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Abstract. We consider the k-core decomposition of network models and In-
ternet graphs at the autonomous system (AS) level. The k-core analysis allows

to characterize networks beyond the degree distribution and uncover structural
properties and hierarchies due to the specific architecture of the system. We
compare the k-core structure obtained for AS graphs with those of several net-
work models and discuss the differences and similarities with the real Internet
architecture. The presence of biases and the incompleteness of the real maps
are discussed and their effect on the k-core analysis is assessed with numerical
experiments simulating biased exploration on a wide range of network mod-
els. We find that the k-core analysis provides an interesting characterization
of the fluctuations and incompleteness of maps as well as information helping
to discriminate the original underlying structure.

1. Introduction. In recent times, mapping projects of the World Wide Web (WWW)
and the physical Internet have offered the first chance to study topology and traffic
of large-scale networks. The study of large scale networks, however, faces us with
an array of new challenges. The definitions of centrality, hierarchies and structural
organizations are in particular hindered by the large size of the systems and the
complex interplay of engineering, traffic, geographical, and economical attributes
characterizing their construction.

In this paper we propose the k-core decomposition as a graph analysis tool able
to highlight interesting structural properties that are not captured by the degree
distribution or other simple topological measures.The k-core decomposition [43,
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8, 5] consists in identifying particular subsets of the network, called k-cores, each
one obtained by a recursive pruning strategy. The k-core decomposition therefore
provides a probe to study the hierarchical properties of large scale networks, focusing
on the network’s regions of increasing centrality and connectedness properties. More
central cores are indeed more strongly connected, with larger number of possible
distinct paths between vertices: this allows to obtain not only more robust routing
properties but also a better opportunity to find a path with specific Quality of
Service (QoS).

Here we study a set of basic network models and the AS level Internet maps
obtained in two large scale measurement projects using very different techniques.
We first characterize the k-core structure of real Internet maps and compare with
the structure obtained in the various models. We find that the k-core structure is
extremely different in light tailed and heavy-tailed networks and is able to clearly
discriminate among various models presented in the literature. In this perspective
the k-core analysis represents a useful tool in the model validation process. More-
over, any result concerning Internet maps has to consider their incompleteness and
the presence of measurements biases. For this reason we also present a study of
the stability of the k-core analysis in the presence of biases and incomplete sam-
pling in all the network models considered. Our findings indicate that the k-core
decomposition’s fingerprints allow the discrimination between heterogeneous and
homogeneous topologies even after an incomplete sampling: this shows that the
signatures observed in the AS Internet maps are qualitatively reliable, even if some
biases are unavoidable at a detailed quantitative level.

2. Related work. In the last years, a wealth of studies have focused on the large
scale structure and heterogeneities of networked structure of practical interest in
social science, critical infrastructures and epidemiology [1, 17, 40]. The Internet has
been readily considered as a prototypical example of complex network by the sci-
entific community and starting with the seminal paper by Faloutsos, Faloutsos and
Faloutsos [21] an impressive number of papers has dealt with the characterization
of its large scale properties and hierarchies [46, 42, 40, 45, 31, 29]. While the initial
interest has been focused on the general principles leading to the basic organization
features of complex networks, the research activity is now diving into system spe-
cific features that distinguish and highlight the various forces and/or engineering
at work in each class of networks. This is a particular pressing need in the Internet
where even at the Autonomous System (AS) level the large scale self-organization
principles are working along with economical and technical constraints, optimiza-
tion principles and so on [29, 19]. In addition actual Internet maps are not free from
errors and measurement biases. For this reason, recent works have been devoted to
a better understanding of the possible sources of errors and biases presented by the
experimental data [27, 41, 15, 16, 26, 13, 47]. Since Internet maps are typically based
on a sampling of routes between sources and destinations (obtained by tools such
as traceroute), these studies have dealt with simplified models of traceroute-like
sampling, applied to graphs with various topological properties. They have shown
that, except in some peculiar cases [13], the sampling process allows to distinguish
qualitatively between networks with strongly different properties (homogeneous vs.
heterogeneous), while a quantitative and detailed view of the network may suffer
important biases.
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Here, we consider the use of the k-core decomposition as a probe for the structure
of Internet maps. The k-core decomposition has mostly been used in biologically
related contexts, where it was applied to the analysis of protein interaction net-
works or in the prediction of protein functions [3, 50]. An interesting application
in the area of networking has been provided by Gkantsidis et al. [24] and Gaertler
et al. [23], where the k-core decomposition is used for filtering out peripheral Au-
tonomous Systems (ASes) in the case of Internet maps. The k-core decomposition
has also recently been used as a basis for the visualization of large networks, in par-
ticular for AS maps [7, 2, 28]. Finally, recent works using the k-core analysis have
focused on the analysis of the Internet maps obtained by the DIMES project [32].
In Ref.s [11, 12], an approach based on the k-core decomposition has been used to
provide a conceptual and structural model of the Internet, the so-called Medusa
model for the Internet. Up to now, no study has however considered the k-core
decomposition of the various commonly used models for complex networks, nor
compared it to the one of real-world networks. Subramanian et al. [45] have pro-
posed to classify ASes in five different levels or ”tiers”, and given a method to
extract this classification from the AS directed graph. This method can however
lead to some biases when the knowledge of the all peer-to-peer relationships is not
complete. The k-core decomposition studied in this paper considers on the other
hand undirected networks, and yields a finer hierarchy, not based on the commercial
relations between vertices, and in which the number of levels is not fixed a priori
but depends on the characteristics of the network. It is moreover not restricted to
AS maps but can be applied as well for example to Internet router maps or more
generally to any real or computer generated graph.

