
HAL Id: hal-00013011
https://hal.science/hal-00013011v3

Preprint submitted on 7 Nov 2005 (v3), last revised 1 Dec 2005 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketch based Distributed Garbage Collection, Theory
and Empirical Evaluation

Joannès Vermorel

To cite this version:
Joannès Vermorel. Sketch based Distributed Garbage Collection, Theory and Empirical Evaluation.
2005. �hal-00013011v3�

https://hal.science/hal-00013011v3
https://hal.archives-ouvertes.fr

D
ra

ft

1

Sketch based Distributed Garbage Collection,
Theory and Empirical Evaluation

Joanǹes Vermorel
Computational Biology Group,́Ecole des Mines de Paris

joannes.vermorel@ensmp.fr

Abstract— Distributed Garbage Collection (DGC) algorithms
are fundamental components of modern object-oriented distrib-
uted systems. The design of a DGC raises numerous issues
in term of performance and scalability. DGC object-migration
approaches are known to be inefficient compared to graph cycle
detection approaches because of the tremendous costs associated
with object migration compared to graph-fragment migration
where only the object identifiers are carried over the network.
Yet, even object identifiers have a large memory footprint in
practice.

In this paper, we introduce the idea of sketched Cycle Detection
Message (CDM). We show that explicit graph-fragment represen-
tations are very costly compared to the sketch-based ones. We
prove, under reasonable assumptions that sketch-based messages
are smaller (up to one order of magnitude) than their explicit
counterparts. Those results apply to most of state-of-art DGC
methods. The improvement brought by this approach is discussed
in details in the particular case of the Veiga and Ferreira DGC
algorithm. In this case, the amount of improvement is more than
a factor 3 under very limited assumptions.

I. I NTRODUCTION

Garbage Collection (GC) has been a major advance in
terms of programmer productivity and program reliability [1].
Garbage collection identifieslive (or reachable) anddead (or
unreachable) objects in the application object graph. Fromthe
GC viewpoint, any application can be regarded as amutator
with a single relevant operation: reference-assignment. DGC is
the natural extension of the Local Garbage Collection (LGC)
in the context of distributed systems. The design of a DGC
algorithm raises numerous issues and a large literature [2], [3],
[4], [5] is devoted to such algorithms.

We believe that asynchronicity and completeness are two
highly desirable, yet most challenging properties, for a
DGC algorithm. Theasynchronicity states no synchroniza-
tion should be required between more than two machines
at the same time. This property is critical for the po-
tential scalability of a DGC algorithm. If recent methods
are fully asynchronous[2], [6], many algorithms are not
and require a centralized architecture[7], [8], [9] or group
synchronization[10], [11], [12] or consensus[13] betweenthe
processes. Thecompletenessstates that all unreachable but
only unreachable graphs, in particularcyclic graphs, must
be collected. Indeed distributed cycles are frequent [14],and
recent works seem to indicate that object-oriented design tends
to generates scale-free graphs [15] (scale-free graphs arecyclic
with a very high probability). Other architectural properties
are also desirable such asfault-tolerance(robustness against

TABLE I

GLOBAL IDENTIFIER MEMORY FOOTPRINTS

System Platform Global identifiers Size in bits
NGrid .Net System.Guid 1282

JoCaml SSPC Location 1283

ProActive Java VMID + UID 2884

Mozart Mozart Ticket 272
Globus Java URLs > 500

message delay or loss),isolation, (DGC implementation must
not require modifications of LGC or Remote Procedure Call
(RPC) subsystems),non-disruptive(no pause in the applica-
tion), promptness(garbage should be promptly collected).

In respect to this list of desirable properties for the DGC
algorithms, we believe the wide spectrum of Distributed Cycle
Detection Algorithm (DCDA) constitute the most scalable
approaches for the DGC problem. To our knowledge, all cycle
detections methods ([2], [6] for recent examples) are relying
on messages carrying object-graph subsets in one form or
an other. We would like to emphasize that global object-
identifiers used in distributed systems are expensive. The
Table I illustrates the memory footprints of global identifiers
in various distributed systems. Since those global identifiers
need to be generated in a totaly decentralized fashion, we
believe that200bits is a reasonable lower bound estimation
of the global identifier size for present and future large scale
distributed systems1.

