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SOLVABLE LOCAL AND STOCHASTIC VOLATILITY MODELS:

SUPERSYMMETRIC METHODS IN OPTION PRICING

PIERRE HENRY-LABORDÈRE

Abstract. In this paper we provide an extensive classification of one and two dimensional dif-
fusion processes which admit an exact solution to the Kolmogorov (and hence Black-Scholes)
equation (in terms of hypergeometric functions). By identifying the one-dimensional solvable pro-
cesses with the class of integrable superpotentials introduced recently in supersymmetric quantum
mechanics, we obtain new analytical solutions. In particular, by applying supersymmetric trans-
formations on a known solvable diffusion process (such as the Natanzon process for which the
solution is given by a hypergeometric function), we obtain a hierarchy of new solutions. These
solutions are given by a sum of hypergeometric functions, generalizing the results obtained in the
paper ”Black-Scholes Goes Hypergeometric” [2]. For two-dimensional processes, more precisely
stochastic volatility models, the classification is achieved for a specific class called gauge-free
models including the Heston model, the 3/2-model and the geometric Brownian model. We then
present a new exact stochastic volatility model belonging to this class.

1. Introduction

For most mathematical models of asset dynamics, an exact solution for the corresponding
Kolmogorov & Black-Scholes equation is usually not available: there are, however, a few notable
exceptions. The known solutions for local volatility models are the constant elastic of variance
(CEV) [9] including the classical log-normal Black-Scholes process. For the instantaneous short
rate models, there are the CIR process [10] (Bessel process) and the Vacicek-Hull-White process
[13] (Ornstein-Uhlenbeck process). For stochastic volatility models, the known exact solutions are
the Heston model [12], the 3/2-model and the geometric Brownian model [18]. These analytical
solutions can be used for calibrating a model quickly and efficiently or can serve as a benchmark
for testing the implementation of more realistic models requiring intensive numerical computation
(Monte-Carlo, partial differential equation). For example, the existence of a closed-form solution
for the price of a vanilla option in the Heston model allows us to quickly calibrate the model to
the implied volatilities observed on the market. The calibrated model can then be used to value
path-dependent exotic options using, for example, a Monte-Carlo methodology.

In this paper, we show how to obtain new analytic solutions to the Kolmogorov & Black-Scholes
equation, which we refer to as KBS throughout the rest of the paper, for 1d & 2d diffusion processes.
In order to get to our classification, we first present a general reduction method to simplify the
multi-dimensional KBS equation. Rewriting the KBS equation as a heat kernel equation on a
Riemannian manifold endowed with an Abelian connection, we show that this covariant equation
can be simplified using both the group of diffeomorphisms (i.e. change of variables) and the group
of Abelian gauge transformations. In particular for the models admitting a flat Abelian connection,
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there always exists a gauge transformation that eliminates the Abelian connection of the diffusion
operator.

In the second part we apply the reduction method, previously presented, to a one-dimensional,
time-homogeneous diffusion process. Modulo a change of variable, the metric becomes flat and the
Abelian connection is an exact one-form for which a gauge transformation can always be applied.
Using these two transformations, the resulting KBS equation becomes a Euclidean Schrodinger

equation with a scalar potential. Extensive work has already been done to classify the set of scalar
potentials which admit an exact solution. In particular, using a supersymmetric formulation of
the Schrodinger equation which consists in doubling the BKS equation with another equation,
we show how to generate a hierarchy of new solvable diffusion processes starting from a solvable
diffusion process (for e.g. a Natanzon potential [22]). In this context, the local volatility function
is identified with a superpotential. Applying supersymmetric transformations on the Natanzon
potential (which is the most general potential for which the Schrodinger equation can be reduced to
either a hypergeometric or a confluent equation), we obtain a new class of solvable one-dimensional
diffusion processes which are characterized by six parameters.

The classification of one-dimensional time-homogeneous solvable diffusion processes for which the
solution to the KBS equation can be written as a hypergeometric function has been achieved in
[2, 3, 4, 5, 16] using the well known Natanzon classification. The application of supersymmetric
techniques to the classification of solvable potentials for the Schrodinger equation has been reviewed
in [8] where a large number of references can be found. For the Kolmogorov & Fokker-Planck
equations, one can consult [17, 15].

In the last part we pursue this classification for stochastic volatility models which admit a flat
Abelian connection: we refer to these as gauge-free models. Surprisingly, this class includes all
the well known exact stochastic volatility models (i.e. the Heston model, the 3/2-model and the
geometric Brownian model). For this gauge-free models, we reduce the two-dimensional KBS
equation to a Euclidean Schrodinger equation with a scalar potential. Then, we present a new
exact stochastic volatility model which is a combination of the Heston and 3/2-models.

2. Reduction method

In this section, we explain how to simplify the KBS equation. This reduction method will be used
in the next section to classify the solvable one and two dimensional time-homogeneous processes.
This method is already well known for a one-dimensional process and is presented in [7, 19, 20] for
example. However, the extension of this method to multi-dimensional diffusion processes requires
the introduction of differential geometric objects such as a metric and an Abelian connection on a
Riemannian manifold, as we will presently explain.

Let us assume that our time-homogeneous multi-dimensional diffusion model depends on n random
processes xi which can be either traded assets or hidden Markov processes (such as a stochastic
volatility a or an instantaneous short rate r). Let us denote x = (xi)i=1,··· ,n, with initial conditions
α = (αi)i=1,··· ,n. These variables xi satisfy the following stochastic differential equations (SDE)

dxi = bi(x)dt + σi(x)dWi(2.1)

dWidWj = ρij(x)dt(2.2)

with the initial condition xi(t = 0) = αi. The no-arbitrage condition implies that there exists an
equivalent measure P such that the traded assets are (local) martingales under this measure. For
P, the drifts bi are consequently zero for the traded assets. Note that the measure P is not unique
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as the market is not necessarily complete. Finally, the fair value of a (European) option, with
payoff f(xi) at maturity T , is given by the discounted mean value of the payoff f conditional on
the filtration Ft generated by the Brownian motions {W i

s≤t}

C(α, t, T ) = E
P[e−

∫

T

t
rsdsf |Ft](2.3)

with rs the instantaneous short rate. This mean-value depends on the probability density p(xi, T |α, t)
which satisfies the backward Kolmogorov equation (τ = T − t, ∂i = ∂

∂xi
)

∂p

∂τ
= bi∂ip+

1

2
ρijσ

iσj∂ijp(2.4)

with initial condition p(τ = 0) = δ(x− α). In this equation we have used the Einstein convention
meaning that two repeated indices are summed.

