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TABLE |

Abstract— Distributed Garbage Collection (DGC) algorithms
GLOBAL IDENTIFIER MEMORY FOOTPRINTS

are fundamental components of modern object-oriented distrib
uted systems. The design of a DGC raises numerous issues

. - . - . System Platform  Global identifiers  Size in bits
in term of performance and scalability. DGC object-migration NGrid Net Syst em Gui d 1282
approaches are known to be inefficient compared to graph cycle JoCaml SSPC Location 1283
detection approaches because of the tremendous costs assteda ProActive  Java VM D+ U D 2884

with object migration compared to graph-fragment migration Mozart Mozart Ticket 272
where only the object identifiers are carried over the network. Globus Java URLs > 500

Yet, even object identifiers have a large memory footprint in

practice.

In this paper, we introduce the idea of sketched Cycle Detection . . . .
Message (CDM). We show that explicit graph-fragment represen- Message delay or lossgolation (DGC implementation must
tations are very costly compared to the sketch-based ones. Wenot require modifications of LGC or Remote Procedure Call
prove, under reasonable assumptions that sketch-based megea (RPC) subsystemshon-disruptive(no pause in the applica-
are smaller (up to one order of magnitude) than their explicit tion), promptnesggarbage should be promptly collected).
counterparts. Those results apply to most of state-of-art DGC In respect to this list of desirable properties for the DGC
methods. The improvement brought by this approach is discussed . . ) >
in details in the particular case of the Veiga and Ferreira DGC ~ algorithms, we believe the wide spectrum of Distributed I€yc
algorithm. In this case, the amount of improvement is more than Detection Algorithm (DCDA) constitute the most scalable
a factor 3 under very limited assumptions. approaches for the DGC problem. To our knowledge, all cycle
detections methods ([2], [6] for recent examples) are nglyi
on messages carrying object-graph subsets in one form or
an other. We would like to emphasize that global object-

Garbage Collection (GC) has been a major advance ittentifiers used in distributed systems are expensive. The
terms of programmer productivity and program reliability.[ Table | illustrates the memory footprints of global idemtif
Garbage collection identifiesse (or reachable) andead(or in various distributed systems. Since those global idensfi
unreachable) objects in the application object graph. Riten need to be generated in a totaly decentralized fashion, we
GC viewpoint, any application can be regarded amudator believe that200bits is a reasonable lower bound estimation
with a single relevant operation: reference-assignmeBCls of the global identifier size for present and future largdesca
the natural extension of the Local Garbage Collection (LGGjstributed systens
in the context of distributed systems. The design of a DGC The memory footprint of object identifiers calls for more
algorithm raises numerous issues and a large literaturg3?] compact representations. Aketch refers to an approxi-
[4], [5] is devoted to such algorithms. mate compact representation of the data fitting certain pre-

We believe that asynchronicity and completeness are twietermined purposes. The sketching idea, at the heart of the
highly desirable, yet most challenging properties, for data streams domain (see [17] for an excellent introdujtion
DGC algorithm. Theasynchronicity states no synchroniza-states that keeping an explicit representation of the data i
tion should be required between more than two machingsmetimes, neither required nor efficient, when the uniegly
at the same time. This property is critical for the po-
tential scalability of a DGC algorithm. If recent methods ! Considering the UUID standard [16], 128bits seems a natustihation
are fully asynchronous[2], [6], many algorithms are nder a global identifier size. But it should be noticed the UUtandard

. . . assume that all actors (see Section 6 of [16]) are fully trcuét® adversarial

and require a centralized archltecture[7], [8]’ [9] Or @¥OUjgentifier generation). The price for a certain level of séguthat we
synchronization[10], [11], [12] or consensus[13] betwéle@ believe unavoidable in large scale distributed systems, lager identifier.
processes. Theompletenesssiates that all unreachable bufSGLeraly Tie 0 Saar s ssses 2 oot s
only unreachable graphs, in particulayclic graphs, must resolution. Yet resolutioﬁ can be a hidhly desirab?e prt;);)éor global
be collected. Indeed distributed cycles are frequent [@4Yl identifiers (Globus, JoCaml, ProActive identifiers providelsiress resolution
recent works seem to indicate that object-oriented desigedst for example). In such case, 128bits IPv6 addresses will figblae much

. more adequate for spatial resolution, requiring again eetaidentifier size.
to generates scale-free graphs [15] (scale-free grapleyelie 2o . ) UiD discussion.

with a very high probability). Other architectural pl’O[:i)e_St 3Assume 32bits IPv4 addresses and a local 32bits machine.
are also desirable such &mult-tolerance(robustness against “Assume 32bits IPv4 addresses.

