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AUTOMATA-BASED ADAPTIVE BEHAVIOR FOR ECONOMIC
MODELING USING GAME THEORY

R. Ghnemat, K. Khatatneh, S. Oqeili C. Bertelle{), G.H.E. Duchamg|
Al-Balga’ Applied University, (!) LIH - University of Le Havre,
Al-Salt, 19117 (3) LIPN - University of Paris XIlI,
Jordan France
ABSTRACT this way a good tool to modelize such adaptive strategy.

In. thi? paper, we deal with Some specific domair.]s of ap- The plan of this paper is the following. In the next sec-
plications t.o game theory. This is one of the major class tion, we present some efficient algebraic structures, the au
of models in the new approaches of modelling in the eco- tomata with multiplicities, which allow to implement pow-

nl(l)mlc d%m%m.dFor_ that, we use ?enitlc filutomata which g1 operators. We present in section 3, some topological
al ow rt10 UIh adaptive stLateg:je]:s or tl,e players. \(/jVe €X- considerations about the definition of distances between
plain how the automata-based formalism proposed - Ma-y 15 mata which induces a theorem of convergence on the

trix representation of automata with multiplicities - all® automata behaviors. Genetic operators are proposed for
to define a semi-distance between the strategy behaviorsthese automata in section 4. For that purpose, we show

With that tools, we are able to generate an automatic Pro-ihat the relevant “calculus” is done by matrix represen-

cessus to compute emergent systems of entities whose be;, g nravelling then the powerful capabilities of such al
haviors are represented by these genetic automata. gebraic structures. In section 5, we focus our attention on
the "iterated prisonner dilemma” and we buid an original
evolutive probabilistic automaton for strategy modeling,
showing that genetic automata are well-adapted to model
1. Introduction: Adaptive Behaviour Modeling for Ga- ~ 2daptive strategies. Section 6 shows how we can use the
me Theory genetic automata developed previously to represent agent
evolving in complex systems description. An agent behav-

Since the five last decades, game theory has become a mdor semi-distance is then defined and allows to propose an
jor aspect in economic sciences modelling and in a great@Utomatic computation of emergent systems as a kind of
number of domains where strategical aspects has to be inSelf-organization detection.

volved. Game theory is usually defined as a mathematical

tool allowing to analyse strategical interactions between 2. Automata from boolean to multiplicies theory (Au-
individuals. tomata with scalars)

Initially funded by mathematical researchers, J. von Automata are initially considered as theoretical toolseyTh
Neumann, E. Borel or E. Zermelo in 1920s, game theory are created in the 1950's following the works of A. Tur-
increased in importance in the 1940s with a major work ing who previously deals with the definition of an abstract
by J. von Neumann and O. Morgenstern and then with "machine”. The aim of the Turing machines is to define
the works of John Nash in the 195@5 [9]. John Nash hasthe boundaries for what a computing machine could do
proposed an original equilibrium ruled by an adaptive cri- and what it could not do.
terium. In game theory, the Nash equilibrium is a kind of
optimal strategy for games involving two or more players, The first class of automata, called finite state automata
whereby the players reach an outcome to mutual advan-corresponds to simple kinds of machin@ [21]. They are
tage. If there is a set of strategies for a game with the prop-studied by a great number of researchers as abstract con-
erty that no player can benefit by changing his strategy cepts for computable building. In this aspect, we can re-
while the other players keep their strategies unchangedcall the works of some linguist researchers, for example N.
then this set of strategies and the corresponding payoffsChomsky who defined the study of formal grammars.
constitute a Nash equilibrium.

In many works, finite automata are associated to a rec-

We can understand easily that the modelization of a ognizing operator which allows to describe a Iangu@e [2,
player behavior needs some adaptive properties. The com@]. In such works, the condition of a transition is simply
putable model corresponding to genetic automata are ina symbol taken from an alphabet. From a specific state



the reading of a symbal allows to make the transitions e [:(Q — Kisafunctionover the set of states, which
which are labeled by and come fromsS (in case of a associates to each initial state a value of K, called
deterministic automaton - a DFA - there is only one tran- entry cost, and to non- initial state a zero value ;
sition - see below). A whole automaton is, in this way, . ) )
associated to a language, the recognized language, which ® ¥ : @ — K is a function over the set states, which
is a set of words. These recognized words are composed associates to each final state a value of K, called
of the sequences of letters of the alphabet which allows to final cost, and to non-final state a zero value;

go from a specific state called initial state, to another spe-

cific state. called final state e T'isthe transition function, thatig : Q@ x Ax Q —

K which to a stateS;, a lettera and a stateS; as-
sociates a value of K (the cost of the transition) if
it exist a transition labelled witla from the stateS;
to the stateS; and and zero otherwise.