The memory footprint of object identifiers calls for more
compact representations. Asketch refers to an approxi-
mate compact representation of the data fitting certain pre-
determined purposes. The sketching idea, at the heart of the
data streams domain (see [17] for an excellent introduction),
states that keeping an explicit representation of the data is,
sometimes, neither required nor efficient, when the underlying

1 Considering the UUID standard [16], 128bits seems a natural estimation
for a global identifier size. But it should be noticed the UUIDstandard
assume that all actors (see Section 6 of [16]) are fully trusted (no adversarial
identifier generation). The price for a certain level of security, that we
believe unavoidable in large scale distributed systems, is alarger identifier.
Additionally The UUID standard also assumes a 48bits spatialresolution
based on 802 MAC compliant addresses; and consequently admit no address
resolution. Yet resolution can be a highly desirable property for global
identifiers (Globus, JoCaml, ProActive identifiers providesaddress resolution
for example). In such case, 128bits IPv6 addresses will probably be much
more adequate for spatial resolution, requiring again a larger identifier size.

2See UUID discussion.
3Assume 32bits IPv4 addresses and a local 32bits machine.
4Assume 32bits IPv4 addresses.

D
ra

ft

2

objective are only associated to some the data properties. Many
sketches have been introduced in the data stream literature.
In this paper, we are focusing onset approximationthat are
commonly known asbloom filters, originally introduced in
[18]. Bloom filters have been used to solve a large variety
of network related problems (although not for DGC to our
knowledge), see [19] for a survey. Recent works on bloom
filters includes the study of compressed bloom filters [20],
optimal replacements of bloom filters [21], enhanced bloom
filter with lookup capabilities [22] or frequency estimations
[23].

A. Our results

We introduce, to our knowledge, the idea of performing
cycle detection through sketched messages rather than ex-
plicit ones. This approach states that object identifiers (and
sometimes their associated properties) can be sketched rather
than explicitly carried over the network. We do not extend the
bloom filter theory (that has been extensively studied), butwe
analyze and adapt previously known results for the purpose of
DGC. Under reasonable assumptions, those sketches are up to
one order of magnitude smaller than their explicit counterparts
in the case of global identifier summarization.

Those sketches apply to most of the DCDA. In particular,
we discuss extensively how the Veiga and Ferreira DCDA [2]
can be improved through through a sketch-based approach.
For this particular example, the overall gain in term of over-
all network transmission is roughly a factor 3 under weak
assumptions.

II. SKETCHING SETS OF IDENTIFIERS

A memory footprint of 200bits per global identifier is
hindering factor for any DGC algorithm relying on identifier
transmission. Yet identifier transmission is at the core of most
of the DGC algorithm (with the notable exception of object-
migration approaches).

Since the discovery of hashing, it has been known that
sets can be represented in more compact manner than explicit
listing if a certain degree of approximation is tolerated. Al-
though very naive the hashing sketch can be very efficient
and appropriate in the DGC context. The hashing sketch is
discussed in Section II-A and it’s DGC application is detailed
in Section III. Since the introduction of bloom filters it is
known that the hashing sketch is far from being an optimal
solution. In Section II-B, we introduce a variant of bloom
filters (previously known in the literature) and analyze its
shortcoming for the purpose of DGC.

Nevertheless, as we will see in Section III, the explicit rep-
resentation of identifiers is not a requirement. Often, require-
ments (on identifier sets) are restricted to certain operations
such as inclusion testing, item insertion, set equality testing,
. . . In this section, we propose, through sketches, much more
compact set representations than explicit extensive listing.
Those sketches are only accuracy on a certain (explicitly
quantified) probability. The consequences of relying on a
possibly inexact identifier representation is very algorithm-
dependent and therefore left to the Section III.

A. The hashing sketch

Since items are very large, a very naive, yet efficient,
approach to set sketching is simply to substitute a small hash
to each object identifier. The hashing sketch is not new (it has
been used for decades, see [24]). This section introduce this
structure with a perspective that will be useful in the context
of DGC applications.

