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Computing the steady states for an asymptotic model
of quantum transport in resonant heterostructures
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IRMAR, UMR-CNRS 6625, Université de Rennes I, 35042 Rennes Cedex, FRANCE

Abstract

In this article we propose a rapid method to compute the steady states, including bifurcation dia-
grams, of resonant tunneling heterostructures in the far from equilibrium regime. Those calculations
are made on a simplified model which takes into account the characteristic quantities which arise
from an accurate asymptotic analysis of the nonlinear Schr¨odinger-Poisson system. After a summary
of the former theoretical results, the asymptotical model is explicitly adapted to physically realistic
situations and numerical results are shown in various cases.
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1 Introduction.

Over the past twenty years there has been a serious effort to develop efficient numerical methods in
order to compute the steady states of out of equilibrium quantum resonant heterostructures. The fi-
nal aim is to be able to predict from numerical simulations the I-V characteristic curve for devices
which involve an unusual coupling between spectral quantities associated with the quantum mechan-
ics and nonlinear effects due to the electrostatic mean field. Two types of models were considered :
purely quantum ones based on Schrödinger-Poisson systemsor Wigner-Poisson systems (see for exam-
ple [1, 2, 3, 4, 5, 6, 30, 34, 35]); and quantum hydrodynamic ordrift- diffusion models (see for example
[9, 10, 11, 13, 36]). The second ones which assume local thermal equilibrium or local entropy maxi-
mizing states are well suited for situations where quantum effects, averaged by the statistics over a large
number of particles, only bring small corrections to classical mechanics. The first ones on which we will
focus stick to the quantum nature of the phenomena and have tobe chosen in order to describe accurately
the quantum transport. Actually both of those models were able to recover the negative differential resis-
tance typical of resonant tunneling diodes. This phenomenon which is essentially a linear phenomenon
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relies on the basic topological argument that, when the biasis increased, the resonant energy eventually
crosses the ground energy of the incoming beam. It is therefore very robust, remains in all the considered
models and survives to any numerical discretization. The situation became more complicated after the
work by Jona-Lasinio, Presilla and Sjöstrand, [21, 37], where they showed that the Schrödinger-Poisson
system could lead to hysteresis phenomena in agreement withphysical observations. Other works men-
tioned the possibility of having much more complex bifurcation diagrams [22]. In order to catch all these
phenomena, an accurate treatment of the tunnel effect through the barrier has to be taken into account
and one has to start with quantum models like Schrödinger-Poisson of Wigner-Poisson systems rather
than hydrodynamical models. A first difficulty which has to betaken into account is related with the out
of equilibrium regime. At the quantum level it can be done in the Landauer-Büttiker ([8, 25]) approach
directly on the Schrödinger-Poisson system or via the Wigner-Poisson system ([12, 14, 24]). This has
motivated several theoretical studies concerned with the numerical treatment of artificial boundary con-
ditions ([1, 2]), with the well posedness of the nonlinear problem ([5, 6, 30]) and with the derivation of
asymptotic models ([21, 31, 32, 33, 37]). The second difficulty comes from the complexity of a rough
numerical treatment due to the presence of resonant states.The system requires a spatial and a spectral
discretization. But resonances lead to very stiff spectralquantities (with slopes like e

C
h , h << 1) which

require a specific treatment. It can be done via WKB techniques and this was accurately done in [21]
and implemented in numerical methods by N. Ben Abdallah and O. Pinaud in [7, 34, 35]. However the
numerical complexity remains still large enough in order tomotivate the derivation of simplified model
which would permit a rapid insight of possible bifurcation diagrams.

In [21, 37], it is suggested that hysteresis phenomena occuronly when the drain barrier is thicker
or higher than the source one. Therefore the geometry of the barriers is an important parameter and it
is actually an unknown affected by the nonlinearity even when this nonlinearity is not very large. The
analysis carried out by the third author on the specific asymptotic model of quantum wells in a semiclas-
sical island was developed in order to elucidate the role of the geometry of the barriers in these nonlinear
phenomena. It has been done in a general enough framework in order to cover several heterostructure
problems. In doing so, he provided the right quantities which govern the nonlinear phenomenon with
an accurate treatment of the tunnel effect. Here we present an adaptation of the theoretical asymptotic
analysis which leads to a very rapid determination of bifurcation diagrams.

The outline of the article is the following :

1. Model : In this section, we present the nonlinear Schrödinger-Poisson problem with the Landauer-
Büttiker approach which involves the stationnary scattering states.

2. Scaling : We introduce the natural reference magnitudes of this problem. Three numerical dimen-
sionless parametersh,β andγ arise from the scaling of the equations.

3. Theoretical results : The results obtained in [32, 33] aresummarized in the specific regimeh→ 0 .

4. Validity of the asymptotic model : On complete numerical computations for the original model,
we check that the theoretical asymptotic model in the limith→ 0 is relevant.

5. Implementation of the asymptotic model : A distinction ismade here between the quantities which
are taken out of the asymptotic model and the ones which are computed exactly.

