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Computing the steady states for an asymptotic model
of quantum transport in resonant heterostructures

Virginie Bonnaillie-Noéft, Francis Nief and Yassine Patél
IRMAR, UMR-CNRS 6625, Univeisitle Rennes |, 35042 Rennes Cedex, FRANCE

Abstract

In this article we propose a rapid method to compute the gtstades, including bifurcation dia-
grams, of resonant tunneling heterostructures in the déan #quilibrium regime. Those calculations
are made on a simplified model which takes into account theactexistic quantities which arise
from an accurate asymptotic analysis of the nonlinear@itihger-Poisson system. After a summary
of the former theoretical results, the asymptotical mogexplicitly adapted to physically realistic
situations and numerical results are shown in various cases
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1 Introduction.

Over the past twenty years there has been a serious effogvielap efficient numerical methods in
order to compute the steady states of out of equilibrium tuarresonant heterostructures. The fi-
nal aim is to be able to predict from numerical simulations t/ characteristic curve for devices
which involve an unusual coupling between spectral guestiissociated with the quantum mechan-
ics and nonlinear effects due to the electrostatic mean. fiéldo types of models were considered :
purely quantum ones based on Schrodinger-Poisson sysieWiiigner-Poisson systems (see for exam-
ple [1,2,[3 466,30, 34, 85]); and quantum hydrodynamidriit- diffusion models (see for example
[Ol 10,121 [18[36]). The second ones which assume local #iezquilibrium or local entropy maxi-
mizing states are well suited for situations where quantfietes, averaged by the statistics over a large
number of particles, only bring small corrections to cleasimechanics. The first ones on which we will
focus stick to the quantum nature of the phenomena and hdgedibosen in order to describe accurately
the quantum transport. Actually both of those models wele arecover the negative differential resis-
tance typical of resonant tunneling diodes. This phenomevitich is essentially a linear phenomenon
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relies on the basic topological argument that, when theibiareased, the resonant energy eventually
crosses the ground energy of the incoming beam. It is thexefery robust, remains in all the considered
models and survives to any numerical discretization. Thegon became more complicated after the
work by Jona-Lasinio, Presilla and Sjostrand] [21, 37]evehthey showed that the Schrodinger-Poisson
system could lead to hysteresis phenomena in agreemenphiical observations. Other works men-
tioned the possibility of having much more complex bifursatdiagrams[[22]. In order to catch all these
phenomena, an accurate treatment of the tunnel effectghrthe barrier has to be taken into account
and one has to start with quantum models like SchrodingessBn of Wigner-Poisson systems rather
than hydrodynamical models. A first difficulty which has tothken into account is related with the out
of equilibrium regime. At the quantum level it can be donehia Landauer-Buittiker [(|§,25]) approach
directly on the Schroddinger-Poisson system or via the \&figtoisson system[([IL2,114,124]). This has
motivated several theoretical studies concerned with timearmical treatment of artificial boundary con-
ditions ([1,[2]), with the well posedness of the nonlineasippem ([%,[630]) and with the derivation of
asymptotic models [([21, 3L, B2,133.137]). The second difffcabmes from the complexity of a rough
numerical treatment due to the presence of resonant sttessystem requires a spatial and a spectral
discretization. But resonances lead to very stiff specfuantities (with slopes likefe h << 1) which
require a specific treatment. It can be done via WKB techrsicaral this was accurately done inl[21]
and implemented in numerical methods by N. Ben Abdallah angli@aud in[7["34-35]. However the
numerical complexity remains still large enough in ordemtotivate the derivation of simplified model
which would permit a rapid insight of possible bifurcatiolagrams.

In [271,[37], it is suggested that hysteresis phenomena amuyrwhen the drain barrier is thicker
or higher than the source one. Therefore the geometry ofdhéebs is an important parameter and it
is actually an unknown affected by the nonlinearity evenmwitiés nonlinearity is not very large. The
analysis carried out by the third author on the specific asgtigomodel of quantum wells in a semiclas-
sical island was developed in order to elucidate the rola®fjeometry of the barriers in these nonlinear
phenomena. It has been done in a general enough frameworkién t cover several heterostructure
problems. In doing so, he provided the right quantities Wigovern the nonlinear phenomenon with
an accurate treatment of the tunnel effect. Here we preseataptation of the theoretical asymptotic
analysis which leads to a very rapid determination of bition diagrams.

The outline of the article is the following :

1. Model : In this section, we present the nonlinear Schgeli-Poisson problem with the Landauer-
Buttiker approach which involves the stationnary scattestates.

2. Scaling : We introduce the natural reference magnitufidsoproblem. Three numerical dimen-
sionless parametels3 andy arise from the scaling of the equations.

3. Theoretical results : The results obtainedd [32, 33karemarized in the specific regirhe— 0.

4. Validity of the asymptotic model : On complete numericamputations for the original model,
we check that the theoretical asymptotic model in the Imit O is relevant.

5. Implementation of the asymptotic model : A distinctiommade here between the quantities which
are taken out of the asymptotic model and the ones which angpuated exactly.

6. Computation of the Agmon distances : This short sectioniges exact analytical expressions for
quantities which are involved in the final algorithm.



7. Penalization method : Several cases have to be consid&rexy are separated by multidimen-
sional non convex constraints. Their implementation isedeia a penalization method which is
specified in this section.

8. Numerical results : Several numerical results are shavi\fGaAs-GaAs or Si-Si0 structures,
with a possible comparison with existing numerical results

9. Conclusion.

10. Appendix, Critical cases with two wells : Some detailaftolations for the asymptotic model are
provided there.

2 The model.

In resonant tunneling diodes and similar heterostructuheselectronic transport occurs transversally to
the heterojunctions. It is modelled with a one dimensiogatesn in the directiox = x3 which involves
mean or integrated quantities along the 2-dimensionallphdirection (x;,x,). The massnthat we use,
is the effective electronic mass= mg in the directionx = Xs.
The quantum hamiltonian for a single electron has the form

h? 1

%DX—FZ()_(% Dl:TaX’ YV =8B+Yo+VnLs (2.1)
with a nonlinear potentia¥/y, which is non negative and takes into account the mean repuidec-
trostatic field inside the device. It is assumed that thesdimear effects are negligible (quasineutral
approximation) outside the device and we will come back i® pint in our conclusion (Sectidn110).
The potential’ is the total potential in the device. The first potential tesnsimply includes the bias
voltage applied to the device. It is piecewise affine

X—a
B(X)=-B ml[a,b] (X) + L, e0) (X) | -

The second term describes the barriers and the wells,

z

Vo(X) =Volap(X) + Y W(x),
=1

with the constanV,, > 0 and the compactly supported potentials € L*(R), -V, <W; <0, fixed.
The external potentiak + 7/ is represented in Figufé 1.

The shape of the incoming beam of electrons is containederpthscribed functiorf. For the
initial presentation, we focus on the case of a beam comimg the left-hand side and described by a
function f supported irk > 0. The more physically relevant case where the injectionesfrom both
sides will be discussed further in Sectionl4.4. We assunrtettieainjection profile is governed by the
thermodynamic equilibrium

22
9 = g1z, (k) with gk?’) = Y2 eT (1+exp<%>>, 2.2)
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Figure 1: Representation of the external potential in thecge

whereg represents the Fermi-Dirac distribution function aftéegration along the two directiorig,, x,)
with x = x5, andEg is the Fermi level given by

h2

EF:§

(3r2np )%/ (mympmg) /3 .

Here the introduction of a non isotropic effective elecicanassmy, my, mg) permits to apply our model
and numerical simulation to heterostructures like Si-Sile symbolnp denotes the donor density out-
side the devicex¢ [a,b)).

The out-of-equilibrium regime for Schrodinger-Poissgstem requires the introduction of the general-
ized eigenfunctions in order to describe the steady statsitye For a prescribed incoming flow, one
uses the incoming generalized eigenfunctigngk, x) defined fork > 0 by

hZ d2 hzl_(z
“omae- kx)+27d (K Xx) = SmY

W (k) = d*+RKe™ forx<a and @ (kx)=T(KEVEEX forx>b.