I. INTRODUCTION



objective are only associated to some the data propertiasyM A. The hashing sketch
sketches have been introduced in the data stream literaturesince items are very large, a very naive, yet efficient,

In this paper, we are focusing cset approximatiorthat are  approach to set sketching is simply to substitute a smath has
commonly known asbloom filters originally introduced in {5 each object identifier. The hashing sketch is not new €t ha
[18]. Bloom filters have been used to solve a large variegen ysed for decades, see [24]). This section introduse thi
of network related problems (although not for DGC to oUtrycture with a perspective that will be useful in the cante
knowledge), see [19] for a survey. Recent works on bloog} pGc applications.
filters includes the study of compressed bloom filters [20], Formally let E be the identifier space (simply called item
optimal replacements of bloom filters [21], enhanced b|00§bace in the following). Let = {s1,...,s,} C E be a set.
filter with lookup capabilities [22] or frequency estimai® | a1 . g - {0,1}* be a random hash function that associates
[23]. a random bit-vector of lengthto each itemr € E. We define
the hashing sketch sketch Sfwith H = {h(s1),...,h(s,)}.
A. Our results Based on this definition, several operations are very nidtoira

We introduce, to our knowledge, the idea of performing€fine such as
cycle detection through sketched messages rather than exs inclusion testh(x) € H as equivalent ok € S,
plicit ones. This approach states that object identifiersl (a « unionH; UH, as equivalent of5; U .Sy,
sometimes their associated properties) can be sketcheet rat « intersectiontl; N Hy as equivalent of5; N Ss.
than explicitly carried over the network. We do not extenel th Since a hash is non-injective function, false positive in-
bloom filter theory (that has been extensively studied) vioeit clusion can occur with the hashing sketch. The following
analyze and adapt previously known results for the purpbsequantifies the False Positive Rate (FPR) of the hashing lsketc
DGC. Under reasonable assumptions, those sketches are up to
one order of magnitude smaller than their explicit courdeip Lemma 1 (FPR of the hashing sketch)Let H be the hash-
in the case of global identifier summarization. ing sketch equivalent &8 C E with b bits allocated per item.
Those sketches apply to most of the DCDA. In particulaket assume thatS| = n. Letz € E. If z € S thenh(z) € H.
we discuss extensively how the Veiga and Ferreira DCDA [# = ¢ S then h(x) ¢ H with a false positive probability of
can be improved through through a sketch-based approath- (1 — 2‘5)" (note: 2~n can be used as a more practical
For this particular example, the overall gain in term of eveupper bound on this probability).
all network transmission is roughly a factor 3 under weak

assumptions. Proof: Immediate.[]

Numerical illustration: By allocatin@4bits per item for a
Il. SKETCHING SETS OF IDENTIFIERS hashing sketch containing000 items, the false positive rate

A memory footprint of 200bits per global identifier is iS lower than5.107°. _
hindering factor for any DGC algorithm relying on identifier For the purpose of sketch based DCDA, it should be
transmission. Yet identifier transmission is at the core osm noticed (this point will be more extensively discussed in
of the DGC algorithm (with the notable exception of 0bjectSecnonlll) that the initial choice o6, the number of bits per
migration approaches). item determines the number of items that can ultimately be
Since the discovery of hashing, it has been known thafded to the sketch while a maintaining a bounded collision
sets can be represented in more compact manner than expn(ﬂbabilitf. The following definition formalizes this concept.
listing if a certain degree of approximation is tolerated- A )
though very naive the hashing sketch can be very efficieRgfinition 1 (sketch e-capacity) Let S be an empty sketch
and appropriate in the DGC context. The hashing sketchViereb bits are allocated per item on average. Theapacity
discussed in Section II-A and it's DGC application is detdil of S is defined as the number of items that can be added to
in Section IIl. Since the introduction of bloom filters it isS While maintaining a collision probability lower than for
known that the hashing sketch is far from being an optim§léments not previously added.
s_olution. In_Section Il-B, we intrqduce a variant of b'°°'_m The following theorem provides some insights on the
filters (pr_ewously known in the literature) and analyze 'téapacity of the hashing sketch.
shortcoming for the purpose of DGC.