3. k-core decomposition. Let us consider a graph G = (V, E) of |V | = n vertices
and |E| = e edges, the definition from [5] of k-cores is the following

Definition 1: A subgraph H = (C, E|C) induced by the set C ⊆ V is a k-core

or a core of order k if and only if the degree of every node v ∈ C induced in H is
greater or equal than k (in symbolic form, this reads ∀v ∈ C : degreeH(v) ≥ k),
and H is the maximum subgraph with this property.

A k-core of G can therefore be obtained by recursively removing all the vertices
of degree less than k, until all vertices in the remaining graph have degree at least
k. It is worth remarking that this process is not equivalent to prune vertices of a
certain degree. Indeed, a star-like subgraph formed by a vertex with a high degree
that connects many vertices with degree one, and connected only with a single edge
to the rest of the graph, is going to belong to the first shell no matter how high is
the degree of the vertex. We will also use the following definitions

Definition 2: A vertex i has shell index k if it belongs to the k-core but not to
(k + 1)-core.

Definition 3: A k-shell Sk is composed by all the vertices whose shell index is
k. The maximum value k such that Sk is not empty is denoted kmax. The k-core is
thus the union of all shells Sc with c ≥ k.

Definition 4: Each connected set of vertices having the same shell index c is
a cluster Qc, where the corresponding set of edges are those connecting vertices
of the cluster. Each shell Sc is thus composed by clusters Qc

m, such that Sc =
∪1≤m≤qc

max

Qc
m, where qc

max is the number of clusters in Sc.
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Figure 1. Sketch of the k-core decomposition for a small graph.
Each closed line contains the set of vertices belonging to a given
k-core, while different types of vertices correspond to different k-
shells.

The k-core decomposition therefore identifies progressively internal cores and
decomposes the networks layer by layer, revealing the structure of the different
k-shells from the outmost one to the most internal one, as sketched in Fig. 1.

It is worth to note that the k-core decomposition can be easily implemented: the
algorithm by Batagelj and Zversnik [6] presents a time complexity of order O(n+e)
for a general graph. This makes the algorithm very efficient for sparse graphs, where
e is of order n.

A very interesting feature of the k-cores concerns their connectivity properties.
It has been for example shown experimentally in [12] that the k-cores of the AS map
obtained by the DIMES project [32] are k-connected, which means that k disjoint
paths are available between any two vertices belonging to the k-core. In fact, for any
two vertices u and v of the network, with shell indices respectively cu and cv, there
are (with some exceptions for small values of cu and cv) at least min(cu, cv) disjoint
paths between u and v [12]. Such property has important practical consequences
since it implies larger and larger robustness and routing capacities for more and
more central cores. The knowledge of such capacities identifies a very important
hierarchy of ASes that could be taken advantage of by newly created ASes in order
to choose to which other ASes to establish connections. We will come back to this
point in section 4.1.3.

4. k-core structure of Internet maps and models.

4.1. Internet AS maps. In this section, we inspect Internet maps at the AS level
and compare their k-core structure with the insights obtained from models. In order
to obtain Internet connectivity information at the AS level it is possible to inspect
routing tables and paths stored in each router (passive measurements) or directly
ask the network with a software probe (active measurements). In the following
we consider data from two recent large scale Internet mapping projects using an
active measurement approach. The skitter project at CAIDA [14] has deployed
several strategically placed probing monitors using a path probing software. All
the data are then centrally collected and merged in order to obtain Internet maps
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that maximizes the estimate of cross-connectivity. The second set we consider
is provided by the Distributed Internet Measurements and Simulations (DIMES)
project [32, 44]. At the time where the map was obtained, the project consisted
of more than 5,000 measuring agents performing Internet measurements such as
traceroute and ping. Table 1 displays a summary of the basic properties of the
considered Internet maps. We have also investigated Internet maps obtained from
the Oregon Routeviews project [38] (not shown), with very similar results. In the
following we show how the application of the k-core decomposition can shed light
on important hierarchical properties of Internet graphs, focusing on the AS maps
obtained by each project in 2005.

The first observation about the structure of the k-cores is that they remain
connected. This is not a priori an obvious fact since one can easily imagine networks
whose k-core decomposition yields several connected components corresponding,
e.g. to various communities. Instead, each decomposition step is just peeling the
network leaving connected the inner part of the network, showing a high hierarchical
structure, i.e. the most connected part of the network is also the most central.
Figure 2 displays the size in terms of vertices of each k-shell as a function of its
index. As for RSF or BRITE networks (see section 4.2), power-law like shapes are
obtained. Important fluctuations appear at large k, which is not very surprising
since such shells of large index are relatively small, except for the most central
core which contains 50 vertices at kmax = 26 and 82 vertices at kmax = 39 for
CAIDA and DIMES, respectively. Such a structure has also been observed in the
independent study of [12].

source n e 〈d〉 dmax kmax

CAIDA, 2005/04 8542 25492 5.97 1171 26

DIMES, 2005/05 20455 61760 6.04 2800 39

Table 1. Main properties of the Internet maps considered in the
present study: number of vertices n and of edges e, average degree
〈d〉, maximum degree dmax and maximum shell index kmax.

