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E-mail: dolbeaul, esteban, sere@ceremade.dauphine.fr

Internet: http://www.ceremade.dauphine.fr/∼dolbeaul, ∼esteban, ∼sere

October 28, 2005

Abstract

This paper is concerned with an extension and reinterpretation of
previous results on the variational characterization of eigenvalues in
gaps of the essential spectrum of self-adjoint operators. We state two
general abstract results on the existence of eigenvalues in the gap and a
continuation principle. Then, these results are applied to Dirac opera-
tors in order to characterize simultaneously eigenvalues corresponding
to electronic and positronic bound states.

1 Introduction

In [4] we proved an abstract result on the variational characterization
of the eigenvalues of operators with gaps in the essential spectrum.
Such a result was designed to deal with nonpositive perturbations of
a fixed self-adjoint operator with a gap in its essential spectrum but
without eigenvalues. In that case, the “branching” of the potential
“pulls down” eigenvalues from the right hand side of the gap. In other
words, these eigenvalues emerge from the right end of the gap when the
coupling is turned on. Here we address the general case of a perturba-
tion with negative and positive parts, so that eigenvalues can emerge
simultaneously from the left and right hand sides of the gap. We thus
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observe that a simple extension of the general abstract result proved
in [4] allows us to treat much more general cases.

For a historical overview of the subject, we refer the reader to
the introduction of [4], in which an extended review of the literature
on eigenvalues in gaps of the essential spectrum is presented. Some
relevant physics papers dealing with this problem are [5, 10, 15, 2] (see
also the references therein). On the mathematical side we can quote
(in chronological order) [6, 8, 7, 3, 4].

Let H be a Hilbert space with scalar product (·, ·), and A : D(A) ⊂
H → H be a self-adjoint operator. We denote by H′ the dual of H
and by F(A) the form-domain of A. Let H+, H− be two orthogonal
Hilbert subspaces of H such that H = H+⊕H−. We denote by Λ+, Λ−

the projectors on H+, H−. We assume the existence of a core F (i.e.
a subspace of D(A) which is dense for the norm ‖·‖D(A)), such that :

(i) F+ = Λ+F and F− = Λ−F are two subspaces of F(A).

(ii−) a− := supx−∈F−\{0}
(x−,Ax−)
‖x−‖2

H

< +∞.

(ii+) a+ := infx+∈F+\{0}
(x+,Ax+)
‖x+‖2

H

> −∞.

We consider the two sequences of min-max and max-min levels (λ+
k )k≥1

and (λ−
k )k≥1 defined by

λ+
k := inf

V subspace of F+

dim V =k

sup
x∈(V ⊕F−)\{0}

(x, Ax)

‖x‖2
H

, (1)

λ−
k := sup

V subspace of F−

dim V =k

inf
x∈(V ⊕F+)\{0}

(x, Ax)

‖x‖2
H

. (2)

The sequences (λ+
k )k≥1 and (λ−

k )k≥1 are respectively nondecreasing
and nonincreasing. As a consequence of their definitions we have :

for all k ≥ 1, λ+
k ≥ max {a−, a+} and λ−

k ≤ min {a−, a+} . (3)

Let b− := inf {σess(A) ∩ (a−,∞)}, b+ := sup {σess(A) ∩ (−∞, a+)},
and consider the two cases

(iii−) k+
0 := min {k ≥ 1 , λ+

k > a−} ,

(iii+) k−
0 := min {k ≥ 1 , λ−

k < a+} .

Theorem 1 If (i)-(ii−)-(iii−) hold, for any k ≥ k+
0 , either λ+

k is the
(k−k0 +1)-th eigenvalue of A in the interval (a−, b−) or it is equal to
b−. If (i)-(ii+)-(iii+) hold, for any k ≥ k−

0 , either λ−
k is the (k−k0+1)-

th eigenvalue of A (in reverse order) in the interval (b+, a+) or it is
equal to b+.
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Eigenvalues are counted with multiplicity and the order has no meaning
if, for instance, λ+

k = λ+
k+1. The above result does not state anything

about the possible eigenvalues of A in the interval [a+, a−], if a− ≥ a+.
We will extensively comment on this in Section 2 and explain how the
abstract result of [4] implies Theorem 1 and a continuation result. In
Section 3 we will address the particular case in which the operator A
is of the form H0 + V , where H0 is the free Dirac operator and V is
an electrostatic scalar potential.