Nevertheless, as we will see in Section Ill, the explicit-repr o 5rom 1 (hashing sketche-capacity) Let H be a hashing
resentation of identifiers is not a requirement. Often, irequ

identifi icted . . sketch withd bits allocated per item. The-capacity ofH is
ments (on identifier sets) are restricted to certain opmrati greater than2t/2e.

such as inclusion testing, item insertion, set equalityirigs
...In this section, we propose, through sketches, much moreProof: Immediate using Lemma 1
compact set representations than explicit extensivengjsti
Those sketches are only accuracy on a certain (explicitl
qguantified) probability. The consequences of relying on

pOSSIb|y inexact identifier rePresentatlor_] IS very algmmt SWe says that aollision happen when the insertion of an item into the
dependent and therefore left to the Section IlI. sketch does not modify the sketch (although it should).

It should be noticed that this result is weaker than what
n be achieved with a simple bloom filter [18] where the



e-capacity 5257 ¢ (Qm% ~ 0.62 > 0.5). Nevertheless, as as: with only 16bits per identifier, the sketch df objects
we will see the simplicity of the hashing sketch has mamgan accurately assert object inclusion with a probabibtydr

advantages for the DGC purposes (see Section lll).

B. The bloom filter sketch
In this section, we introduce the bloom filter skétthat is

known to provide better performance than the hashing sketc
More efficient, yet more complicated structures exist sugh
the compressed bloom filters [20]. Because of their comlex

and additional computation requirements, those strustare
beyond the scope of this paper.

We definé a bloom filter sketchM = (v1,...,v,) as a
matrix comprisingp bit-vectors of lengthy. Each bit-vectors
is associated to a random hash function £ — {1,...,q}
availablea priori®. In the following, such sketcM is refered

than ﬁ. The memory footprint of the explicit i$.000bits
assuming a reasonalité0bits per object whereas the memory
footprint of the bloom filter sketch is onl§0bits. The sketch

is more thanl0 times smaller than the initial set.

hThe design of a bloom filter sketch depends the two para-
metersp and ¢q. Nevertheless, as suggest the Lemma 2, for a
ﬁxed bit allocationp x ¢, it exists anoptimal repartition. The

following theorem characterizes this optimality.

Theorem 2 (Optimal allocation for the bloom filter sketch)
Let us consider a bloom filter sketch wiihbits allocated per
item such thap.q = b.n. Lety be such thaty = yn then

lim min P(p,q,n) = 9-0In(2)
n—oo

as a(p,q) sketch. The empty set is associated, by definition, . ) o
with My = (0,...,0). Let 1; be the bit-vector where thih and~y = gy = 1.442695041... is the minimum.

bit is the sole bit set td. The singleton sketch associated to the

objectz € E, is defined withM, = (1;,,14,,...,1;,) where
i = hi(x). The union-equivalent operation is defined with
S Up) B (wi, ..., wp) = (OR(v1,w1), ..., OR(vp, wp))

Based on the previous discussion, it's clear {4t @) verifies
the union properties. The inclusion-equivalent test, Hase
M is defined with

<M & (AND(Sl, 11'1)7 . ,AND(SP, 1ip>) 7& M@

(’Ul,..

The inclusion-equivalent test is not strictly equivaleetause
there is the possibility ofalse positivei.e. items not included
in S but declared as included iN. The following lemma
characterizes the false positive rate.