Interestingly, a much larger kmax is obtained for the DIMES AS map than for
the CAIDA one. It is likely that such discrepancy is linked to the diversity of the
exploration methods. The maximum core depends indeed largely on the amount of
discovered edges and lateral connectivity. The set of “observers” is 22 for CAIDA
but more than 5, 000 for DIMES. It is therefore reasonable that the latter has more
probability to discover edges, and therefore a larger value of kmax.

4.1.1. Self-similarity. The properties of the successive k-cores of Internet maps can
be studied by considering their degree distributions and correlation properties.

Figure 3 shows the cumulative degree distribution for the first k-cores, for the
various AS maps. Strikingly, the shape of the distribution, i.e. an approximate
power-law, is not affected by the decomposition. This is illustrated by the fact that
the data for the various distributions collapse on top of each other, once the degree is
rescaled by the average degree of the k-core. Note that in Fig. 3, as in the following
figures, we do not show data for all the cores, but only for a representative set of k
values. Figure 3 clearly shows how the exponent of the power-law is robust across
the various k-cores, although the range of variation of the degree decreases. In
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Figure 2. Shell size as a function of their index for the AS maps.
The dashed line is a power-law ∝ k−2.7.

other words, each core conserves a broad degree distribution: AS with significantly
different number of neighbors are present in each core or hierarchy level.
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Figure 3. Rescaled cumulative degree distributions of some k-
cores of the AS Internet maps. The degree is normalized by the
corresponding average degree 〈d〉 in each k-core. The shapes of the
distributions are preserved by the successive pruning, pointing to
a self-similar behavior of the successive k-cores.

In order to better characterize and check this self-similarity, we have computed
also the two and three points correlations functions of the various k-cores. A useful
measure to quantify correlations between the degrees of neighboring vertices is the
average degree of nearest neighbors dnn(d) of vertices of degree d [39]:

dnn(d) =
1

nd

∑

j/dj=d

1

dj

∑

i∈V (j)

di , (1)

where V (j) is the set of the dj neighbors of vertex j and nd the number of vertices
of degree d. This last quantity is related to the correlations between the degree of
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connected vertices since on the average it can be expressed as

dnn(d) =
∑

d′

d′P (d′|d), (2)

where P (d′|d) is the conditional probability that a vertex with degree d is connected
to a vertex with degree d′. If degrees of neighboring vertices are uncorrelated,
P (d′|d) depends only on d′ and thus dnn(d) is a constant. When correlations are
present, two main classes of possible correlations have been identified: assortative

behavior if dnn(d) increases with d, which indicates that large degree vertices are
preferentially connected with other large degree vertices, and disassortative if dnn(d)
decreases with d [37]. From a routing point of view, a disassortative behavior cor-
responds to a network structure where vertices with small degree are preferentially
connected to the hubs (i.e., large degree vertices). A second, and often studied,
relevant quantity is the clustering coefficient [48] that measures the local group co-
hesiveness and is defined for any vertex j as the fraction of connected neighbors of
j

ccj = 2 · nlink/(dj(dj − 1)) , (3)

where nlink is the number of links between the dj neighbors of j. The study of the
clustering spectrum cc(d) of vertices of degree d, defined as

cc(d) =
1

nd

∑

j/dj=d

ccj , (4)

allows, e.g. to uncover hierarchies in which low degree vertices belong generally to
well interconnected communities (high clustering coefficient), while hubs connect
many vertices that are not directly connected (small clustering coefficient). Large
clustering has a clear relevance for routing purposes since it indicates the presence
of alternative paths thanks to the presence of many triangles: if a link from a vertex
u to a neighbor v goes down, the message can be sent from u to v through a common
neighbor.

Figure 4 shows that not only the degree distribution but also the clustering and
correlations structures of the Internet maps are essentially preserved as the more
and more external parts of the network are pruned. We note however that, as also
shown in [12], the largest k-cores are no more scale-free: since they are very densely
connected, their degree distribution is rather peaked around an average value and
their topology is closer to that of a random graph with large average degree.

In summary, the AS networks exhibit a statistical scale invariance with respect to
the pruning obtained with the k-cores decomposition for a wide range of k. Indeed,
while this decomposition identifies subgraphs that progressively correspond to the
most central regions of the network, the statistical properties of these subgraphs
are preserved at many levels of pruning. This hints to a sort of global self-similarity
for regions of increasing centrality of the network, and to a structure in which each
region of the Internet as defined in terms of network centrality has the same proper-
ties than the whole network. This is particularly interesting since the properties of
Internet (heterogeneous degree distributions, correlations, clustering...) have been
up to now studied at the level of the whole map, while one can be interested to
restrict the analysis to some particular regions of the map, focusing for example on
parts of the network with certain routing capabilities (QoS, failure support). At
a general level, the k-core decomposition appears therefore as a suitable way to
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define a pruning procedure equivalent to a scale-change preserving the statistical
properties of graphs while focusing on their more and more connected parts.