Formally let E be the identifier space (simply called item
space in the following). LetS = {s1, . . . , sn} ⊂ E be a set.
Let h : E → {0, 1}b be a random hash function that associates
a random bit-vector of lengthb to each itemx ∈ E. We define
the hashing sketch sketch ofS with H = {h(s1), . . . , h(sn)}.
Based on this definition, several operations are very natural to
define such as

• inclusion testh(x) ∈ H as equivalent ofs ∈ S,
• union H1 ∪ H2 as equivalent ofS1 ∪ S2,
• intersectionH1 ∩ H2 as equivalent ofS1 ∩ S2.

Since a hash is non-injective function, false positive in-
clusion can occur with the hashing sketch. The following
quantifies the False Positive Rate (FPR) of the hashing sketch.

Lemma 1 (FPR of the hashing sketch)Let H be the hash-
ing sketch equivalent ofS ⊂ E with b bits allocated per item.
Let assume that|S| = n. Let x ∈ E. If x ∈ S thenh(x) ∈ H.
If x 6∈ S then h(x) 6∈ H with a false positive probability of
1−

(

1 − 2−b
)n

(note: 2−bn can be used as a more practical
upper bound on this probability).

Proof: Immediate.�

Numerical illustration: By allocating24bits per item for a
hashing sketch containing1000 items, the false positive rate
is lower than5.10−5.

For the purpose of sketch based DCDA, it should be
noticed (this point will be more extensively discussed in
SectionIII) that the initial choice ofb, the number of bits per
item determines the number of items that can ultimately be
added to the sketch while a maintaining a bounded collision
probability5. The following definition formalizes this concept.

Definition 1 (sketch ǫ-capacity) Let S be an empty sketch
whereb bits are allocated per item on average. Theǫ-capacity
of S is defined as the number of items that can be added to
S while maintaining a collision probability lower thanǫ for
elements not previously added.

The following theorem provides some insights on theǫ-
capacity of the hashing sketch.

Theorem 1 (hashing sketchǫ-capacity) Let H be a hashing
sketch withb bits allocated per item. Theǫ-capacity ofH is
greater than2b/2ǫ.

Proof: Immediate using Lemma 1.�

It should be noticed that this result is weaker than what
can be achieved with a simple bloom filter [18] where the

5We says that acollision happen when the insertion of an item into the
sketch does not modify the sketch (although it should).

D
ra

ft

3

ǫ-capacity is2
b

2ln(2) ǫ (1
2ln(2) ≈ 0.62 > 0.5). Nevertheless, as

we will see the simplicity of the hashing sketch has many
advantages for the DGC purposes (see Section III).

B. The bloom filter sketch

In this section, we introduce the bloom filter sketch6 that is
known to provide better performance than the hashing sketch.
More efficient, yet more complicated structures exist such as
the compressed bloom filters [20]. Because of their complexity
and additional computation requirements, those structures are
beyond the scope of this paper.

We define7 a bloom filter sketchM = (v1, . . . , vp) as a
matrix comprisingp bit-vectors of lengthq. Each bit-vectors
is associated to a random hash functionhi : E 7→ {1, . . . , q}
availablea priori8. In the following, such sketchM is refered
as a(p, q) sketch. The empty set is associated, by definition,
with M∅ = (0, . . . , 0). Let 1i be the bit-vector where theith

bit is the sole bit set to1. The singleton sketch associated to the
objectx ∈ E, is defined withMx = (1i1 , 1i2 , . . . , 1ip

) where
ik = hk(x). The union-equivalent⊕ operation is defined with

(v1, . . . , vp) ⊕ (w1, . . . , wp) = (OR(v1, w1), . . . , OR(vp, wp))

Based on the previous discussion, it’s clear that(M,⊕) verifies
the union properties. The inclusion-equivalent test, based on
M is defined with

x ⊳ M ⇔ (AND(s1, 1i1), . . . , AND(sp, 1ip
)) 6= M∅

The inclusion-equivalent test is not strictly equivalent because
there is the possibility offalse positive, i.e. items not included
in S but declared as included inM. The following lemma
characterizes the false positive rate.

