
HAL Id: hal-00013011
https://hal.science/hal-00013011v1

Preprint submitted on 2 Nov 2005 (v1), last revised 1 Dec 2005 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketch based Distributed Garbage Collection, Theory
and Empirical Evaluation

Joannès Vermorel

To cite this version:
Joannès Vermorel. Sketch based Distributed Garbage Collection, Theory and Empirical Evaluation.
2005. �hal-00013011v1�

https://hal.science/hal-00013011v1
https://hal.archives-ouvertes.fr

D
ra

ft
Sketch based Distributed Garbage Collection,

Theory and Empirical Evaluation

Joannès Vermorel

Computational Biology Group, École des Mines de Paris

joannes.vermorel@ensmp.fr

November 2, 2005

Abstract

Distributed Garbage Collection (DGC) algorithms are fundamental
components of modern object-oriented distributed systems. The design
of a DGC raises numerous issues in term of performance and scalability.
DGC object-migration approaches are known to be inefficient compared to
graph cycle detection approaches because of the tremendous costs associ-
ated with object migration compared to graph-fragment migration where
only the object identifiers are carried over the network. Yet, even object
identifiers have a large memory footprint in practice.

In this paper, we introduce the idea of sketched Cycle Detection Message
(CDM). We show that explicit graph-fragment representations are very
costly compared to the sketch-based ones. We prove, under reasonable
assumptions that sketch-based messages are smaller (up to one order of
magnitude) than their explicit counterparts. Those results apply to most
of state-of-art DGC methods. The improvement brought by this approach
is discussed in details in the particular case of the Veiga and Ferreira DGC
algorithm. In this case, the amount of improvement is more than a factor 3
under very limited assumptions.

1 Introduction

Garbage collection has been a major element in terms of programmer productiv-
ity and program reliability [19]. Garbage collection identifies live (or reachable)
and dead (or unreachable) objects in the application object graph. From the GC
viewpoint, any application can be regarded as a mutator with a single relevant
operation: reference-assignment. DGC is the natural extension of the Local
Garbage Collection (LGC) in the context of distributed systems. The design of
a DGC algorithm raises numerous issues and a large literature [18, 10, 1, 17] is
devoted to such algorithms.

We believe that asynchronicity and completeness are two highly desirable,
yet most challenging properties, for a DGC algorithm. The asynchronicity

1

D
ra

ft

Figure 1: Global identifier memory footprints
Distributed system Platform Global identifiers Size in bits
NGrid .Net System.Guid 128∗

JoCaml SSPC Location 128†‡

ProActive Java VMID + UID 288†

Mozart Mozart Ticket 272
Globus Java URLs > 500

(*) See UUID discussion in Note 1.
(†) Assume a 32bits IPv4 address.
(‡) Assume a 32bits machine address space.

states no synchronization should be required between more than two machines
at the same time. This property is critical for the potential scalability of a DGC
algorithm. If recent methods are fully asynchronous[18, 5], many algorithms are
not and require a centralized architecture[2, 9, 11] or group synchronization[16,
15, 7] or consensus[6] between the processes. The completeness states that
all unreachable but only unreachable graphs, in particular cyclic graphs, must
be collected. Indeed distributed cycles are frequent [14], and recent works seem
to indicate that object-oriented design tends to generates scale-free graphs [13]
(scale-free graphs are cyclic with a very high probability). Other architectural
properties are also desirable such as fault-tolerance (robustness against message
delay or loss), isolation, (DGC implementation must not require modifications
of LGC or Remote Procedure Call (RPC) subsystems), non-disruptive (no pause
in the application), promptness (garbage should be promptly collected).

In respect to this list of desirable properties for the DGC algorithms, we
believe the wide spectrum of Distributed Cycle Detection Algorithm (DCDA)
constitute the most scalable approaches for the DGC problem. To our knowl-
edge, all cycle detections methods ([18, 5] for recent examples) are relying on
messages carrying object-graph subsets in one form or an other. We would like
to emphasize that global object-identifiers used in distributed systems are ex-
pensive. The Figure 1 illustrates the memory footprints of global identifiers in
various distributed systems. Since those global identifiers need to be generated
in a totaly decentralized fashion, we believe that 200bits is a reasonable lower
bound estimation of the global identifier size for present and future large scale
distributed systems1.