(k,x), forxeR, (2.3)

The patrticle density is then defined by

b o b
Ve c(@b)), [ nweodx= [ ) [(u (kxPeodx gt =TrI)E.  (24)

Finally the nonlinear potentidd, satisfies the Poisson equation

P
{ AV =D (2.5)
V(@) =V (b) =0.

3 Scaling the equation.

In order to make precisely the connection with the theocaétinalysis and for a more flexible numerical
treatment (which can be adapted to several semiconductbes)Schrodinger-Poisson system is writ-
ten here with dimensionless quantities and unknowns. Thisng also permits to identify the small
parameter.



3.1 Schibdinger equation.

The reference length and energy will be the total length efddviceL = b — a and the Fermi levekr.
With the change of variables= %2, we define the new functions

W9 =ulxcra)=u) and ¥ = v (Lcka) = 2w (6.
F F

The equation

h? d? h2K?
———u+7Yu=——u
2m dg(2—+— 2m
becomes
n? d? h2k?
—— U+ vY u= .
omEr e TV T oY
The new dimensionless wave vector is given by
- V2mE

while our semiclassical parameter, supposed to be smalldmch is actually reasonnably small in
applications, will be

ho 1 Le
CV2mE L L

Note that the quantity.r = //\/2mE: represents the Fermi length. Therefore, the equalion {8.3)
rewritten

2d2 h 2
—h*=—=u+ 7" u=Kku.

dx2
We write 1 in the form
1
V(%) = E—’V(X) = B(X) + V§(X) +ViL(X),
F
where 1 B
B(X) = E—Fﬁ(x) =—B[x1py(X)+ 1110 (¥)], with B= E;F’
1
WL(X) = E_\_/NL()_()a
F
and

N
h [ X—Cj . (X—=Cjy 1 VY
V5'(X) = Vo 1.1 (X) + J;WJ ( H > ., with W, ( - > — E_Fv_vj (x), Vo= =

Forh> 0, it is always possible to defind(y) = E;lv_vj(L(cj +hy)). The writingV\q(X;rfj) suggests
that the j-th well concentrates at= c; whenh > 0 is small. The theoretical analysis was carried out
in this specific framework by Patel in[32] in the lintit— 0. Actually, this scaling was motivated by
the fact that the heterostructures present a finite numbressohant states in the relevant energy interval.
The asymptotic of quantum weNy, (X;rfj) in a semiclassical island (x) + V| (X) +Voljo,1 () permits

to keep this constraint even in the linhit— 0. The pointsc; can be thought as averaged positions in the
wells. They are not exactly the middle points and their deteation in practical situations with > 0

will be described in Subsectidn 6.1.



3.2 Fermi-Dirac function.

— . E
In order to rescale the Fermi-Dirac functignwe sef3 = k.?fl' then
/Mpke T Ep — 2K
2y _ V1287 =F T om

= Y ———In(1+expp(1-Kk?)).

The functiong is then defined by introducing the rescaled ené«gy

gk’ = mg(l_@):B‘lln(l+exp(B(l—k2))).

3.3 Generalized eigenfunctions.

With the condition miiW; > —\Vp, the hamiltoniarH" = —h?A+ 2" has only absolute continuous spec-
trum (seel[3R] and references therein). The injection @afill-dimension is given by function of the

asymptotics momentum according [ [[6] @4, 30]. It is writteterms of the generalized eigenfunctions
as

+o0
(K00x) = [ 1090 (k0 (ko) (3.1)
After the scaling, those generalized eigenfunctions afieelt according to :
k>0
HYWY (kx) = KW (k%)
P (k,x) ~ eNLRK) e™N for x— —oo,
PN (kX)) ~ T(k)EVEBYN for x— 4o,
k<O

HW (kx) = (—Bu (kx),
(kx) ~ ¥NyLRKe™ N for x— +oo,

P kx) ~ TKe ®B™N for x_ oo

The complex square ro¢r)*/2 chosen above gp€e®)Y/? = | /pe®2 for p > 0 andd < [0, 2m).
In the case of a beam coming from the left-hand side with a FBirac statisticsg, the generalized
eigenfunctions for the HamiltonidA" satisfy

F(KM)(xx) = /O+oo g(kz)wi(k,x)wh(k,x’)%.

Animportant remark in the analysis 6f]30,32] says that theefions of the energy are specific functions
of the momentum. Namely in terms of operator functional dais, pluggingf (k) = F(kz)l{k>o} +
F (k2 — B)1ik0; into (37) leads tdf (K") = F(H").



3.4 Density.

The electronic density is computed according to

Cn = gl (k0P
B \/—EF \/mdk
- e g (k)P Y2

2vmlm2EF/+°° 2y, 2 dk
L | el (kP
A natural definition of the rescaled density is

n(x)

Il

—
1S
—~
I
(=

3.5 Poisson equation.

To achieve the scaling, we now consider the Poisson equatimnonlinear potentiaf, solves

2
B VG0 — ~ay (9 = Ty — YT Ee

Therefore, the rescaled nonlind4f, satisfies the equation

v 9 — LY

3.6 Scaled system.

The previous normalizations are summarized in the rescaistém :

2
—hz%qﬂl(k, X)+ 2 "M (k,x) = k?Y" (k,x), with boundary conditions,

V(%) = 3(X) + Vg (X) + VLX),

Vg (X) = Vol.1(X) ZVVJ<X CJ>

g(k?) =B tIn (1 +expB(1—Kk?))),

(3.2)

[T 2y h » dk
= [ a0 k0P

AV =, with V{(0) =W.(1) =0,



wherex = 2—2 k= 0

k. The parameters equal

L VemE
U 69
B:% and y:%, (3.4)
where the Bohr radius is defined as usagk= \/il—Lmzzqu .

3.7 Current.

Although the current density is a final quantity which willvalys be presented in its physical units,
we show for the sake of completeness how it can be rescalegrégement with the previous choices.
Before scaling, the current densifly(up to the choice of sign) can be computed with the generhlize
eigenfunctionsp (k,x) according to

= &g m </abmg_(|_<,x)lp & x)dx>

mJo

dk
21

The introduction of the rescaled Fermi-Dirac functigrand the comparison between the generalized
eigenfunctionsp andy_ lead to

g = SymmEe 1 ey im (/ Oy" kx)th(kx)dX> i

m 1?2 L2J) 2mh
~ey/mnMp Ef 5 / — dk
= 2 nhLz/ 9(kd) |m< O (kW (kX)) o
This last expression allows to introduce the rescaled ntudrey
+00 1 -
= [ gd)im /th(k,x)m*l(k,x)dx dke (3.5)
0 0 21h
with the final relation) = e/mm; Er J.
m  ThL2

4 Theoretical results.

This section gives a short account of the theoretical resuitich were obtained i [82] about the limit
h — 0 for the scaled systerfi (8.2). After this presentation, itlv@ shown how the simple asymptotic
model can be extended in order to include physically relesémations.

4.1 Linear case.

Consider first a quantum Hamiltoni&H' = —h?d? /dx? + ¢ where the potential’ " is defined according
to (32) with the nonlinear potentid}, replaced by a non negative potentél(x). Another change in
the theoretical analysis is about the beam prafifehich is replaced by a compactly supported function

g.



Hypothesis 4.1. The family(Vh)hE(Ql) is assumed to be uniformly bounded in the space of Lipschitz
functions W->(]0,1]) with a limit vV in thec?(]0,1]) topology.

Hypothesis 4.2. The functionj (which replaces the function g ii(B.2)) is a continuouscfiom with a
compact support included i\, A*] C (0,Vo — B). Moreover, the potentials J¥re compactly supported
and satisfy—Vo <W,; <0.

Notation 4.3.

e The potentiah~/ is the limiting filled (i.e. where the wells;WWMave been removed) potential

v (X) =B (X) —I—V01[0’1] (X) —I—V(X) .

e Forany j=1,...,N, the Schdinger operator H:= —d?/dx® +W;(x), D(H;j) = H3(R) C L?(R),
admits a finite number of negative eigenval(les'j‘)lgkng<+w labelled according to the increas-
ing order. The set of energias; is defined by

= {v(e) -, 1<k<K |- 4.1)

e The quantities‘j‘, 1<k<K;j,1<j<N are called the resonant depths.

e The set of resonant energies is defined as

N ~
= Uz ={V(c)-¢f, 1<k<K, 1< <N}, 4.2)
J:

e For any Ec€ R, we set
JF:={je{L,...,N} st Ecsz}
We say that the well;ds resonant at the energy E where JE .
e Finally, we set
& :=mincj, cF:=maxcj,
jeJE jedE

and simply

¢ when §=cF.

