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Abstract. We use the k-core decomposition, based on a recursive prun-
ing of the least connected vertices, to study large scale Internet graphs at
the Autonomous System level. This approach allows the characterization
of progressively central cores of networks, conveniently uncovering hier-
archical and structural properties. Internet maps show the noticeable
property of having all k-cores consisting of a single connected compo-
nent with invariant statistical properties (degree distribution, correlation
spectrum etc.). This feature suggests that the Internet is organized in
a defined hierarchy of connected subgraphs of increasing centrality with
self-similar properties. The k-core decomposition provides also an inter-
esting tool to follow the temporal evolution of Internet maps and test
the stability and reliability of different mapping strategies.

1 Introduction

In recent times, the possibility of accessing, handling and mining large-scale net-
works datasets has revamped the interest in their investigation and theoretical
characterization along with the definition of new modeling frameworks. In par-
ticular, mapping projects of the World Wide Web (WWW) and the physical
Internet offered the first chance to study topology and traffic of large-scale net-
works. Gradually other studies followed describing population networks of prac-
tical interest in social science, critical infrastructures and epidemiology [1,10,24].
The study of large scale networks, however, faces us with an array of new chal-
lenges. The definitions of centrality, hierarchies and structural organizations are
hindered by the large size of these networks and the complex interplay of connec-
tivity patterns, traffic flows and geographical, social and economical attributes
characterizing their basic elements.

In this paper, we propose the use of the k-core decomposition to study the
hierarchical properties of large scale Internet maps. The k-core decomposition [4]
consists in identifying particular subsets of the network, called k-cores, each one
obtained by recursively removing all the vertices of degree smaller than k, until
the degree of all remaining vertices is larger than or equal to k. Larger values of
k correspond to vertices with larger degree and more central position in the net-
work’s structure. The k-core decomposition therefore provides a probe to study
the properties of the network’s regions of increasing centrality. Here we analyze



Internet networks at the Autonomous Systems (AS) level. We first perform an
analysis of recent maps of the AS network obtained by various Internet mapping
projects. We find that k-cores are always made by a single connected component,
indicating the presence of a hierarchy of well defined regions of which it is possi-
ble to investigate the statistical properties. Strikingly, the various distributions
and quantities analyzed appear to be invariant in the various k-cores. The k-core
decomposition therefore exploits the self-similar properties of Internet networks,
uncovering the same structural ordering at different hierarchical levels. We also
perform a longitudinal analysis of the temporal evolution of Internet maps by
comparing the k-core decompositions of the AS maps at various times between
2001 and 2005. This methodology allows the discussion of the evolution of the
Internet and of the reliability and biases of different mapping strategies.

2 Related work

The discussion of the topological properties of Internet maps has highlighted
a very complex and heterogeneous topology with fluctuations extending over
many scale lengths. Starting with the seminal paper by Faloutsos, Faloutsos and
Faloutsos [12] an impressive number of papers has dealt with the characterization
of the large scale properties and hierarchies of the Internet [18, 19, 24, 26, 28, 29]
and the possible sources of errors and biases presented by the experimental
data [7, 9, 16, 25]. Here, we introduce the use of the k-core decomposition as a
probe for the hierarchical and self-similar structure of the Internet. This decom-
position has been recently used in biologically related contexts, where it was
applied to the analysis of protein interaction networks or in the prediction of
protein functions [3,31]. An interesting application in the area of networking has
been provided by Gaertler et al. [14], where the k-core decomposition is used
for filtering out peripheral Autonomous Systems (ASes) in the case of Internet
maps. The k-core decomposition is also used as a basis for the visualization of
large networks, in particular for AS maps [2,5,17]. Recently, the k-core decompo-
sition has been used as a theoretical tool to investigate the structure of random
complex networks, with the obtention of a criterion for the emergence of k-cores
and the study of their stability in randomly damaged networks [11]. Finally,
recent works using the k-core analysis have been focused in the analysis of the
Internet maps obtained by the DIMES project [20]. In ref. [6], an approach based
on the k-core decomposition and closely related to the one presented here has
been used with a different perpsective to provide a conceptual and structural
model of the Internet; the so-called medusa model for the Internet.

3 k-core decomposition

Let us consider a graph G = (V, E) of |V | = n vertices and |E| = e edges, the
definition from [4] of k-cores is the following



Definition 1: A subgraph H = (C, E|C) induced by the set C ⊆ V is a
k-core or a core of order k iff ∀v ∈ C : degreeH(v) ≥ k, and H is the maximum
subgraph with this property.