The memory footprint of object identifiers calls for a more compact repre-
sentation. Borrowing the sketching idea at the heart of the data streams domain

1 Considering the UUID standard [8], 128bits seems a natural estimation for a global
identifier size. But it should be noticed the UUID standard assume that all actors (see
Section 6 of [8]) are fully trusted (no adversarial identifier generation). The price for a certain
level of security, that we believe unavoidable in large scale distributed systems, is a larger
identifier. Additionally The UUID standard also assumes a 48bits spatial resolution based on
802 MAC compliant addresses; and consequently admit no address resolution. Yet resolution
can be a highly desirable property for global identifiers (Globus, JoCaml, ProActive identifiers
provides address resolution for example). In such case, 128bits IPv6 addresses will probably
be much more adequate for spatial resolution, requiring again a larger identifier size.

2

D
ra

ft

(see [12] for an excellent introduction), it can be noted that keeping an explicit
representation of the data is, sometimes, neither required nor efficient, when
the underlying objective are only associated to some its properties. A sketch
refers to a compact representation of the data fitting certain pre-determined
purposes. Many sketches have been introduced in the literature. It can be
noticed that the HashMatrix sketch(see Section 2.2) shares a few similarities
with the Count-Min sketch [4] used to detect frequent items in data streams
(the underlying constrains are very different though).

1.1 Our results

We introduce, to our knowledge, the idea of performing cycle detection through
sketched messages rather than explicit ones. This approach states that object
identifiers (and sometimes their associated properties) can be sketched rather
than explicitly carried over the network. We provide several sketches with var-
ious properties. Under reasonable assumptions, those sketches are up to one
order of magnitude smaller than their explicit counterparts.

Those sketches apply to most of the DCDA. In particular, we discuss exten-
sively how the Veiga and Ferreira DCDA [18] can be improved through through
a sketch-based approach. For this particular example, the overall gain in term
of overall network transmission is roughly between a factor 2 and 3 under weak
assumptions.

2 Sketching sets of identifiers

Those factual evidence lead to the simple conclusion that the performance of
DGC algorithms relying on messages carrying sets of object identifiers are going
to be heavily hindered, no matter the quality of the underlying their strategies,
because of the identifier weights.

Nevertheless, as we will see in Section 3, the explicit representation of identi-
fiers is not a requirement. Often, requirements (on identifier sets) are restricted
to certain operations such as inclusion testing, item insertion, set equality test-
ing, . . . In this section, we propose, through sketches, much more compact set
representations than explicit extensive listing. Those sketches are only accuracy
on a certain (explicitly quantified) probability. The consequences of relying on a
possibly inexact identifier representation is very algorithm-dependent and there-
fore left to the Section 3.

2.1 HashList sketch

Since items are very large, a very naive, yet efficient, approach to set sketching
is simply to substitute a small hash to each object identifier. Formally let E
be the identifier space (simply called item space in the following). Let S =
{s1, . . . , sn} ⊂ E be a set. Let h : E → {0, 1}b be a random hash function
that associates a random bit-vector of length b to each item x ∈ E. We define

3

D
ra

ft

the HashList sketch sketch of S with H = {h(s1), . . . , h(sn)}. Based on this
definition, several operations are very natural to define such as

• inclusion test h(x) ∈ H as equivalent of s ∈ S,

• union H1 ∪ H2 as equivalent of S1 ∪ S2,

• intersection H1 ∩ H2 as equivalent of S1 ∩ S2.

Since a hash is non-injective function, false positive inclusion can occur with
the HashList sketch.