Using the Feymann-Kac theorem, one can show that the fair value C for the option satisfies the
Black-Scholes equation (∂i = ∂

∂αi
)

∂C
∂τ

= bi∂iC + gij∂ijC − r(α)C(2.5)

with initial condition C(τ = 0, α) = f(α).

In the following, the partial differential equations (PDE) (2.4,2.5) will be interpreted as the heat
kernel on a general smooth n-dimensional manifoldM (without a boundary) endowed with a metric
gij . The inverse of the metric gij is defined by

gij =
1

2
ρijσ

iσj(2.6)

and the metric (ρij inverse of ρij)

gij = 2
ρij

σiσj
(2.7)

The differential operator

D = bi∂i + gij∂ij(2.8)

which appears in (2.4) is a second order elliptic operator of Laplace type. We can then show that
there is a unique connection ∇ on L, a line bundle over M , and a unique smooth function Q on
M such that

D ≡ gij∇i∇j +Q(2.9)

= g−
1
2 (∂i + Ai)g

1
2 gij(∂j + Aj) +Q(2.10)

with g = det[gij ]. We may express the connection Ai and Q as a function of the drift bi and the
metric gij by identifying in (2.10) the terms ∂i and ∂ij with those in (2.8). We find

Ai =
1

2
(bi − g−

1
2 ∂j(g

1/2gij))(2.11)

Q = gij(AiAj − bjAi − ∂jAi)(2.12)
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Note that the Latin indices i,j · · · can be lowered or raised using the metric gij or its inverse gij .
For example Ai = gijAj = 1

2 (gikb
k − 1

2∂iln(g) − gip∂kg
pk).

Using this connection, (2.4) can be rewritten in the covariant way, i.e.

∂

∂τ
p(x, α, τ) = Dp(x, α, τ)(2.13)

If we take Ai = 0 , Q = 0 then D becomes the Laplace-Beltrami operator (or Laplacian) ∆ =

g−
1
2 ∂ig

1
2 gij∂j . For this configuration, (2.13) will be called the Laplacian heat kernel. Similarly,

the Black-Scholes equation (2.5) can be rewritten

∂

∂τ
C(α, τ) = (D − r)C(α, τ)(2.14)

The Heat kernel equation can now be simplified by applying the actions of the following groups.

⊲ The group of diffeomorphisms Diff(M) which acts on the metric gij and the connection Ai by

f∗gij = gpk∂if
p(x)∂jf

k(x)(2.15)

f∗Ai = Ap∂if
p(x) , f ∈ Diff(M)(2.16)

⊲ The group of gauge transformations G which acts on the conditional probability (and the fair
value C) by

p′ = eχ(x,τ)−χ(x=α,τ=0)p(2.17)

C′ = eχ(α,τ)C(2.18)

Then p′ (C′) satisfies the same equation as p (C) (2.13) only with

A′
i ≡ Ai − ∂iχ(2.19)

Q′ ≡ Q+ ∂τχ(2.20)

The constant phase eχ(x=α,τ=0) has been added so that p and p′ satisfy the same boundary condition
at τ = 0. The above transformation is called a gauge transformation. If the connection A is an
exact form (meaning that there exists a smooth function Λ such that Ai = ∂iΛ), then by applying
a gauge transformation, we can eliminate the connection so that the heat kernel equation for p′

(or C′) has a connection equal to zero. It can be shown that for a simply-connected manifold, the
statement ”A is exact” is equivalent to F = 0, where F is the 2-form curvature given in a specific
coordinate system by

Fij = ∂iAj − ∂jAi(2.21)

In the following, we will restrict our classification to those processes for which F = 0, meaning
there exists a gauge transformation such that the transformed connection vanishes. The operator
D reduces in this case to the symmetric operator D = ∆ +Q for which we can use an eigenvector
expansion.

Spectral decomposition
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This spectral decomposition is valid only if the symmetric operator D is an (unbounded) self-
adjoint operator or admits a self-adjoint extension. This will depend strongly on the boundary
conditions. In order to show that D is self-adjoint or admits self-adjoint extensions, we can use
the deficiency indices technique introduced by Von Neumann 1 ([23] and see [6] for a pedagogical
introduction).

After proving that D is a self-adjoint operator or admits a self-adjoint extension, the conditional
probability (or the fair value) can then be expanded over a complete basis of orthonormal eigen-
vectors φn(x)

p(x, τ, x0) =
∑

n

e−Enτφn(x)φn(x0)(2.23)

with Dφn(x) = Enφn(x). The discrete summation over n can also include a continuous summation
according to a specific measure µ(E) if the spectrum contains a continuous part.

3. 1D Time-homogeneous diffusion models

In the next section, we apply the general reduction method, presented previously, to the one-
dimensional KBS equation. Similar reduction to a Schrodinger equation with a scalar potential
(without any references to differential geometry) can be found in [7, 19, 20]. We then find the
supersymmetric partner of this Schrodinger equation and show how to generate new exact solutions
(for Vanilla options).

3.1. Reduction method. Consider a one-dimensional, time-homogeneous diffusion process with
drift 2

df = µ(f)dt+ σ(f)dW(3.1)

1Before explaining this technique, let us recall some definitions.
An operator (H,D(H)) defined on a Hilbert space H is said to be densely defined if the subset D(H) is dense in H,
i.e. for any φ ∈ H one can find in D(H) a sequence which converges in norm to φ.
The domain D(H†) of an adjoint operator of an (unbounded) operator H with dense domain D is the space of
functions ψ such that the linear form φ → (ψ,Hφ) is continuous for the norm of H. Hence using Riesz’ theorem,
there exists a unique φ′ such that (ψ,Hφ) = (ψ′, φ) with (., .) the scalar product on the Hilbert space. By definition,
we set H†ψ = ψ′.
An operator H is called symmetric if for all φ, ψ ∈ D(H), we have (Hφ, ψ) = (ψ,Hψ) . H is self-adjoint if
additionally D(H†) = D(H). Let us assume that (H,D(H)) is densely defined, symmetric and closed with adjoint
(H†,D(H†)). The deficiency indices are then defined by

n± = Ker(H† ∓ iId)(2.22)

Theorem 2.0.1. For an operator with deficiency indices (n−, n+), there are three possibilities:

(1) If n− = n+ = 0, then H is self-adjoint (necessary and sufficient condition)
(2) If n+ = n− = n ≥ 1, then H has infinitely many self-adjoint extensions, parameterized by the unitary group U(n).
(3) If n− 6= n+, then H has no self-adjoint extension.