Definition 4.4. For ® € L*([0,1];R), the Agmon distance is the degenerate distance given by

/XWWt)dt',

dag(x.y; ®) =

with @, (t) = max{®(t),0}.
For a resonant energy E z, we set

8F 1= dag(cF, 1,7 — E) — dag(0,c5; 7 — E),

8F = dag(0,c5; ¥ — E) — dag(cF, 1;7 —E).

Remark 4.5. The Agmon distance is a standard tool in the analysis of WKiBads ([18]) and solves
locally an Hamilton-Jacobi equation. It is usually refedréo in the physics literature as the action.



With this definition,ééE > 0 if and only if all the resonant wells at the enefgyare in the left hand
side of the island (i. e. closer to 0 than 1). Conversgiy;> 0 if and only if all the resonant wells at the
energyE are in the right hand side of the island (i. e. closer to 1 thanA@tually, forx,y € [0,1], the
distance with the asymptotic potential has to be thoughtedimit

dag(X,y; ¥ —E) = lim dag(x,y; ph_E)= lim dag(x,y; 7"~ E).

Instead of writing explicitly a Theorem which would requiaelditional technical (and sometimes
artificial) mathematical assumptions, we simplify herephesentation of the results obtainedinl[31, 32].
We refer the reader to those references for more precisastats.

Result 1 : The electronic density defined by

= [ g | (koo o

defines a non negative measurédri] which admits weaklimit points in the setp([0,1]) of bounded
Radon measures d,1] ash — 0. By assuming Hypothedis#.1 and Hypoth&si$ 4.2, those pioints
take the form in0, 1]
Moy =Y 5 t78(E) 8 (x),
EcZ jed

where the coeﬂ“icienn§E satisfy

>0 = tE=1vjelF

E>0 = tF:O,VjeJE.

tF€(0,1 and { (4.3)
Generic case :The non degenerate case is wheh # 1 with 8 > 0 or &F > 0 for all E € £ Nnsuppg™
Then the sequenaé‘ho 1 admits a unique limit point :

h— o
o)™ S Lo oE) 6(E) 8 (x).
Ecz

Critical case 1 : Already with one resonant state,N suppg’= {Ep} with #J% = 1, a non generic case
may appear. It corresponds to the cé%é: SF0=0:

dAg(O, CEO; ‘1; — Eo) = dAg(CEO, 1; ‘I> — Eo) . (4.4)

It was shown that this asymptotic information on the Agmostahces (it is written in terms of the
asymptotic potentiat’) does not prevent any valuEO € [0,1]. Note that the indeterminacy ofo is
replaced by the constraiff (%.4).

Critical case 2 : Another interesting case which is considered by our nurakdalculations, is about
the case &#° = 2 (for the sake of simplicity we assume here againsuppg’= {Eo}). First, sinceEy is

a limiting resonant energy (i.e. the limit is— 0 of the real part of a resonance), all the cases viiyen
is the common limit of two distinch-dependent resonant energies have to be considered. icufzart
the generic case and any relevant combination of the driteese 1 can still occur. Once this is done,
another case is possible wh&h < 0 anddF < 0. The possible values 6f° andt5® can be restricted to
the next three cases :

to—1, toc(01], when dag(0,c; 9 —Eo) < dag(c®, 1, — Eo), (4.5)
toc(0,1, t9o=0, when dag(0,c; 7 —Ep) > dag(c®, 1,9 — Eo), (4.6)
o<tlo<tfo<1 when dag(0,c; 9 — Eg) = dag(cF, 1,9 — Ey). (4.7)

10



Details about this are provided in Appenflik A. Cases whergertttan two resonant energies can meet,
#JE > 2, will not be considered. In this framework, with some spiedamilies (Vh)h€(07h0) and with
additional assumptions on the positiar)s j € {1,...,N}, it is checked in[[32] and in AppendIXIA that
all the above cases can occur and that the previous enuareeatihausts all the possibilities. We shall
take this combination of possibilities for granted in ouyraptotic model.

4.2 Nonlinear asymptotics.

Here are the mathematical results which were rigorouslyqatan [32[38] with Hypothesds 4.1 andi.2.
We introduce the functional spaces :

BVZ([0,1]) = {V € c°([0,1]) 5. t.V" € a1p(0, 1)},
thenBV?2([0, 1]) is continuously embedded in®?(0,1), for anya € (0,1).
BV§([0,1)); = {V € BV?([0,1]) s. t.V >0, V(0) = V(1) = 0}.
By settingcy = 0 andcy 1 = 1, we introduce the set of piecewise affine functions :
P5(c)s :={V e P!(c), V > 0},

with P(c) the usual set of continuol® finite elements associated with the nodes{co,c1,...,Cn 1},
co =0, Cna1=1.

Theorem 4.6. Under HypothesiEZ11 and HypotheSisl 4.2 (with g placed iyB3)), the solutions Y,
h € (0,1], of the systenf3.2)
{ —AV(L =,
VIL(0) =VL(1) =0,
describe a bounded set of 8Y0,1]),. The seta of its limit points as h— 0 is a subset oP}(c); .
Moreover, any Ve 4 solves

—av= Y t=§(E) 3, V(0)=V(1)=0, (4.8)
Eczn[A, A*]j€d

where the coefﬁcient§t satisfy

O >0=tE=1 vjeJE

6F>0:>t!5:0, vje JE.

<01 and { (4.9)

Let ¢ be the set
c:={V eP}c); s.t.YE € £ N[A,,A], (85 > 0 0ordF > 0)}.

The possible limits lying it can be given by a variational formulation using

G(E) = _/:”g()\) o,

11



Corollary 4.7. The seta N ¢ is given by the collection of critical points IP(c)- for the functionals
1 r1
V) =3 [ 18V ([ dx- 3 G(E) (4.10)
0 K

which satisfy the compatibility condition
x ={E€ N[\, N]s. 1.5 >0}.

The previous result covers in a slightly wider generalityaivtve called the “generic case” in the
previous Subsection. It does not say anything abbout'. Actually, Theorenfi:4]6 can be combined with
the discussion of Subsectibn¥.1 in order to get a full dpsion, possibly too wide, ofi. The important
point is that Theoreni 4.6 reduces an infinite dimensionalinear system which couples in a non
trivial way spectral quantities with an elliptic PDE, to dleation of simple finite dimensional nonlinear
systems. Further, a full description of this collection ohlinear systems involves the comparison of
some Agmon distances.

Before going further in this direction, we first present hdwe theoretical results have to be inter-
preted and adapted in order to fit with the more realistic hode

4.3 Realistic injection profile.

The HypothesiE4]2 about the compact suppogisfatechnical assumption which simplifies at different
points the mathematical analysis. Of course it is not satidfiy the Fermi-Dirac distribution functiam

in @3) . The two extremities- and 0 are analyzed on different bases.

First the Fermi-Dirac distribution function decays expatiely fast with respect to the energy like any
thermodynamical equilibrium distribution function. Tieating at high energy is physically relevant and
necessary for a numerical treatment. The assumption teatdmpact support sugpis included in
[0,A\*] C [0,Vo — B) can be extended t®,A\*] C [0,Vp). It will be relevant for realistic physical data
provided that the temperatuie and the donor densityp are not too high (with our dimensionless
parametek/ > 1 andp large enough).

The treatment of the energy 0 has to be done with more careualytit is known that the crossing
of the energy 0 by the resonant energies explains the negdifferential resistance or the hysteresis
phenomenon. A complete rigorous mathematical approachegerformed by starting from Theorem
E3 as follows :

0) Replace the functiog in 32) by a function compactly supported[lA*] C [0,Vp);
1) Take a functiory € ¢*(0,+) such thatx = 1 on[1,+) andyx = 0 for [0,1/2];

2) Setfore > 0, §:(x) = X(%)g(x);

3) Denote byfl/,f,i1 the possible solutions of the systdm {3.2) witfeplaced byg;

4) Consider the two steps asymptoticsas 0 afterh — 0.