10
-3

10
-2

10
-1

10
0

d nn
(d

) 
/ <

d nn
>

4-core
7-core
10-core
13-core

5-core
10-core
15-core
20-core

10
0

10
1

10
2

10
3

d / <d>

10
-3

10
-2

10
-1

10
0

cc
(d

) 
/ <

cc
>

4-core
7-core
10-core
13-core

10
0

10
1

10
2

10
3

d / <d>

5-core
10-core
15-core
20-core

CAIDA

CAIDA

Dimes

Dimes

Figure 4. Average nearest neighbor (top) and rescaled clustering
spectrum (bottom) as a function of the degree for some k-cores
of the AS Internet maps. All the quantities are rescaled by the
corresponding averages in each k-core. The collapse of the various
curves confirm the self-similar structure of the k-cores.

4.1.2. Shell index and centrality. The identification of the most central vertices is a
major issue in networks characterization [22]. While a first intuitive and immediate
measure of the centrality of vertices is given by their degree, more refined investiga-
tions are needed in order to characterize the real importance of various vertices: for
example, some low-degree vertices may be essential because they provide connec-
tions between otherwise separated parts of the network. In order to uncover such
important vertices, the concept of betweenness centrality (BC) is now commonly
used [22, 36]. The betweenness centrality of a vertex v is defined as

g(v) =
∑

s6=t

σst(v)

σst
, (5)

where σst is the number of shortest paths going from s to t and σst(v) is the number
of shortest paths from s to t going through v. This definition means that central
vertices are part of more shortest paths within the network than peripheral vertices.
Moreover, the betweenness centrality gives in transport networks an estimate of the
traffic handled by the vertices, assuming that the number of shortest paths is a
zero-th order approximation to the frequency of use of a given vertex (e.g. the load
of an AS), in the case of an all-to-all communication.

The k-core decomposition intuitively provides a hierarchy of the vertices based
on their shell index that is a combination of local and global properties. (e.g., [50]
shows that the shell index is a better criterium for centrality than the degree in
protein interaction networks). In this perspective, it becomes very interesting to
study the correlation between the degree, the betweenness centrality and the shell
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index of a vertex in order to quantify the statistical level of consistency of the
various measures. We show in Fig. 5 the average betweenness centrality (computed
on the original graph) of vertices as a function of their shell index, and the shell
index as a function of the degree d. A strong correlation is expected, but the
fluctuations observed (given by the errorbars) should not be a surprise: while a
low-degree vertex has clearly low shell index, large or medium degree vertices do
not have necessarily a large shell index. In the AS maps, we observe in fact that
all large degree vertices belong to the most central core, while large fluctuations
are observed for intermediate degree values. Moreover, the betweenness centrality
is a highly non-local quantity which can be large even for small-degree vertices.
These quantities are thus pinpointing different kinds of centrality. The shell index
appears therefore as a very interesting quantity to uncover central vertices and it
has the advantage of a much faster computation time than those required for the
betweenness centrality (of order n2 log n [9]).

4.1.3. Potential practical implications. The k-core decomposition has interesting
immediate applications. First of all, as already mentioned in section 3, it has been
shown in ref [12] that each k-core of the DIMES AS map is k-connected, and that
the number of disjoint paths between two vertices u and v of this map is bounded
from below by the minimum of the shell indices of u and v.

Moreover, it is quite easy to show and understand that similar properties hold
for a network under certain assumptions. In particular, if the central core (of shell
index kmax) of a given network is kmax-edge-connected, and if there exists enough
edges between the various shells (in particular if any cluster -see Def. 4- of each
k-shell is connected to the k + 1-shell by at least k edges), then each k-core of
the network turns out to be k-edge connected. We have in fact checked that these
conditions are verified for the CAIDA and DIMES maps as well as for the network
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models under study. Note that k-edge connectivity (i.e. the existence of k distinct
paths which do not share any common edge) is less restrictive than k-connectivity.
In the context of Autonomous Systems and evaluation of routing capacities or of
failure possibilities however, it is particularly relevant since a vertex of the AS map
represents in fact many different routers, so that different paths may cross at a
given AS while being effectively physically disjoints.

Such connectivity properties highlight the fact that the k-core decomposition
provides a natural definition for a hierarchy in the network, in which the more
central vertices (with larger shell index) have better routing capabilities (i.e. they
can choose several paths to achive a certain connection), and each k-core constitutes
an ensemble of ASes able to provide a certain QoS, with global larger robustness
for larger k.

It is therefore interesting to compare the k-core decomposition with the tiers
hierarchy proposed by Subramanian et al. [45]. These two hierarchies have different
origins and motivations: on the one hand, the tiers classification is based on the
inference of AS commercial relationships; on the other hand, and in a somehow op-
posite point of view, the k-core decomposition gives a classification of the network’s
vertices which does not have an a priori fixed number of classes or levels, but which
adapts itself to the situation of the network. Moreover, the shell index of a vertex
is not fixed once and for all but may fluctuate in time due to possible connectiv-
ity changes (as investigated in the next section). In this aspect, such a hierarchy
provides very relevant information about the state of the network at a given time.
While the actual routing protocols do not take advantage of such information, one
could imagine that future routing protocols may be able to exploit it.

We finally note that the use of the k-core decomposition in order to find a certain
hierarchy of connectedness properties is not limited to the analysis of AS maps: it
can as well be applied to other kinds of Internet maps, for example at the router
level, or to any communication or transportation network.