Note that if the deficiency indices are given by (n, n) then the spectrum is discrete. Moreover, if H admits a
self-adjoint extension, the resulting conditional probability is not unique but depends on the boundary conditions
which are parameterized by the unitary group U(n).

2The time-dependent process df = µ(f)A2(t)dt + σ(f)A(t)dW is equivalent to this process under the change of

local time t′ =
∫ tA2(s)ds
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This process has been used as the basis for various mathematical models in finance. If f is a traded
asset (i.e. a forward), the drift vanishes in the forward measure and we have a local volatility model
where we assume that the volatility is only a function of f . The one-dimensional process is not
necessarily driftless as the random variable is not a traded asset as it is the case for an instantaneous
short rate model, or a model of stochastic volatility.

In our framework, this process corresponds to a (one-dimensional) real curve endowed with the
metric gff = 2

σ(f)2 . For the new coordinate

s(f) =
√

2

∫ f

f0

df ′

σ(f ′)
(3.2)

the metric is flat: gss = 1. The Laplace-Beltrami operator therefore becomes △= ∂2
s .

Using the definition (2.11), (2.12), we find that the Abelian connection Af and the function Q are
given by

Af = −1

2
∂f ln(σ(f)) +

µ(f)

σ2(f)
(3.3)

Q =
1

4
(σ(f)σ

′′

(f) − 1

2
σ′(f)2) − µ′(f)

2
+
µ(f)σ′(f)

σ(f)
− µ(f)

2σ2(f)
(3.4)

In this case, by applying a gauge transformation on the conditional probability p, P = σ(f0)√
2
eΛp

with

Λ = −1

2
ln(

σ(f)

σ(f0)
) +

∫ f

f0

µ(f ′)

σ2(f ′)
df ′(3.5)

then the connection vanishes and P satisfies a heat kernel with a scalar potential Q(s) (in the s
flat coordinate)

∂τP (s, τ) = (∂2
s +Q(s))P (s, τ)(3.6)

The solution P has been scaled by the (constant) factor σ(f0)√
2

in order to have the initial condition

limτ→0P (s, τ) = δ(s). Moreover, Q is given in the s coordinate by

Q =
1

2
(ln(σ))

′′

(s) − 1

4
((ln(σ))

′

(s))2 − µ′(s)√
2σ(s)

+

√
2µ(s)σ′(s)

σ(s)2
− µ2(s)

2σ2(s)
(3.7)

where the prime ′ indicates a derivative according to s.

Example 3.1.1 (quadratic volatility process). Let us assume that f satisfies a driftless process (i.e.
µ(f) = 0). The Black-Scholes equation reduces to the heat kernel on R ifQ(s) = constant (i.e. Q(s)
is zero modulo a time-dependent gauge transformation) which is equivalent to σ(f) = αf2 +βf+γ
(i.e. the quadratic volatility model, also called the hyperbolic model [19]).

Example 3.1.2 (CEV process). For the CEV process df = fβdWt µ(f) = 0, the potential is

Q(s) = β(β−2)
4(1−β)2s2 for β 6= 1 and Q(s) = − 1

8 for β = 1.
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If the Hamiltonian D = (−∂2
s − Q) is self-adjoint or admits self-adjoint extensions, the spectral

decomposition can be used and the conditional probability can be decomposed using a complete
basis of orthonormal eigenvectors φn(s).

P (s, τ) =
∑

n

φn(s)φ†n(s0)e
−Enτ(3.8)

with φn(s) satisfying

Dφn(s) = Enφn(s)(3.9)

Boundary conditions

For a one-dimensional diffusion process, one don’t need to use the deficiency indices technique as the
complete classification of the boundary conditions is given by Feller’s classification. More precisely,
for a 1D time-homogeneous diffusion process, the boundary falls into one of the four following
types: regular, entrance, exit or natural. For entrance, exit or natural, no boundary conditions
are needed. For a regular boundary, the conditional probability is not unique but depends on
the boundary conditions. It corresponds to the case when the deficiency indices are (n, n). The

boundary classification depends on the behavior of the following functions S(c, d) =
∫ d

c
s(f)df ,

M(c, d) =
∫ d

c
m(f)df , Σ(e) = limc→e

∫ d

c
S(c, f)m(f)df and N(e) = limc→e

∫ d

c
S(x, d)m(x)dx with

s(f) = e
−2

∫

f µ(x)dx

σ(x)2 and m(f) = 1
σ2(f)s(f) (see Table 1 below).

Boundary type S(e, d) M(e, d) Σ(e) N(e)
Regular <∞ <∞ <∞ <∞

Exit <∞ = ∞ <∞ <∞
Entrance = ∞ <∞ <∞ <∞
Natural <∞ = ∞ = ∞ = ∞

= ∞ <∞ = ∞ = ∞
= ∞ = ∞ = ∞ = ∞

Table 1. Feller’s Classification.

Example 3.1.3 (Vanilla option with constant interest rate). We have that the forward f satisfies a
driftless process (i.e. µ(f) = 0). The value at t of a European option (with strike K and expiry
date T ) is then given by (τ = T − t)

C(ft,K, τ) = e−rτ

∫ ∞

K

(f −K)p(f, τ |ft)df(3.10)

Doing an integration by parts, or equivalently, applying the Tanaka-Meyer formula on the payoff
(St −K)+ [4] we can show that the vanilla option C can be rewritten as

C(ft,K, τ) = e−rτ (ft −K)+ + e−rτ σ
2(K)

2

∫ τ

0

dt′p(K, t′|ft)(3.11)
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Using the relation between the conditional probability p(f, t′|ft) and its gauge-transformP (s(f), t′|st),
we obtain

C(ft,K, τ) = e−rτ((ft −K)+ +
σ(K)

5
2

√
2σ(ft)

3
2

∫ τ

0

P (s(K), t′|st)dt
′)(3.12)

Plugging the expression for P (s, t′|st) (3.8) into (3.12) and doing the integration over the time t,
we obtain [4]

C(ft,K, τ) = e−rτ((ft −K)+ +
σ(K)

5
2

√
2σ(ft)

3
2

∑

n

φn(s(K))φn(st)
(1 − e−Enτ )

En
)(3.13)

A specific local volatility model will give an exact solution for a vanilla option if we can find the
eigenvalues and eigenvectors for the corresponding Euclidean Schrodinger equation with a scalar
potential. As examples of solvable potentials, one can cite the harmonic oscillator, Coulomb,
Morse, Poschl-Teller I&II, Eckart and Manning-Rosen potentials. The classification of solvable
scalar potentials was initiated by Natanzon [22]. This work provides the most general potential for
which the Schrodinger equation can be reduced to either a hypergeometric or confluent equation.
We will review in the following section the Natanzon potential, which depends on 6 parameters.
We will later show that the Schrodinger equation can be doubled into a set of two independent
Schrodinger equations with two different scalar potentials which transform into each other under
a supersymmetric transformation. Moreover, if one scalar potential is solvable, the other one is.
Applying this technique to the Natanzon potential, we will obtain a new class of solvable potentials
corresponding to a new class of solvable diffusion processes. For these models, the solution to the
KBS equation is given by a sum of hypergeometric functions.