2 Abstract results

Theorem 1.1 in [4] can be stated as follows:

Under the assumptions of Theorem 1, if λ+
1 > a−, then all eigen-

values in (a−, b−) are given by the min-max levels λ+
k as long as they

take their values in (a−, b−) (and otherwise, λ+
k = b−).

This result dealt with the family of eigenvalues {λ+
k }k and only

in the case k+
0 = 1. Nothing was said on eigenvalues below a+. The

result in [4] was already covering all cases corresponding to a Dirac op-
erator with a potential given by a positive Coulomb singularity. Here,
by considering the case k+

0 ≥ 1 and by considering the levels λ−
k as

well, we extend the method to a framework with interesting physical
applications.

The proof for k+
0 > 1 is similar to the proof given in [4] and we will

not reproduce it here. A posteriori, passing from k+
0 = 1 to k+

0 > 1
is not very difficult. Consider indeed a (k+

0 −1)-dimensional space of
F+, Vk+

0
−1, such that

a− = λk+

0
−1 ≤ sup

x∈(V
k
+
0
−1

⊕F−)\{0}

(x, Ax)

‖x‖2
H

< λk+

0

,

and define a new decomposition H = H̃+⊕H̃− by setting H̃− =
H− ⊕ Vk+

0
−1. Then the first case of Theorem 1 is reduced to the result

of Theorem 1.1 in [4].
As for the second case, note that the statement concerning the fam-

ily {λ−
k }k follows from that concerning {λ+

k }k applied to the operator
−A. This completes the sketch of the general ideas for the proof of
Theorem 1. ⊔⊓

Next, as in [4], we can also consider 1-parameter families of self-
adjoint operators of the form Aτ := A0 +τ V , τ ∈ [0, τ̄ ] = I , V being
a bounded scalar potential. In this case, it would be interesting to
prove (iii±) for all Aτ knowing that A0 satisfies it and having some
spectral information on Aτ .
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More precisely, let A0 : D(A0) ⊂ H → H be a self-adjoint operator.
Let H+, H−, Λ+ and Λ− be defined like in Section 1. Assume further
that there is a space F ⊂ H such that, for all τ ∈ I , F is a core for
Aτ and the following hypotheses hold:

(j) F+ = Λ+F and F− = Λ−F are two subspaces of F(Aτ ).

(jj−) There is a− ∈ R such that supτ∈I, x−∈F−\{0}
(x−,Aτ x−)

‖x−‖2

H

≤ a−.

(jj+) There is a+ ∈ R such that infτ∈I, x+∈F+\{0}
(x+,Aτ x+)

‖x+‖2

H

≥ a+.

Let us define the numbers (λτ,+
k )k≥1 and (λτ,−

k )k≥1 as in (1)-(2) by

λτ,+
k = inf

V subspace of F+

dim V =k

sup
x∈(V ⊕F−)\{0}

(x, Aτ )

‖x‖2
H

,

λτ,−
k = sup

V subspace of F−

dim V =k

inf
x∈(V ⊕F+)\{0}

(x, Aτ )

‖x‖2
H

.

With the definitions

a−
1 := infτ∈I

[

inf
(

σ(Aτ ) ∩ (a−, +∞)
)]

,

a+
1 := supτ∈I

[

sup
(

σ(Aτ ) ∩ (−∞, a+)
)]

,

b− := inf
(

σess(A0) ∩ (a−, +∞)
)

,

b+ := sup
(

σess(A0) ∩ (−∞, a+)
)

,

we obtain the following continuation principle.

Theorem 2 Under the above assumptions,

if for some k+
0 ≥ 1, λ0,+

k+

0

> a− and if a−
1 > a−, for all k ≥ k+

0 ,

the numbers λτ,+
k are either eigenvalues of A0 + τ V in the interval

(a−, b−) or λτ,+
k = b− .

If for some k−
0 ≥ 1, λ0,−

k−

0

< a+ and a+
1 < a+, for all k ≥ k−

0 ,

the numbers λτ,−
k are either eigenvalues of A0 + τ V in the interval

(b+, a+) or λτ,−
k = b+ .