A first classification is based on the geometric aspect :
DFA (Deterministic Finite Automata) and NFA (Nonde-
terministic Finite Automata).

¢ In Deterministic Finite Automata, for each state there K ith multiolicit i
is at most one transition for each possible input and Remark 1 Automata with multiplicities are a generalisa-

tion of finite automata. In fact, finite automata can be

considered as automata with multiplicities in the semiring

¢ In Nondeterministic Finite Automata, there can be K, the boolan seB = {0, 1} (endowed with the logical
none or more than one transition from a given state “or/and”). To each transition we affect 1 if it exists and 0
for a given possible input. if not.

only one initial state.

Besides the classical aspect of automata as machines
allowing to recognize languages, another approach con-Remark 2 We have not yet, on purpose, defined what a
sists in associating to the automata a functional goal. Insemiring is. Roughly it is the least structure which allows
addition of accepted letter from an alphabet as the condi-the matrix “calculus” with unit (one can think of a ring
tion of a transition, we add for each transition an infor- without the "minus” operation). The previous automata
mation which can be considered as an output data of thewith multiplicities can be, equivalently, expressed by a ma
transition, the read letter is now called input data. We de- trix representation which is a triplet

fine in such a way aautomaton with outputsr weighted
automaton e )\ € K@ which is a row-vector which coefficients

are )\, = I(S;),

Such automata with outputs give a new classification
of machines. Transducersare such a kind of machines,
they generate outputs based on a given input and/or a state Vi
using actions. They are currently used for control appli-
cations. Moore machinesre also such machines where
output depends only on a state, i.e. the automaton uses
only entry actions. The advantage of the Moore model is
a simplification of the behaviour.

e v € K?*lis acolumn-vector which coefficients are
= F(S;),

o i : A* — K@9%Qis a morphism of monoids (in-
deedK 2@ is endowed with the product of matri-
ces) such that the coefficient on thth row andg;th
column ofu(a) is T(qi, a, ¢;)

Finally, we focus our attention on a special kind of au- 3- Topological considerations
tomata with outputs which are efficient in an operational , ,
way. This automata with output are calladtomata with T K is a field, one sees that the spadg,) of automata
multiplicities An automaton with multiplicities is based ©f dimensionn (with multiplicities in K) is a K -vector
on the fact that the output data of the automata with out- SPace of dimensiok.n” + 2n (k is here the number of
put belong to a specific algebraic structure, a semiring letters). So, in case the ground field is the field of real
03,22 In that way, we will be able to build effective  ©' complex numbers[]3], one can take any vector norm
operations on such automata, using the power of the alge{usually one takes one of the Holder nNorts:)icrllo =
braic structures of the output data and we are also able to( 3", |i|*)* for o > 1, but any norm will do) and the
describe this automaton by means of a matrix representadistance is derived, in the classical way, by

tion with all the power of the new (i.e. with semirings)
linear algebra. d(Ar, Az) = norm(V(A;) — V(Az)) 1)

where V(.A) stands for the vector of all coefficients of

Definition 1 (Automaton with multiplicities) A = (A p,7) arranged in some order one has then the

An automaton with multiplicities over an alphabétand result of Theorerf]1. Assuming thatis the field.of real or _
a semiringK is the 5-uplg(A, Q, I, T, F) where complex numbers, we endow the space of series/behaviours

with the topology of pointwise convergence (Topology of
e Q=1{51,5,---5,} is the finite set of state; F. Treves[28]).