3.2. Solvable (super)potentials. In this section, we show that the Schrodinger equation can be
formulated using supersymmetric techniques (see [8] for a nice review). In particular, the local
volatility will be identified as a superpotential. Using this formalism, we show how to generate a
hierarchy of solvable diffusion models starting from a known solvable superpotential, for example
the hypergeometric or confluent hypergeometric Natanzon superpotential.

3.2.1. Superpotential and local volatility. Let us write the Kolmogorov equation (3.9) in the fol-

lowing way by introducing the first-order operator A1 and its formal adjoint A†
1

3

E(1)
n φ(1)

n = A†
1A1φ

(1)
n(3.1)

with A1 = ∂s +W (1)(s) , A†
1 = −∂s + W (1)(s). W (1) is called the superpotential which satisfies

the Riccatti equation

Q(1)(s) = ∂sW
(1)(s) −W (1)2(s)(3.2)

Surprisingly, this equation is trivially solved for our specific expression for Q(1) (3.7) (even with a
drift µ(f)!)

3In order to obtain the correct adjoint operator on R
+, we impose the absorbing boundary condition φn(s =

0) = 0



SUPERSYMMETRIC METHODS IN OPTION PRICING 9

W (1)(s) =
1

2

dlnσ(1)(s)

ds
− µ(1)(s)√

2σ(1)(s)
(3.3)

In particular, for zero drift, the local volatility function is directly related to the superpotential by
σ(s) = e2

∫

s W (z)dz. A similar correspondence between the superpotential and driftless diffusion
process has been found in [17, 15]. Moreover, if we have a family of solvable superpotentials

W
(1)
solvable(s), we can always find an analytic solution to the Kolmogorov equation for any diffusion

term σ(1)(s) by adjusting the drift with the relation (3.3)

µ(1)(s) =
σ(1)′(s)√

2
−
√

2σ(1)(s)W
(1)
solvable(s)(3.4)

Note that (3.1) admits a zero eigenvalue if and only if the Kolmogorov equation admits a stationary

distribution. By observing that A†
1A1φ

(1)
0 = 0 is equivalent to A1φ

(1)
0 = 0, we obtain the stationary

distribution

φ
(1)
0 (s) = Ce−

∫

s W (1)(z)dz(3.5)

with C a normalization constant. Therefore, the stationary distribution will exist if the superpo-

tential is normalisable (i.e. φ
(1)
0 (s) ∈ L2).

Example 3.2.1 (Coulomb superpotential and CEV process). The CEV process corresponding to

σ(f) = σ0f
β and µ(f) = 0 has the Coulomb superpotential W (s) = β

2(1−β)s .

Next, we define the Scholes-Black equation by intervening the operator A1 and A†
1

E(2)
n φ(2)

n (s) = A1A
†
1φ

(2)
n (s)(3.6)

= (−∂2
s −Q(2)(s))φ(2)

n (s)(3.7)

We obtain a new Schrodinger equation with the partner potential

Q(2)(s) = −∂sW
(1) − (W (1))2(3.8)

Plugging our expression for the superpotential (3.3) in (3.8), we have

Q(2) = −1

2
(ln(σ(1)))

′′

(s) − 1

4
(ln(σ(1)))

′

(s))2 +
µ(1)′(s)√
2σ(1)(s)

− µ(1)2(s)

2σ(1)2(s)
(3.9)

In the same way as before, H2 admits a zero eigenvector (i.e. stationary distribution) if φ
(2)
0 (s) =

Ce
∫

s W (1)(z)dz is normalisable.

Remark 3.2.2. In physics, the supersymmetry (SUSY) is said to be broken if at least one of the

eigenvectors φ
(1,2)
0 (s) exists. Otherwise, SUSY is said to be broken dynamically.
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Now we want to show that if we can solve the equation (3.1) then we have automatically a solution

to (3.7) and vice-versa. The SUSY-partner Hamiltonians H1 = A†
1A1 and H2 = A1A

†
1 obey

the relations A†
1H2 = H1A

†
1 and H2A1 = A1H1. As a consequence H1 and H2 are isospectral.

More precisely, the strictly positive eigenvalues all coincide and the corresponding eigenvectors are

related by the supercharge operators A1 and A†
1:

⊲ If H1 admits a zero eigenvalue (i.e. broken supersymmetry), we have the relation

E(2)
n = E

(1)
n+1 ; E

(1)
0 = 0; φ

(1)
0 (s) = Ce−

∫

s W (1)(z)dz(3.10)

φ(2)
n (s) = (E

(1)
n+1)

− 1
2A1φ

(1)
n+1(s)(3.11)

φ(1)
n (s) = (E2

n)−
1
2A†

1φ
(2)
n (s)(3.12)

⊲ If H1 (and H2) doesn’t admit a zero eigenvalue (i.e. unbroken supersymmetry)

E(2)
n = E(1)

n(3.13)

φ(2)
n (s) = (E(1)

n )−
1
2A1φ

(1)
n (s)(3.14)

φ(1)
n (s) = (E2

n)−
1
2A†

1φ
(2)
n (s)(3.15)

In the broken SUSY case, there are no zero modes and consequently the spectrum of H1 and H2

are the same. One can then obtain the solution to the Scholes-Black (resp. Black-Scholes) equation
if the eigenvalues/eigenvectors of the Black-Scholes (resp. Scholes-Black) are known. We clarify
this correspondence by studying a specific example: the CEV process df = fβdW . In particular,
we show that for β = 2

3 , the partner superpotential vanishes. It is therefore simpler to solve the
Scholes-Black equation as Scholes-Black (rather than Black-Scholes) reduces to the heat kernel on
R

+. Applying a supersymmetric transformation on the Scholes-Black equation, we can then derive
the solution to the Black-Scholes equation.