Exactly as in [4], one can prove this resutl for a class of more
general (unbounded) potentials V using a truncation argument and
then passing to the limit in the truncation parameter. This applies
to the perturbation of free the Dirac operator studied in Section 3 by
potentials with Coulomb singularites. We refer the interested reader
to [4] for more details.

4



Proof of Theorem 2. Assumptions (i), (ii±) of Theorem 1 follow from
(j), (jj±). Because of the boundedness of V , the maps I ∋ τ 7→ λτ,±

k±

0

are continuous. The sets

P+
k0

:= {τ ∈ I : λτ,+
k0

≥ a−
1 } , P−

k0
:= {τ ∈ I : λτ,−

k0
≤ a+

1 }

are thus closed in I, and the sets

Q+
k0

:= {τ ∈ I : λτ,+
k0

> a−} , Q−
k0

= {τ ∈ I : λτ,−
k0

< a+}

are open. Obviously, P±
k0

⊂ Q±
k0

. But if τ ∈ Q±
k0

then Aτ satisfies
(iii±), so it follows from Theorem 1 that

λτ,±
k ∈ σ(Aτ ) , for all k ≥ k0 ,

hence, by our assumptions, τ ∈ P±
k0

. As a consequence, P±
k0

= Q±
k0

,

and the sets P±
k0

are both open and closed in I . But if λ0,+
k0

> a−

(resp. λ0,−
k0

< a+), Q+
k0

(resp. Q−
k0

) is nonempty : It contains 0, so

Q+
k0

(resp. Q−
k0

) coincides with I. ⊔⊓

Example: A Pauli type operator

For every ν > 0 let us consider the operator

Aν =

(

1 − ∆ − ν
|x| 0

0 −1 + ∆ + ν
|x|

)

,

on L2(R3, C)2. This operator is self-adjoint with domain H2(R3, C)2

and form-domain H1(R3, C)2. An easy analysis shows that for all
ν > 0, Aν has two families of eigenvalues:

E−
ν,n = −1 +

ν2

4 n2
, E+

ν,n = 1 − ν2

4 n2
, n ≥ 1 ,

and moreover a±
ν = E±

ν,1.

Furthermore, for all k ≥ 1, λ±
ν,k = E±

ν,n(k) if and only if ν ≤
√

8 n2

n2+1 , n = n(k). Notice indeed that the eigenvalues are degenerate

for any n ≥ 2, so that we have to count the levels with multiplicity

and introduce n := n(k). If ν ∈
(√

8 n2

n2+1 ,
√

8
)

, λ±
ν,k = E∓

ν,1 for any

n = n(k) ≥ 1.

Hence, if ν ≤ 2, all the eigenvalues of operator Aν are given by
the variational procedures defining the numbers λ±

k ’s. In the interval

ν ∈ (2,
√

8) some (but not all) of them still satisfy this property. These
results are illustrated in Fig. 1 below.
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3 Application to Dirac operators

Let us consider the free Dirac operator

H0 := −i

3
∑

k=1

αk ∂k + β ,

where we have written it in physical units for which the speed of light,
the mass of the electron and Planck’s constant are taken equal to 1. In
the Dirac equation, α1, α2, α3 and β are 4×4 complex matrices, whose
standard form (in 2 × 2 blocks) is

β =

(

I 0
0 −I

)

, αk =

(

0 σk

σk 0

)

(k = 1, 2, 3) ,

and σk, k = 1, 2, 3, are the 2×2 complex Pauli matrices: σ1 =
(

0 1

1 0

)

,

σ2 =
(

0 −i

i 0

)

, σ3 =
(

1 0

0 −1

)

. Let V be a scalar potential satisfying

lim
|x|→+∞

V (x) = 0 , (4)

and assume that it is continuous everywhere except at two finite sets
of isolated points, {x+

i } , {x−
j }, i = 1, . . . I, j = 1, . . . , J, where

limx→x+

i
V (x) = +∞ , limx→x+

i
V (x) |x − x+

i | ≤ νi

limx→x−

j
V (x) = −∞ , limx→x−

j
V (x) |x − x−

j | ≥ −νj

(5)

with νi, νj ∈ (0, 1) for all i, j. Under the above assumptions, H0 + V
has a distinguished self-adjoint extension A with domain D(A) such
that

H1(R3, C4) ⊂ D(A) ⊂ H1/2(R3, C4) ,

the essential spectrum of A is the same as that of H0 :

σess(A) = (−∞,−1] ∪ [1, +∞) ,

(see [16, 14, 11, 9] ). Finally, V sends D(A) into its dual, since (4)-(5)
imply that for all φ ∈ H1/2(R3), V φ ∈ H−1/2(R3).