Lemma 2 (FPR of the bloom filter sketch) Let (M,⊕,⊳)
be the a(p, q) sketch equivalent to(S,∪,∈) a set with n
elements. Thenx ∈ S impliesx⊳S andx 6∈ E impliesx 6⊳M

with a probability9

P (p, q, n) =

(

1 −

(

1 −
1

q

)n)p

Proof: Immediate, see also [19].�

Numerical illustration: LetP (k, n) = minpq=k P (p, q, n)
we haveP (5 ∗ 16, 5) < 0.001. This result can be interpreted

6We do not exactly introduce the bloom filters as originally presented in
[18]. Instead, we are presenting a variant (see [19]), that slightly improves
the bloom filter performance (but provides the same asymptotic bounds)

7In comparison, a bloom filter is a single bit-vector of lengthm associated
to k hash functions (taking usual notations of the literature).The bit-matrix
of the bloom filter sketch can be viewed a single vector of length m = p×q.
In both case, there are two parameters: the size of the structure and the the
number of hash functions.

8It has been emphasized in the literature that hash functions are notfreeand
require memory as well (see [21] for recent work on that matter).Nevertheless,
in the case of DGC applications, the total number of hash functions required in
practice is very limited. Moreover hash functions can be pooled (and reused).
In practice, hash function costs are negligible in the case of DGC applications.

9Notice the similarity with the FPR of the original bloom filterthat is equal
to

P (k, m, n) =

1 −

�
1 −

1

m

�kn
!k

as: with only 16bits per identifier, the sketch of5 objects
can accurately assert object inclusion with a probability lower
than 1

1000 . The memory footprint of the explicit is1.000bits
assuming a reasonable200bits per object whereas the memory
footprint of the bloom filter sketch is only80bits. The sketch
is more than10 times smaller than the initial set.

The design of a bloom filter sketch depends the two para-
metersp and q. Nevertheless, as suggest the Lemma 2, for a
fixed bit allocationp× q, it exists anoptimal repartition. The
following theorem characterizes this optimality.

Theorem 2 (Optimal allocation for the bloom filter sketch)
Let us consider a bloom filter sketch withb bits allocated per
item such thatp.q = b.n. Let γ be such thatq = γn then

lim
n→∞

min
γ

P (p, q, n) = 2−b ln(2)

and γ = 1
ln(2) = 1.442695041.. is the minimum.

Proof: Indication: limn→∞

(

1 − a
n

)n
= e−a. See [19] for

the proof.�

The result of the Theorem 2 can be interpreted with forn
items andb bits per items, we must choosep = b ln(2) and
q = n

ln(2) . Note that this choice is not exactly optimal, but
a more detailed numerical analysis indicates that the optimal
ratio is already very close to1/ ln(2) for n not larger than10.

Corollary 1 (ǫ-capacity of the bloom filter sketch) Let M

be a bloom filter sketch withb bits allocated per item. The
ǫ-capacity ofM is greater than2b ln(2)ǫ.

Proof: Immediate.�

The capacity bound of the bloom filter sketch is much
better than hashing sketch’one becauseln(2) ≃ 0.69 > 1/2.
Although, the bloom filter sketch raises a new issue compared
to the hashing sketch: theǫ-capacity is determined by the
sketch size as a whole in anon-incrementalmanner. Contrary
to the hashing sketch, the size of the bloom filter sketch is
independent of the number of sketched items. Intuitively, this
implies that a large capacity bloom filter sketch requires a
large amount of bits, even if the sketch contains initially avery
limited number of items. If usedas such, this drawback defeats
the bloom filter sketch purpose of being a better replacement
for the hashing sketch.

C. Incremental sketches

In practice, the numbern of items to be added in the sketch
is not known initially. Additionally, even if this number can be
known or estimated, the sketch may possibly be carried over
the network after each addition, therefore a large initialization
defeats the sketch compacity purpose. Therefore, the sketch
size mustincrementallyincrease when items are added. Such
behavior is very natural for the hashing sketch but more
delicate for the the bloom filter sketch. In this section, we
introduce a general method to incrementally grow a sketch.

