDA interruptions based on timestamp matching is too low13

to have any noticeable impact on performance in practice.
Indeed, race condition involve a complicated root displacement
that must occurs in a timely fashion with the DCDA execution.
Those elements lead us to strongly believe that PT < 1/1000
(empirical evaluations may provide a bound one or two orders
of magnitude lower than that). Therefore, in the following of
the analysis, those events will simply be ignored.

Let Pn be the a priori probability for an DCDA initiative
that the graph summary reaches n items at a point of its execu-
tion. As suggest empirical measurements of scale-free graphs
(we are considering the measurements of the size frequencies
of strongly connected components in [18]), small graphs are
more likely than large ones. In the present discussion, the
values of Pn are important because, they will be used in
practice to determine the initial capacity (see Definition 1)
of the sketch.

Let ε be an upper bound of the false positive cycle detections
due to the FPR of the hashing sketch. A false positive cycle
detection can occur because one or more hash collision in the
graph sketch (recall: a cycle is detection if all identifiers
are flagged both as source and target). For the sketch-based
CDM, the worst case corresponds to the situation where the
cycle detection should fail because of a single unflagged
identifier. In such case, we have ε lower or equal to the FPR of
the hashing sketch. Although, the worst case here is an adverse
assumption in comparison of the average case (where the
cycle detection fails because of multiple unflagged identifier),
we will consider ε = 2−bn (see Lemma 1) for the sake of
simplicity in the following.

Based on the previous considerations, if ε is the false
positive cycle detection rate when relying on an allocation of b
bits per item, the per-item cm cost for the whole mixed strategy
can estimated with cm = b + 2 + (1 − (1 − Pg)(1 − ε)) ∗ ce

(sum of the sketch-based per-item cost plus the explicit per-
item cost when it occurs). The Table II provides a list of
numerical values for cm depending on the various initial
choices for b and α (those values have been computed based on
the results of Section II-A). Notice that the higher b is initially
chosen, the higher the graph sketch capacity. The results are
actually limited to a capacity of 5.106 items. This value may
seems a bit low at first, but two factors must be taken in
the interpretation. First, it should be noted that distributed
objects are typically “heavy” data-structures handling at least
hundreds, usually thousands of regular objects. Second, the
graph summary is, as the name suggests, a “summary” of the
underlying object graph. In [6], the authors estimate the graph
summary to be one or two orders of magnitude smaller than
the original graph.

13Caution: we do not say that timestamps checking can be ignored for
performance. We say that race condition detections are too rare to impact the
overall DCDA performance. In the very preliminary experiments performed
with NGRID (see Section III-E), we have never observed so far any race
condition leading to a timestamp mismatch.

D
ra

ft

7

TABLE II

PER-ITEM COSTS OF HASHING SKETCH-BASED CDM.

bL ε capacity cm

10 0.009 10 41
14 0.006 100 44
17 0.008 1.000 48
20 0.010 10.000 51
24 0.006 100.000 54
27 0.007 1.000.000 58
32 0.011 5.000.000 64

Legend:
• bL is the number of bits allocated per item in the hashing sketch.
• ε is an upper bound of the false positive cycle detection rate.
• capacity is a lower bound on the maximal number of items that can be

incrementally added.
• cm is the average CDM footprint in bits.

D. Improved sketched DCDA with bloom filters

In Section II-B, we have seen that the bloom filter sketch
is more efficient than the hashing sketch. Yet the bloom
filter sketch cannot efficiently handle the identifier flags like
the hashing sketch. Therefore we propose to improve the
graph sketchf14 by using a mix of hashing sketch and bloom
filter sketch. Intuitively, we propose to store all single-flagged
identifiers in the hashing sketch as we do here above. But
when an item becomes fully flagged, the item is removed from
the hashing sketch and moved into the bloom filter sketch.
Since the bloom filter sketch is more efficient than the hashing
sketch, smaller CDM footprint can be expected. The more
fully flagged items we have, the closer we are from the bloom
filter sketch performance.

In order to quantify this approach, we need to know P2

the average percentage of items being fully flagged during the
DCDA execution. It’s possible to prove that in case of random
insertions of items either flagged as source or target, we have
P2 = 2

3 .

Lemma 3 (Fully flagged item ratio for a cyclic graph)
Let G be arbitrary cyclic graph with n vertices. Let assume
that we have an algorithm A that explore this graph, and
that visits every vertex exactly twice. Let assume that at each
step of the algorithm A, a vertex v is visited (for the first
time or for the second time). Let V1,k (resp. V2,k) be the set
of vertices visited once (resp. twice). Then, considering a
random exploration, we have

lim
n→∞

E [|V1 ∩ V2|]

E [|V1 ∪ V2|]
=

2

3

Proof: Let us consider a process with 2n steps, where at each
step a vertex is visited for the first or for the second time
exclusively. Let Pk be the probability, at step k, that a vertex,
visited at least once, has been visited twice. This probability
can be expressed with Pk = k−1

2n−1 for any k > 0. Therefore,

14Since the graph summary can be seen as a lookup table associating two
bits to each identifier one can be tempted to rely on the bloomier filter
introduced in [30]. Unfortunately, bloomier filters, in the present situation,
are roughly 2 times larger (mostly due to constant factors) than the naive
hashing sketch approach.