4.2. k-core structure of network models. In order to better understand the
properties of the k-core decomposition of networks and use it as a model valida-
tion tool, we also apply this technique to a set of well known and commonly used
models of networks, whose main characteristics are summarized in Table 2. Vari-
ous topological properties can lead to various decompositions so we consider both
homogeneous and heterogeneous networks. For each model, we will present results
corresponding to one random instance of the model, and have checked that the
highlighted properties do not depend on the particular instance considered.

source n e 〈d〉 dmax kmax

ER 105 106 20 41 14

BA 5.104 99998 4 642 3

Weibull 105 307500 6.15 377 9

RSF γ = 2.3 97315 293891 6.04 938 22

BRITE 105 156145 3.63 433 54

INET 3.0 10000 19676 3.936 984 8

Table 2. Main properties of the models considered in the present
study: number of vertices n and of edges e, average degree 〈d〉,
maximum degree dmax and maximum shell index kmax.
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4.2.1. Size of shells. We first consider for reference the random graph model of
Erdös and Rényi (ER) [20], which is the most standard example of graphs with a
characteristic value for the degree (the average value 〈d〉). In this case, the maximum
index is clearly related to the average degree 〈d〉. The vertex degrees have only small
fluctuations, thus most vertices belong to the same k-core that is also the highest.
Noticeably, the size of the shells is increasing with the index, showing that only
few vertices can be considered as peripherical (see Fig. 6), and that the network
contains no clear hierarchy between nodes.

A second model we considered is the Barabási-Albert (BA) model [4] that has
been put forward to exemplify the concept of preferential attachment and as a
paradigm of dynamically evolving networks. In this model, a growing network is
constructed according to the preferential attachment mechanism: each new vertex
is connected to m already existing vertices chosen with a probability proportional
to their starting degree. This model produces graphs with power-law degree distri-
butions, thus characterized by a very large variety of degree values. On the other
hand, this is a toy model that should not be considered as a realistic model in
the Internet and indeed the corresponding k-core decomposition is somehow trivial,
with only few shells at very small index. The construction mechanism provides a
simple explanation. Each new vertex enters the system with degree m, but at the
following time steps new vertices may connect to it, increasing its degree. Inverting
the procedure, we obtain exactly the k-core decomposition. The minimum degree
is m, therefore all shells Cc with c < m are empty. Recursively pruning all vertices
of degree m, one first removes the last vertex, then the one added at the preceding
step, whose degree is now reduced to its initial value m, and so on, up to the initial
vertices which may have larger degree. Hence, all vertices except the initial ones
belong to the shell of index m.

Other algorithms are widely used to obtain random graphs with prescribed
broad degree distributions. In the literature, different definitions of heavy-tailed
like distributions exist. While we do not want to enter the detailed definition,
we have considered two classes of such distributions: (i) scale-free or Pareto dis-
tributions of the form P (k) ∼ k−γ (RSF), and (ii) Weibull distributions (WEI)
P (k) = (a/c)(k/c)a−1 exp(−(k/c)a). The scale-free distribution has a diverging
second moment and therefore virtually unbounded fluctuations, limited only by
eventual size-cut-off. The Weibull distribution is akin to power-law distributions
truncated by an exponential cut-off which are often encountered in the analysis of
scale-free systems in the real world. Indeed, a truncation of the power-law behavior
is generally due to finite-size effects and other physical constraints. Both forms have
been proposed as representing the topological properties of the Internet [10]. We
have generated the corresponding random graphs by using the algorithm proposed
by Molloy and Reed [34, 35]: the vertices of the graph are assigned a fixed sequence
of degrees {ki}, i = 1, . . . , N , chosen at random from the desired degree distribu-
tion P (k), and with the additional constraint that the sum

∑
i ki must be even;

then, the vertices are connected by
∑

i ki/2 edges, respecting the assigned degrees
and avoiding self- and multiple-connections. The parameters used are a = 0.4 and
c = 0.6 for the Weibull distribution, and γ = 2.3 for the RSF case.

The previous construction can be considered as static as it does not imagine a
dynamical attachment rule. The topology generator INET3.0 [49] also falls into this
class. This generator has been specifically designed to represent the Internet at the
AS level by obtaining a closely similar topology. As shown in Fig. 6, such network
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Figure 6. Shell size as a function of their index for the various
models considered. The various models yield very different shapes,
indicating the k-core decomposition as an interesting additional
tool for network characterization.

presents a small number of k-cores, with a shell size behavior that is exponentially
decreasing for increasing shell index.

Another Internet topology generator often discussed in the literature is the
BRITE generator [33], which proposes a growth mechanism combining the addi-
tion of vertices with m new links according to the preferential attachment with the
addition of new links between already existing vertices, also through a preferential
attachment mechanism. In this case, a non-trivial structure of shells is obtained,
with a largest shell index kmax much larger than the average degree, and a shell size
decreasing as a power-law function of the index. This implies a similar power-law
relation between the size of each k-core and its index, as observed in real Internet
maps. At large k, large fluctuations are observed, with a relatively large central
core (see Fig. 6). The difference between BRITE and BA networks highlights the
structural relevance of the addition of new links between already existing vertices
in a growing heterogeneous network model.