Lemma 1 (HashList sketch false positive rate) Let H be the HashList sketch
equivalent of S ⊂ E with b bits allocated per item. Let assume that |S| = n. Let
x ∈ E. If x ∈ S then h(x) ∈ H. If x 6∈ S then h(x) 6∈ H with a false positive
probability of 1−

(

1 − 2−b
)n

(note: 2−bn can be used as a more practical upper
bound on this probability).

Proof: Immediate. �

Numerical illustration: By allocating 24bits per item for a HashList sketch
containing 1000 items, the false positive rate is lower than 5.10−5.

The result provided by the Lemma 1 is already good enough for practical
applications (as suggestion the numerical illustration here above), but is weak
somehow because for an allocation of b bits per item, the false positive prob-
ability increase (almost) linearly with n the number of items. The following
definition formalizes this idea.

Definition 1 (Sketch ǫ-capacity) Let S be an empty sketch where b bits are
allocated per item on average. The ǫ-capacity of S is defined as the number of
items that can be added to S while maintaining a collision2 probability lower
than ǫ for elements not previously added.

The following theorem provides some insights on the ǫ-capacity of the Hash-

List sketch.

Theorem 1 (HashList sketch ǫ-capacity) Let H be a HashList sketch with
b bits allocated per item. The ǫ-capacity of H is greater than 2b/2ǫ.

Proof: Immediate using Lemma 1. �

2We says that a collision happen when then insertion of an item into the sketch does not
modify the sketch (although it should).

4

D
ra

ft

2.2 HashMatrix sketch

The Theorem 1 indicates that the HashList sketch capacity for a given amount
b of bits allocated per item is bounded. This result can be considerably improved.
Below, we introduce a new sketch structure named the “HashMatrix sketch”
that provides a much better capacity that the HashList sketch for any given ǫ
false positive error rate.

Let’s start with a empty set S, and consider an arbitrary sequence of addi-
tions x0, x1, . . . , xn applied to S where xk is an arbitrary element taken from a
possibly infinite set. The additions are nothing but set union, in this respect, it
should be noted than the union is associative (a∪ b)∪ c = a∪ (b∪ c), symmetric
a ∪ b = b ∪ a and idempotent a ∪ a = a. Therefore if S is refers to the sketch
used in place of S and ⊕ to the union-equivalent operation, the three properties
(a⊕ b)⊕ c = a⊕ (b⊕ c), a⊕ b = b⊕a and a⊕a = a are required as well. Among
the common data structures and operations, it can be noticed that bit vectors
associated to bitwise-OR (or bitwise-AND) verify those three properties.

We define a HashMatrix sketch M = (v1, . . . , vp) as a set of p bit-vectors
of length q. In the following, such sketch M is refered as a (p, q) sketch. We
assume that independent random hash functions hi : E 7→ N are available a
priori. The empty set is associated, by definition, with M∅ = (0, . . . , 0). Let 1i

be the bit-vector where the ith bit is the sole bit set to 1. The singleton sketch
associated to the object x ∈ E, is defined with Mx = (1i1 , 1i2 , . . . , 1ip

) where ik
corresponds to hi(x) mod q. The union-equivalent ⊕ operation is defined with

(v1, . . . , vp) ⊕ (w1, . . . , wp) = (OR(v1, w1), . . . ,OR(vp, wp))

Based on the previous discussion, it’s clear that (M,⊕) verifies the union prop-
erties. The inclusion-equivalent test, based on M is defined with

x ⊳ M ⇔ (AND(s1, 1i1), . . . , AND(sp, 1ip
)) 6= M∅

The inclusion-equivalent test is not strictly equivalent because there is the pos-
sibility of false positive, i.e. items not included in S but declared as included in
M. The following lemma characterizes the false positive rate.