Example 3.2.3 (CEV with β = 2/3 and Bachelier process). We saw previously that the superpo-
tential associated with the CEV process is given by

W (1)(s) =
β

2s(1 − β)
(3.16)

with the flat coordinate s =
√

2f1−β

(1−β) and the potential (3.7)

Q(1)(s) =
β(β − 2)

4(1 − β)2s2
(3.17)

from which we deduce the partner potential (3.9)

Q(2)(s) =
β(2 − 3β)

4(1 − β)2s2
(3.18)

This partner potential corresponds to the potential of a CEV process df = fBdW with B given as
a function of β by
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B(B − 2)

(1 −B)2
=
β(2 − 3β)

(1 − β)2
(3.19)

Surprisingly, we observe that for β = 2
3 , Q(2)(s) cancels and the corresponding partner local

volatility model is the Bachelier model df = dW for which the heat kernel is given by the normal
distribution. The eigenvectors of the supersymmetric Hamiltonian partner H2 = −∂2

s to H1 are
given by (with the absorbing boundary condition φn(0) = 0)

φ(2)(s, E) =
sin(

√
Es)√

4πE
1
4

(3.20)

with a continuous spectrum R
+. Applying the supersymmetric transformation (3.12), we obtain

the eigenvectors for the Hamiltonian H1 = −∂2
s + 2

s2 corresponding to the CEV process with β = 2
3

φ(1)(s, E) = E− 1
2 (−∂s +

1

s
)φ(2)(s, E)(3.21)

=
1√

4πE
3
4

(−
√
Ecos(

√
Es) +

sin(
√
Es)

s
)(3.22)

Plugging this expression in (3.13), we obtain the fair value for a vanilla option which can be
integrated and written in terms of the cumulative distribution [19]

erτC(ft,K, τ) = (ft −K)+ +
K

5
3

√
2ft

∫ ∞

0

dE
(1 − e−Eτ )

E
φ(2)(s, E)φ(2)(s0, E)

The fact that the CEV model with β = 2
3 depends on the normal cumulative distribution and is

therefore related to the heat kernel on R
+ has been observed empirically by [19]. Here we have

seen that it corresponds to the fact that the supersymmetric partner potential vanishes for this
particular value of β.

3.3. Hierarchy of solvable diffusion processes. In the previous section we saw that the op-

erators A1 and A†
1 can be used to factorize the Hamiltonian H1. These operators depend on the

superpotential W (1) which is determined once we know the first eigenvector φ
(1)
0 (s) of H1 (3.5).

We have assumed that H1 admits a zero eigenvalue. By shifting the energy E it is always pos-
sible to achieve this condition. The partner Schrodinger equation (3.7) can then be recast into a
Schrodinger equation with a zero eigenvalue

H(2) = A1A
†
1 = A†

2A2 + E
(1)
1(3.1)

where A2 ≡ ∂s +W2(s) and A†
2 ≡ −∂s +W2(s),

W (2)(s) ≡ 1

2

dlnσ(2)(s)

ds
− µ(2)(s)√

2σ(2)(s)
(3.2)
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We have introduced the notation that in E
(m)
n , n denotes the energy level and (m) refers to the

mth Hamiltonian Hm. By construction, this new Hamiltonian H2 = A†
2A2 + E

(1)
1 is solvable as

A1A
†
1 is and the associated diffusion process with volatility σ(2) and drift µ(2) satisfy (3.2). The

superpotential W (2)(s) is determined by the first eigenvector of H2, φ
(2)
0 (s),

W (2)(s) = −dln(φ
(2)
0 )(s)

ds
(3.3)

We can then apply a supersymmetric transformation on H2. The new Hamiltonian H3 can be
refactorised exactly in the same way we did forH2. Finally, it is not difficult to see that ifH1 admits
p discrete (normalisable) eigenvectors, then one can generate a family of solvable Hamiltonians Hm

(with a zero-eigenvalue by construction)

Hm = A†
mAm + E

(1)
m−1 = −∂2

s +Qm(s)(3.4)

where Am = ∂s + Wm(s). This corresponds to the solvable diffusion process with a drift and a
volatility such that

Wm(s) = −dlnφ
(m)
0

ds
=

1

2

dlnσ(m)(s)

ds
− µ(m)(s)√

2σ(m)(s)
(3.5)

The eigenvalues/eigenvectors of Hm are related to those of H1 by

E(m)
n = E

(m−1)
n+1 = · · · = E

(1)
n+m−1(3.6)

φ(m)
n = (E

(1)
n+m−1 − E

(1)
m−2)

− 1
2 · · · (E(1)

n+m−1 − E
(1)
0 )−

1
2Am−1 · · ·A1φ

(1)
n+m−1(3.7)

In particular, the superpotential of Hm is determined by the (m−1)th eigenvector of H1, φ
(1)
m−1(s),

Wm(s) = −dln(Am−1 · · ·A1φ
(1)
m−1(s))

ds
(3.8)

=
1

2

dlnσ(m)(s)

ds
− µ(m)(s)√

2σ(m)(s)
(3.9)

Consequently, if we know all the m discrete eigenvalues and eigenvectors of H1, we immediately
know all the energy eigenvalues and eigenfunctions of the hierarchy of m − 1 Hamiltonians. In
the following we apply this procedure starting from a known solvable superpotential, the Natanzon

superpotential.

3.4. Natanzon (super)potentials. The Natanzon potential [22] is the most general potential
which allows us to reduce the Schrodinger equation (3.6) to a Gauss or confluent hypergeometric
equation (GHE or CHE).
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3.4.1. Gauss hypergeometric potential. The potential is given by

Q(s) =
S(z) − 1

R(z)
− (

r1 − 2(r2 + r1)z

z(1 − z)
− 5

4

(r21 − 4r1r0)

R(z)
+ r2)

z2(1 − z2)

R(z)2
(3.1)

with R(z) = r2z
2 + r1z + r0 > 0 and S(z) = s2z

2 + s1z + s0 (two second order polynomials).
The z coordinate, lying in the interval [0, 1], is defined implicitly in terms of s by the differential
equation

dz(s)

ds
=

2z(1 − z)
√

R(z)
(3.2)

Example 3.4.1. The hypergeometric Natanzon potential includes as special cases the Posch-Teller
potential II Q(s) = A+Bsech( 2s√

r1
)2+Ccsch( 2s√

r1
)2 for r0 = r2 = 0 and the Rosen-Morse potential

Q(s) = A+Btanh( 2s√
r0

) + Csech( 2s√
r0

)2, r1 = r2 = 0 with A and B constant.