According to Theorenl 416 and for argy> 0, the limit points of\/NS{‘ describe a bounded sat* of
piecewise affine potentials which solfe{4.8) witheplaced bygs. The possible limits as — 0 belong
to the setz of solutions to

—AV = Z t=g(E) &, V(0)=V(1)=0, (4.11)
Eczn[0,A*] jed

where  g(0) € [0,g(0")] is arbitrary,

12



and where the coefficient%, satisfy

>0 = tF=1vjelF,

>0 = tF:O,VjeJE.

In connection with the variational formulation of Corol)d£14, an interesting property related in some
sense to the thermodynamical stability is due to the fadtglima decaying function. Set

¢ :={V eP(c); s.t. 0¢ £ andVE € £ N (0,A"], (8 >0 ordF >0)},
/\*
and G(E)=- g(A) dA, for E € [0,A"].
E

t=€[0,1] and { (4.12)

Proposition 4.8. The seta N cis given by the collection of critical points IP§(c). for the functionals
1 r1
JK(V)ZE/ 10,V (%) 2 dx- 3 G(E) (4.13)
0 K

which satisfy the compatibility condition
x ={E€£n(0O,A"]s.t.8; >0}, O¢%.

When g is decreasing ai®,\*), the functionals is strictly convex for any fixed: and there exists at
most one critical point.

Hence for generic cases which avoid &, the problem is reduced to a finite collection of well-posed
variational nonlinear problems in finite dimension.

4.4 Injection from the two sides.

For the sake of simplicity but also for pedagogical purpdke, mathematical analysis as well as the
above presentation were done in the case where the fundtitme aonomentumg(k) is supported in
{k > 0}. This presentation makes more clear the spectral anisowben functions of the momentum
are considered instead of functions of the energy. Howewvezdlistic diodes electrons are injected from
both sides with different electro-chemical potentials. tuadly this two-sided injection of electrons is
easily taken into account in the modelling or in the mathérabanalysis as follows.

Figure 2: Injection from the two sides

Let us denote byg, andg_ the (truncated) Fermi-Dirac function for the injection files from the
left and from the right respectively. When the donor denaity equal in the source and in the drain,
taking into account the height of the biBprovides

9+(E)=0(E) and g (E)=go(E+B).
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Since the momentum function has the form

9(k) = 94 (K¥)Liea0p +9- (K — B)Ljkeoy,

we write
(k) = (9+ (k%) — 9-(K*) L0y + (9= (K — B) Loy + 9 (K*) Ly ) -

Using the decomposition of the incoming beam in a part corfriog the left-hand side and one other
coming from the right-hand side, the operator form of thenidty writes

9 (HMLgenagp +9-(HM penogy = (94 (H") — g (H) Lknogy +9-(H"). (4.14)

The first part of the right-hand side @f{4114) is a functiorthf momentum supported kx> 0 and the
second is a function of the energy.

Hence Theoreri 4.6 and its variation of Subsediioh 4.3 cad&eted by replacing(E) by g, (E) —
g-(E) in @I3) while adding a terrg_ (E) without any coefficientjE )

The seta of possible limit points of solutions t§(3.2) with a two-sidlinjection, is the set of non
negative piecewise affine potentials which solve

—AV =% ZE(tF (9+(E) —9-(E)) jon-3 (E) +9-(E) Loa+(E)) &, V(0)=V(1) =0, (4.15)

EcZ jed

with the convention thatg, —g-)(0) can be any value if0, (g; —g-)(0")] and where the coefficients
tF satisfy the property{£12) .

Moreover the variational formulation of Propositionl4.8d# adapted with a similar uniqueness result
whengp is a decreasing function.

4.5 Conclusion about the theoretical analysis.

The theoretical results show that, asymptoticalljhas 0, the full system[{3]2) reduces to a collection
of well posed simple nonlinear equations. The well posesliegonfirmed by the uniqueness result
of Propositio’ZB for some generic case. Another imponpairit which appeared in the discussion of
Subsectioli 411 is that, in all the degenerate cases whioh eegrsidered, any new indeterminacy of the
coefficientst}E is compensated by a new equation. Similarly the indetercyioég(0) in @I13) (resp. of
(g+ —9g-)(0) in @13)) is compensated by the equati®e=0.

Moreover this mathematical analysis shows what are theritapbguantities in this nonlinear prob-
lem. Asymptotically and for any fixed case (generic or degatieecase), the unknowns are reduced to
the jumps of the potential derivatidgV :

{unknown$ = {total masses per wéll.

The important parameters are :

e The dimensionless small parameter— O : In practical situations, the parameteiis strictly
positive but reasonably small in order to exhibit resonarasevery stiff spectral quantities. Remind
that the asymptotic analysis was carried out in a framewdnikkeeps a finite number of resonant
states in the physically relevant energy interval. Thisviésy well with the cases which will be
presented.
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e The position of the welt; : In the mathematical analysis, the quantum wells are asytoptly
pointwise concentrated. Of course, this does not hold BxBatrealistich > 0. These positions
will be computed as averaged positions in the wells arounidiwtie electronic density concen-
trates.

e The bound state energie&'j‘ of the Hamiltonian—A + W, : After a translation by (c;), they are
equal to the real part of the resonances or to the Dirichigtreialues up to some very small error
(this will be checked numerically). Those energies are mpatars of the asymptotic nonlinear
problem. They will be computed numerically in a linear sejtbefore being plugged into the
computation of the nonlinear solutions. Actually, as wd séle in Subsectidn@.1, the parameters
—s'j‘ andc; will be determined similarly by the same process.

e The Agmon distances : Although they are unknowns beforersplihe nonlinear problem, they
can be viewed as parameters in the sense that the compati@gmon distances parametrizes all
the possible cases. Actually all the possible cases arédsvad in a first numerical approach and
the constraints on the Agmon distances are checked af@svimorder to eliminate the irrelevant
cases. Note also that the fact that for- 0, the wells are not pointwise concentrated has to be
taken into account in the computation of the actual Agmotadises. The details are explained in
SectiorlY.

5 Validity of the asymptotic model.

Here it is checked on some numerical examples that the asyicgit — 0 makes sense in the simulation
of realistic devices. Some examples of electronic dessitiamerically computed with a large number
of generalized eigenfunctions, exhibit an anisotropy pheenon which confirms the rapid variation of
the asymptotic parametef from 1 to O in [£11l). All those numerical observations arespnted in
order to show that the asymptotic model derived as the diibeless parametdrgoes to 0 makes sense
in the study of realistic devices.

5.1 Generalized eigenfunctions.

In one dimension and with the potential” which is constant outsidi®, 1], the generalized eigenfunc-
tions are fully determined by ledependent non homogeneous boundary probler®,dn
Let us first consider the case> 0. The incoming generalized eigenfunction is then charaze@ by

P (k) : 2
—hz%w*l(k,xwvhw'i(k,x) — kY (k,x),
hy'(k,0) +iky" (k,0) = 2ik, k>0 (5.1)
hy' (k1) - iV +BY (k1) = O.

In the casek < 0,k? # B, with the convention(k? — B)*/? = iv/B—k? whenB > k? (more generally
(pe®)¥2 = /pe%2 for p > 0 andd € [0,2m)), the generalized eigenfunctiapl' (k) is given by

d2
U (k0 + VM (k) = (=B (k).
hph' (k,0) +i(k2 — B)2y" (k, 0) 0, k<O

hyh'(k, 1) +ikyP (k1) = 2ikek/n.