Lemma 2 (FPR of the bloom filter sketch) Let (M, &, <)
be the a(p,q) sketch equivalent t@S,uU, €) a set withn
elements. Them € S impliesz <S andz ¢ E impliesz 4M
with a probability?

s o= (-1) )

Proof: Immediate, see also [19]J

Numerical illustration: LetP(k,n) = min,,—x P(p,q,n)

Proof: Indication: lim,, . (1 — )"

)" = e “ See [19] for
the proof.[J

The result of the Theorem 2 can be interpreted withsfor
items andb bits per items, we must chooge= b1n(2) and
q = ﬁ Note that this choice is not exactly optimal, but
a more detailed numerical analysis indicates that the @btim
ratio is already very close tb/ In(2) for n not larger than0.

Corollary 1 (e-capacity of the bloom filter sketch) Let M
be a bloom filter sketch with bits allocated per item. The
e-capacity ofM is greater than2®»(e,

Proof: Immediate.[J

The capacity bound of the bloom filter sketch is much
better than hashing sketch’one becaiis@) ~ 0.69 > 1/2.
Although, the bloom filter sketch raises a new issue compared
to the hashing sketch: thecapacity is determined by the
sketch size as a whole inren-incrementamanner. Contrary
to the hashing sketch, the size of the bloom filter sketch is
independent of the number of sketched items. Intuitivedig t
implies that a large capacity bloom filter sketch requires a
large amount of bits, even if the sketch contains initiallyeay
limited number of items. If useds suchthis drawback defeats
the bloom filter sketch purpose of being a better replacement

we haveP(5 % 16,5) < 0.001. This result can be interpretedfor the hashing sketch.

SWe do not exactly introduce the bloom filters as originallgsented in
[18]. Instead, we are presenting a variant (see [19]), thghtly improves
the bloom filter performance (but provides the same asymptotimds)

7In comparison, a bloom filter is a single bit-vector of lengthassociated
to k£ hash functions (taking usual notations of the literatufid)e bit-matrix
of the bloom filter sketch can be viewed a single vector offleng = p x q.
In both case, there are two parameters: the size of the steuahd the the
number of hash functions.

8t has been emphasized in the literature that hash functiensaifree and
require memory as well (see [21] for recent work on that matigyertheless,
in the case of DGC applications, the total number of hash fomstrequired in
practice is very limited. Moreover hash functions can be d¢and reused).
In practice, hash function costs are negligible in the c&€GC applications.

9Notice the similarity with the FPR of the original bloom filtdvat is equal

to A
Pk, m,n) = (1 - (1 - %) kn)

C. Incremental sketches

In practice, the numbet of items to be added in the sketch
is not known initially. Additionally, even if this number nde
known or estimated, the sketch may possibly be carried over
the network after each addition, therefore a large in#atlon
defeats the sketch compacity purpose. Therefore, the tsketc
size mustincrementallyincrease when items are added. Such
behavior is very natural for the hashing sketch but more
delicate for the the bloom filter sketch. In this section, we
introduce a general method to incrementally grow a sketch.

Formally, let us consider the sketch list

S. {So,S1,...,Sk} Q)
{(b, m); (b, alm); (b, a2m); .5 (b, akm)} (2)



where b is the number of bits allocateger item and o’m  detection correctness afterwards through explicit CDMss T
the number of items of th&” sketch. The addition of a new approach has no virtually impact on the DCDA, only the CDM
element is always performed on the last skei¢hThe sketch encoding is truly affected.

Sk is considered adull when it's capacity is reached, i.e.

after o*m additions. At this point, a new empty sketsh, type graph_summary = {

is added (following the exponential allocation patternheT I st Of ( i d
inclusion testr <1 S, is defined with unique_t d, .
is _source_flag, is_target flag,
x<IS1|r <4Ss...|x Sy (where| is the logical OR) ti mestanp);

The choice ofb and o for an incremental sketch clearly}
defines it's capacity The following theorem quantifies the Upon CDM delivery, only a limited list of operations are

false positive error rate. performed® on the graph summary. Those operations are

_ _ (a) insertion in the summary of a new timestamped identifier
Theorem 3' (FPR of incremental §ketch)V\ﬁth b bits allo- . either flagged as source or (exclusive) as target,
cated per item on average, the incremental sketch providgs) test of equality between one the summary timestamp and
a false positive rate lower thar="77za" log,(n) where v an other timestamp for a specified identifier,

depends of the initial FPR (assuming a FPR equaltd”).  (c) setting the second flag of an identifierttae,
(d) testing global equality between the set of identifiers
flagged as source and those flagged as target.