TABLE III

PER-ITEM COSTS OF HASHLIST AND BLOOMFILTER MIXED CDM.

bL bM ε capacity cm

14 18 0.007 10 46
16 20 0.007 100 48
18 22 0.005 1.000 50
22 22 0.007 10.000 51
24 22 0.009 100.000 53
26 23 0.014 1.000.000 54
29 24 0.007 5.000.000 55

Legend:
• bL (resp. bM) is the number of bits allocated per item for the hashing

sketch(resp. bloom filter sketch).
• ε is an upper bound of the false positive cycle detection rate.
• capacity is a lower bound on the maximal number of items that can be

incrementally added.
• cm is the average CDM footprint in bits.

the “visited twice” ratio can be expressed with
∑2n

k=0 kPk
∑2n

k=0 k

Note that we are weighting the probability sum with the
cardinal of V1 ∪ V2 (we have |V1 ∪ V2| = k). This choice
reflects that our probability measure reflects that the “weight”
of the step is proportional to the overall size of V1 plus
V2. Considering

∑n
i=0 i = 1/2(n + 1)2 − 1/2n − 1/2 and

∑n
i=0 i2 = 1/3(n+1)3−1/2(n+1)2 +1/6n+1/6, this ratio

can be rewritten

1/3(2n + 1)3 − (2n + 1)2 + 4/3n + 2/3

(2n − 1)(1/2(2n + 1)2 − n − 1/2)

Considering the terms in n3, the limit of this expression when
n tends to infinity is clearly 2

3 . �

This result can be straightforwardly interpreted as P2 ≤ 2
3 .

In the following, we assume P2 = 2
3 for the sake of simplicity,

although we believe this estimate to be quite low. Indeed,
random insertions correspond to a bad situation (it’s not the
worst case though) whereas the DCDA execution is highly
biased in our favor (i.e. higher values for P2) because the items
flagged as target are explored first by the algorithm. Based on
all those assumptions, the numerical results are gathered in
Table III. The improvement is roughly 15% over the results
of the pure hashing sketch approach presented in Table II.

E. Practical implementation of sketched DCDAs

The sketch-based variant of the Veiga & Ferreira presented
in Section III-B has been implemented in C# and is available
as a part of the NGRID project15. Based on the results gathered
in Table II and practical considerations, the number of bits
allocated per item has been set to 32, thus the hashing sketch
relies on unsigned integers that can be efficiently managed.
Yet, due to the very preliminary nature of the presented work
and the very careful and precise methodology required to get
any significant empirical DGC evaluations (and therefore more
space than we can afford here), empirical results obtained with
NGRID have not been included in this paper.

15The NGRID project is a LGPL open source distributed computing
framework. See http://ngrid.sourceforge.net.

D
ra

ft

8

IV. CONCLUSION AND FUTURE DIRECTIONS

OODP, although widely adopted to design distributed sys-
tems, is still usually lacking the GC benefits that have been
available for years for non distributed applications. We be-
lieve that the large footprint of distributed object identifiers,
estimated as more than 200 bits per identifier, is a hindering
performance factor for DGC implementations.

In this paper, we have introduced the idea of approximate
representation of object identifiers through sketches for the
specific purpose of DGC. Considering one the more recent
DGC at this date (see [6]), the improvement brought by the
sketch-based CDM is roughly a factor 4 under limited (partly
adversarial) assumptions. Since our approach is not specific
of this algorithm, we believe that similar improvements can
be obtained with most of the other DGC. Moreover, due to
the preliminary nature of this work, it’s also probable that the
sketch-based approach can be improved by better sketches.

DGC is far from being the sole potential application of
the sketch-based approach for the purpose of OODP. In the
context of distributed objects, load balancing algorithms also
rely on object graph transmissions which make them good
candidates for the sketch-based approach.

V. ACKNOWLEDGEMENTS

I would like to thanks Jean-Philippe Vert and Franck Cap-
pello for their advice and guidance that have made this work
possible.

REFERENCES

[1] “Common Object Request Broker Architecture (CORBA), Wikipedia,”
http://en.wikipedia.org/wiki/CORBA.

[2] “Java Remote Method Invocation (RMI)), Wikipedia,” http://en.
wikipedia.org/wiki/Java RMI.

[3] “Microsoft .net framework, Wikipedia,” http://en.wikipedia.org/wiki/
Microsoft .NET Framework.

[4] D. Caromel and L. Henrio, A Theory of Distributed Object. Springer-
Verlag, 2005.