6. Computation of the Agmon distances : This short section provides exact analytical expressions for
quantities which are involved in the final algorithm.
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7. Penalization method : Several cases have to be considered. They are separated by multidimen-
sional non convex constraints. Their implementation is done via a penalization method which is
specified in this section.

8. Numerical results : Several numerical results are shown for AlGaAs-GaAs or Si-Si0 structures,
with a possible comparison with existing numerical results.

9. Conclusion.

10. Appendix, Critical cases with two wells : Some detailed calculations for the asymptotic model are
provided there.

2 The model.

In resonant tunneling diodes and similar heterostructures, the electronic transport occurs transversally to
the heterojunctions. It is modelled with a one dimensional system in the directionx = x3 which involves
mean or integrated quantities along the 2-dimensional parallel direction(x1,x2). The massm that we use,
is the effective electronic massm= m3 in the directionx = x3.
The quantum hamiltonian for a single electron has the form

~
2

2m
D2

x +V (x), Dx =
1
i
∂x, V = B +V 0+VNL, (2.1)

with a nonlinear potentialVNL which is non negative and takes into account the mean repulsive elec-
trostatic field inside the device. It is assumed that these nonlinear effects are negligible (quasineutral
approximation) outside the device and we will come back to this point in our conclusion (Section 10).
The potentialV is the total potential in the device. The first potential termB simply includes the bias
voltage applied to the device. It is piecewise affine

B (x) = −B

[

x−a
b−a

1[a,b](x)+1[b,+∞)(x)

]

.

The second term describes the barriers and the wells,

V 0(x) = V01[a,b](x)+
N

∑
j=1

W j(x),

with the constantV0 > 0 and the compactly supported potentialsW j ∈ L∞(R), −V0 ≤ W j ≤ 0, fixed.
The external potentialB +V 0 is represented in Figure 1.

The shape of the incoming beam of electrons is contained in the prescribed functionf . For the
initial presentation, we focus on the case of a beam coming from the left-hand side and described by a
function f supported ink ≥ 0. The more physically relevant case where the injection comes from both
sides will be discussed further in Section 4.4. We assume that the injection profile is governed by the
thermodynamic equilibrium

f (k) = g(k2)1R+(k), with g(k2) =

√
m1m2 kBT

π~2 ln

(

1+exp

(

EF − ~
2k2

2m

kBT

))

, (2.2)
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Figure 1: Representation of the external potential in the device

whereg represents the Fermi-Dirac distribution function after integration along the two directions(x1,x2)
with x = x3, andEF is the Fermi level given by

EF =
~

2

2
(3π2nD)2/3 (m1m2m3)

−1/3 .

Here the introduction of a non isotropic effective electronic mass(m1,m2,m3) permits to apply our model
and numerical simulation to heterostructures like Si-SiO.The symbolnD denotes the donor density out-
side the device (x 6∈ [a,b]).
The out-of-equilibrium regime for Schrödinger-Poisson system requires the introduction of the general-
ized eigenfunctions in order to describe the steady state density. For a prescribed incoming flow, one
uses the incoming generalized eigenfunctionsψ−(k,x) defined fork > 0 by

− ~
2

2m
d2

dx2ψ−(k,x)+V ψ−(k,x) =
~

2k2

2m
ψ−(k,x), for x∈ R , (2.3)

ψ−(k,x) = eikx +R(k)e−ikx for x≤ a and ψ−(k,x) = T(k)ei
√

k2+B x for x≥ b.

The particle densityn is then defined by

∀φ ∈ C 0
c ((a,b)),

Z b

a
n(x)φ(x)dx=

Z +∞

0
g(k2)

Z b

a
|ψ−(k,x)|2φ(x)dx

dk
2π

= Tr[ f (K)φ]. (2.4)

Finally the nonlinear potentialVNL satisfies the Poisson equation






−∆VNL =
q2

ε
n,

VNL(a) = VNL(b) = 0.
(2.5)

3 Scaling the equation.

In order to make precisely the connection with the theoretical analysis and for a more flexible numerical
treatment (which can be adapted to several semiconductors), the Schrödinger-Poisson system is writ-
ten here with dimensionless quantities and unknowns. This writing also permits to identify the small
parameter.
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3.1 Schr̈odinger equation.

The reference length and energy will be the total length of the deviceL = b−a and the Fermi levelEF .
With the change of variablesx = x−a

L , we define the new functions

u(x) = u(Lx+a) = u(x) and V h(x) =
1

EF
V (Lx+a) =

1
EF
V (x).

The equation

− ~
2

2m
d2

dx2u+V u =
~

2k2

2m
u,

becomes

− ~
2

2mL2EF

d2

dx2 u+V u =
~

2k2

2mEF
u.

The new dimensionless wave vector is given by

k =
~√

2mEF
k,

while our semiclassical parameter, supposed to be small andwhich is actually reasonnably small in
applications, will be

h =
~√

2mEF

1
L

=
LF

L
.