Theorem 1 Let(A,) be asequence of automatawith limit 5. Applications to competition-cooperation modeling

L (L is an automaton), then one has using prisoner dilemma
Behaviour(L) = lim Behaviour(A,) 2) We develop in this section how we can modelize competition-

cooperation processes in a same automata-based represen-
tation. The genetic computation allows to make automatic
transition from competition to cooperation or from coo-
peartion to competition. The basic problem used for this

4. Genetic automata as efficient operators purpose is the well-known prisoner dilemnfh [1].

where the limit is computed in the topology of Treves.

We define the chromosome for each automata with multi- 5.1, From adaptive strategies to probabilistic automata
plicities as the sequence of all the matrices associated to . ) .
each letter from the (linearly ordered) alphabet. The chro- The prisoner dilemma is a two-players game where each

mosomes are composed with alleles which are here thePlayer has two possible actions: cooperatg\ith its ad-
lines of the matrix [B]. versary or betray him(). So, four outputs are possible

for the global actions of the two players. A relative payoff

is defined relatively to these possible outputs, as destribe
in the following table where the rows correspond to one
player behaviour and the columns to the other player one.

In the following, genetic algorithms are going to gener-
ate new automata containing possibly new transitions from
the ones included in the initial automata.

The genetic algorithm over the population of automata C re]
with multiplicities follows a reproduction iteration brek C 13305
up in three stepd [14, LB,]17]: o (5'0) (1'1)

e Duplication where each automaton generates a clone

Table 1. Prisoner dilemma payoff
of itself pay

o Crossing-overconcernsa couple of automata. Over In the iterative version of the prisoner’s dilemma, suc-

this (_:ouple, we consider a sequence .Of lines of eaChcessive steps can be defined. Each player do not know
ma_ltrlx for all. For each of these matrices, a PErMU- the action of its adversary during the current step but he

tation on the lines of the chosen sequence IS madeknows it for the preceding step. So, different strategies

between the analogue matrices of this couple of au- can be defined for a player behaviour, the goal of each one
tomata; is to obtain maximal payoff for himself.

e Mutation where a line of each matrix is rand_omly In Figures[ll anc[|2, we describe two strategies with
ch_os_en and a sequence of new values is given fortransducers. Each transition is labeled by the input cor-
this line. responding to the player perception which is the prece-

dent adversary action and the output corresponding to the

present player action. The only inital state is the state 1,

recognizable by the incoming arrow labeled only by the

output. The final states are the states 1 and 2, recognizable

) with the double circles.
1. For all couple of automata, two children are cre-

Finally the whole genetic algorithm scheduling for a
full process of reproduction over all the population of au-
tomata is the evolutionary algorithm:

ated by duplication, crossover and mutation mech- | the strategy of Figurfl 1, the player has systemati-
anisms; cally the same behaviour as its adversary at the previous
step. In the strategy of Figuﬂa 2, the player chooses defini-

2. The fitness for each automaton is computed; tively to betray as soon as his adversary does it. The previ-

ous automaton represents static strategies and so they are
3. For all 4-uple composed of parents and children, the not well adapted for the modelization of evolutive strate-
performless automata, in term of fitness computed gies. For this purpose, we propose a model based on a
in previous step, are suppressed. The two automataprobabilistic automaton described by Fig{irg]3 [5].
still living, result from the evolution of the two ini-
tial parents. This automaton represents all the two-states strategies
for cooperation and competitive behaviour of one agent
Remark 3 The fitness is not defined at this level of ab- against another in prisoner’s dilemma.
stract formulation, but it is defined corresponding to the
context for which the automaton is a model, as we will do The transitions are labeled in output by the probabili-
in the next section. tiesp; of their realization. The first state is the state reached
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Figure 2. Vindictive strategy automaton

Figure 3. Probabilistic multi-strategies two-states au-

tomaton

after cooperation action and the second state is reached af-
ter betrayal.

For this automaton, the associated matrix representa-
tion, as described previously, is:

I = (n 1) @

P () @
re) = (2 117 ©)
@ = (5 1h) ®

5.2. From probabilistic automata to genetic automata

With the matrix representation of the automata, we can
compute genetic automata as described in previous sec-
tions. Here the chromosomes are the sequences of all the
matrices associated to each letter. We have to define the
fithness in the context of the use of these automata. The
fitness here is the value of the payoff.