(5.2)
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Numerically, those boundary value problems are simply adgep by a finite difference method. The
discretization stef\x = 1/Ny is a parameter of the numerical method. The computationtegiated
guantities with respect th also requires a discretization in thevariable. The stef¢ has to be chosen
small enough in order to catch the resonances which proderyestiff spectral quantities whedn> 0 is
small. Actually, it is known (see for example 119, 20] 38Jthhis slope is of order@" . The stiffness
of this spectral quantities is a first test to check that tlyengsotic model foh — 0 is relevant. One may
question about the numerical complexity related to the aghoif a very smallyy = A*/N. Actually,
such calculations are done only once in the beginning inrdadguess the paramete%s'j‘ (andcj, see
Subsectiori.6]1) and in the end in the computation of the ntidensity (see Subsecti@nl6.2). Once
those parameters are fixed, solving the asymptotic nomlipedlem [£.11L) does not involve anymore
the generalized eigenfunctions. Hence the numerical caxiplof the accurate computations of the
generalized eigenfunction is not a big issue here. For teenative efficient numerical methods related
to such problems and which deal with the generalized eigetifons on the ground of a WKB analysis,
we quote the works of Ben Abdallah and Pinaud[4,[34, 35].

5.2 Detection of resonances.

After computing the generalized eigenfunctions by a finifeedence method, we compute the local
density of states with respect to the energy in each well. Stifiepicks of this density of states are
identified as resonances according to the Breit-Wigner tdan(see [[15["34,-38]). Note that ftr> 0,
the wells are not reduced to single points. We define for eaharoundc;, the function

W(E) = [ (W (VEP +10" (—VEFBXI) dx
Cj .

The neighbourhoo¢tj*,cj+] of the center of the welt; is specified further in Sectidd 7.

Figure[3 shows the functiohl;(E) in a fixed well for two valued = 0 = By, and B = Bpax Of the
bias. It corresponds to the physically realistic case with well presented in Subsectionl9.2, case 1. We
simply show the results in terms of dimensionless quastifldne errorbar on the Energy axis represents

Resonances on the well 1, B =0 Resonances on the well 1, B = 16.35
9 ‘ Weight on the wel— 2 ‘ ‘ ‘ ~Weight on the Well—
8l Dirichlet level-- | Dirichlet level--
Resonancesx 150 Resonancesx ™ |
71 | .
61 1L
= 5S¢ -
=y =y
g 41 g 0.5
3L
2+ or
1 A -0.5
0 ;
1 - RS B ‘ ‘ 1 ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 -14 -12 -10 -8 -6 4 -2 0
Energy Energy

Figure 3: Determination of resonant energies

the detected resonances and the Dirichlet eigenvalues jaitndary conditiong(0) = (1) = 0 instead
of transparent boundary conditions [0{5.2)). The very ptitks as well as the proximity of the detected
resonances and the Dirichlet eigenvalues confirms theityatilan asymptotic treatment &s— 0.
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5.3 Filled and empty wells for functions of the momentum.

On the ground of numerical examples, we now show that the pyim behaviour described i(4.9)
makes sense even whin- 0 is not very small and lies in the range of parameters oaayiri realistic

configurations. We simply consider here two asymmetricibaprofiles which are related to the exam-
ples of Subsection9.2.

The bias is 0 as well as the nonlinear potential. Instead ahgimg the potential, we consider the two
injection profiles

injection from the left :  g(k) = (1—k?); 1 w) (K),
injection from the right :  g(k) = (1—Kk?); 1(_w g (K).

Let us first analyze the device described on Fidllire 4. Fordingce with one well, we havie= 0.17.
The size of the barriers are respectivel$y @m and B nm and the width of the well is 4 nm. With

Potential, Density, h = 0.17091

T
15r —— Barriers and wells
==Injection from the left
= = =Injection from the right
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o ’ \S
o / v
’ \
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N O R, . !
0 - === . . il TN SOV 4
0 1 2 3 4 5
Position

x107°

Figure 4: Effect of injection from the left or from the right.

electrons coming from the left-hand side, then the w@lfilled. This illustrates the cage= 1 in (£9).
With electrons coming from the right-hand side, then thel wé$ not filled. This illustrates the case
t; = 0in (Z3). Note thah = 0.17 is not very small and that the width of the barriers doeshotv a big
asymmetry. This example is investigated in Subsefidnc@ge 1. Here, the size of the barriers and the
wells have been changed a little in order to emphasize theohgiistance effects.

Actually in examples associated with AsGa devices, thesttian fromt; = 1 tot; = 0 is even more
sensitive to the variation of the widths of the barriers.

Figure[® shows a device with two wells. The widths of barrames respectively 8, 0.5 and 06 nm
and the widths of the wells areSland 1 nm. In this device, we hate= 0.13 and there is one resonant
states per well, with resonant energies= {E;,E,}. The corresponding Agmon distance satisfy

dag(0,C1; ¥ —E1) <dag(Ci,1;7 —E1)  and  dag(0,Co; ¥ —Ep) > dag(Co,1;7 — Ep).

If the electrons come only from the left, then {4.9) gites= 1 andt, = 0, in agreement with the
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Potential, Density, h = 0.1292
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Figure 5: Effect of injection from the left or from the righb @ device with two wells.

numerical results. On the other hand, with injection from tight, no well is filled since the resonant
energyE, in the second well is too high.
We will come back to this example in Subsectionl 9.2, case 4.

5.4 Piecewise affine potential.

Restricting the nonlinear potential to the class of pieseveiffine potential is the key point which permits
to reduce the complexity of the full nonlinear systdml(3i@)the limit h — 0. It is a consequence of
the scaling of the wellyy, <%) as quantum wells in a semiclassical island, for which thesitally
permitted region is asymptotically reduced to a single pdievertheless in practical casésis not 0
although reasonably small (according to the discussiorubt&ctior.’5]2), and the wells have the same
order of size as the barriers. Hopefully, the nonlinearityhdt very strong because the size of a well
has the same order of magnitude of the Bohr radi!s the effective nonlinearity in the-th well is

of ordery; = % after adapting the scalinf_(8.4) to a single well. Theretoeedifference between the
true nonlinear potential and its piecewise affine approimnacan be neglected when the positignis
chosen close to the center of mass of the electron densiteipth well according to the next pictuké 6.

V',\U-‘ approximate

Figure 6: Approximation of the nonlinear potential.

The exactly used value of the positiopis presented in the Subsectianl6.1.
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6 Implementation of the asymptotic model.

Here we show how the asymptotic model derived after takiedithit h — 0 in Sectiorl¥ is adapted to
physically relevant geometries,> 0.

6.1 Position of the wellsc; and resonant depthss'j‘.

Here we explain how the parametegsands'j‘, k=1,...,Kj are determined in realistlt> O cases. With
those parameters, theth resonant energy level attached to fké well is given in the asymptotic model
by .

Ef=2(c;) -, (6.1)
according to[(411)£{412). Actually we restrict first oureattion to the cas&; = 1 and write simplyg;
instead ofsjl. Fortunately the process that we describe in this simplee eamits a natural and easily
implementable extension #¢; > 1 by accepting several value§ of the center of mass of the well.
Details are given about this in the end of this paragraph aigectiorlV.

The determination of; ande; is done simultaneously without requiring additional heauynerical
computation. Itis a linear interpolation process whiclesebn the following heuristic.

An intermediate step to show that the resonant energy irj-thewell is close tov' (c;) — ¢; relies
on the fact that it is at a distan€@(e ") from some eigenvalue of{3.1), with the energy-dependent
absorbing boundary conditions replaced by homogeneoushiit boundary conditions. Hence one can
work with those Dirichlet eigenvalues of which the eigertiions are localized in the quantum wells.
Those Dirichlet eigenvalues admit a first order perturlasiocording to the Feynmann-Hellman law

OE = (Ylov)

wheny is a normalized eigenfunction at enerfy oV is the variation of the Hamiltonian ariiE the
corresponding variation of the eigenvalue. Moreover wiénr= 0V (vx), with v > 0 small, varies on a
slower scale thary, a second order Taylor expansion®f(c+v(x—c)) leads to

WiV = [ V(v WP dx= V() +O(v?).
wherec is the center of mass of the probability densipy? :

[x=0/w? dx=o.

