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ABSTRACT

In this paper, we deal with some specific domains of ap-
plications to game theory. This is one of the major class
of models in the new approaches of modelling in the eco-
nomic domain. For that, we use genetic automata which
allow to buid adaptive strategies for the players. We ex-
plain how the automata-based formalism proposed - ma-
trix representation of automata with multiplicities - allows
to define a semi-distance between the strategy behaviors.
With that tools, we are able to generate an automatic pro-
cessus to compute emergent systems of entities whose be-
haviors are represented by these genetic automata.

1. Introduction: Adaptive Behaviour Modeling for Ga-
me Theory

Since the five last decades, game theory has become a ma-
jor aspect in economic sciences modelling and in a great
number of domains where strategical aspects has to be in-
volved. Game theory is usually defined as a mathematical
tool allowing to analyse strategical interactions between
individuals.

Initially funded by mathematical researchers, J. von
Neumann, E. Borel or E. Zermelo in 1920s, game theory
increased in importance in the 1940s with a major work
by J. von Neumann and O. Morgenstern and then with
the works of John Nash in the 1950s [9]. John Nash has
proposed an original equilibrium ruled by an adaptive cri-
terium. In game theory, the Nash equilibrium is a kind of
optimal strategy for games involving two or more players,
whereby the players reach an outcome to mutual advan-
tage. If there is a set of strategies for a game with the prop-
erty that no player can benefit by changing his strategy
while the other players keep their strategies unchanged,
then this set of strategies and the corresponding payoffs
constitute a Nash equilibrium.

We can understand easily that the modelization of a
player behavior needs some adaptive properties. The com-
putable model corresponding to genetic automata are in

this way a good tool to modelize such adaptive strategy.

The plan of this paper is the following. In the next sec-
tion, we present some efficient algebraic structures, the au-
tomata with multiplicities, which allow to implement pow-
erful operators. We present in section 3, some topological
considerations about the definition of distances between
automata which induces a theorem of convergence on the
automata behaviors. Genetic operators are proposed for
these automata in section 4. For that purpose, we show
that the relevant “calculus” is done by matrix represen-
tions unravelling then the powerful capabilities of such al-
gebraic structures. In section 5, we focus our attention on
the ”iterated prisonner dilemma” and we buid an original
evolutive probabilistic automaton for strategy modeling,
showing that genetic automata are well-adapted to model
adaptive strategies. Section 6 shows how we can use the
genetic automata developed previously to represent agent
evolving in complex systems description. An agent behav-
ior semi-distance is then defined and allows to propose an
automatic computation of emergent systems as a kind of
self-organization detection.

2. Automata from boolean to multiplicies theory (Au-
tomata with scalars)

Automata are initially considered as theoretical tools. They
are created in the 1950’s following the works of A. Tur-
ing who previously deals with the definition of an abstract
”machine”. The aim of the Turing machines is to define
the boundaries for what a computing machine could do
and what it could not do.

The first class of automata, called finite state automata
corresponds to simple kinds of machines [21]. They are
studied by a great number of researchers as abstract con-
cepts for computable building. In this aspect, we can re-
call the works of some linguist researchers, for example N.
Chomsky who defined the study of formal grammars.

In many works, finite automata are associated to a rec-
ognizing operator which allows to describe a language [2,
10]. In such works, the condition of a transition is simply
a symbol taken from an alphabet. From a specific stateS,



the reading of a symbola allows to make the transitions
which are labeled bya and come fromS (in case of a
deterministic automaton - a DFA - there is only one tran-
sition - see below). A whole automaton is, in this way,
associated to a language, the recognized language, which
is a set of words. These recognized words are composed
of the sequences of letters of the alphabet which allows to
go from a specific state called initial state, to another spe-
cific state, called final state.

A first classification is based on the geometric aspect :
DFA (Deterministic Finite Automata) and NFA (Nonde-
terministic Finite Automata).

• In Deterministic Finite Automata, for each state there
is at most one transition for each possible input and
only one initial state.