A k-core of G can therefore be obtained by recursively removing all the
vertices of degree less than k, until all vertices in the remaining graph have
degree at least k. It is worth remarking that this process is not equivalent to
prune vertices of a certain degree. Indeed, a star-like subgraph with node with
a high degree that connect many vertices with degree one and connected only
with a single edge to the rest of the graph is going to belong to the first shell
no matter how high is the degree of the node. We will also use the following
definitions

Definition 2: A vertex i has shell index k if it belongs to the k-core but not
to (k + 1)-core.

Definition 3: A k-shell Ck is composed by all the vertices whose shell index
is k. The maximum value k such that Ck is not empty is denoted kmax. The
k-core is thus the union of all shells Cc with c ≥ k.

The k-core decomposition therefore identifies progressively internal cores and
decomposes the networks layer by layer, revealing the structure of the different
k-shells from the outmost one to the most internal one.

4 k-core structure of the AS graphs

In order to obtain Internet connectivity information at the AS level is it possible
to inspect routing tables and paths stored in each router (passive measurements)
or directly ask the network with a software probe (active measurements). In the
following we consider data from three large scale Internet mapping projects us-
ing different strategies. The Oregon route-views [23] project provides maps of
the AS graph based on the knowledge of the routing tables of several Border
Gateway Protocol (BGP) peers. An active measurement approach has been im-
plemented by the skitter project at CAIDA [8]. This project deployed several
strategically placed probing monitors using a path probing software. All the
data are then centrally collected and merged in order to obtain Internet maps
that maximizes the estimate of cross-connectivity. The third set we consider is
provided by the Distributed Internet Measurements and Simulations (DIMES)
project [27]. At the moment the project consists of more than 5,000 measuring
agents that perform Internet measurements such as TRACEROUTE and PING.
In the following we show how the application of the k-core decomposition can
shed light on important hierarchical properties of Internet graphs focusing on
the AS maps obtained by each project in 2005. Finally, in order to show the
use of the k-core decomposition in the model validation process we also apply
the same analysis to the graph obtained by the INET3.0 topology generator [30]
specifically designed to represent the Internet at the AS level. Table 1 displays a
summary of the basic properties of the considered Internet maps, together with
the maximal shell index.



source # of nodes # of edges 〈d〉 dmax kmax

Oregon Route-Views (BGP), 2005/04 18119 32141 3.548 1382 27

CAIDA, 2005/04 8542 25492 5.969 1171 26

DIMES, 2005/05 20455 61760 6.039 2800 39

INET 3.0 10000 19676 3.936 984 8

Table 1. Main properties of the Internet maps considered in the present study.

The first observation about the structure of the k-cores is that they remain
connected. This is not a priori an obvious fact since one can easily imagine
networks whose k-core decomposition yields several connected components cor-
responding, e.g. to various communities. Instead, each decomposition step is just
peeling the network leaving connected the inner part of the network. Figure 1
displays the size in term of vertices of each k-core as a function of its number.
Power-law like shapes are obtained, meaning that each k-core is composed of
a constant fraction of the (k − 1)-core, building a hierarchy of more and more
central vertices (analogous results have been obtained independently in Ref. [6]).
In this figure, the INET generator exhibits a very different behavior with a small
number of k-cores and a size behavior that is exponentially decreasing for in-
creasing core index. It is interesting to note that while the INET network displays
size and degree distribution similar to the Internet maps, the k-core structure
appears to be very different, thus discriminating among the model and the actual
Internet structure.

Figure 1 also shows the cumulative degree distribution for some k-cores,
for the various AS maps and for the artificial network; namely, the probability
P>(d) that any vertex in the networks has a degree larger than d. Strikingly, the
shape of the distribution, i.e. an approximate power-law, is not affected by the
decomposition. In particular the exponent of the power-law is robust although
the range of variation of the degree decreases. This feature defines a striking
property of statistical self-similarity of the generated k-cores, which resemble
one with each other under the opportune rescaling of the average degree.