5.3. General Genetic Algorithm Process for Genetic
Automata

A population of automata is initially generated. These au-
tomata are playing against a predefined strategy, named
So.

Each automaton makes a set of plays. At each play, we
run the probabilistic automaton which gives one of the two
outputs: ) or (C). With this output and thé,’s output,
we compute the payoff of the automaton, according with
the payoff table.

At the end of the set of plays, the automaton payoff is
the sum of all the payoffs of each play. This sum is the
fitness of the automaton. At the end of this set of plays,
each automaton has its own fithess and so the selection
process can select the best automata. At the end of these
selection process, we obtain a new generation of automata.

This new generation of automata is the basis of a new
computation of the 3 genetics operators.

This processus allows to make evolve the player’s be-
havior which is modelized by the probabilistic multi-stra-
tegies two-states automaton from cooperation to compe-
tition or from competition to cooperation. The evolution
of the strategy is the expression of an adaptive computa-
tion. This leads us to use this formalism to implement
some self-organisation processes which occurs in complex
systems.



6. Extension to Emergent Systems Modeling and execute actions, optimizing a satisfaction function to
reach it.
In this section, we study how evolutive automata-based
modeling can be used to compute automatic emergentsys-  For agents with high level autonomy, specific actions
tems. The emergent systems have to be understood in thgre realized even when no perception are detected from
meaning of complex system paradigm that we recall in the the environment. To represent the process of this delib-
next section. We have previously defined some way to eration, different formalisms can be used and a behaviour
compute the distance between automata and we use thesgecomposed in internal states is an effective approach. Fi-
principles to define distance between agents behaViOUI’Sna”y, when many agents Operate’ the social aspects must
that are modeled with automata. Finally, we defined a spe-also be taken into account. These aspects are expressed
cific fitness that allows to use genetic algorithms as a kind as communications through agent organisation with mes-
of reinforcement method which leads to emergent SyStemsage passing processes. Sending a message is an agentac-
computation[[15]. tion and receiving a message is an agent perception. The
previous description based on the couple: perception and
6.1. Complex System Description Using Automata-Ba- ~ action, is well adapted to this.
sed Agent Model

According to General System Theof} 4] 19], a complex 6.2. Agent Behavior Semi-Distance
system is composed of entities in mutual interaction and
interacting with the outside environment. A system has
some characteristic properties which confer its struttura
aspects, as schematically described in part (a) of Fure 4,

We describe in this section the bases of the genetic algo-
rithm used on the probabilistic automata allowing to man-
age emergent self-organizations in the multi-agent simula

tion.
e The set elements or entities are in interactive depen- _ _ _
dance. The alteration of only one entity or one in- For each agent, we defirean evaluation function of
teraction reverberates on the whole system. its own behaviour returning the matri¥' of values such

that M; ; is the output series from all possible successive

¢ Aglobal organization emerges from interacting con- perceptions when starting from the initial statend end-

stitutive elements. This organization can be identi- ing at the final statg, without cycle. It will clearly be)

fied and carries its own autonomous behavior while if either i is not an initial state oy is not a final one and

it is in relation and dependance with its environ- the matrixM/; ; is indeed a matrix of evaluationf][2] of

ment. The emergent organization possesses new proflibseries of

erties that its own constitutive entities don’t have.

"The whole is more than the sum of its parts”. M* .= (Z w(a)a)* @)

a€A
e The global organization retro-acts over its constitu-

tive components. "The whole is less than the sum of Notice that the coefficients of this matrix, as defined,
its parts” after E. Morin. are computed whatever the value of the perception in the
alphabetA on each transition on the successful patfhat
means that the contribution of the agent behaviour for col-
The interacting entities network as described in part |ective organization formation is only based, here, on prob
(b) of Figure[} leads each entity to perceive informations apjlities to reach a final state from an initial one. This al-
or actions from other entities or from the whole system |ows to preserve individual characteristics in each agent
and to act itself. behaviour even if the agent belongs to an organization.