The resonant energies associated with each well can bardeser according to the process described
in Subsectio 5]2. These computations are done for the tiverag values of the applied biaBin
and Brax and with no nonlinear potentiaW{, = 0). This provides in the welj the two resonant
energiess; (Bmin) andE;j(Bmay). The variation of the potential by changing the bias is tfi@afunction

OV (X) = —(Bmax— Bmin)x for x € [0,1]. The previous discussion says that the center of roasan be
approximated according to

E;j(Bmax) — Ej(Bmin) = —(Bmax— Bmin)Cj - (6.2)
Finally the approximatiorE; ~ P (cj) — ¢ provides the value; by using

Ej(B):VO—BCj—Sj, (6.3)
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Figure 7: Determination of the resonant depifand of the averaged positianp of the j-th well.

applied withB = Bnax Or B = Bnin (both are compatible according {0(6.2)) .

Figurell summarizes how the paramet@ise;) (occurring in the asymptotic model— 0) are fitted
to the numerical values of resonant energkes Q) . Figurd 8 shows in a practical case the actual density
and the positiore; of the simplifying delta function. We end this paragraphhaivvo remarks.
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Figure 8: Density on the well and position of the asymptotvesl.

Remark 6.1. 1) The case of FigurEl8 seems at a first glance to be far from thatsin of (narrow)
guantum wells in a semiclassical island (wide barriers)tuatly the barriers can be considered as wide
enough when they lead to a stiff localization of the resomamargies (see Subsectibnl5.2). Meanwhile
replacing the real electronic density by a delta functiofl wot bring a big error when the width of the
well is less than the Bohr radiuga

2) We focused on the case when there is one single resonanipstateell. A simple way to introduce
several resonant energie#EL <k <Kj, perwell can be done by determining several averaged positi

according to [&R), K:, 1 <k <K;j. This can also be interpreted as Wells separated by barriers with
vanishing widths (cf. FigureZ11).

6.2 Current density.

Another drawback of the asymptotic model obtainechas 0 is that the current density defined in
Subsectiol 317 vanishes las- 0. In the current-voltage characteristic curves which aesgnted here,
the current density is computed for> 0 with the help of the generalized eigenfunctions, once the
nonlinear potential is computed with the asymptotic modtnce the computation of the generalized
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eigenfunction which presents the highest complexity isediinst to determine the parametécs, ;) of
the asymptotic nonlinear problem and in the end in order topzde the current density.

7 Computation of Agmon distances for a piecewise affine poté¢ial.

After SubsectioriBl4, the nonlinear potentié), can be replaced by the piecewise affine asymptotic
potentialV of Theorem’Z6. Then the Agmon distances, which are involaetthe definition of the
different cases, admit an explicit algebraic expressioitivis specified here. Since small variations
of the Agmon distances have a strong effect on the nonlineatslgm, it is better here to compute
these quantities with the real size of the wells and barrid@tse left-hand side of Figuild 9 illustrates
the asymptotics model with a total potentil, which is piecewise affine, while the right-hand side
presents a physically realistic case, with non vanishintj wielths, for which the potential is denoted
vV =2 +W, with —=\Vp <W < 0.

Asymptotical model V=v+W
1% E=7(c)—¢
¢ ¢ coci, ¢,

Figure 9: Determination of the points characterizing a well

With the pointc;, the left and right ends of the barrier befareare denoted by, andc'. For an

energyE > max{ 7 (x), x€ [¢",c,] }, the Agmon distances satisfy the relationship :
dag(Ci . Ci; ¥ —E) =dag(c .¢"; v —E),
and dag(Gi,G\1; v —E) = dag(C, 1,671,V —E).

According to[G.1l) and by considering only the c&se- 1 according to Remaik®@.1, the resonant energy
attached to the wellequals : .

Ei=7(c)—¢.
In agreement with all our numerical experiments, the noratieg resonant energies are assumed to lie
above the bottom of the wellsg; > max{# (x), xe€[c/,c4].1<k<N} whenE; >0. Then, the
Agmon distances which are involved in the weighattached to the non negative resonant engrgy0,
are given by

d i = dag(0,c;v —E
i i ~
— Z dAg(Ckflack;‘V —EI) = Z dAg(CE,CE_;'V —Ei), (71)
k=1 k=1
and dy; = dag(c,1;7 —E)
N-+1 N+1 ~
= Y dag(tn,GeV —E) = 3 dag(G,Gi v —E), (7.2)
k=1+1 k=i+1
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with cg = 0 andcy, 1 = 1. It remains to compute each term.g(cg,c;; V- Ej). It is convenient to
introduce the quantity .
+ 'V(C%)_ v (Gi)
yk’i = -
which permits to simplify the expression df4(c, ,c,. ; . Ei) and to write
ykl >-1 < FE= (c.)—s, < r1/(ck)

Several cases have to be considered (cf. Figdre 11) :

First case :E < r1~/(c;) and E; < f1~/(ck+) . A simple integration gives

dAg(c;,c;;ff/—Ei) = / \/fV c. 4 & dx
+1 3/2 _ (v +1 3/2
_ —\/_(Ck )(yk| ) (yk7| ) ’
yk,i Yici

with yi& > —1.

Second case E < ¥ (¢ ) and Ej > fl?(cz).

V(C ).
E = f1~/(ci) — &
v (c))
C X Cf

Figure 10: Configuration of the second case

As illustrated in Figur&l0, the intersection paigte [c, , ¢, ] such that1~/( )=E= (c.) — g is given
by

X—C _ V() -V (G)+e
G — G V(G ) — v (c)
This leads to
daglCy .GV —E) = dAg(c;,xk;ff/—Ei)

2 _ (yEi‘Fl)g/Z
= V(X (G)+gdx=—=&(C —c )———.
/ \/ (| | 3 1\~k k y-ki-l_yk7i
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All the other cases amount to these two ones.
This leads to the expressions

d- = IV (-G 73)
N+1

di = GVE 3 (6 -G)T0( %) 74

where the symmetric functiofis given by

3/2 3/2
(yl+1) yl_;)Z/Z‘i‘l) if y]_Z—l, Y2Z—1 andy]_?éyZ,
3 .
EVY1+1 ifys > -1, ¥y, > —1landy; =y, +¢,
B 3/2
f(y1,y2) = _% if y; < —1andy, > —1,
1—)Y2
3/2
% if y > —1 andy, < —1,
1—Y2
0 else

The Newton algorithms used in solving numerically the nugdir problem also requires the expressions
of the derivatives of{ZI3)E(Z.4). By settivg = 7/ (c;), the definition ofy:kfi leads to

adA(c‘,ch;ff/—E-) 2 (ck—C1)(rf —ry) B B B
v T3 S [ (A= rI0 T O %) + (=)0 (4 ¥5)) Bejea

+ (re o f (Ve Vi )+ 01 (Vi i) O — (O F (Y Vi) +01F (Vi Y )) Bij |+

Ci
"7 ,foranyi,j e {1,...,N} and anyk € {1,...,N+1}. The derivatived; f equals

with iy =
Cx — Cy—

S(yr+1)Y2(y1—y2) — (1 +1)¥2+ (yo+1)%/2
(y1—Y2)?

ify1 > —1, 2> —1andy; #y,

ify1 > —1,y2> —1andy; =y»,

01f(yn,y2) =< (Yo+1)32

if yi <—1andy, > —1,
(Y1—y2)2 V1= Y2 =~

Syi+1)Y2(y1 —y2) — (Y1 +1)%/2

if y1 > —1andy, < —1,
(yl_y2)2 Y12 Y2 <

0 else

The derivativeg),d.. ; are obtained by summing over {1,... i} orke {i+1,... ,N+1}.
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Figure 11: Notation for a device

8 Penalization method.

The constraints which involve the Agmon distance in Theddeirhave no obvious convexity properties.
The simplest and robust way to take them into account is aigatian method. We sé{ = 1;0; with

1
dag(0,cj; ¥ — Ej) —dag(cj, 1,7 —Ej) ’
€
and for any resonances, we distinguish three cases :

0 =

1+exp

Ej:‘T:/(Cj)—Sj>O, Tj:].,
Ej:‘TZ(Cj)—Sj<O, Tj:O,
Ei=7(cj)—€;=0, 1;€(0,1).