Numerical illustration: starting with a single bloom filter |n terms of CDM memory footprint, we will consider the
sketch smaller thar200bits (single explicit identifier repre- identifier size equals ta00bits (see discussion in Section I).
sentation) and taking: = 2, we can incrementally adtd000 The two flags require naturally 2bits. In [2], it is suggested
items, allocating40bits per item on average, with a falseto code the timestamps @bits integers. Timestamps are
positive rate staying below.10~° at all time. incremented on each object operation, sincé is already

the order of magnitude the number of elementary operations
Corollary 2 (e-capacity of the incremental sketch)Let S*  performed per second by an common desktop processor, we
be an incremental sketch withbits allocated per item. The believe that32bits is too low to guarantee collision-free

k41
a —1
— - U

Proof: Tips: Y1, a' =

e-capacity ofS* is greater than timestamps in future large scale distributed systems. @Base
by 1t on empirical hardware consideration, we believe thtits is

—— a more realistic timestamps size.
W <2bh%‘")

WhereW is the Lambert W function (i.e, the inverseaof- B. Veiga & Ferreira CDM sketching

e, see [25]). We propose to sketch thgr aph_sunmary based on the

Asymptotically, this capacity bound on the incrementai€t Sketch previously introduced. The CDM becomes

bloom filter sketch is better than the hashing sketch one. {jype graph sketch = {

practice, witha = 1.1, the incremental bloom filter sketch list of (

capacity gets higher than hashing sketch capacity for any hash,

b>15. is_source flag, is_target flag);
}

[1l. SKETCH BASED DCDA
The proposedyr aph_sket ch is based on a hashing sketch

Based on the approximate compact representations of idgy shares some similarities with the original graph surgmar

tifier sets (introduced in the previous section), we will NOWg yetailed below, the timestamps are simply ignored. The
discuss how the sketching approach can be used to impr%Yétch-equivalent operations are

the DCDA performance. (a) Insertion of the identifier hash flagged correspondingly

Ignore timestamp.
A. Veiga & Ferreira DCDA (b) A|Ways returntrue.
Veiga and Ferreira present in [2] an asynchronous, confc) Setting both flags of the identifier hashttae.

plete DGC. Intuitively the DCDA proceeds by an initial (d) Identical.
candidate selection that is followed by a sequence of CDMssince, the set sketch has no false negative, in can eas-
send between the processes. CDMs are equivalent to e be proved that the detection errors caused by the
G aphSunmary data structure here below (note that the
graph summary is already been optimized to avoid identifier'®when an identifier is added to the CDM list, the local invoaatio
duplicates). In this section, we propose to leverage the- coffunter timestamp must match, if present, its CDM counterpértsot, a

. ace condition has been encountered and the CDM is terminatex cycle
pactness of the sketch-based CDMs to quickly detect cyc

) ) - ] - ection condition is defined as an equality between thesitlagged as
(with a risk of false positive detection) and to verify theource and the items flagged as targets.



TABLE I

graph_sket ch are restricted to false positive cycle detec- PERITEM COSTS OF HASHING SKETCHBASED CDM.

tions. Therefore we propose followingixedstrategy: when a
candidate is chosen for cycle detection, start a DCDA itiNga

. b ity cm

based on sketched CDMs. In case of cycle detection, start 26 0.009 °f§a°'y 051

a new DCDA initiative based on explicit CDMs, taking the 26 0.012 100 58

suspected object (from the cycle detection point) as tiita 4313 8-833 18880 ?‘1

candida;él. Its easy to prove that this .mixed strategy is 46 0011 100000 78

correct (i.e. all garbage but only garbage is collected). 52 0.014 1000000 84

Legend:
C. Sketched DCDA performance analysis. e by, is the number of bits allocated per item in the hashing sketch.