Formally, let us consider the sketch list

S∗ = {S0, S1, . . . , Sk} (1)

=
{

(b,m); (b, α1m); (b, α2m); . . . ; (b, αkm)
}

(2)

D
ra

ft

4

where b is the number of bits allocatedper item, and αim
the number of items of theith sketch. The addition of a new
element is always performed on the last sketchSk. The sketch
Sk is considered asfull when it’s capacity is reached, i.e.
after αkm additions. At this point, a new empty sketchSk+1

is added (following the exponential allocation pattern). The
inclusion testx ⊳ S∗ is defined with

x ⊳ S1|x ⊳ S2| . . . |x ⊳ Sk (where| is the logical OR)

The choice ofb and α for an incremental sketch clearly
defines it’s capacity. The following theorem quantifies the
false positive error rate.

Theorem 3 (FPR of incremental sketch)With b bits allo-
cated per item on average, the incremental sketch provides
a false positive rate lower than2−bγ 1+α

2α logα(n) where γ
depends of the initial FPR (assuming a FPR equal to2−bγ).

Proof: Tips:
∑k

i=0 αi = αk+1
−1

α−1 . �

Numerical illustration: starting with a single bloom filter
sketch smaller than200bits (single explicit identifier repre-
sentation) and takingα = 2, we can incrementally add1000
items, allocating40bits per item on average, with a false
positive rate staying below5.10−6 at all time.

Corollary 2 (ǫ-capacity of the incremental sketch)Let S
∗

be an incremental sketch withb bits allocated per item. The
ǫ-capacity ofS∗ is greater than

2bγ 1+α
2α

W
(

2bγ 1+α
2α

)

WhereW is the Lambert W function (i.e, the inverse ofx 7→
xex, see [25]).

Asymptotically, this capacity bound on the incremental
bloom filter sketch is better than the hashing sketch one. In
practice, withα = 1.1, the incremental bloom filter sketch
capacity gets higher than hashing sketch capacity for any
b > 15.

III. SKETCH BASED DCDA

Based on the approximate compact representations of iden-
tifier sets (introduced in the previous section), we will now
discuss how the sketching approach can be used to improve
the DCDA performance.

A. Veiga & Ferreira DCDA

Veiga and Ferreira present in [2] an asynchronous, com-
plete DGC. Intuitively the DCDA proceeds by an initial
candidate selection that is followed by a sequence of CDMs
send between the processes. CDMs are equivalent to the
GraphSummary data structure here below (note that the
graph summary is already been optimized to avoid identifier
duplicates). In this section, we propose to leverage the com-
pactness of the sketch-based CDMs to quickly detect cycles
(with a risk of false positive detection) and to verify the

detection correctness afterwards through explicit CDMs. This
approach has no virtually impact on the DCDA, only the CDM
encoding is truly affected.

type graph_summary = {
list of (

unique_id,
is_source_flag, is_target_flag,
timestamp);

}

Upon CDM delivery, only a limited list of operations are
performed10 on the graph summary. Those operations are

(a) insertion in the summary of a new timestamped identifier
either flagged as source or (exclusive) as target,

(b) test of equality between one the summary timestamp and
an other timestamp for a specified identifier,

(c) setting the second flag of an identifier totrue,
(d) testing global equality between the set of identifiers

flagged as source and those flagged as target.

In terms of CDM memory footprint, we will consider the
identifier size equals to200bits (see discussion in Section I).
The two flags require naturally 2bits. In [2], it is suggested
to code the timestamps as32bits integers. Timestamps are
incremented on each object operation, since230 is already
the order of magnitude the number of elementary operations
performed per second by an common desktop processor, we
believe that 32bits is too low to guarantee collision-free
timestamps in future large scale distributed systems. Based
on empirical hardware consideration, we believe that64bits is
a more realistic timestamps size.

B. Veiga & Ferreira CDM sketching

We propose to sketch thegraph summary based on the
set sketch previously introduced. The CDM becomes

type graph_sketch = {
list of (

hash,
is_source_flag, is_target_flag);

}

The proposedgraph sketch is based on a hashing sketch
and shares some similarities with the original graph summary.
As detailed below, the timestamps are simply ignored. The
sketch-equivalent operations are

(a) Insertion of the identifier hash flagged correspondingly.
Ignore timestamp.