In order to better characterize and check this self-similarity, we have com-
puted also the two and three points correlations functions of the various k-cores.
A useful measure to quantify correlations between the degrees of neighboring
vertices is the average degree of nearest neighbors dnn(d) of vertices of degree d:

dnn(d) =
1

nd

∑

j/dj=d

1

dj

∑

i∈V (j)

di , (1)

where V (j) is the set of neighbors of vertex j and nd the number of vertices
of degree d. This last quantity is related to the correlations between the de-
gree of connected vertices since on the average it can be expressed as dnn(d) =∑

d′ d′P (d′|d), where P (d′|d) is the conditional probability that a vertex with
degree d is connected to a vertex with degree d′. If degrees of neighboring vertices
are uncorrelated, P (d′|d) is only a function of d′ and thus dnn(d) is a constant.
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Fig. 1. Left: Core size as a function of the core number. Right: Cumulative
degree distribution of some k-cores for the AS maps and models. The degree is
normalized by the average degree of each k-core.

When correlations are present, two main classes of possible correlations have
been identified: assortative behavior if dnn(d) increases with d, which indicates
that large degree vertices are preferentially connected with other large degree
vertices, and disassortative if dnn(d) decreases with d [22]. A second, and often
studied, relevant quantity is the clustering coefficient that measures the local
group cohesiveness and is defined for any vertex j as the fraction of connected
neighbors of j: ccj = 2 ·nlink/(dj(dj −1)), where nlink is the number of links be-
tween the dj neighbors of j. The study of the clustering spectrum cc(d) of vertices
of degree d allows e.g. to uncover hierarchies in which low degree vertices belong
generally to well interconnected communities (high clustering coefficient), while
hubs connect many vertices that are not directly connected (small clustering
coefficient).

In Figure 2 we report the dnn(d) and cc(d) computed for the various k-cores.
Also in this case the behavior of the two quantities is preserved as the network
is recursively pruned of its low-degree vertices. In other words, the overall net-
work topology is invariant for k-cores of increasing centrality. In summary, the
AS networks exhibit a statistical scale invariance with respect to the pruning
obtained with the k-core decomposition. Indeed, while this decomposition iden-
tifies subgraphs that progressively correspond to the most central regions of the
network, the statistical properties of these subgraphs are preserved at all levels
of pruning. This hints to a sort of global self-similarity for regions of increasing
centrality of the network, and to a structure in which each region of the Internet
as defined in terms of network centrality has the same properties as the whole
network. The k-core decomposition appears therefore as a suitable way to de-
fine a pruning procedure equivalent to a scale-change preserving the statistical
property of graphs.

Shell index and centrality. The identification of the most central vertices is a
major issue in networks characterization [13]. While a first intuitive and imme-
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Fig. 2. Nearest neighbors degree distribution and clustering coefficient spectrum
of some k-cores, rescaled by the corresponding average values, of the AS maps
and model.

diate measure of the centrality of vertices is given by their degree, more refined
investigations are needed in order to characterize the real importance of various
vertices: for example, some low-degree vertices may be essential because they
provide connections between otherwise separated parts of the network. In order
to uncover such important vertices, the concept of betweenness centrality (BC)
is now commonly used [13, 15, 21]. The betweenness centrality of a vertex v is

defined as g(v) =
∑

s6=t
σst(v)

σst
, where σst is the number of shortest paths going

from s to t and σst(v) is the number of shortest paths from s to t going through
v. This definition means that central vertices are part of more shortest paths
within the network than peripheral vertices. Moreover, the betweenness central-
ity gives in transport networks an estimate of the traffic handled by the vertices,
assuming that the number of shortest paths is a zero-th order approximation to
the frequency of use of a given vertex, in the case of an all-to-all communication.

The k-core decomposition is offering an alternative definition of centrality as
indicated by the shell-index of each node. This intuitively provide a hierarchy of
the vertices based on their shell index that is a combination of local and global
properties. (e.g.: [31] shows that the shell index is a better criterium for centrality
than the degree in protein interaction networks). In this perspective, it becomes
very interesting to study the correlation between the degree and betweenness
centralities and the shell index of a vertex in order to quantify the statistical level
of consistency of the various measures. We show in Fig. 3 the average betweenness
centrality (computed on the original graph) of vertices as a function of their shell
index, and the shell index as a function of the degree d. A strong correlation is
obtained as expected, however with noticeable fluctuations. These fluctuations
are not surprising: while a low-degree node has clearly low shell index, large
degree nodes do not always have large shell index. Moreover, the betweenness
centrality is a highly non-local quantity which can be large even for small-degree
nodes. These quantities are thus pinpointing different kinds of centrality. The
shell index appears therefore as a very interesting quantity to uncover central
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Fig. 3. Four figures on the left: average (original) betweenness centrality as a
function of shell index. Four figures on the right: average shell index as a function
of the degree.

nodes and it has the advantage of a much much faster computation time than
those required for the betweenness centrality.