In general, as shown for an example in Fig. 6 (and with the exception of the
BA model), random networks with heavy-tailed degree distributions present sys-
tematically a large number of shells (we have also checked that kmax increases if γ
decreases), and much larger than the average degree 〈d〉. The shell size is decreasing
as a power-law of the index [18, 25], with a quite large central core of index kmax, as
for BRITE. On the contrary, Weibull distributed networks have relatively few shells
with a much smaller kmax. It is interesting that networks with relatively similar de-
gree distributions can present in fact strongly different k-core decompositions. This
points to the k-core decomposition as a supplementary valuable tool for network
investigation.

4.2.2. Core statistics and structure. In this paragraph, we compare the character-
istics of the different cores, i.e. of more and more central parts of the network. In
the following we will focus only on the models that have a core structure resembling
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Figure 7. Cumulative degree distribution of some k-cores for
some model networks. For each k-core, the degree is normalized
by the average degree of the core. For these various models, the
collapse of the various distributions show a striking property of
statistical self-similarity of the successive k-cores.

that of the Internet as the ER and the BA models are readily ruled out as possible
candidates to represent the Internet.

Figure 7 shows the cumulative degree distribution for some k-cores, for some of
the studied models; namely, the probability P>(d) that any vertex in the networks
has a degree larger than d. Strikingly, the shape of the distribution (power-laws
or Weibull) is not affected by the decomposition. This feature, already noted in
[18] for uncorrelated scale-free networks, points to a striking property of statistical
self-similarity of the generated k-cores, which resemble one with each other under
the opportune rescaling of the average degree.

As in the case of Internet maps, we characterize further this self-similarity by
computing the 2 and 3 point correlations as defined by the average degree of nearest
neighbors dnn(d) of vertices of degree d, and the clustering spectrum cc(d) of vertices
of degree d. These quantities are reported in Fig.s 8 and 9 for the various k-cores.
Strikingly, the behavior of the two quantities is preserved in all cases as the network
is recursively pruned of its low-degree vertices. In other words, the overall network
topology is invariant for k-cores of increasing centrality.

4.2.3. Summary. In summary, the k-core decomposition allows to uncover very dif-
ferent behaviors for different models which may otherwise share e.g. very similar
degree distributions. The k-core decomposition is therefore a useful tool in the
context of the model validation process. For example, a growing network obtained
with the linear preferential attachment rule may have a scale-free distribution of
degrees P (k) ∼ k−γ but will have a trivial shell structure because of its construc-
tion mechanism. On the other hand, randomly constructed scale-free networks,
which may have weak correlation properties and small clustering, can present a
rich hierarchical decomposition with a large central core of high shell index. This
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Figure 9. Clustering coefficient spectrum of some k-cores for some
model networks. The degree of each node is normalized by the av-
erage degree of each k-core, and the clustering coefficient is rescaled
by the average clustering of each k-core. Once again, a collapse is
observed, confirming the self-similarity of the k-cores.

appears in agreement with the results of Ref. [30] where structural correlations and
constraints appear to be sufficient to determine most of the observed statistical
properties observed in large scale graphs.
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date # n e 〈d〉 dmax kmax

2001/05 7400 24791 6.700 1820 28
2002/03 8489 28871 6.802 2007 32
2003/05 8755 27300 6.236 1560 26
2004/04 9238 28016 6.065 1406 26
2005/04 8542 25492 5.969 1171 26

Table 3. Characteristics of the CAIDA AS maps considered for
the time analysis: number of vertices n and of edges e, average
degree 〈d〉, maximum degree dmax and maximum shell index kmax.

5. k-cores, dynamics and sampling biases.

5.1. Temporal variations of the k-core structure. The availability of data
obtained by the various projects makes it possible to study the temporal evolution
of the Internet maps. We have considered the maps obtained by the CAIDA project
at various times between 2001 and 2005. Table 3 shows the main characteristics of
the analyzed maps, each of which was obtained from the archives of one complete
month.

While statistical signatures such as degree distribution, disassortative behavior
and clustering spectrum are typically very stable over time, the k-core structure
analysis reveals some finer variations. For example, the number of vertices and
edges and the maximal shell index fluctuate in the CAIDA maps. This can be
tracked down to the fact that the number of sources used by CAIDA changes (14
for the 2001/05 map, 21 for 2002/03, 24 for 2003/05 and 2004/04, and 22 for
2005/04), and that the locations of some of these sources also change.

Interesting informations also arise from the study of the change in the composi-
tion of the various k-shells: we show as an example in Fig. 10 the probability for a
given AS to change from a shell of index x in a map obtained at a given time to a
shell of index y in the successive map. While most vertices do not change their shell
index, as shown by the dark area around the diagonal, some suffer an important
change of status, from a highly central shell to a peripherical one or vice-versa. This
highlights the presence of strong structural fluctuations in the evolution of CAIDA
AS maps.