The penalization parameter- 0 has to be small enough in order to have a realistic treatofdéhée con-

straint but not too small in order to keep a well-behaved devalgorithm. In the original problem, the
dag(0.ci;v” —Ej)—dag(ci, ;7 —Ej)
Agmon distances occur in factors which behave IikAeg - R— Ao = Therefore, values between

€ = 0 ande = h make sense. The two extreme cases0 ande = h have been tested. The possibility to
takee = 0 (h) implements a soft transition betwen= 0 and6; = 1 as it may occur whehis not very
small.

The algorithm relies on a continuation for th¥ 8ases corresponding to the three possible values of
T; and theN wells. The critical case coming from the equality of the Agnutistance (only) in the case
with 2 wells, is treated separatly.
The conditionstj € [0,1], Ej; > 0, Ej < 0 are verifieca posteriori

9 Numerical results.

In this Section, we show how our numerical approach is flexibid seems to catch in a very efficient
way the main quantities involved in the nonlinear problerhede computations were realized on a laptop
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with a Gnu Octave program (similar to MATLAB). The indicat&dPU time” refers to the CPU time in
seconds used to solve the non linear problem without comgditie current. The time used for this last
part varies from one case to the other and can be significenméyer. The core of the program which is
the rapid one permits to get very quickly an idea of the bdtion diagram.

9.1 Computations for GaAs.

We consider data of O. Pinaud proposed_id [34, 35]. Let udiregme physical parameters :

Relative mass 067 h 0.22
Relative permitivity 114 Bmin OeV
Temperature 300K Bmax 0.25eV
Donor density 18 m—3 | Height of barriers 0.3 eV
Fermi levelEg 0.054 eV

9.1.1 Casel.

Let us consider firstly a device with one well and two barrigrequal size. The characteristic of this
device and the parameter of experiment are the following :

Size of barriers 50 109,50 10 19m
Size of well 50 1019m
Penalization parameter & =0.001 Vo
Discretization in voltage 100 points —
Discretization in energy 1000 points Bias
Position of the well ¢, =78101m —
Resonance depth €,=021eV
CPU time 9.21
Energy on the well according to the bias x10° Diagramm current-voltage
0.1 T T T T 10 T T T T
“‘*\ 1 + 5 ""’"m‘
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Figure 12: Negative differential resistance

We notice that there is no hysteresis phenomenon. The dpmbian of the current needs a fine
discretization in energy. Those results are close to tho§e ®inaud (sed[34]) : For the same config-
uration, we obtain a similar magnitude for the current aredrtbgative differential resistance occurs for
the same place.
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9.1.2 Case 2.

We now consider a new device for which we observe a hystepegisomenon.

Size of barriers 30 10,60 10 °m
Size of well 60 101%m
Penalization parameter € =0.01 Vo
Discretization in voltage 100 points —
Discretization in energy 200 points Bias
Position of the well ¢, =63101m P—
Resonance depth €, =0.227 eV
CPU time 9.92
Energy on the well according to the bias x10° Diagramm current-voltage
0.1 T T T T 6 T T T T
+ &
0.08f t=1 1 s5f ]
. ,0*’4
0.06} 4 Y
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Figure 13: Hysteresis phenomenum

The hysteresis curve is not complete here. Actually, afteéng several configurations, obtaining a
complete hysteresis phenomenon appeared rather difficalGaAs-AlGaAs heterostructures.
9.2 Computations for Si.
9.21 Casel.

We now consider a device in Si-SiO, whose characteristia® vaken in[[25]. The physical parameters
are given by

Relative mass (0.19,0.92,0.19) | Donor density  1& m=3
Relative permitivity 119 FermilevelEr  0.245 eV
Temperature 300 K

In this example where the two barriers have the same sizeralexalues of the penalization param-
eter were tested according to the discussion of SeElion &adrfikere to interesting variations. Figlird 14
was obtained with a smaller parametet 0.01 while Figurd_Ib shows the results fo=h ~ 0.3. The
common characteristics between these two numerical erpats are :
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Bmin OeV

Bmax 4 eV Vo

Height of barrier 3eVv

Size of barriers 51010 510 19m —

Size of well 20101%m = ]

h 0.301933 1
Discretization in voltage 100 points £ Bias
Discretization in energy 200 points <2

Position of the wells 1 =1461019¢c,=177101%m

Resonance depth (€1,€2) = (1.8,2.7) eV 616y -~

If the penalization parameter is smalk= 0.01, then no hysteresis phenomenon appears as shown in Fig-
ure[I3 (CPU time is equal to 38.2). The resonant energiesliva@grly and only the negative differential
resitance remains on the I-V diagram of Figliré 14.

Energy on the well according to the bias x 101 Diagramm current-voltage
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Figure 14: Small penalization parameter
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Figure 15: Penalization parameter of size
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The second choice of the penalization parameterh = 0.301933, shows in FigufeJl5 a small double
hysteresis phenomenon for biases in agreement with theotm&ised in[[25] (the CPU time was 54.57).

Actually the sensitivity to the penalization parameter i do the fact that this case with two equal
barriers, shows rather small differences between the aghtleft Agmon distances. Practically this
would mean that the hysteresis phenomenon (or its absencajhier unstable with respect to small
variations of the data. As this is shown below, and as otheramical experiments i [31] showed, the
hysteresis phenomenon can be strengthened when the seamoied is wider than the first one. On the
contrary, it disappears as the width of the second barrierrbes significantly smaller than the first one.
The choice of a penalization parameter closh 100 broadens this transition.

9.2.2 Case 2.
We now consider the device characterized by :
Donor density 1 m—3
Fermi levelEg 0.245 eV
Bmin OeV
Brmax 3eV
Height of barrier 3eV Vo
Size of barriers 510 1010 1%m
Size of well 2510%m —
h 0.22 Ei _
Penalization parameter & = 0.01 E Bias

Discretization in voltage 100 points
Discretization in energy 200 points
Position of the well c1=17101¢,=21100m C1C2
Resonance depth (€1,€2) = (2.2,2.8) eV

CPU time 45.50

Energy on the well according to the bias 11 Diagramm current-voltage

o, o]
+

Energy (eV)
1 (Am™®)

-15
0

05 1 15 2 25 3 0 0.5 1 15 2 25 3
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Figure 16: Hysteresis

The hysteresis appears more easily with the silicium hsterctures than with the As-Ga ones and
it is more intensive, as it appears in Figliré 16. In comparisith the first silicium device, the width of
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the second barrier and of the well have been increased.

9.2.3 Case 3.

The very high barrier potentials permit to create cases avidbuble well were the two (asymptotic) res-
onant energies eventually take the same value. Let us @residevice with the following parameters :

Donor density 1 m—3
Fermi levelEg 0.245 eV
Bmin OeV
Height of barrier 3eVv
Size of barriers 5100 51010 101010 m
Size of well 151010 1010 %m
h 0.2
Penalization parameter & =0.01 i
Discretization in voltage 100 points = _
Discretization in energy 200 points 2 Bias
Position of the well c1=121010 ¢, =30101%m
Resonance depth (€1,€2) = (2.5,2.1) eV c . —
CPU time 42.45 1 2
L Energy on the well according to the bias X 10t Diagramm current-voltage
" " " + E' ' 'M ' '§ ul
x E; A 3.5f * 1 -
+ Critical energy| { L 4
3 + P
+ + z’*@ :§
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Figure 17: Crossing and Hysteresis

The second resonant energy decreases faster than the &érsTbay reach the same value for the bias
B ~ 1eV and a new bifurcation branch seems to develop. This tast {3 even more obvious in the next
case.

Note that there is small piece of hysteresis phenomenon lidglaapplied voltage. It is coupled with
an apparently strange behaviour of the current densityl.feV < B < 2eV. Actually it is an artefact
of our approach : the nonlinear potential is essentiallgmined via the asymptotic model while the
current is computed with the full linear Schrodinger sgstence the potential is known. The bias for
which the resonant energy crosses the value 0 is not exastictdd with the asymptotic model. This
generates a substancial error on the current density anthisent.
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9.2.4 Cased4.

We now consider a case similar to Case 3, with a donor dengitgléo 5x 1075 m—3.
With two wells and according to the discussion bfl[B1] 32, 8@inmarized in Subsectidn_#.1, some
critical cases are possible depending on the comparisomedfito extreme Agmon distances. This is

produced in the next example in which the first and third lbaimave almost the same size.