Time analysis The availability of data obtained by the various projects (Oregon
route-views and CAIDA) makes it possible to study the temporal evolution of
the Internet maps. In particular we consider the Oregon route-views (RV) maps
of 2001/05, 2002/04, 2003/04, 2004/04 and 2005/04 and the CAIDA maps of
2001/05, 2002/03, 2003/05, 2004/04 and 2005/04. Different maps are thus yearly
snapshots from the two projects.

While signatures such as degree distribution, disassortative behavior and
clustering spectrum are very stable over the various maps, the k-core structure
analysis however reveals some important differences among the different maps. A
first observation concerns the number of nodes and edges and the maximal shell
index, which steadily increase in the case of the Oregon RV maps, while these
quantities fluctuate in the CAIDA maps. This can be tracked down to the fact
that the number of sources used by CAIDA changes (14 for the 2001/05 map,
21 for 2002/03, 24 for 2003/05 and 2004/04, and 22 for 2005/04), and that the
locations of some of these sources also change. On the other hand, the Oregon
RV uses a more stable set of data sources.

Interesting informations also arise from the study of the change in the com-
position of the various k-shells: we show as an example in Fig. 4 the probability
for a given AS to change from a shell of index x in a map obtained at a given
time to a shell of index y in the successive map. While most nodes do not change
their shell index, as shown by the dark area around the diagonal, some suffer an
important change of status, from a highly central shell to a peripherical one or
vice-versa. As Fig. 4 shows, such fluctuations are much stronger in the evolution
of the CAIDA maps than for the Oregon RV maps. A further fingerprint of



Fig. 4. The color code gives the probability of a change in shell index, from
2004/04 Oregon RV (x axis) to 2005/04 Oregon RV (y axis) in the left figure.
The points in line 0 correspond to ASes that are present in 2005 but not in 2004,
and the column 0 corresponds to the reverse situation. The right figure shows
similar data for CAIDA maps.

the structural changes is provided by the analysis of the shell index of nodes
that appear in or disappear from the maps between one snapshot and the other,
as shown in Fig.5: while for Oregon RV maps such nodes are mostly from low
index shells, and can therefore be thought of as mostly peripheral, central nodes
with large shell index disappear from the CAIDA maps even in the most re-
cent maps, between 2004 and 2005. The fluctuations observed in the shell index
of ASes may be related to two factors. A first one is the natural evolution of
the Internet structure. A second factor is the uncertainty and bias in the data
collection. In this respect, CAIDA maps exhibit the highest level of instability,
indicative of a mapping process less stable in time. In this context, the k-core
analysis appears as an interesting tool to highlight the temporal changes of the
Internet structure as well as the measurement reliability in each particular ex-
perimental set-up. It will certainly be of interest in the future to study similar
data for evolving DIMES maps.

5 Conclusions

We have presented the application of the k-core decomposition to the analysis of
large scale Internet maps. The k-core decomposition allows the progressive prun-
ing of the networks and the identification of subgraphs of increasing centrality.
The study of the obtained subgraphs uncovers the main hierarchical layers of the
network and allows for their statistical characterization. Strikingly, we observe
for the Internet at the Autonomous System a statistical self-similarity of the
topological properties for cores of increasing centrality.

The k-core decomposition proves useful to uncover not only the hierarchical
decomposition of real maps, but also for model validations. For example, many
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models, although having e.g. degree distribution and clustering properties similar
to those of real maps, do not present shell index values as large as the real data.
It would be interesting to further compare various recently proposed models or
topology generators and real maps of the Internet. It is also worth mentioning
that the router level k-core structure of the Internet appears to have different
properties than those appearing at the AS level [20]. This calls for repeating
the present analysis for different router level maps available at the moment in
order to better emphasize the structural difference exhibited by the two different
mapping granularities.

Finally, the k-core decomposition may be used also to define a computational
feasible centrality measure. It combines the degree ranking with more global
structural properties providing a centrality measure that is highly correlated
with the various standard definitions such as degree and betweenness centrality.
Indeed, the k-core centrality finds a correspondence in the actual data of the
Internet maps, where ASes in highest core are typically Tier-1 ASes; i.e. rank
high in the AS classification by http://www.netconfigs.com/.
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