• In Nondeterministic Finite Automata, there can be
none or more than one transition from a given state
for a given possible input.

Besides the classical aspect of automata as machines
allowing to recognize languages, another approach con-
sists in associating to the automata a functional goal. In
addition of accepted letter from an alphabet as the condi-
tion of a transition, we add for each transition an infor-
mation which can be considered as an output data of the
transition, the read letter is now called input data. We de-
fine in such a way anautomaton with outputsor weighted
automaton.

Such automata with outputs give a new classification
of machines.Transducersare such a kind of machines,
they generate outputs based on a given input and/or a state
using actions. They are currently used for control appli-
cations. Moore machinesare also such machines where
output depends only on a state, i.e. the automaton uses
only entry actions. The advantage of the Moore model is
a simplification of the behaviour.

Finally, we focus our attention on a special kind of au-
tomata with outputs which are efficient in an operational
way. This automata with output are calledautomata with
multiplicities. An automaton with multiplicities is based
on the fact that the output data of the automata with out-
put belong to a specific algebraic structure, a semiring
[13, 22]. In that way, we will be able to build effective
operations on such automata, using the power of the alge-
braic structures of the output data and we are also able to
describe this automaton by means of a matrix representa-
tion with all the power of the new (i.e. with semirings)
linear algebra.

Definition 1 (Automaton with multiplicities)
An automaton with multiplicities over an alphabetA and
a semiringK is the 5-uple(A, Q, I, T, F ) where

• Q = {S1, S2 · · ·Sn} is the finite set of state;

• I : Q 7→ K is a function over the set of states, which
associates to each initial state a value of K, called
entry cost, and to non- initial state a zero value ;

• F : Q 7→ K is a function over the set states, which
associates to each final state a value of K, called
final cost, and to non-final state a zero value;

• T is the transition function, that isT : Q×A×Q 7→
K which to a stateSi, a lettera and a stateSj as-
sociates a valuez of K (the cost of the transition) if
it exist a transition labelled witha from the stateSi

to the stateSj and and zero otherwise.

Remark 1 Automata with multiplicities are a generalisa-
tion of finite automata. In fact, finite automata can be
considered as automata with multiplicities in the semiring
K, the boolan setB = {0, 1} (endowed with the logical
“or/and”). To each transition we affect 1 if it exists and 0
if not.

Remark 2 We have not yet, on purpose, defined what a
semiring is. Roughly it is the least structure which allows
the matrix “calculus” with unit (one can think of a ring
without the ”minus” operation). The previous automata
with multiplicities can be, equivalently, expressed by a ma-
trix representation which is a triplet

• λ ∈ K1×Q which is a row-vector which coefficients
areλi = I(Si),

• γ ∈ KQ×1 is a column-vector which coefficients are
γi = F (Si),

• µ : A∗ 7→ KQ×Q is a morphism of monoids (in-
deedKQ×Q is endowed with the product of matri-
ces) such that the coefficient on theqith row andqj th
column ofµ(a) is T (qi, a, qj)

3. Topological considerations

If K is a field, one sees that the spaceA(n) of automata
of dimensionn (with multiplicities in K) is a K-vector
space of dimensionk.n2 + 2n (k is here the number of
letters). So, in case the ground field is the field of real
or complex numbers [3], one can take any vector norm
(usually one takes one of the Hölder norms||(xi)i∈I ||α :=
(
∑

i∈I |xi|
α
)

1

α for α ≥ 1, but any norm will do) and the
distance is derived, in the classical way, by

d(A1,A2) = norm(V (A1) − V (A2)) (1)

whereV (A) stands for the vector of all coefficients of
A = (λ, µ, γ) arranged in some order one has then the
result of Theorem 1. Assuming thatK is the field of real or
complex numbers, we endow the space of series/behaviours
with the topology of pointwise convergence (Topology of
F. Treves [23]).



Theorem 1 Let(An) be a sequence of automata with limit
L (L is an automaton), then one has

Behaviour(L) = lim
n→∞

Behaviour(An) (2)

where the limit is computed in the topology of Treves.