[5] P. R. Wilson, “Uniprocessor garbage collection techniques,” in Inter-
national Workshop on Memory Management. Saint-Malo, France:
Springer-Verlag Lecture Notes in Computer Science no. 637, 1992.

[6] L. Veiga and P. Ferreira, “Asynchronous Complete Distributed Garbage
Collection.” in 19th International Parallel and Distributed Processing
Symposium (IPDPS 2005). IEEE Computer Society, 2005.

[7] M. C. Lowry, “A new approach to the train algorithm for distributed
garbage collection.” Ph.D. dissertation, Adelaide University, 2004.

[8] S. E. Abdullahi and G. A. Ringwood, “Garbage collecting the internet:
a survey of distributed garbage collection,” ACM Computing Surveys,
vol. 30, no. 3, pp. 330–373, 1998.

[9] M. Shapiro, F. L. Fessant, and P. Ferreira, “Recent Advances in Distrib-
uted Garbage Collection,” in Advances in Distributed Systems, Advanced
Distributed Computing: From Algorithms to Systems. London, UK:
Springer-Verlag, 1999, pp. 104–126.

[10] F. L. Fessant, “Detecting distributed cycles of garbage in large-scale
systems,” in PODC’01: Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing. New York, NY,
USA: ACM Press, 2001, pp. 200–209.

[11] P. Bishop, “Computer systems with a very large address space, and
garbage collection,” Massachusetts Institute of Technology, Technical
Report MIT/LCS/TR-178, May 1977.

[12] B. Liskov and R. Ladin, “Highly available distributed services and fault-
tolerant distributed garbage collection,” in PODC’86: Proceedings of the
fifth annual ACM symposium on Principles of distributed computing.
New York, NY, USA: ACM Press, 1986, pp. 29–39.

[13] U. Maheshwari and B. Liskov, “Collecting cyclic distributed garbage
by controlled migration,” in PODC’95: Proceedings of the fourteenth
annual ACM symposium on Principles of distributed computing. New
York, NY, USA: ACM Press, 1995, pp. 57–63.

[14] H. Rodrigues and R. Jones, “Cyclic Distributed Garbage Collection
with Group Merger,” in ECCOP’98: Proceedings of the 12th European
Conference on Object-Oriented Programming. London, UK: Springer-
Verlag, 1998, pp. 260–284.

[15] ——, “A Cyclic Distributed Garbage Collector for Network Objects,”
in WDAG ’96: Proceedings of the 10th International Workshop on
Distributed Algorithms. London, UK: Springer-Verlag, 1996, pp. 123–
140.

[16] B. Lang, C. Queinnec, and J. Piquer, “Garbage collecting the world,” in
POPL’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY, USA: ACM
Press, 1992, pp. 39–50.

[17] J. Hughes, “A distributed garbage collection algorithm,” in Proc. of
a conference on Functional programming languages and computer
architecture. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, pp. 256–272.

[18] N. Richer and M. Shapiro, “The Memory Behavior of the WWW, or The
WWW Considered as a Persistent Store,” in POS-9: Revised Papers from
the 9th International Workshop on Persistent Object Systems. London,
UK: Springer-Verlag, 2001, pp. 161–176.

[19] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-Free Geometry
in OO Programs,” Communications of the ACM, Volume 48, Number 5,
May 2005.

[20] A. Birell, D. Evers, G. Nelson, S. Owicki, and E. Wobber, “Distributed
Garbage collection for Network Objects,” digital - Systems Research
Center, Palo Alto, California, United States of America, Technical
Report 116, Dec. 1993.

[21] D. I. Bevan, “Distributed garbage collection using reference counting,”
in Volume II: Parallel Languages on PARLE: Parallel Architectures and
Languages Europe. London, UK: Springer-Verlag, 1987, pp. 176–187.

[22] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace, RFC 4122,” ftp://ftp.rfc-editor.org/in-notes/
rfc4122.txt, July 2005.

[23] “Web Services activity, World Wide Web Consortium,” http://www.w3.
org/2002/ws/.

[24] “The Globus Alliance,” http://www.globus.org.
[25] S. Muthukrisnan, “Data streams: Algorithms ans applications,” http://

www.cs.rutgers.edu/∼muthu/.
[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.
[27] A. Broder and M. Mitzenmacher, “Network Applications of Bloom

Filters: A Survey,” in Internet Mathematics, vol. 1, 2003.
[28] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,

vol. 10, no. 5, pp. 604–612, 2002.
[29] A. Pagh, R. Pagh, and S. S. Rao, “An optimal Bloom filter replace-

ment,” in SODA ’05: Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2005, pp. 823–829.

[30] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter: an
efficient data structure for static support lookup tables,” in SODA ’04:
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2004, pp. 30–39.

[31] S. Cohen and Y. Matias, “Spectral bloom filters,” in SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press, 2003, pp.
241–252.

[32] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