A well-adapted modeling consists of using an agent- | et andy two agents and(z) ande(y) their respec-
based representation which is composed of the entity calledjye evaluations as described above. We defife y) a
agent as an entity which perceives and acts on an environsemi-distance (or pseudometrics, she [3] ch IX) between
ment, using an autonomous behaviour as described in parhe two agents: andy as||e(z) — e(y)||, a matrix norm
(c) of Figure[h. of the difference of their evaluations. L¥t a neighbour-

hood of the agent, relatively to a specific criterium, for

To compute a simulation composed of such entities, example a spatial distance or linkage network. We define
we need to describe the behaviour of each agent. This one (z) the agent fitness of the agenas :

can be schematically described using internal states an

transition processes between these states, as described in card(V,) .
i ~ 5 X day)?#0
art (d) of Figurg|4. )2 e
part (d) of FigurdJ4 fla) = ;ev: d(z, ;) i€V,
There are several definitions of “agents” or “intelligent oo : otherwise

agents” according to their behaviour specificities [T, 24]
Their autonomy means that the agents try to satisfy a goal A succesful patiis a path from an initial state to a final state
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Figure 4. Multi-scale complex system description: from global tdiindual models

6.3. Evolutive Automata for Automatic Emergence of
Self-Organized Agent- Based Systems Genetic algorithms will compute in such a way to make
evolve an agent population in a selective process. So dur-
In the previous computation, we defined a semi-distanceing the computation, the genetic algorithm will make evolve
between two agents. This semi-distance is computed usinghe population towards a newer one with agents more and
the matrix representation of the automaton with multiplic- more adapted to the fitness. The new population will con-
ities associated to the agent behaviour. This semi-distanc tain agents with better fitness, so the agents of a population
is based on successful paths computation which needs tauill become nearer each others in order to improve their
define initial and final states on the behaviour automata. fitness. In that way, the genetic algorithm reinforces the
For specific purposes, we can choose to define in somecreation of a system which aggregates agents with similar
specific way, the initial and final states. This means that behaviors, in the specific way of the definition of initial
we try to compute some specific action sequences whichgnd final states defined on the automata.
are chararacterized by the way of going from some spe-
cific states (defined here as initial ones) to some specific  The genetic algorithm proposed here can be consid-
states (defined here as final ones). ered as a modelization of the feed-back of emergent sys-
tems which leads to gather agents of similar behaviour,
Based on this specific purpose which leads to definebut these formations are dynamical and we cannot predict
some initial and final states, we compute a behaviour semi-what will be the set of these aggregations which depends
distance and then the fithess function defined previously.of the reaction of agents during the simulation. Moreover
This fitness function is an indicator which returns high the genetic process has the effect of generating a feed-
value when the evaluated agent is near, in the sense oback of the emergent systems on their own contitutive ele-
the behaviour semi-distance defined previously, to all the ments in the way that the fitness improvementlead to bring
other agents belonging to a predefined neighbouring. closer the agents which are picked up inside the emergent



aggregations.

For specific problem solving, we can consider that the
previous fitness function can be composed with anothe
specific one which is able to measure the capability of the

[11] J. Ferber, Multi-agent system Addison-Wesley,
1999.

r[12] L.J. Fogel, A.J. Owens, M.J. Welshytificial intelli-

gence through simulated evolutiafohn Wiley, 1966.

agent to solve one problem. This composition of fitness [13] J.S. GolanPower algebras over semiring&luwer

functions leads to create emergent systems only for the

Academic Publishers, 1999.

ones of interest, that is, these systems are able to be de-
veloped only if the aggregated agents are able to satisfy[14] D.E. Goldberg, Genetic Algorithms Addison-

some problem solving evaluation.

7. Conclusion

The aim of this study is to develop a powerful algebraic

structure to represent behaviors concerning cooperation-
competition processes and on which we can add genetic

Wesley, 1989.

[15] J. H. Holland Hidden Order - How adaptation builds
complexity Persus books ed., 1995.

[16] J.E. Hopcroft, R. Motwani, J.D. Ullmarntroduc-
tion to automata theory, Languages and Computation
Addison-Wesley, 2001.

operators. We have explained how we can use these struc- ) ) )
tures for modeling adaptive behaviors needed in game the{17] J. Koza, Genetic programming Encyclopedia of

ory. More than for this application, we have described

how we can use such adaptive computations to automat

ically detect emergent systems inside interacting netsiork
of entities represented by agents in a simulation.
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