(b) Always returntrue.
(c) Setting both flags of the identifier hash totrue.
(d) Identical.

Since, the set sketch has no false negative, in can eas-
ily be proved that the detection errors caused by the

10When an identifier is added to the CDM list, the local invocation
counter timestamp must match, if present, its CDM counterparts;if not, a
race condition has been encountered and the CDM is terminated. The cycle
detection condition is defined as an equality between the items flagged as
source and the items flagged as targets.

D
ra

ft

5

graph sketch are restricted to false positive cycle detec-
tions. Therefore we propose followingmixedstrategy: when a
candidate is chosen for cycle detection, start a DCDA initiative
based on sketched CDMs. In case of cycle detection, start
a new DCDA initiative based on explicit CDMs, taking the
suspected object (from the cycle detection point) as initiative
candidate11. It’s easy to prove that this mixed strategy is
correct (i.e. all garbage but only garbage is collected).

C. Sketched DCDA performance analysis.

The per-item cost for the explicit CDMs cost is estimated as
ce = 266bits (see discussion here above). In order, to estimate
the relative interest of the sketch-based approach, we needan
estimation of this cost when sketch-based and explicit CDM
s are mixed following the strategy described here above.

The performance analysis of the mixed DCDA requires sev-
eral additional hypotheses. LetPg be thea priori probability
of detecting a cycle for a DCDA initiative. In practice, the
value of Pg is highly dependent of the candidate generation
heuristics. The lack of widely used distributed object system
providing complete DGC is an obstacle to provide a rigor-
ous estimation ofPg at this time. Nevertheless, we believe
that a good tradeoff between DGC promptness and DGC
resource consumptions involve a majority of failures of DCDA
initiatives. This belief is motivated by the results of [14]
concerning the object age frequency distribution (no simple
behavior seems to govern the object-lifetime). Additionally,
the availability of much cheaper CDM is, itself, a strong bias
in the estimation ofPg. Indeed, the cheaper the DCDA, the
more detection initiatives can be started for a given amountof
network bandwidth dedicated to the DGC. Therefore cheaper
CDM enable the improvement of both the DGC promptness
and DGC bandwidth allocation by increasing the rate of cycle
detection initiatives (consequently lowering the value ofPg).
For the purpose of the analysis, we will rely onPg = 10%
in the following. We believe this estimate to be quite high,
empirical evaluations may provide a lower success rate. LetPT

be thea priori probability of DCDA interruption based on
the timestamps matching. Actually, timestamps in the Veiga&
Ferreira DCDA are used to prevent race conditions with local
mutator that would break the DCDA validity. If timestamps
are critical in term ofcorrectness, we believe the DCDA
interruptions based on timestamp matching is too low12 to
have any noticeable impact on performance in practice. Indeed,
race condition involve a complicated root displacement that
must occurs in a timely fashion with the DCDA execution.
Those elements lead us to strongly believe thatPT < 1/1000
(empirical evaluations may provide a bound one or two order
of lower than that). Therefore, in the following of the analysis,
those events will simply be ignored.

Let Pn be the a priori probability for an DCDA initia-
tive that the graph summary reachesn items at a point of

11It’s possible to exploit the information of the sketch CDM in order to
speed up the explicit DCDA execution. Such discussion goes beyond the scope
of this paper.

12Caution: wedo not say that timestamps checking can be ignored for
performance. We say that race condition detections are too rare to impact the
overall DCDA performance.

TABLE II

PER-ITEM COSTS OF HASHING SKETCH-BASED CDM.

bL ǫ capacity cm

20 0.009 10 51
26 0.012 100 58
32 0.015 1000 64
40 0.009 10000 71
46 0.011 100000 78
52 0.014 1000000 84

Legend:
• bL is the number of bits allocated per item in the hashing sketch.
• ǫ is an upper bound of the false positive cycle detection rate.
• capacityis a lower bound on the maximal number of items that can be

incrementally added.
• cm is the average CDM footprint in bits.

its execution. As would suggest statistical considerationof
scale-free graphs, the results provided in [14] indicates (we
are considering the measurements of the size frequencies of
strongly connected components of the considered graphs by
[14]). The values ofPn are important because, they will be
used in practice to determine the initial capacity of 1 of the
sketch.