Lemma 2 (False positive rate of the HashMatrix sketch) Let (M,⊕,⊳)
be the a (p, q) sketch equivalent to (S,∪,∈) a set with n elements. Then x ∈ S
implies x ⊳ S and

x 6∈ E ⇒ x 6⊳M with a probability P (p, q, n) =

(

1 −

(

1 −
1

q

)n)p

Proof: Immediate. �

Numerical illustration: Let P (k, n) = minpq=k P (p, q, n) we have P (5 ∗
16, 5) < 0.001. This result can be interpreted as: with only 16bits per identifier,
the sketch of 5 objects can accurately assert object inclusion with a probability
lower than 1

1000 . The memory footprint of the explicit is 1.000bits assuming a

5

D
ra

ft

reasonable 200bits per object whereas the memory footprint of the HashMa-

trix sketch is only 80bits. The sketch is more than 10 times smaller than the
initial set.

It should be noticed that the bitwise comparison between two set sketches
provide a global equality equivalent. The following corollary of the Lemma 2
quantifies the quality of this equivalence.

Corollary 1 (False positive rate on HashMatrix sketch equality) Let (M1,⊕,⊳)
(resp. M2) be the a (p, q) sketch equivalent to (S1,∪,∈) (resp. S2) a set with n
(resp. m) elements. Then S1 ∩ S2 = k implies M1 = M2 with probability

P (p, q, n)m−kP (p, q,m)n−k

Therefore, if two sets differ by more than one element, the false positive rate
of HashMatrix sketch equality is lower than the inclusion false positive rate.

The design of a HashMatrix sketch depends the two parameters p and q.
Nevertheless, as suggest the Lemma 2, for a fixed bit allocation p × q, it exists
an optimal repartition. The following theorem characterizes this optimality.

Theorem 2 (Asymptotic optimal set sketch design) Let us consider a Hash-

Matrix sketch with b bits allocated per item such that p.q = b.n. Let γ be such
that q = γn then

lim
n→∞

min
γ

P (p, q, n) = 2−b ln(2) with γ =
1

ln(2)
= 1.442695041..

Proof: Tips: limn→∞

(

1 − a
n

)n
= e−a. �

The result of the Theorem 2 can be interpreted with for n items and b bits
per items, we must choose p = b ln(2) and q = n

ln(2) . Note that this choice is

not exactly optimal, but a more detailed numerical analysis indicates that the
optimal ratio is already very close to 1/ ln(2) for n not larger than 10.

Corollary 2 (HashMatrix sketch ǫ-capacity) Let M be a HashMatrix sketch
with b bits allocated per item. The ǫ-capacity of M is greater than 2b ln(2)ǫ.

Proof: Consider ǫ = 2−b ln(2)N where N is a lower bound on the ǫ-capacity
(based on the Theorem 2). �

The capacity bound of the HashMatrix sketch is much better than Hash-

List sketch’one because ln(2) ≃ 0.69 > 1/2. Additionally, it should be noticed
that this bound is not tight, indeed we have used the following upper bound on
the collision probability

1 −

n
∏

i=1

(1 − P (b ln(2), n ln(2), i)) > 1 − n ∗ P (b ln(2), n ln(2), n)

6

D
ra

ft

2.3 Incremental HashMatrix sketch

In practice, the number n of items to be added in the sketch is not known ini-
tially. Additionally, even if this number can be known or estimated, the sketch
may possibly be carried over the network after each addition, therefore a large
initialization defeats the sketch purpose. A simple solution to this issue con-
sists of incrementally increasing the sketch size. This solution is very simple
and natural for the HashList sketch but more delicate for the the HashMa-

trix sketch. In this section, we will discuss how the HashMatrix sketch can
be modified to perform the insertions incrementally.

Formally, let us consider the sketch list

M∗ = {M0, M1, . . . , Mk} =
{

(p, q); (p, α1q); (p, α2q); . . . ; (p, αkq)
}

The addition of a new element is always performed on the last HashMa-

trix sketch Mk. The sketch Mk is considered as full when it’s capacity is
reached, i.e. after αk/ ln(2) additions. At this point, a new empty sketch Mk+1

is added (following the exponential allocation pattern). The inclusion test x⊳M∗

is defined with

x ⊳ M1|x ⊳ M2| . . . |x ⊳ Mk (where | is the logical OR)

The choice of b and α for an incremental sketch clearly defines it’s capacity.
The following theorem quantifies the false positive error rate.