4. Genetic automata as efficient operators

We define the chromosome for each automata with multi-
plicities as the sequence of all the matrices associated to
each letter from the (linearly ordered) alphabet. The chro-
mosomes are composed with alleles which are here the
lines of the matrix [6].

In the following, genetic algorithms are going to gener-
ate new automata containing possibly new transitions from
the ones included in the initial automata.

The genetic algorithm over the population of automata
with multiplicities follows a reproduction iteration broken
up in three steps [14, 18, 17]:

• Duplication: where each automaton generates a clone
of itself;

• Crossing-over: concerns a couple of automata. Over
this couple, we consider a sequence of lines of each
matrix for all. For each of these matrices, a permu-
tation on the lines of the chosen sequence is made
between the analogue matrices of this couple of au-
tomata;

• Mutation: where a line of each matrix is randomly
chosen and a sequence of new values is given for
this line.

Finally the whole genetic algorithm scheduling for a
full process of reproduction over all the population of au-
tomata is the evolutionary algorithm:

1. For all couple of automata, two children are cre-
ated by duplication, crossover and mutation mech-
anisms;

2. The fitness for each automaton is computed;

3. For all 4-uple composed of parents and children, the
performless automata, in term of fitness computed
in previous step, are suppressed. The two automata,
still living, result from the evolution of the two ini-
tial parents.

Remark 3 The fitness is not defined at this level of ab-
stract formulation, but it is defined corresponding to the
context for which the automaton is a model, as we will do
in the next section.

5. Applications to competition-cooperation modeling
using prisoner dilemma

We develop in this section how we can modelize competition-
cooperation processes in a same automata-based represen-
tation. The genetic computation allows to make automatic
transition from competition to cooperation or from coo-
peartion to competition. The basic problem used for this
purpose is the well-known prisoner dilemma [1].

5.1. From adaptive strategies to probabilistic automata

The prisoner dilemma is a two-players game where each
player has two possible actions: cooperate (C) with its ad-
versary or betray him (C). So, four outputs are possible
for the global actions of the two players. A relative payoff
is defined relatively to these possible outputs, as described
in the following table where the rows correspond to one
player behaviour and the columns to the other player one.

C C

C (3,3) (0,5)
C (5,0) (1,1)

Table 1. Prisoner dilemma payoff

In the iterative version of the prisoner’s dilemma, suc-
cessive steps can be defined. Each player do not know
the action of its adversary during the current step but he
knows it for the preceding step. So, different strategies
can be defined for a player behaviour, the goal of each one
is to obtain maximal payoff for himself.

In Figures 1 and 2, we describe two strategies with
transducers. Each transition is labeled by the input cor-
responding to the player perception which is the prece-
dent adversary action and the output corresponding to the
present player action. The only inital state is the state 1,
recognizable by the incoming arrow labeled only by the
output. The final states are the states 1 and 2, recognizable
with the double circles.

In the strategy of Figure 1, the player has systemati-
cally the same behaviour as its adversary at the previous
step. In the strategy of Figure 2, the player chooses defini-
tively to betray as soon as his adversary does it. The previ-
ous automaton represents static strategies and so they are
not well adapted for the modelization of evolutive strate-
gies. For this purpose, we propose a model based on a
probabilistic automaton described by Figure 3 [5].

This automaton represents all the two-states strategies
for cooperation and competitive behaviour of one agent
against another in prisoner’s dilemma.

The transitions are labeled in output by the probabili-
tiespi of their realization. The first state is the state reached
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Figure 1. Tit-for-tat strategy automaton
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Figure 2. Vindictive strategy automaton
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C:p3

21 1−p1p1

Figure 3. Probabilistic multi-strategies two-states au-
tomaton

after cooperation action and the second state is reached af-
ter betrayal.