Based on the previous considerations, ifǫ is the false
positive cycle detection rate when relying on an allocationof b
bits per item, the per-itemcm cost for the whole mixed strategy
can estimated withcm = b + 2 + (1 − (1 − Pg)(1 − ǫ)) ∗ ce

(sum of the sketch-based per-item cost plus the explicit per-
item cost when it occurs). The Table II provides a list of
numerical values forcm depending on the various initial
choices forb andα (those values have been computed based
on the results of Section II-A). Notice that the higherb is
initially chosen, the higher the graph sketch capacity.

D. Improved sketched DCDA

In Section II-B, we have seen that the bloom filter sketch
is more efficient than the hashing sketch. Yet the bloom
filter sketch cannot efficiently handle the identifier flags like
the hashing sketch. Therefore we propose to improve the
graph sketchf13 by using a mix of hashing sketch and bloom
filter sketch. Intuitively, we propose to store all single-flagged
identifiers in the hashing sketch as we do here above. But
when an item becomes fully flagged, the item is removed from
the hashing sketch and moved into the bloom filter sketch.
Since the bloom filter sketch is more efficient than the hashing
sketch, smaller CDM footprint can be expected. The more
fully flagged items we have, the closer we are from the bloom
filter sketch performance.

In order to quantify this approach, we need to knowP2

the average percentage of items being fully flagged during
the DCDA execution. It’s possible to prove14 that in case of
random insertions of items either flagged as source or target,
we haveP2 = 2

3 . In the following, we assumeP2 = 2
3 ,

13Since the graph summary can be seen as a lookup table associating two
bits to each identifier one can be tempted to rely on the bloomierfilter
introduced in [22]. Unfortunately, bloomier filters, in the present situation,
are roughly2 times larger (mostly due to constant factors) than the naive
hashing sketch approach.

14Such proof goes beyond the scope of this paper.

D
ra

ft

6

TABLE III

PER-ITEM COSTS OFHASHL IST AND HASHMATRIX MIXED CDM.

bL bM ǫ capacity cm

22 15 0.009 10 47
30 20 0.007 100 52
36 24 0.010 1000 58
42 29 0.010 10000 63
49 34 0.009 100000 69
57 40 0.014 1000000 74

Legend:
• bL (resp.bM) is the number of bits allocated per item for the hashing

sketch(resp. bloom filter sketch).
• ǫ is an upper bound of the false positive cycle detection rate.
• capacityis a lower bound on the maximal number of items that can be

incrementally added.
• cm is the average CDM footprint in bits.

although we believe this estimate to be quite low. Indeed,
random insertions correspond to the worst case situation
whereas the DCDA execution is highly biased in our favor
because the items flagged as target are explored first. Based
on all those assumptions, the numerical results are gathered in
Table III. The improvement is roughly10% over the results
of the pure hashing sketch approach presented in Table II.

IV. CONCLUSION

The large footprint of distributed object identifiers (esti-
mated as more than200 bits) calls for more compact represen-
tations. In this paper, we have introduce several sketches,that
is approximate compact representations, of sets of identifiers.
The properties, in particular the level of approximation, have
been rigourously quantified.

Considering one the more recent DCDA at this date (see
[2]), the improvement brought by the sketch-based CDM is
roughly a factor 3 under limited (partly adversarial) assump-
tions. Since our approach is not specific of this algorithm,
we believe that similar improvements can be obtained with
most of the other DCDA. Additionally, since this work is only
preliminary, it’s also probable this approach can be improved
by better sketches.

REFERENCES

[1] P. R. Wilson, “Uniprocessor garbage collection techniques,” in Inter-
national Workshop on Memory Management. Saint-Malo, France:
Springer-Verlag Lecture Notes in Computer Science no. 637, 1992.

[2] L. Veiga and P. Ferreira, “Asynchronous Complete Distributed Garbage
Collection.” in 19th International Parallel and Distributed Processing
Symposium (IPDPS 2005). IEEE Computer Society, 2005.