Theorem 3 (False positive rate of incremental HashMatrix sketch) With
b bits allocated per item on average, the incremental HashMatrix sketch pro-

vides a false positive rate lower than 2−b ln(2) 1+α
2α logα(n).

Proof: Tips:
∑k

i=0 αi = αk+1−1
α−1 . Consequence of Theorem 2 �

Numerical illustration: starting with a sketch smaller than 200bits (single
explicit identifier representation) and taking α = 2, we can incrementally add
1000 items, allocating 40bits per item on average, with a false positive rate
staying below 5.10−6 at all time.

Corollary 3 (Incremental HashMatrix sketch ǫ-capacity) Let M
∗ be an

incremental HashMatrix sketch with b bits allocated per item. The ǫ-capacity
of M

∗ is greater than

2b ln(2) 1+α
2α

W
(

2b ln(2) 1+α
2α

)

Where W is the Lambert W function (i.e, the inverse of x 7→ xex, see [3]).

Asymptotically, this capacity bound on the incremental HashMatrix sketch
is better than the HashList sketch one. In practice, with α = 1.1, the incremen-
tal HashMatrix sketch capacity gets higher than HashList sketch capacity
for any b > 15.

7

D
ra

ft

Incremental set sketch global equality. If a simple bitwise sketch com-
parison is sufficient to check for HashMatrix sketch equality (see details in
previous section); the incremental case is more complicated. Indeed, since we
have not made any assumption on the order of the item additions, we cannot
rely on a bitwise comparison of the two sketch sequences. Nevertheless, the
global equality can be obtained through a simple and very lightweight hash.
The following lemma defines and quantifies the error rate of such set equality
hash.

Lemma 3 (Hash based set equality) Let S1 ⊂ E and S2 ⊂ E be two sets.
Let h : E → {0, 1}b be a random hash function. The set hash of S1 is defined
with h(S1) = XOR

s∈S1

h(s) (idem for S2). If S1 = S2 then h(S1) = h(S2) (no false

negative) and if S1 6= S2 then h(S1) 6= h(S2) with a false positive probability of
2−b.

The global equality operation can be made available for a incremental Hash-

Matrix sketch through the adjunction of a set hash, as defined in Lemma 3.
Since that false positive error rate of Lemma 3 does not depend on the size of
considered sets, the practical cost (in bits) of the additional hash is negligible3.

3 Sketching the Veiga & Ferreira DCDA

Veiga and Ferreira present in [18] an asynchronous, complete DGC. Intuitively
the DCDA proceeds by an initial candidate selection that is followed by a
sequence of CDMs send between the processes. CDMs are equivalent to the
GraphSummary data structure here below (note that the graph summary is al-
ready been optimized to avoid identifier duplicates). In this section, we propose
to leverage the compactness of the sketch-based CDMs to quickly detect cycles
(with a risk of false positive detection) and to verify the detection correctness
afterwards through explicit CDMs. This approach has no virtually impact on
the DCDA, only the CDM encoding is truly affected.

type graph_summary = {

list of (

unique_id,

is_source_flag, is_target_flag,

timestamp);

}

3Additionally, it can be noticed that if we are considering an equality between two incre-
mental HashMatrix sketches, then only one hash is necessary. When a new item is added
to one of two sketches, the hash is updated with a XOR between the previous hash value and
the item hash. The equality between the two sketches is then simply defined by having the
hash equal to [1, 1, . . . , 1] (because x XOR x = 1 for any bit-vector x)

8

D
ra

ft

Upon CDM delivery, only a limited list of operations are performed4 on the
graph summary. Those operations are

(a) insertion in the summary of a new timestamped identifier either flagged
as source or (exclusive) as target,

(b) test of equality between one the summary timestamp and an other timestamp
for a specified identifier,

(c) setting the second flag of an identifier to true,

(d) testing global equality between the set of identifiers flagged as source and
those flagged as target.