. . . . e ¢ is an upper bound of the false positive cycle detection rate.
The per-item cost for the explicit CDMs cost is estimated as« capacityis a lower bound on the maximal number of items that can be

ce = 266bits (see discussion here above). In order, to estimate incrementally added. S

the relative interest of the sketch-based approach, we aged ° °m 'S the average CDM footprint in bits.

estimation of this cost when sketch-based and explicit CDM

s are mixed following the ;trategy de_scnbed here ab_ove. its execution. As would suggest statistical consideratfn
The performance analysis of the mixed DCDA requires Se¥-le-free graphs, the results provided in [14] indicates (

eral additional hypotheses. L&}, be thea priori probability '

of detecting a cycle for a DCDA initiative. In practice, theare considering the measurements of the size frequencies of

value of P, is highly dependent of the candidate generati strongly connected components of the considered graphs by

heuristics. The lack of widely used distributed object eystoﬁ4])' The values off’, are important because, they will be

providing complete DGC is an obstacle to provide a “go}sjfgir:n practice to determine the initial capacity of 1 of the

ous estimation ofP; at this time. Nevertheless, we believe , , , -
Based on the previous considerations,eifis the false
that a good tradeoff between DGC promptness and DGC .. . . .
: . oo : positive cycle detection rate when relying on an allocatibh
resource consumptions involve a majority of failures of DCD its per item. the per-item. cost for the whole mixed strate
initiatives. This belief is motivated by the results of [14§ P ' b ' 9y

; . . ~— tan estimated witle,, =b+2+ (1 — (1 —F,)(1 —¢€)) *ce
concerning the object age frequency distribution (no semp sum of the sketch-based per—itém CE)S'[ pllﬁ(the e)>zplici{ per
behavior seems to govern the object-lifetime). Additibnal . ; . ;

item cost when it occurs). The Table Il provides a list of

the availability of much cheaper CDM is, itself, a strongsbianumerical values fore.. depending on the various. initial
in the estimation ofF,;. Indeed, the cheaper the DCDA, the m CeD g

R . choices forb and o (those values have been computed based
more detection initiatives can be started for a given amoiint . . . .
. ; on the results of Section 1I-A). Notice that the highteris
network bandwidth dedicated to the DGC. Therefore cheaqﬁlrtia"y chosen, the higher the graph sketch capacity
CDM enable the improvement of both the DGC promptness ' '
and DGC bandwidth allocation by increasing the rate of cycle
detection initiatives (consequently lowering the valueryj. D- !Mproved sketched DCDA
For the purpose of the analysis, we will rely dfy = 10% In Section 1I-B, we have seen that the bloom filter sketch
in the following. We believe this estimate to be quite highs more efficient than the hashing sketch. Yet the bloom
empirical evaluations may provide a lower success ratePyet filter sketch cannot efficiently handle the identifier flageeli
be thea pri ori probability of DCDA interruption based onthe hashing sketch. Therefore we propose to improve the
the timestamps matching. Actually, timestamps in the V&iga graph sketcHf by using a mix of hashing sketch and bloom
Ferreira DCDA are used to prevent race conditions with lochlter sketch. Intuitively, we propose to store all singlagted
mutator that would break the DCDA validity. If timestampsdentifiers in the hashing sketch as we do here above. But
are critical in term ofcorrectness we believe the DCDA when an item becomes fully flagged, the item is removed from
interruptions based on timestamp matching is too'fowo the hashing sketch and moved into the bloom filter sketch.
have any noticeable impact on performance in practice dade Since the bloom filter sketch is more efficient than the haghin
race condition involve a complicated root displacement thaketch, smaller CDM footprint can be expected. The more
must occurs in a timely fashion with the DCDA executionfully flagged items we have, the closer we are from the bloom
Those elements lead us to strongly believe that< 1/1000 filter sketch performance.
(empirical evaluations may provide a bound one or two orderIn order to quantify this approach, we need to knéw
of lower than that). Therefore, in the following of the ars$y the average percentage of items being fully flagged during
those events will simply be ignored. the DCDA execution. It's possible to protethat in case of
Let P, be thea priori probability for an DCDA initia- random insertions of items either flagged as source or target