In this section, we shall prove the validity of a variational char-
acterization of the eigenvalues of H0 + V corresponding to the posi-
tive/negative spectral decomposition of the free Dirac operator H0 :

H = Hf
+ ⊕Hf

− ,

6



with Hf
± = Λf

±H, where

Λf
+ = χ(0,+∞)(H0) =

1

2

(

Id +
H0√
1 − ∆

)

,

Λf
− = χ(−∞,0)(H0) =

1

2

(

Id − H0√
1 − ∆

)

.

This will be done under conditions which are optimal for the potentials
satisfying (4)-(5) using Theorem 1 and 2. As already stated in [4], the
theorem is optimal in the sense that it covers the optimal range in the
case of Coulomb potentials. If we consider the operator Aτ := H0 +
τ V , τ > 0, with V satisfying (4)-(5), our variational characterization
will provide us with all eigenvalues of Aτ as long as τ is not too big.

Theorem 3 Take a positive integer k0 and any k ≥ k0 and let A be
the self-adjoint extension of H0 +V defined above, where V is a scalar
potential satisfying (4)-(5).

If a− < λ+
k0

< 1, then λ+
k is either an eigenvalue of H0 + V in

the interval (a−, 1), or λ+
k = 1. If additionally V ≥ 0, then a− = 1

and λ+
k = 1.

If −1 < λ−
k0

< a+, then λ−
k is either an eigenvalue of H0 + V

in the interval (−1, a+) or λ−
k = −1. If additionally V ≤ 0, then

a+ = −1 and λ−
k = −1.

The sequences (λ+
k )k≥k±

0

and (λ−
k )k≥1 are respectively nondecreasing

and nonincreasing. The spectrum of A contained in R \ [a+, a−] is

(−∞,−1] ∪ {λǫ
k : k ≥ 1 , ǫ = ±} ∪ [1, +∞) ,

and we do not state anything about the possible eigenvalues in the
interval [a+, a−]. As we showed in the previous section, there can be
operators for which all or almost all the eigenvalues lie in the interval
[a+, a−] and thus, they are not given by the variational procedures
defining the λ±

k ’s.

Theorem 3 easily follows from Theorem 1. The details of the proof
are left to the reader. The continuation argument of Theorem 2 applies.
Indeed, first one has to truncate the potential at some level M , apply
Theorem 2, and then pass to the limit when M goes to +∞. It is worth
mentionning that by the continuation principle for the Dirac operators
H0 + τ V , with V satisfying (4)-(5), and the definition of λτ,±

k ,

lim
τ→0+

λτ,±
k = ±1 , for all k ≥ 1 .

Also notice that Talman’s decomposition [15, 4] i.e. the decomposition
on “upper” and “lower” two-components spinors, does not apply here,
while the spectral decomposition applies.
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Corollary 1 Under the assumptions of Theorem 3, a sufficient con-
dition for λ+

1 to be in the interval (a−, 1) is :

c1 −
ν

|x| ≤ V ≤ c2 , c1, c2 ≥ 0, c1 + c2 − 1 <
√

1 − ν2 .

Proof. It is straightforward to check that a− ≤ c2 − 1 and

λ+
1 (V ) ≥ λ+

1

(

− ν

|x|
)

− c1 = λ1

(

H0 −
ν

|x|
)

− c1 =
√

1 − ν2 − c1 .

⊔⊓

Recall that under assumptions (4)-(5), for any k ≥ 1, for the above
result to possibly imply that λ±

k is an eigenvalue we need that

±a∓ < 1 and ± (λ±
1 − a∓) > 0 .