In terms of CDM memory footprint, we will consider the identifier size equals
to 200bits (see discussion in Section 1). The two flags require naturally 2bits. In
[18], it is suggested to code the timestamps as 32bits integers. Timestamps are
incremented on each object operation, since 230 is already the order of magni-
tude the number of elementary operations performed per second by an common
desktop processor, we believe that 32bits is too low to guarantee collision-free
timestamps in future large scale distributed systems. Based on empirical hard-
ware consideration, we believe that 64bits is a more realistic timestamps size.

We propose to sketch the graph summary based on the set sketch previously
introduced. The CDM becomes

type graph_sketch = {

list of (hash, is_source_flag, is_target_flag);

}

The graph sketch handles separately sources, targets and timestamps. The
sources and targets sketches are respectively associated to the identifiers
flagged as source and target. As detailed below, the timestamps are simply
ignored. The sketch-equivalent operations are

(a) Insertion of the identifier hash flagged correspondingly. Ignore timestamp.

(b) Always return true.

(c) Setting both flags of the identifier hash to true.

(d) Identical.

Since, the set sketch has no false negative, in can easily be proved that the
detection errors caused by the graph sketch are restricted to false positive cycle
detections. Therefore we propose following mixed strategy: when a candidate
is chosen for cycle detection, start a DCDA initiative based on sketched CDMs.

4When an identifier is added to the CDM list, the local invocation counter timestamp must
match, if present, its CDM counterparts; if not, a race condition has been encountered and
the CDM is terminated. The cycle detection condition is defined as an equality between the
items flagged as source and the items flagged as targets.

9

D
ra

ft

In case of cycle detection, start a new DCDA initiative based on explicit CDMs,
taking the suspected object (from the cycle detection point) as initiative can-
didate5. It’s easy to prove that this mixed strategy is correct (i.e. all garbage
but only garbage is collected).

Mixed DCDA performance analysis. The per-item cost for the explicit
CDMs cost is estimated as ce = 266bits (see discussion here above). In order,
to estimate the relative interest of the sketch-based approach, we need an esti-
mation of this cost when sketch-based and explicit CDM s are mixed following
the strategy described here above.

The performance analysis of the mixed DCDA requires several additional
hypotheses. Let Pg be the a priori probability of detecting a cycle for a DCDA
initiative. In practice, the value of Pg is highly dependent of the candidate
generation heuristics. The lack of widely used distributed object system provid-
ing complete DGC is an obstacle to provide a rigorous estimation of Pg at this
time. Nevertheless, we believe that a good tradeoff between DGC promptness
and DGC resource consumptions involve a majority of failures for DCDA ini-
tiatives. This belief is motivated by the results of [14] concerning the object age
frequency distribution (no simple behavior seems to govern the object-lifetime).
For the purpose of the analysis, we will rely on Pg = 10% in the following. We
believe this estimate to be quite high, empirical evaluations may provide a lower
success rate.

Let PT be the a priori probability of DCDA interruption based on the
timestamps matching. Actually, timestamps in the Veiga & Ferreira DCDA
are used to prevent race conditions with local mutator that would break the
DCDA validity. If timestamps are critical in term of correctness, we believe
the DCDA interruptions based on timestamp matching is too low6 to have any
noticeable impact on performance in practice. Indeed, race condition involve a
complicated root displacement that must occurs in a timely fashion with the
DCDA execution. Those elements lead us to strongly believe that PT < 1/1000
(empirical evaluations may provide a bound one or two order of lower than
that). Therefore, in the following of the analysis, those events will simply be
ignored.

Let Pn be the a priori probability for an DCDA initiative that the graph
summary reaches n items at a point of its execution. As would suggest statistical
consideration of scale-free graphs, the results provided in [14] indicates (we
are considering the measurements of the size frequencies of strongly connected
components of the considered graphs by [14]). The values of Pn are important
because, they will be used in practice to determine the initial capacity of 1 of
the sketch.