tive that the graph summary reachesitems at a point of we have ’, = 2. In the following, we assumé’ = 2,

s possible to exploit the information of the sketch CDM inder to 13since the graph summary can be seen as a lookup table assptiedin
speed up the explicit DCDA execution. Such discussion gegerid the scope bits to each identifier one can be tempted to rely on the blooffilter
of this paper. introduced in [22]. Unfortunately, bloomier filters, in theepent situation,
12Caution: wedo not say that timestamps checking can be ignored foare roughly2 times larger (mostly due to constant factors) than the naive
performance. We say that race condition detections are tecoampact the hashing sketch approach.
overall DCDA performance. 14such proof goes beyond the scope of this paper.



TABLE Il

PER-ITEM COSTS OFHASHLIST AND HASHMATRIX MIXED CDM. [8] B. Liskov and R. Ladin, “Highly available distributedrstces and fault-

tolerant distributed garbage collection,”"®ODC’86: Proceedings of the
fifth annual ACM symposium on Principles of distributed catimy.

br by e capacity  cm New York, NY, USA: ACM Press, 1986, pp. 29-39.
22 15  0.009 10 47 [9] U. Maheshwari and B. Liskov, “Collecting cyclic disttbed garbage
30 20 0.007 100 52 by controlled migration,” inPODC’'95: Proceedings of the fourteenth
36 24 0.010 1000 58 annual ACM symposium on Principles of distributed commutirNew
42 29 0.010 10000 63 York, NY, USA: ACM Press, 1995, pp. 57-63.
49 34 0.009 100000 69 [10] H. Rodrigues and R. Jones, “Cyclic Distributed Garbdgalection
57 40 0.014 1000000 74 with Group Merger,” inECCOP’98: Proceedings of the 12th European
Conference on Object-Oriented Programmind.ondon, UK: Springer-
Legend: Verlag, 1998, pp. 260-284.
e br (resp.bys) is the number of bits allocated per item for the hashingll] ——, “A Cyclic Distributed Garbage Collector for NetwoiObjects,”
sketch(resp. bloom filter sketch). in WDAG '96: Proceedings of the 10th International Workshop on
e ¢ is an upper bound of the false positive cycle detection rate. Distributed Algorithms London, UK: Springer-Verlag, 1996, pp. 123—
« capacityis a lower bound on the maximal number of items that can be ~ 140.
incrementally added. [12] B. Lang, C. Queinnec, and J. Piquer, “Garbage collgctive world,” in
e cm, is the average CDM footprint in bits. POPL’'92: Proceedings of the 19th ACM SIGPLAN-SIGACT syimpos

on Principles of programming languagesNew York, NY, USA: ACM
Press, 1992, pp. 39-50.
) ) . ) [13] J. Hughes, “A distributed garbage collection algarith in Proc. of
although we believe this estimate to be quite low. Indeed, a conference on Functional programming languages and coenpu
random insertions correspond to the worst case situation architecture  New York, NY, USA: Springer-Verlag New York, Inc.,

. . . . . 1985, pp. 256-272.
whereas the DCDA execution is hlghly biased in our favq{4] N. Richer and M. Shapiro, “The Memory Behavior of the WWW, ¢reT

because the items flagged as target are explored first. Based Www Considered as a Persistent Store Pi@S-9: Revised Papers from
on all those assumptions the numerical results are gatliere the 9th International Workshop on Persistent Object Systetrondon,

. . UK: Springer-Verlag, 2001, pp. 161-176.
Table Ill. The improvement is roughly0% over the results 15] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale&Geometry

of the pure hashing sketch approach presented in Table Il. in OO Programs,Communications of the ACM, Volume 48, Number 5
May 2005.
[16] P. Leach, M. Mealling, and R. Salz, “A Universally UniguDentifier
IV. CONCLUSION (UUID) URN Namespace, RFC 4122, ftp://ftp.rfc-editor.rgnotes/