To illustrate our results, we end this paper by giving some sufficient
conditions for these inequalities to hold true. Assume that V satisfies
(4)-(5) and can be written as

V = −
∑

i∈I

V −
i +

∑

j∈J

V +
j ,

where the V −
i ’s (resp. the V +

j ’s) are nonnegative potentials satisfying

(4)-(5), with a unique singularity at x−
i (resp. at x+

j ). If

νi , νj ∈ [ 0, 2/(π
2
+ 2

π
) ) , for all i ∈ I , j ∈ J ,

it follows from [17] and [1] that there are constants δ±ℓ ∈ (0, 1) such
that, for all i ∈ I , j ∈ J ,

δ−i H0 − V −
i ≥ 0 in H+ , δ+

j H0 + V −
j ≤ 0 in H− ,

a− = sup
e ∈ F−

‖e‖H = 1

(H0 + V ) ≤ sup
e ∈ F−

‖e‖H = 1

(

H0 +
∑

j∈J

V +
j

)

≤
(

1 −
∑

j

δ+
j

)

sup
e ∈ F−

‖e‖H = 1

H0 =
∑

j

δ+
j − 1 .

So, a− < 1 if
∑

j∈J

δ+
j < 2 . (6)

Next, let us estimate λ+
1 . For every e+ ∈ F+,

sup
e ∈ [e+]⊕F−

‖e‖H = 1

(H0 + V ) ≥ sup
e ∈ [e+]
‖e‖H = 1

(

H0 −
∑

i∈I

V −
i

)

≥
(

1 −
∑

i

δ−i

)

,
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and hence
λ+

1 ≥ 1 −
∑

i

δ−i .

So, finally, λ+
1 > a− if

∑

i∈I

δ−i +
∑

j∈J

δ+
j < 2 . (7)

Similar computations show that λ−
1 < a+ if (7) holds and a+ >−1 if

additionally
∑

i∈I

δ−i < 2 . (8)

Conditions (6), (7) and (8) are very restrictive. If the interdistances
between the singularity points x−

i and x+
j are taken into account

and made large enough, these conditions can certainly be radically
weakened when these interdistances become large.
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[9] M. Klaus and R. Wüst. Characterization and Uniqueness of
Distinguished Self-Adjoint Extensions of Dirac Operators.
Comm. Math. Phys. 64(2) (1978-79), p. 171-176.

[10] W. Kutzelnigg. Relativistic one-electron Hamiltonians “for
electrons only” and the variational treatment of the Dirac
equation. Chemical Physics 225 (1997), p. 203-222.

[11] G. Nenciu. Self-Adjointness and Invariance of the Essential
Spectrum for Dirac Operators defined as Quadratic Forms.
Comm. Math. Phys. 48 (1976), p. 235-247.

[12] M. Reed and B. Simon. Methods of modern mathematical
physics, Vol. 1. Academic Press, New York.

[13] M. Reed and B. Simon. Methods of modern mathematical
physics, Vol. 4. Academic Press, New York.

[14] U.W. Schmincke. Distinguished Self-Adjoint Extensions of
Dirac Operators. Math. Z. 129 (1972), p. 335-349.

[15] J.D. Talman. Minimax principle for the Dirac equation.
Phys. Rev. Lett. 57(9) (1986), p. 1091-1094.

[16] B. Thaller. The Dirac Equation. Texts and Monographs in
Physics. Springer-Verlag, Berlin, 1st edition, 1992.

[17] C. Tix. Strict Positivity of a relativistic Hamiltonian due
to Brown and Ravenhall. Bull. London Math. Soc. 30(3)
(1998), p. 283-290.

10



1

−1

0

a
−

ν
= E−

ν,1

aν = E
ν,1

+ +

E
+
ν,2

E
+
ν,3

...

ν

...

E
−

ν,3

E
−

ν,2

ν3ν2ν1

= Eν,

+

ν,

+

...

...

E
+
ν (n)k,

==

n

n

Figure 1: Depending on the values of ν, all eigenvalues are achieved by the
two families of levels λ+

ν,k and λ−

ν,k (Case ν = ν1 < 2), or only some of them

(Case ν = ν2 ∈ (2,
√

8). For ν >
√

8 (Case ν = ν3), the gap (−1, 1) is
contained in (a+, a−) and the method does not characterize any eigenvalue
in the gap. To clarify the picture, only the family of eigenvalues E+

ν,n has
been represented, but the family E−

ν,n is easily recovered by symmetry with
respect to the horizontal axis. To take the multiplicity into account, we
denote by k(n) the smallest k for which λ+

ν,k
= E+

ν,n.
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