For this automaton, the associated matrix representa-
tion, as described previously, is:

I = ( p1 1 − p1 ) ; (3)

F =

(

p6

1 − p6

)

; (4)

T (C) =

(

p2 1 − p2

p3 1 − p3

)

; (5)

T (C) =

(

p4 1 − p4

p5 1 − p5

)

(6)

5.2. From probabilistic automata to genetic automata

With the matrix representation of the automata, we can
compute genetic automata as described in previous sec-
tions. Here the chromosomes are the sequences of all the
matrices associated to each letter. We have to define the
fitness in the context of the use of these automata. The
fitness here is the value of the payoff.

5.3. General Genetic Algorithm Process for Genetic
Automata

A population of automata is initially generated. These au-
tomata are playing against a predefined strategy, named
S0.

Each automaton makes a set of plays. At each play, we
run the probabilistic automaton which gives one of the two
outputs: (C) or (C). With this output and theS0’s output,
we compute the payoff of the automaton, according with
the payoff table.

At the end of the set of plays, the automaton payoff is
the sum of all the payoffs of each play. This sum is the
fitness of the automaton. At the end of this set of plays,
each automaton has its own fitness and so the selection
process can select the best automata. At the end of these
selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new
computation of the 3 genetics operators.

This processus allows to make evolve the player’s be-
havior which is modelized by the probabilistic multi-stra-
tegies two-states automaton from cooperation to compe-
tition or from competition to cooperation. The evolution
of the strategy is the expression of an adaptive computa-
tion. This leads us to use this formalism to implement
some self-organisation processes which occurs in complex
systems.



6. Extension to Emergent Systems Modeling

In this section, we study how evolutive automata-based
modeling can be used to compute automatic emergent sys-
tems. The emergent systems have to be understood in the
meaning of complex system paradigm that we recall in the
next section. We have previously defined some way to
compute the distance between automata and we use these
principles to define distance between agents behaviours
that are modeled with automata. Finally, we defined a spe-
cific fitness that allows to use genetic algorithms as a kind
of reinforcement method which leads to emergent system
computation [15].

6.1. Complex System Description Using Automata-Ba-
sed Agent Model

According to General System Theory [4, 19], a complex
system is composed of entities in mutual interaction and
interacting with the outside environment. A system has
some characteristic properties which confer its structural
aspects, as schematically described in part (a) of Figure 4:

• The set elements or entities are in interactive depen-
dance. The alteration of only one entity or one in-
teraction reverberates on the whole system.

• A global organization emerges from interacting con-
stitutive elements. This organization can be identi-
fied and carries its own autonomous behavior while
it is in relation and dependance with its environ-
ment. The emergent organization possesses new prop-
erties that its own constitutive entities don’t have.
”The whole is more than the sum of its parts”.

• The global organization retro-acts over its constitu-
tive components. ”The whole is less than the sum of
its parts” after E. Morin.

The interacting entities network as described in part
(b) of Figure 4 leads each entity to perceive informations
or actions from other entities or from the whole system
and to act itself.

A well-adapted modeling consists of using an agent-
based representation which is composed of the entity called
agent as an entity which perceives and acts on an environ-
ment, using an autonomous behaviour as described in part
(c) of Figure 4.

To compute a simulation composed of such entities,
we need to describe the behaviour of each agent. This one
can be schematically described using internal states and
transition processes between these states, as described in
part (d) of Figure 4.

There are several definitions of “agents” or “intelligent
agents” according to their behaviour specificities [11, 24].
Their autonomy means that the agents try to satisfy a goal

and execute actions, optimizing a satisfaction function to
reach it.

For agents with high level autonomy, specific actions
are realized even when no perception are detected from
the environment. To represent the process of this delib-
eration, different formalisms can be used and a behaviour
decomposed in internal states is an effective approach. Fi-
nally, when many agents operate, the social aspects must
also be taken into account. These aspects are expressed
as communications through agent organisation with mes-
sage passing processes. Sending a message is an agent ac-
tion and receiving a message is an agent perception. The
previous description based on the couple: perception and
action, is well adapted to this.

6.2. Agent Behavior Semi-Distance

We describe in this section the bases of the genetic algo-
rithm used on the probabilistic automata allowing to man-
age emergent self-organizations in the multi-agent simula-
tion.