Based on the previous considerations, if ǫ is the false positive cycle detection
rate when relying on an allocation of b bits per item, the per-item cm cost for the

5It’s possible to exploit the information of the sketch CDM in order to speed up the explicit
DCDA execution. Such discussion goes beyond the scope of this paper.

6Caution: we do not say that timestamps checking can be ignored for performance. We
say that race condition detections are too rare to impact the overall DCDA performance.

10

D
ra

ft

Figure 2: Per-item costs of HashList sketch-based CDM.

bL ǫ capacity cm

20 0.009 10 51
26 0.012 100 58
32 0.015 1000 64
40 0.009 10000 71
46 0.011 100000 78
52 0.014 1000000 84

Legend: bL is the number of bits allocated per item in the HashList sketch. ǫ
is an upper bound of the false positive cycle detection rate. capacity is a lower
bound on the maximal number of items that can be incrementally added. cm is
the average CDM footprint in bits.

whole mixed strategy can estimated with cm = b+2+(1 − (1 − Pg)(1 − ǫ)) ∗ ce

(sum of the sketch-based per-item cost plus the explicit per-item cost when it
occurs). The Figure 2 provides a list of numerical values for cm depending on
the various initial choices for b and α (those values have been computed based
on the results of Section 2.1). Notice that the higher b is initially chosen, the
higher the graph sketch capacity.

Improving the graph sketch In Section 2.2, we have seen that the Hash-

Matrix sketch is more efficient than the HashList sketch. Yet the Hash-

Matrix sketch cannot efficiently handle the identifier flags like the Hash-

List sketch. Therefore we propose to improve the graph sketch by using a
mix of HashList sketch and HashMatrix sketch. Intuitively, we propose to
store all single-flagged identifiers in the HashList sketch as we do here above.
But when an item becomes fully flagged, the item is removed from the Hash-

List sketch and moved into the HashMatrix sketch. Since the HashMa-

trix sketch is more efficient than the HashList sketch, smaller CDM footprint
can be expected. The more fully flagged items we have, the closer we are from
the HashMatrix sketch performance.

In order to quantify this approach, we need to know P2 the average per-
centage of items being fully flagged during the DCDA execution. It’s possible
to prove7 that in case of random insertions of items either flagged as source
or target, we have P2 = 2

3 . In the following, we assume P2 = 2
3 , although we

believe this estimate to be quite low. Indeed, random insertions correspond to
the worst case situation whereas the DCDA execution is highly biased in our
favor because the items flagged as target are explored first. Based on all those
assumptions, the numerical results are gathered in Figure 3. The improvement
is roughly 10% over the results of the pure HashList sketch approach presented
in Figure 2.

7Such proof goes beyond the scope of this paper.

11

D
ra

ft

Figure 3: Per-item costs of HashList and HashMatrix mixed CDM.

bL bM ǫ capacity cm

22 15 0.009 10 47
30 20 0.007 100 52
36 24 0.010 1000 58
42 29 0.010 10000 63
49 34 0.009 100000 69
57 40 0.014 1000000 74

Legend: bL (resp. bM) is the number of bits allocated per item for the Hash-

List sketch(resp. HashMatrix sketch). ǫ is an upper bound of the false
positive cycle detection rate. capacity is a lower bound on the maximal number
of items that can be incrementally added. cm is the average CDM footprint in
bits.

4 Conclusion

The large footprint of distributed object identifiers (estimated as more than
200 bits) calls for more compact representations. In this paper, we have intro-
duce several sketches, that is approximate compact representations, of sets of
identifiers. The properties, in particular the level of approximation, have been
rigourously quantified.

Considering one the more recent DCDA at this date (see [18]), the improve-
ment brought by the sketch-based CDM is roughly a factor 3 under limited
(partly adversarial) assumptions. Since our approach is not specific of this al-
gorithm, we believe that similar improvements can be obtained with most of
the other DCDA. Additionally, since this work is only preliminary, it’s also
probable that better sketches can be found.