By construction, the solution to the Schrodinger equation with a GHE potential is given in terms
of the Gauss hypergeometric function F (α, β, γ, z)

ψ(s, E) = (z′)−
1
2 z

γ
2 (1 − z)

−γ+α+β+1
2 F (α, β, γ, z)(3.3)

where F (α, β, γ, z) satisfies the differential equation [1]

z(1 − z)
d2F

dz2
+ (γ − (α + β + 1)z)

dF

dz
− αβz = 0(3.4)

and the most general solution to this equation (3.4) is generated by a two-dimensional vector space

F (α, β, γ, z) = c12 F1(α, β, γ, z) + c2z
1−γ

2 F1(α− γ + 1, β − γ + 1, 2 − γ, z)(3.5)

with 2 F1(α, β, γ, z) satisfying 2 F1(α, β, γ, 0) = 1 and c1 and c2 two arbitrary coefficients. The
parameters α, β, γ depend explicitly on the eigenvalue E by

1 − (α− β)2 = r2E + s2(3.6)

2γ(α+ β − 1) − 4αβ = r1E + s1(3.7)

γ(2 − γ) = r0E + s0(3.8)

In fact, one can show that E satisfies a fourth-order polynomial and find E as an explicit function
of α, β, γ [11]. By imposing the condition that the eigenvectors are normalisable (i.e. belong to
L2([0, 1])) we obtain the discrete spectrum En and can determine the coefficients c1 and c2. We
impose conditions on α, β, γ, c1 and c2 such that

∫ 1

0

dz
R(z)

4
zγ−2(1 − z)−γ+α+β−1F 2(α, β, γ, z) <∞(3.9)
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Looking at the asymptotic behavior of 2F1(α, β, γ, z) near z = 0 and z = 1 [1] 4, we obtain the
following conditions

r0 6= 0 c1 = 0, γ < 1 or c2 = 0, γ > 1
r0 = 0, r1 6= 0 c1 = 0, γ < 2 or c2 = 0, γ > 0
r0 = 0, r1 = 0 c1 = 0, γ < 3 or c2 = 0, γ > −1

Table 2. condition z = 0

c1 = 0 α− 1 ∈ N
∗, α+ β − γ < 0 or −1 − α+ γ ∈ N

∗ , α+ β − γ > 0
c2 = 0 −α ∈ N

∗, α+ β − γ > 0 or α− γ ∈ N
∗ , α+ β − γ < 0

Table 3. condition z = 1

We have the discrete eigenvalues (αn = −n ;n ∈ N
∗)

2n+ 1 = −
√

1 − r0En − s0 +
√

1 − r2En − s2 −
√

1 − (r0 + r1 + r2)En − (s0 + s1 + s2)(3.10)

ψn(s) = (z′)−
1
2 z

γn
2 (z − 1)

−γn+αn+βn+1
2 F (αn, βn, γn, z)(3.11)

γn = 1 +
√

1 − r0En − s0(3.12)

αn − βn = −
√

1 − r2En − s2(3.13)

αn + βn = γn +
√

1 − (r0 + r1 + r2)En − (s0 + s1 + s2)(3.14)

and the (normalised) eigenvectors

ψn(s) = Bn(z′)−
1
2 z

γn
2 (1 − z)

−γn−n+βn+1
2 P (γn−1,−n+βn−γn+1)

n (1 − 2z)(3.15)

with Bn = [(( R(1)
α+β−γ )+ ( r0

γ−1)− ( r2

β−α ))Γ(γ+n+1)Γ(α+β−γ)
n!Γ(β−α−n) ]−

1
2 and P

(γ−1,α+β−γ)
n (2z− 1) the Jacobi

polynomials.

3.4.2. Confluent hypergeometric potential. A similar construction can be achieved for the class of
scaled confluent hypergeometric functions. The potential is given by

Q(s) =
S(z) − 1

R(z)
− (

r1
z

− 5

4

(r21 − 4r2r0)

R(z)
− r2)

z2

R(z)2
(3.16)

with R(z) = r2z
2 + r1z + r0 > 0 and S(z) = s2z

2 + s1z + s0. The z coordinate, lying in the
interval [0,∞[, is defined implicitly in terms of s by the differential equation

dz(s)

ds
=

2z
√

R(z)
(3.17)

Example 3.4.2. The confluent Natanzon potential reduces to the Morse potentialQ(s) = −1+s0+s1e
2s√
r0 +s2e

4s√
r0

r0

for r1 = r2 = 0, to the 3D oscillator Q(s) =
− 3

4+s0

s2 + s1

r1
+ s2s2

r2
1

for r0 = r2 = 0 and to the Coulomb

potential Q(r) =
−r2s0−2s

√
r2s1−4s2s2

4r2s2 for r0 = r1 = 0.

4
2F1(α, β, γ, z) ∼z→1 Γ(γ)

(

(−1 + z)−α−β+γ +
Γ(−α−β+γ)

Γ(−α+γ)Γ(−β+γ)

)
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By construction, the solution to the CHE potential is given in terms of the confluent hypergeometric
function F (α, β, γ, z)

ψ(s, E) = z(s)
γ
2 e−

ωz(s)
2 (z′(s))−

1
2F (α, β, γ, ωz(s))(3.18)

The parameters ω, γ, α depend explicitly on the eigenvalue E by

ω2 = −r2E − s2(3.19)

2ω(γ − 2α) = r1E + s1(3.20)

γ(2 − γ) = r0E + s0(3.21)

Note that φ(z)
.
= F (α, β, γ, ωz(s)) satisfies the differential equation [1]

zφ′′(z) + (γ − ωz)φ′(z) − ωαφ(z) = 0(3.22)

and the most general solution to (3.22) is generated by a two-dimensional vector space

F (α, γ, ωz) = c1M(α, γ, ωz) + c2(ωz)
1−γM(1 + α− γ, 2 − γ, ωz)(3.23)

with M(α, γ, ωz) the M-Whittaker function and c1 and c2 two arbitrary coefficients. By imposing
that the eigenvectors are normalisable ((i.e. belong to L2(R+))) , we obtain the following conditions
(see Table 2 &5) which give the spectrum E and the coefficients c1 and c2

5

α > 2 no condition
α ≤ 2 c1 = 0,−1 − α+ γ ∈ N

∗

or c2 = 0,−α ∈ N
∗

Table 4. condition z = ∞

We have the discrete eigenvalues αn = −n ;n ∈ N

γn = 1 +
√

1 − r0En − s0(3.24)

ωn =
√

−r2En − s2(3.25)

2n+ 1 =
r1En + s1

2
√
−r2En − s2

−
√

1 − r0En − s0(3.26)

and the (normalized) eigenvectors

ψn(s) =
n!