Donor density 518 m—3
Fermi levelEg 0.716 eV
Bmax 2.5 eV VO
Height of barrier 3eV
Size of barriers 510 510710 610 1%m
Size of well 1510%°,10101%m
h 0.13 —
Penalization parameter € =0.01 §=) 1
Discretization in voltage 100 points
Discretization in energy 200 points E
Position of the well c,=121019 ¢, =301010m Bias
Resonance depth (€1,€2) = (2.5,2.1) eV
CPU time 84.99
C1 Co ¢
Energy on the wells according to the applied bias Energy on the wells according to the applied bias
+ E1
0.9 t=1 « B,
0.8 Os<ty <1 » Critical energies, E=E,
07 x
= Soeftrrrivg
L ) Mo, + 4+
=) 505 o 0< ty<t; <1
g & 04 "'-.,: o,
e, o,
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Figure 18: Critical solutions
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9.2.5 Caseb.

The last example is a device with four wells. The bifurcatiiagram (figurd_1l9) in which only the
generic cases were considered (no specific solution duetortissing of resonant energies) suggests a
complex interaction between the different resonant levels

Donor density 51 m3

Fermi levelEg 0.716 eV

Bmin OeVv

Bmax 3eV

Height of barrier 3eV

Size of barriers 5109 5101951019 5101 5101%m
Size of well 10101°,10101°,5101°,5101%m

h 0.13

Penalization parameter &€ =0.096
Discretization in voltage 100 points
Discretization in energy 400 points

Position of the well c1=111010 ¢, =241010 ¢3=391019 ¢, =451019, c5=55101%m
Resonance depth (€1,€2,€3,€4) = (2.09,2.24,1.1,1.68) eV
CPU time 528.63

Energy on the well according to the bias

-

N

Energy (eV)

-15
0

0.5 1 15 2 25 3
Bias (eV)

Figure 19: Solutions for a device with four wells

10 Conclusion.

These numerical experiments have shown on realistic chagsadther complex bifurcation diagramm
can occur and are numerically accessible. This extendsréwiops works which were concerned with
the hysteresis phenomenon (see for exaniplé 21, 37]). Odehpermits to get very rapidly the shape of
the bifurcation diagram. It relies on rigorous mathemétieaults concerned with the asymptotic regime
of quantum wells in a semiclassical island, given[inl [32,. 38though the asymptotic model required
some modifications in order to fit with the parameters of stialidevices, the numerical results happen
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to be close to the ones ¢f[26.134) 35] based on a full treatwfethie Schrodinger-Poisson system in the
Landauer-Buttiker approach.

Those calculations must not be considered as final onedlyFas it is discussed after Figutel17,
the values of the current density have to be interpreted sathe care. Secondly, our model does not
take into account the nonlinear effect outside the quantwlisvbarriers structure. Actually the space-
charge effects in those area have been shown to be significaoime cases according {0[27]. Finally
the asymptotic model on which those calculations are basests all the possible asymptotic solutions,
without discriminating whether these solutions reallysérir not. For example and even without consid-
ering the stability question, it is not clear that the detdatritical solution of FigurE~18 really exists or
is replaced by some nonlinear beating effect.

Nevertheless these drawbacks are compensated by thetyapfithhe method. This numerical ap-
proach can first be used in order to get an insight of the infleesf the data (geometry and height
of the barriers, donor density, temperature, applied biason the shape of bifurcation diagram. Fi-
nally, when several nonlinear solutions are possible, atbhiealgorithm for complete simulations of the
Schrodinger-Poisson system requires an initial guesis. dproach provides it.

A Critical cases with two wells.

Relations [45)E417) are derived here from analyticainfaias of [32]. We keep the hypotheses and
notations of Subsectidn4.1.

In critical cases with two wells, the possible valuesdfandt;° are the limit points of quantities similar
to

h A o 165°
1 = cos¢"—+— +sirf —2 s, (A.1)
0+|61| KO+|62|
h h | 1‘ h 92|2
B = sifd — 5 +co cos p"——=— (A.2)
Ko—i—‘e ‘ Ko-i-‘e ‘
with kg > 0 and
Eo 1 t ¢h d(cI[EOCFO)
M + Kotan
o = ke TEE (A.3)
tandh + kze~ AL
Eo o,
. dn(er 1)ty 06;°) tan¢h+K2e =
6, = Kie h et (A.4)
dn(c, 9.
1-Kstanghe =7 —

The numbers; are non vanishing real numbers and the quanikjty, y) is known up to some small error

da(x.y) = dag(x y: v — Eo) +e(x y:h),  with  lim max [e(x.y;)| =0
—0x,ye[0

and wherep" can take any value ifD,11/2] without any additional information ok". We refer the
reader to[[3R] pp 250-256 for details about this.
After possibly extracting a subsequence, several casestbde considered :
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1st case : o1 "0 ¢0 € (0,11/2)
This asymptotic behaviour d@f implies
Eo Eo
G0 G050 1
o e h — A.5
{ { K1 tang®’ (A.5)
Eo Eo
(cr 1)—dp(0,c,9)
5] ~ ki e tang. (A.6)
Such a behaviour @, 8] implies

1> I|mrl> I|mr2>0

Nn—oo Nn—oo

Indeed, we write

h
T ~ cos" T — ta”zq’ +sirf o ——— tarr g

h bl
tan?¢h c'+tar¢
tar? ¢"
o~ sm2¢h7ta”2¢ +cod N ——— n ¢nz -
targ on c"+tarrd
. h Ko
with c' = e d(OcEO) .

’Kl‘zez
A simple factorization leads to

h o .n_ Cn (co§¢h—sin2¢h)2(co§¢h+sin2¢h)
! (chsir? ¢h -+ coR M) (chcofh + sinf ¢ph) —

— '[2 —
Three different possibilities can occur :

(A7)

o dag(cFo, 1; PV — Eo) > dag(O, CZEO; P — Eo) : With dn(x,y) = dag(X,y; ¥ — Eg) +€(X,y,h), this
leads to

lim [6]] =+,  limTt =1,
h—0 h—0
and finally tj=t,=1.
e dag(cbo, 1,0 — Eo) < dag(O, cf”; v — Eo) : This case leads to
lim[8|=0, limt'=0,
h—0 h—0
and finally t;=t,=0.

o dag(ck, 1; v — Eo) = dag(0, cf"; V- Eo) : In this case, the asymptotic valuestpt, € [0,1]
are undetermined with the constraint

1>t > >0,

coming from [AT). Note that here again the mdetermlnaciM ahdt; is replaced by the two
constraints % = 2 anddag(c™,1;4 — Eg) = dag(0,¢5%; ¢ — Ey).
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2nd case : 4" "=%0
This implies lim,_otand" = 0, lim_ocosp" = 1, limy_osing" = 0 and therefore
hi2
h |8
h|i2’
K0+ ‘el ‘
The quotient betwee}®$| and|6f| behaves according to

h ! ~
% ~ ‘Kze_dh(C[EOCrEO)/h_tanq)h‘ ‘tan¢h+K3e_dh(C[EOCrEo)/h h:>00
1

Here are two possibilities (after extraction of subseqaehc
o limp_o 83| € (0,+c0] and limy,_o |8}| = +c0 : The first condition implies
dAg(CrEO, l;‘; — E()) > dAg(O, CZEO; ’I> — Eo)

and permits any value
ty= Limor*z‘ € (0,1].

Meanwhile the second condition implies

_ fimh
t]_ - fLILnOTl - l
o limp_o 8| € [0,+) and lim,_ |83 = 0 : The first condition implies

dag(c®, 1,97 — Eg) < dag(0,c5; 9 — Ey)

and permits any value
t) = Limor*f €[0,2).

Meanwhile the second condition implies
tp=lim 9 =0.
2 h—0 2

3rd case : ¢" "= /2
After replacingd” by 11/2 — ¢", it amounts to the second case.

Remark A.1. The second case contains the limit points of case 1-thirdl piwis suggests that all the
values which satisf§ >t; > t, > 0 can be achieved.
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