References

[1] Saleh E. Abdullahi and Graem A. Ringwood. Garbage collecting the inter-
net: a survey of distributed garbage collection. ACM Computing Surveys,
30(3):330–373, 1998.

[2] Peter Bishop. Computer systems with a very large address space, and
garbage collection. Technical Report MIT/LCS/TR-178, Massachusetts
Institute of Technology, May 1977.

[3] Robert M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth. On the Lambert W Function. In Advances in Computational Math-
ematics, volume 5, pages 329–359, 1996.

12

D
ra

ft

[4] Graham Cormode and S. Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms, 55(1):58–
75, 2005.

[5] Fabrice Le Fessant. Detecting distributed cycles of garbage in large-scale
systems. In PODC’01: Proceedings of the twentieth annual ACM sym-
posium on Principles of distributed computing, pages 200–209, New York,
NY, USA, 2001. ACM Press.

[6] John Hughes. A distributed garbage collection algorithm. In Proc. of a con-
ference on Functional programming languages and computer architecture,
pages 256–272, New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[7] Bernard Lang, Christian Queinnec, and José Piquer. Garbage collecting
the world. In POPL’92: Proceedings of the 19th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 39–50, New
York, NY, USA, 1992. ACM Press.

[8] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace, RFC 4122. ftp://ftp.rfc-editor.org/in-notes/

rfc4122.txt, July 2005.

[9] Barbara Liskov and Rivka Ladin. Highly available distributed services and
fault-tolerant distributed garbage collection. In PODC’86: Proceedings of
the fifth annual ACM symposium on Principles of distributed computing,
pages 29–39, New York, NY, USA, 1986. ACM Press.

[10] Matthew Clifton Lowry. A new approach to the train algorithm for distrib-
uted garbage collection. PhD thesis, Adelaide University, 2004.

[11] Umesh Maheshwari and Barbara Liskov. Collecting cyclic distributed
garbage by controlled migration. In PODC’95: Proceedings of the four-
teenth annual ACM symposium on Principles of distributed computing,
pages 57–63, New York, NY, USA, 1995. ACM Press.

[12] S. Muthukrisnan. Data streams: Algorithms ans applications. http://

www.cs.rutgers.edu/∼muthu/.

[13] Alex Potanin, James Noble, Marcus Frean, and Robert Biddle. Scale-Free
Geometry in OO Programs. Communications of the ACM, Volume 48,
Number 5, May 2005.

[14] Nicolas Richer and Marc Shapiro. The Memory Behavior of the WWW, or
The WWW Considered as a Persistent Store. In POS-9: Revised Papers
from the 9th International Workshop on Persistent Object Systems, pages
161–176, London, UK, 2001. Springer-Verlag.

[15] Helena Rodrigues and Richard Jones. A cyclic distributed garbage collector
for network objects. In WDAG ’96: Proceedings of the 10th International
Workshop on Distributed Algorithms, pages 123–140, London, UK, 1996.
Springer-Verlag.

13

D
ra

ft

[16] Helena Rodrigues and Richard Jones. Cyclic Distributed Garbage Collec-
tion with Group Merger. In ECCOP’98: Proceedings of the 12th European
Conference on Object-Oriented Programming, pages 260–284, London, UK,
1998. Springer-Verlag.

[17] Marc Shapiro, Fabrice Le Fessant, and Paulo Ferreira. Recent Advances
in Distributed Garbage Collection. In Advances in Distributed Systems,
Advanced Distributed Computing: From Algorithms to Systems, pages 104–
126, London, UK, 1999. Springer-Verlag.

[18] Lúıs Veiga and Paulo Ferreira. Asynchronous Complete Distributed
Garbage Collection. In 19th International Parallel and Distributed Process-
ing Symposium (IPDPS 2005). IEEE Computer Society, 2005.

[19] Paul R. Wilson. Uniprocessor garbage collection techniques. In Inter-
national Workshop on Memory Management, Saint-Malo, France, 1992.
Springer-Verlag Lecture Notes in Computer Science no. 637.

14