(γn)n
z(s)

γn
2 e−

ωnz(s)
2 (z′(s))−

1
2Lγn−1

n (ωnz(s))(3.27)

with Lγn−1
n (z) the (generalized) Laguerre polynomial. In the following, we have listed classical

solvable superpotentials and the corresponding solvable local volatility models and solvable instan-
taneous short-rate models (Table 5 & 6).

5M(α, β, z) ∼z→∞
Γ(β)
Γ(α)

ezzα−β(1 +O(|z|−1))
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Superpotential W (s) σ(s)
σ0

Shifted oscillator as+ b eas2+2bs

Coulomb a+ b
s sbe2as

Morse a+ be−αs e2(−( b
αeαs )+as)

Eckart acoth(αs) + b e2(bs+
a log(sinh(αs))

α )

Rosen-Morse ath(αs) + b e2bs+ 2a
α

ln(cosh(α))

3D oscillator as+ b
s eas2+2bln(s)

P-T I α > 2b atan(αs) + bcotg(αs) e2(−( a log(cos(αs))
α )+ b log(sin(αs))

α )

P-T II α > 2b ath(αs) + bcoth(αs) e2(
a log(cosh(αs))

α
+ b log(sinh(αs))

α )

Table 5. Example of solvable superpotentials-Local Volatility

one-factor short-rate model SDE Superpotential

Vasicek-Hull-White dr = k(θ − r)dt + σdW Shifted Osc. (a = κ
2 , b = − κθ√

2σ
)

CIR dr = k(θ − r)dt + σ
√
rdW 3D Osc. (a = κ

4 , b = 1
2 − 2θκ

σ2 )

Doleans dr = krdt + σrdW (Constant (W (s) = −2κ+σ2

2
√

2σ
)

EV-BK dr = r(η − αln(r))dt + σrdW Shifted Osc. (a = α
2 , b =

√
2(−2η+σ2)

4σ )
Table 6. Example of solvable one-factor short-rate models

3.4.3. Natanzon hierachy and new solvable processes. We know that the Natanzon superpotential
is related to the zero-eigenvector

Wnat = −∂sln(ψ0(s))(3.28)

and the corresponding supercharge A is

A = ∂s +Wnat(s)

=
2z(1 − z)√

R
(∂z − γ0

2z
− (1 + α0 + β0 − γ0)

2(z − 1)
− α0β0F (1 + α0, 1 + β0, 1 + γ0, z)

γ0F (α0, β0, γ0, z)
+
z′−

3
2 z′′(s)

2
)

With a zero drift, the Natanzon superpotential corresponds to the diffusion process (3.3)

σ(1)(s) =
σ

(1)
0

φ
(1)
0 (s)2

(3.29)

with σ
(1)
0 a constant of integration. Applying the results of section (3.2), we obtain that the driftless

diffusion processes

σ(m)(s) =
σ

(m)
0

Am−1 · · ·A1φ
(1)
m−1(s)

2
(3.30)
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are solvable (3.9). Using the fact that the (discrete) eigenvector φ
(1)
m−1(s) is a hypergeometric

function and that the derivative of a hypergeometric function is a new hypergeometric function 6

the action of Am−1 · · ·A1 on φ
(1)
m1(s) will result in a sum of (m− 1) hypergeometric functions, thus

generalizing the solution found in [2].

4. Gauge-free stochastic volatility models

In this section, we try to identify the class of time-homogeneous stochastic volatility models which
leads to an exact solution to the KBS equation. We assume that the forward f and the volatility
a are driven by two correlated Brownian motions in the risk-neutral measure

dft = atC(ft)dW1(4.1)

dat = b(at, ft)dt+ σ(at, ft)dW2(4.2)

dW1dW2 = ρdt(4.3)

with initial condition a0 = a and f0 = f .

Using the definition for the connection (2.11), we obtain the Abelian connection 7

Af = − 1

2(1 − ρ2)
∂f ln(

C

σ
) − ρ

(1 − ρ2)
(
b

aCσ
− 1

2C
∂a
σ

a
)(4.6)

Aa =
1

(1 − ρ2)
(
b

σ2
− 1

2
∂aln(

σ

a
))(4.7)

Then, the field strength is

Faf = ∂aAf − ∂fAa(4.8)

=
1

(1 − ρ2)
[(∂af ln(σ) − ∂f

b

σ2
) − ρ(

1

C
∂a

b

aσ
− 1

2C
∂2

a

σ

a
+
a

2
∂2

f

C

σ
)](4.9)

We will now assume that the connection is flat, Faf = 0, meaning that the connection can be
eliminated modulo a gauge transformation. In this case, the stochastic volatility model can thus
be called a gauge-free model. This condition is satisfied for every correlation ρ if and only if

∂af ln(σ) = ∂f
b

σ2
(4.10)

∂a
b

aσ
− 1

2
∂2

a

σ

a
+
aC

2
∂2

f

C

σ
= 0(4.11)

6
2F ′

1(α, β, γ, z) = αβ
γ 2F1(α + 1, β + 1, γ + 1, z) and M ′(α, β, z) = α

β
M(α+ 1, β + 1, z)

7

Af = −a
2Cσ

4
∂f

C

σ
(4.4)

Aa =
1

2
(b− aσ

2
∂a
σ

a
)(4.5)
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Moreover, if we assume that σa(a) is only a function of a (this hypothesis is equivalent to assuming
that the metric admits a Killing vector), the model is gauge-free if and only if

b

σ
=
a

2
∂a
σ

a
+ aφ(f) − aC(f)

2
∂2

fC(f)

∫

a′da′

σ(a′)
(4.12)

with φ(f) satisfying

∂fφ(f) =
∂f (C∂2

fC)

2

∫

a′da′

σ(a′)
(4.13)

This last equation is equivalent to C(f)∂2
fC(f) = β with β a constant and φ = γ a constant

function. For β = 0, the above equations simplify and we have

C(f) = µf + ν(4.14)

b(a) = aσ(a)(γ +
1

2
∂a
σ(a)

a
)(4.15)

with µ, ν , γ constant. The gauge-free condition has therefore imposed the functional form of the
drift term. When the volatility function is fixed respectively to a constant (Heston model), a linear
function (geometric Brownian model) and a quadratic function (3/2-model) in the volatility, one
obtains the correct (mean-reversion) drift 8 (see Table 7)

name σ(a) SDE

Heston σ(a) = η dv =
√
δ(2vγ + η(η − 1))dt+ 2η

√
δ
√
vdW2

Geometric Brownian σ(a) = ηa dv =
√
δ(2ηγv

3
2 + η2v)dt+ 2

√
δηvdW2

3/2-model σ(a) = ηa2 dv = 2
√
δη(η + γ)v2dt+ 2

√
δηv

3
2 dW2

Table 7. Examples of Gauge free stochastic volatility models with df = δ(µ+ νf)
√
vdW ′

1.