For each agent, we definee an evaluation function of
its own behaviour returning the matrixM of values such
thatMi,j is the output series from all possible successive
perceptions when starting from the initial statei and end-
ing at the final statej, without cycle. It will clearly be0
if either i is not an initial state orj is not a final one and
the matrixMi,j is indeed a matrix of evaluations [2] of
subseries of

M∗ := (
∑

a∈A

µ(a)a)∗ (7)

Notice that the coefficients of this matrix, as defined,
are computed whatever the value of the perception in the
alphabetA on each transition on the successful path1. That
means that the contribution of the agent behaviour for col-
lective organization formation is only based, here, on prob-
abilities to reach a final state from an initial one. This al-
lows to preserve individual characteristics in each agent
behaviour even if the agent belongs to an organization.

Let x andy two agents ande(x) ande(y) their respec-
tive evaluations as described above. We defined(x, y) a
semi-distance (or pseudometrics, see [3] ch IX) between
the two agentsx andy as ||e(x) − e(y)||, a matrix norm
of the difference of their evaluations. LetVx a neighbour-
hood of the agentx, relatively to a specific criterium, for
example a spatial distance or linkage network. We define
f(x) the agent fitness of the agentx as :

f(x) =















card(Vx)
∑

yi∈Vx

d(x, yi)
2

if
∑

yi∈Vx

d(x, yi)
2 6= 0

∞ otherwise

1A succesful pathis a path from an initial state to a final state
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Figure 4. Multi-scale complex system description: from global to individual models

6.3. Evolutive Automata for Automatic Emergence of
Self-Organized Agent- Based Systems

In the previous computation, we defined a semi-distance
between two agents. This semi-distance is computed using
the matrix representation of the automaton with multiplic-
ities associated to the agent behaviour. This semi-distance
is based on successful paths computation which needs to
define initial and final states on the behaviour automata.
For specific purposes, we can choose to define in some
specific way, the initial and final states. This means that
we try to compute some specific action sequences which
are chararacterized by the way of going from some spe-
cific states (defined here as initial ones) to some specific
states (defined here as final ones).

Based on this specific purpose which leads to define
some initial and final states, we compute a behaviour semi-
distance and then the fitness function defined previously.
This fitness function is an indicator which returns high
value when the evaluated agent is near, in the sense of
the behaviour semi-distance defined previously, to all the
other agents belonging to a predefined neighbouring.

Genetic algorithms will compute in such a way to make
evolve an agent population in a selective process. So dur-
ing the computation, the genetic algorithm will make evolve
the population towards a newer one with agents more and
more adapted to the fitness. The new population will con-
tain agents with better fitness, so the agents of a population
will become nearer each others in order to improve their
fitness. In that way, the genetic algorithm reinforces the
creation of a system which aggregates agents with similar
behaviors, in the specific way of the definition of initial
and final states defined on the automata.

The genetic algorithm proposed here can be consid-
ered as a modelization of the feed-back of emergent sys-
tems which leads to gather agents of similar behaviour,
but these formations are dynamical and we cannot predict
what will be the set of these aggregations which depends
of the reaction of agents during the simulation. Moreover
the genetic process has the effect of generating a feed-
back of the emergent systems on their own contitutive ele-
ments in the way that the fitness improvement lead to bring
closer the agents which are picked up inside the emergent



aggregations.

For specific problem solving, we can consider that the
previous fitness function can be composed with another
specific one which is able to measure the capability of the
agent to solve one problem. This composition of fitness
functions leads to create emergent systems only for the
ones of interest, that is, these systems are able to be de-
veloped only if the aggregated agents are able to satisfy
some problem solving evaluation.

7. Conclusion

The aim of this study is to develop a powerful algebraic
structure to represent behaviors concerning cooperation-
competition processes and on which we can add genetic
operators. We have explained how we can use these struc-
tures for modeling adaptive behaviors needed in game the-
ory. More than for this application, we have described
how we can use such adaptive computations to automat-
ically detect emergent systems inside interacting networks
of entities represented by agents in a simulation.
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