The large footprint of distribut ject identifier i Wica122.6d, July 2005.
z arge Oth S dis “bL:c ed ObJeC de ers (es [17] S. Muthukrisnan, “Data streams: Algorithms ans appioce,” http://
mated as more tha2t0 bits) calls for more compact represen=""" \w.cs rutgers.ede/muthu/.

tations. In this paper, we have introduce several sket¢has, [18] B. H. Bloom, “Space/time trade-offs in hash coding withowakble

is approximate compact representations, of sets of idersifi errors,”Commun. ACMvol. 13, no. 7, pp. 422-426, 1970.
Th PP . . P icul P he | | of . . & [19] A. Broder and M. Mitzenmacher, “Network Applications @&loom
e properties, Iin particular the level of approximationy Filters: A Survey,” inInternet Mathematigsvol. 1, 2003.

been rigourously quantified. [20] M. Mitzenmacher, “Compressed bloom filterlE2EE/ACM Trans. Netw.
Considering one the more recent DCDA at this date (srzel] vol. 10, no. 5, pp. 604-612, 2002.
S

. A. Pagh, R. Pagh, and S. S. Rao, “An optimal Bloom filterlaep-
[2]), the Improvement brotht by the sketch-based CDM ment,” in SODA '05: Proceedings of the sixteenth annual ACM-SIAM

roughly a factor 3 under limited (partly adversarial) aspum symposium on Discrete algorithms Philadelphia, PA, USA: Society
tions. Since our approach is not specific of this algorithr?%z] for Industrial and Applied Mathematics, 2005, pp. 823-829.
[

beli h il . b btained B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “Thed®mier filter: an
we believe that similar improvements can be obtained w efficient data structure for static support lookup tablés,SODA '04:

most of the other DCDA. Additionally, since this work is only Proceedings of the fifteenth annual ACM-SIAM symposium soréte

reliminary, it's also probable this approach can be imptbv algorithms  Philadelphia, PA, USA: Society for Industrial and Applied
P Y P PP P Mathematics, 2004, pp. 30—39.

by better sketches. [23] S. Cohen and Y. Matias, “Spectral bloom filters,” 8iIGMOD '03:
Proceedings of the 2003 ACM SIGMOD international confeeena
REFERENCES g/l4alnazg5e2ment of data New York, NY, USA: ACM Press, 2003, pp.
[1] P. R. Wilson, “Uniprocessor garbage collection teclueis)” in Inter- [24] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserdatrpduction
national Workshop on Memory Management Saint-Malo, France: to Algorithms McGraw-Hill Higher Education, 2001.
Springer-Verlag Lecture Notes in Computer Science no. 63921 [25] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffreyd ®. E.
[2] L. Veiga and P. Ferreira, “Asynchronous Complete Distrédal Garbage Knuth, “On the Lambert W Function,” ildvances in Computational

Collection.” in 19th International Parallel and Distributed Processing Mathematicsvol. 5, 1996, pp. 329-359.
Symposium (IPDPS 2005) IEEE Computer Society, 2005.

[3] M. C. Lowry, “A new approach to the train algorithm for thibuted
garbage collection.” Ph.D. dissertation, Adelaide Ursitgr 2004.

[4] S. E. Abdullahi and G. A. Ringwood, “Garbage collectifgetinternet:

a survey of distributed garbage collectioCM Computing Surveys
vol. 30, no. 3, pp. 330-373, 1998.

[5] M. Shapiro, F. L. Fessant, and P. Ferreira, “Recent Adearin Distrib-
uted Garbage Collection,” iAdvances in Distributed Systems, Advanced
Distributed Computing: From Algorithms to SystemsLondon, UK:
Springer-Verlag, 1999, pp. 104-126.

[6] F. L. Fessant, “Detecting distributed cycles of garbagdarge-scale
systems,” inPODC’'01: Proceedings of the twentieth annual ACM
symposium on Principles of distributed computingNew York, NY,
USA: ACM Press, 2001, pp. 200-209.

[7] P. Bishop, “Computer systems with a very large address espand
garbage collection,” Massachusetts Institute of Techymgldechnical
Report MIT/LCS/TR-178, May 1977.