The gauge transformation eliminating the connection is then

Λ(f, a) = −ρ
ff

2
ln(C(f)) + αρfa

∫ f df ′

C(f ′)
+ (ρffα− ρaf

2
∂fC)

∫ a a′da′

σ(a′)
(4.16)

Finally, plugging the expression for C(f) and b(a) into (2.12), we find that the function Q is 9

Q = Aa2 +Bσ2∂a
a

σ
(4.17)

The Black-Scholes equation for a Vanilla option C(a, f, τ = T − t) (with strike K and maturity T )
satisfied by the gauge transformed function C′(a, f, τ) = eΛ(f,a)C(a, f, τ) is

8In order to obtain the correct number of parameters, one needs to apply a change of local time dt = δdt′,

dW1,2 =
√
δdW ′

1,2
9A and B are two constants given by

A =
1

2
(−1

2
ρff∂fC + αρaf )2 +

1

2
ρffC2∂2

f ln(C) + ρ(−1

2
ρff∂fC + αρaf )(αρff − ρaf

2
∂fC) +

1

2
(ρffα− ρaf

2
∂fC)2

B = −1

2
(ρffα− ρaf ∂fC

2
)
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∂τC′(a, f, τ) = ∆C′(a, f, τ) +Q(a)C′(a, f, τ)(4.18)

with the initial condition C′(a, f, τ = 0) = eΛ(f,a)(f − K)+. In the coordinates q(f) =
∫ f df ′

C(f ′)

and a, the Laplace-Beltrami operator is given by

∆ =
aσ

2
(
a

σ
∂2

q + 2ρ∂aq + ∂a
σ

a
∂a)(4.19)

Applying a Fourier transformation according to q, C′(q, a, τ) = FC′(f, a, τ), we obtain

∂τC′(a, q, τ) =
aσ

2
(−k2 a

σ
+ 2ikρ∂a + ∂a

σ

a
∂a)C′(a, q, τ) +Q(a)C′(a, q, τ)(4.20)

with the initial condition C′(a, q, τ = 0) = F [eΛ(f,a)(f − K)+]. Using a spectral decomposition
C′(a, q, τ) =

∑

n φnk(a)(C′(a, q, τ = 0), φnk)e−Enkτ (with (., .) the scalar product on L2), the
eigenvectors φnk(a) satisfy the equation

− Enkφnk(a) =
aσ

2
(−k2 a

σ
+ 2ikρ∂a + ∂a

σ

a
∂a)φnk(a) +Q(a)φnk(a)(4.21)

This equation (4.21) can be further simplified by applying a Liouville transformation consisting in
a gauge transformation and a change of variable [21]

ψnk(s) = (
σ

a
)

1
2 e

ikρ
∫

a a′

σ(a′)
da′

φnk(a)(4.22)

ds

da
=

√
2

σ(a)
(4.23)

ψnk(s) satisfies a Schrodinger equation

ψ′′
nk(s) + (Enk − J(s))ψnk(s) = 0(4.24)

with the scalar potential

J(s) = Q(a) − k2a2

2
+

4 a4 k2 ρ2 − 3 σ(a)
2
+ a2 σ′(a)

2
+ 2 a σ(a) (σ′(a) − a σ′′(a))

8 a2
+

1

2
{a, s}

and where the curly bracket denotes the Schwarzian derivative of a with respect to s

{a, s} = (
a′′(s)

a′(s)
)′ − 1

2
(
a′′(s)

a′(s)
)2(4.25)

The 2d partial differential equation corresponding to our original KBS equation for our stochastic
volatility model has therefore been reduced via a change of coordinates and gauge transformations
to a Schrodinger equation with a scalar potential J(s). The stochastic volatility model is therefore
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solvable in terms of hypergeometric functions if the potential J(s) belongs to the Natanzon class.
The solution is given (in terms of the eigenvectors ψnk) by

C(a, f, τ) = e−Λ(a,f)F−1[
∑

n

ψnk(s(a))(F [eΛ(f,a)(f −K)+], ψnk(s(a)))e−Enkτ ](4.26)

Let us examine classical examples of solvable stochastic volatility model and show that the corre-
sponding potentials J(s) correspond to the Natanzon class (see Table 8).

name potential J(s)

Heston 3D osc. J(s) =
−3+4 B s2 η+s4 η2 (2 A+k2 (−1+ρ2))

4 s2

Geometric Brownian Morse J(s) =
−η2+4 e

√
2 s η (2 A+k2 (−1+ρ2))

8

3/2-model Coulombian J(s) =
8 A+η (−8 B+η)+4 k2 (−1+ρ2)

4 s2 η2

Table 8. Stochastic volatility models and potential J(s)

We present here a new example of solvable stochastic volatility model which corresponds to the
Posh-Teller I potential.

Example 4.0.3 (Posh-Teller I). For a volatility function given by σ(a) = α + ηa2, the potential is
given by a Posh-Teller I potential 10

J(s) =

α

(

4
(

−2A+ k2 + 4Bη − k2ρ2
)

− 3η2csc(
s
√

α
√

η√
2

)
2

+
(

8A+ η (−8B + η) + 4k2
(

−1 + ρ2
))

sec(
s
√

α
√

η√
2

)
2
)

8η

5. Conclusion

We have shown how to use supersymmetric methods to generate new solutions to the Kol-
mogorov & Black-Scholes equation (KBS) for one-dimensional diffusion processes. In particular,
by applying a supersymmetric transformation on the Natanzon potential, we have generated a
hierarchy of new solvable processes. Then, we have classified the stochastic volatility models which
admit a flat Abelian connection (with one Killing vector). The two-dimensional KBS equation
has been converted into a Schrodinger equation with a scalar potential. The models for which the
scalar potential belongs to the Natanzon class are solvable in terms of hypergeometric functions.
This is the case for the Heston model, the geometric brownian model and the 3/2-model. A new
solution with a volatility of the volatility σ(a) = α+ ηa2, corresponding to the Posh-Teller I, has
been presented.
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10csc(z) ≡ 1
sin(z)

and sec(z) ≡ 1
cos(z)
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