A further fingerprint of such structural changes is provided by the analysis of the
shell index of vertices that appear in or disappear from the maps between one snap-
shot and the other, as shown in Fig.11: vertices in all shells, even central ones, disap-
pear from the CAIDA maps even in the most recent maps, between 2004 and 2005.
The fluctuations observed in the shell index of ASes may be related to three factors.
A first one is the natural evolution of the Internet structure. A second factor is the
re-numbering of the ASes for administrative reasons (see http://www.iana.org).
A third factor is the uncertainty and bias in the data collection. In this respect,
CAIDA maps seem to exhibit a high level of instability, indicative of a mapping
process less stable in time. In this context, the k-core analysis appears as an inter-
esting tool to highlight the temporal changes of the Internet structure as well as the
measurement reliability in each particular experimental set-up, at an intermediate
level between global quantities and local ones such as the degree. It will certainly
be of interest in the future to study similar data for evolving DIMES maps, which
are obtained with a much larger set of sources.
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Figure 10. The grayscale code gives the probability of a change
in shell index, from the CAIDA map of 2004/04 (x axis) to the one
of 2005/04 (y axis). The points in line 0 correspond to ASes that
are present in 2004 but not in 2005, and the column 0 corresponds
to the reverse situation. Most nodes do not change shell index,
as the dark area around the diagonal shows, but some important
changes occur, with central nodes becoming peripherical, or vice-
versa.

5.2. Sampling biases. In this paragraph, we perform a sensitivity analysis of the
k-core decomposition with respect to potential sampling biases. In particular we
want to assess the effect of incompleteness and sampling biases on the resulting
structure of sampled graphs. For this reason we will produce incomplete synthetic
sampling processes of network models and compare the k-core structure of the
sampled graph with that of the original one.

Internet maps are currently obtained through sampling methods of the real In-
ternet, which are based on a merging of paths between sources and destinations,
obtained either through Border Gateway Protocol routing tables or through ac-
tive traceroute measurements. Such sampling processes present possible sources
of errors and biases whose effect has been up to now studied essentially for the
degree distributions [27, 41, 15, 16, 13, 26]. The analysis of idealized sampling
processes on networks with various topologies has in particular revealed that the
broadness of the degree distributions observed in Internet maps is a genuine feature,
although important biases can remain on the exact form of the distribution, due to
an undersampling of vertices with small degree. Moreover, although a path-based
sampling process can produce a heterogeneous graph out of an homogeneous initial
network (such as an ER graph), as rigorously shown in [13], this is restricted to
the case of a single source probing. It is therefore interesting to note that a single
source traceroute-like probing of any network yields essentially a tree, whose k-
core decomposition is by definition trivial (with kmax = 1). Another obvious but
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important confirmation regards the largest shell index: by definition, a sampling
cannot discover paths or edges that do not exist, so that the maximal shell index
of a network, kmax, cannot be increased by partial sampling (nor can the maximal
degree observed). In fact the actual kmax is thus at least equal to the one found by
a sampling of the true network.

Since more central cores are more connected, and more paths go through them,
path-based sampling should intuitively discover and sample better more central
cores, while the peripherical shells could suffer from stronger biases. In order to
check such ideas, we perform a traceroute-like probing of the various model net-
works considered in section 4.2, and compare their k-core decomposition before and
after sampling. We use the same model for traceroute as in [15, 16, 26]: a set of
NS sources sends probes to NT destinations randomly placed on the network, and
the shortest paths between the source-destination pairs are merged to compose the
sampled network. We use NS = 50 sources, and various probing efforts measured
by ǫ = NSNT /N (where N is the size of the initial network), from a small value
ǫ = 0.1 (corresponding to a small density of targets NT /N = 2.10−3) to a much
larger ǫ = 5 (relatively large density of targets NT /N = 10−1).

Figure 12 presents the curves of the k-shell size as a function of the index for
various network models and various sampling efforts. For ER networks, the popu-
lated shells change from being at index values only slightly under k = 〈d〉 to much
smaller values, with an almost uniform population of shells. The observed behavior
is therefore completely different from the one observed in AS maps. On the con-
trary, the power-law shape obtained for RSF or BRITE networks, and comparable
to the one of the AS maps, is very robust, even if the slope is affected. Indeed,
shells of smaller indices are less well sampled. In particular, the size of the first
shell is most strongly decreased by the sampling procedure; in some cases in fact,
the first shell is larger than the second in the original network, but becomes smaller
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Figure 12. Plot of the size of the k-shells vs. k for various models,
before and after traceroute-like sampling, with different probing
efforts ǫ. The qualitative shapes are preserved by sampling.

in the sampled network. We note that in the available AS maps, the first shell is
indeed typically smaller than the second, and that the true AS network thus very
probably exhibits a much larger shell of index k = 1. Similarly, one can expect that
the exponent close to 2.7 of the power-law behavior of the shell size vs. its index
(see [12] and Fig. 2) is a lower bound and that such value might be reconsidered
in the future thanks to more and more extensive sampling efforts. On the other
hand, the fact that the shell of largest index is substantially larger than the ones
with immediately lower indices is well preserved, even if its index is substantially
decreased by the fact that many edges are ignored during the sampling process.

Figures 13 and 14 moreover show that the self-similar properties of the k-core
decomposition are preserved by the sampling process. Although the precise form of
the degree distribution of the whole network is slightly altered, the basic correlation
properties are conserved by the sampling. Moreover, the self-similar structure of
the k-core decomposition is also preserved, as a comparison of Fig.s 13 and 14 with
Fig.s 8 and 9 clearly shows.