[3] M. C. Lowry, “A new approach to the train algorithm for distributed
garbage collection.” Ph.D. dissertation, Adelaide University, 2004.

[4] S. E. Abdullahi and G. A. Ringwood, “Garbage collecting the internet:
a survey of distributed garbage collection,”ACM Computing Surveys,
vol. 30, no. 3, pp. 330–373, 1998.

[5] M. Shapiro, F. L. Fessant, and P. Ferreira, “Recent Advances in Distrib-
uted Garbage Collection,” inAdvances in Distributed Systems, Advanced
Distributed Computing: From Algorithms to Systems. London, UK:
Springer-Verlag, 1999, pp. 104–126.

[6] F. L. Fessant, “Detecting distributed cycles of garbagein large-scale
systems,” in PODC’01: Proceedings of the twentieth annual ACM
symposium on Principles of distributed computing. New York, NY,
USA: ACM Press, 2001, pp. 200–209.

[7] P. Bishop, “Computer systems with a very large address space, and
garbage collection,” Massachusetts Institute of Technology, Technical
Report MIT/LCS/TR-178, May 1977.

[8] B. Liskov and R. Ladin, “Highly available distributed services and fault-
tolerant distributed garbage collection,” inPODC’86: Proceedings of the
fifth annual ACM symposium on Principles of distributed computing.
New York, NY, USA: ACM Press, 1986, pp. 29–39.

[9] U. Maheshwari and B. Liskov, “Collecting cyclic distributed garbage
by controlled migration,” inPODC’95: Proceedings of the fourteenth
annual ACM symposium on Principles of distributed computing. New
York, NY, USA: ACM Press, 1995, pp. 57–63.

[10] H. Rodrigues and R. Jones, “Cyclic Distributed GarbageCollection
with Group Merger,” inECCOP’98: Proceedings of the 12th European
Conference on Object-Oriented Programming. London, UK: Springer-
Verlag, 1998, pp. 260–284.

[11] ——, “A Cyclic Distributed Garbage Collector for Network Objects,”
in WDAG ’96: Proceedings of the 10th International Workshop on
Distributed Algorithms. London, UK: Springer-Verlag, 1996, pp. 123–
140.

[12] B. Lang, C. Queinnec, and J. Piquer, “Garbage collecting the world,” in
POPL’92: Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. New York, NY, USA: ACM
Press, 1992, pp. 39–50.

[13] J. Hughes, “A distributed garbage collection algorithm,” in Proc. of
a conference on Functional programming languages and computer
architecture. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, pp. 256–272.

[14] N. Richer and M. Shapiro, “The Memory Behavior of the WWW, or The
WWW Considered as a Persistent Store,” inPOS-9: Revised Papers from
the 9th International Workshop on Persistent Object Systems. London,
UK: Springer-Verlag, 2001, pp. 161–176.

[15] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-Free Geometry
in OO Programs,”Communications of the ACM, Volume 48, Number 5,
May 2005.

[16] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace, RFC 4122,” ftp://ftp.rfc-editor.org/in-notes/
rfc4122.txt, July 2005.

[17] S. Muthukrisnan, “Data streams: Algorithms ans applications,” http://
www.cs.rutgers.edu/∼muthu/.

[18] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[19] A. Broder and M. Mitzenmacher, “Network Applications ofBloom
Filters: A Survey,” inInternet Mathematics, vol. 1, 2003.

[20] M. Mitzenmacher, “Compressed bloom filters,”IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604–612, 2002.

[21] A. Pagh, R. Pagh, and S. S. Rao, “An optimal Bloom filter replace-
ment,” in SODA ’05: Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics, 2005, pp. 823–829.

[22] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter: an
efficient data structure for static support lookup tables,”in SODA ’04:
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2004, pp. 30–39.

[23] S. Cohen and Y. Matias, “Spectral bloom filters,” inSIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM Press, 2003, pp.
241–252.

[24] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson,Introduction
to Algorithms. McGraw-Hill Higher Education, 2001.

[25] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth, “On the Lambert W Function,” inAdvances in Computational
Mathematics, vol. 5, 1996, pp. 329–359.