While the main statistical properties of the k-core decomposition are therefore
largely conserved by the sampling process, allowing to distinguish between networks
with different topological structures, important quantitative biases can appear and
compromise the accuracy of the measurements, as we now investigate. In order
to understand such effects in more details, we indeed show in Fig.s 15 and 16 the
probability for a vertex of given shell index in the original network to have another
shell index in the sampled network, in the case of an original network obtained
by the BRITE generator. At low sampling effort, many vertices are simply left
undiscovered, and the shell index properties can be strongly affected in a seemingly
erratic way, as shown by the important scattering of data in Fig. 15. As soon
however as the sampling effort is increased to a more reasonable level, a strong



K-CORE DECOMPOSITION OF INTERNET GRAPHS 19

10
-1

10
0

d nn
 / 

<
d nn

>
5-core
9-core
13-core
17-core

8-core
12-core
19-core
25-core

10
0

10
1

10
2

d / <d>

10
-1

10
0

d nn
 / 

<
d nn

>

2-core
3-core
4-core
5-core

10
0

10
1

10
2

d / <d>

2-core
3-core
4-core
5-core

RSF, γ=2.3 Brite

Weibull Inet

Figure 13. Nearest neighbors degree distribution of some k-cores,
rescaled by the corresponding average values, for some network
models after sampling through a traceroute-like process with
NS = 50 sources and target density NT /N = 0.1. The data col-
lapse shows that the self-similarity is preserved by sampling.

10
-1

10
0

cc
 (

d)
 / 

<
cc

>

5-core
9-core
13-core
17-core

8-core
12-core
19-core
25-core

10
0

10
1

10
2

d / <d>

10
-1

10
0

cc
 (

d)
 / 

<
cc

>

2-core
3-core
4-core
5-core

10
0

10
1

10
2

d / <d>

2-core
3-core
4-core
5-core

RSF, γ=2.3

Brite

Weibull Inet

Figure 14. Clustering spectrum of some k-cores, rescaled by the
corresponding average values, for some network models after sam-
pling through a traceroute-like process with NS = 50 sources and
target density NT /N = 0.1.

correlation appears between the true shell index and its value in the sampled graph,
even if a systematic downwards trend is observed (Fig. 16).

In summary, our results indicate that the sampling biases do in fact affect only
slightly the measure of the statistical properties of heterogeneous graphs and of their
k-core decomposition, even at relatively low level of sampling. In fact, the routing
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Figure 15. The grayscale code gives the probability of a change
in shell index due to the traceroute-like sampling, from a certain
index before sampling (x axis) to another one after sampling (y
axis). The line at y = 0 represents the probability of vertices of shell
index x to be absent from the sampled graph. The initial network
is obtained by the BRITE generator. Here NS = 50 sources and
a fraction NT /N = 2.10−3 of targets are used. The low sampling
effort implies that many nodes are not discovered, and that the
measured shell index can differ strongly from the original one.

properties as “measured” by the shell indices will be in fact rather underevaluated
due to the incomplete sampling of edges, which can be taken as a rather good news
showing that the AS network probably offers better performance (QoS, robustness)
than what can be measured by the present maps.

6. Conclusions. We have presented the application of the k-core decomposition
to the analysis of large scale networks models and of large scale Internet maps. The
k-core decomposition allows the progressive pruning of the networks and the iden-
tification of subgraphs of increasing centrality. These subgraphs have the property
of being more and more densely connected, and therefore of presenting more and
more robust routing capabilities. The study of the obtained subgraphs uncovers the
main hierarchical layers of the network and allows for their statistical characteriza-
tion. Strikingly, we observe for the Internet at the Autonomous System a statistical
self-similarity of the topological properties for cores of increasing centrality.

The k-core decomposition proves useful to uncover not only the hierarchical de-
composition of real maps, but also for model validations. For example, many mod-
els, although having, e.g. degree distribution and clustering properties similar to
those of real maps, do not present shell index values as large as the real data,
nor a similar structure in which each k-core is composed by a constant fraction
of the k − 1-core. The k-core decomposition should therefore be considered as a
supplementary valuable tool for network characterization and model validation.

It is also worth mentioning that the router level k-core structure of the Internet
appears to have different properties than those appearing at the AS level [32, 28].
This calls for repeating the present analysis for different router level maps available
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Figure 16. Same as Fig. 15 for NS = 50 sources and NT /N =
2.10−2 (top) and NT /N = 10−1 (bottom). As the sampling effort
is increased, the measured and the original shell index become more
correlated.

at the moment in order to better emphasize the structural difference exhibited by
the two different mapping granularities.

Moreover, the k-core analysis allows to compare maps obtained by different map-
ping processes, follow their temporal evolution and assess the stability of these maps.
It also appears as an interesting way of discriminating between various topologies,
even after sampling biases have been introduced: for example, a sampled ER net-
work may display a power-law like degree distribution in case of a very limited
sampling effort, but its k-core decomposition will in any case remain very different
from the one of sampled heterogeneous networks.

Finally, the k-core decomposition may be used also to define a computational
feasible centrality measure and a hierarchy between the nodes of a network. It
combines the degree ranking with more global structural properties, connectedness
and routing capabilities, providing a centrality measure that is highly correlated
with the various standard definitions such as degree and betweenness centrality.

In conclusion, the k-core decomposition appears at a general level as a very inter-
esting and useful additional tool for analysis of complex networks, with particular
relevance in the context of technological and communication networks.
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