Note that the quantityLF = ~/
√

2mEF represents the Fermi length. Therefore, the equation (2.3)is
rewritten

−h2 d2

dx2 u+V h u = k2u.

We writeV h in the form

V h(x) =
1

EF
V (x) = B (x)+V h

0 (x)+Vh
NL(x) ,

where

B (x) =
1

EF
B (x) = −B

[

x 1[0,1](x)+1[1,+∞)(x)
]

, with B =
B
EF

,

Vh
NL(x) =

1
EF

VNL(x) ,

and

V h
0 (x) = V0 1[0,1](x)+

N

∑
j=1

Wj

(

x−c j

h

)

, with Wj

(

x−c j

h

)

=
1

EF
W j(x), V0 =

V0

EF
.

For h > 0, it is always possible to defineWj(y) = E−1
F W j(L(c j + hy)). The writingWj(

x−cj

h ) suggests
that the j-th well concentrates atx = c j whenh > 0 is small. The theoretical analysis was carried out
in this specific framework by Patel in [32] in the limith→ 0. Actually, this scaling was motivated by
the fact that the heterostructures present a finite number ofresonant states in the relevant energy interval.
The asymptotic of quantum wellsWj(

x−cj

h ) in a semiclassical islandB (x)+Vh
NL(x)+V01[0,1](x) permits

to keep this constraint even in the limith→ 0. The pointsc j can be thought as averaged positions in the
wells. They are not exactly the middle points and their determination in practical situations withh > 0
will be described in Subsection 6.1.
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3.2 Fermi-Dirac function.

In order to rescale the Fermi-Dirac functiong, we setβ =
EF

kBT
, then

g(k2) =

√
m1m2kBT

π~2 ln

(

1+exp

(

EF − ~
2k2

2m

kBT

))

=

√
m1m2kBT

π~2 ln
(

1+exp(β(1−k2))
)

.

The functiong is then defined by introducing the rescaled energyk2 :

g(k2) =
π~

2

√
m1m2EF

g(k2) = β−1 ln
(

1+exp(β(1−k2))
)

.

3.3 Generalized eigenfunctions.

With the condition minWj ≥−V0, the hamiltonianHh = −h2∆+V h has only absolute continuous spec-
trum (see [32] and references therein). The injection profile in 1-dimension is given by function of the
asymptotics momentum according to [6, 14, 30]. It is writtenin terms of the generalized eigenfunctions
as

f (Kh
−)(x,x′) =

Z +∞

−∞
f (k)ψh

−(k,x)ψh
−(k,x′)

dk
2πh

. (3.1)

After the scaling, those generalized eigenfunctions are defined according to :

k > 0

Hhψh
−(k,x) = k2ψh

−(k,x) ,

ψh
−(k,x) ∼ eikx/h +R(k)e−ikx/h for x→−∞ ,

ψh
−(k,x) ∼ T(k)ei

√
k2+Bx/h for x→ +∞ ,

k < 0

Hhψh
−(k,x) = (k2−B)ψh

−(k,x) ,

ψh
−(k,x) ∼ eikx/h +R(k)e−ikx/h for x→ +∞ ,

ψh
−(k,x) ∼ T(k)e−i(k2−B)1/2x/h for x→−∞ .

The complex square root(z)1/2 chosen above as(ρeiθ)1/2 =
√ρeiθ/2 for ρ ≥ 0 andθ ∈ [0,2π).

In the case of a beam coming from the left-hand side with a Fermi-Dirac statisticsg, the generalized
eigenfunctions for the HamiltonianHh satisfy

f (Kh
−)(x,x′) =

Z +∞

0
g(k2)ψh

−(k,x)ψh
−(k,x′)

dk
2πh

.

An important remark in the analysis of [30, 32] says that the functions of the energy are specific functions
of the momentum. Namely in terms of operator functional calculus, plugging f (k) = F(k2)1{k>0} +

F(k2−B)1{k<0} into (3.1) leads tof (Kh
−) = F(Hh).
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3.4 Density.

The electronic density is computed according to

L3n(x) = L3
Z +∞

0
g(k2)|ψ−(k,x)|2 dk

2π

= L3
Z +∞

0

√
m1m2EF

π~2 g(k2)|ψh
−(k,x)|2

√
2mEF

~

dk
2π

= L2
√

m1m2EF

π~2

Z +∞

0
g(k2)|ψh

−(k,x)|2 dk
2πh

.

A natural definition of the rescaled density is

n(x) =
π~

2

√
m1m2EF

Ln(x).

3.5 Poisson equation.

To achieve the scaling, we now consider the Poisson equation. The nonlinear potentialVNL solves

−EF

L2 ∆Vh
NL(x) = −∆VNL(x) =

q2

ε
n(x) =

q2

ε
1
L

√
m1m2 EF

π~2 n(x).

Therefore, the rescaled nonlinearVh
NL satisfies the equation

−∆Vh
NL(x) = L

q2√m1m2

επ~2 n(x).

3.6 Scaled system.

The previous normalizations are summarized in the rescaledsystem :


































































































−h2 d2

dx2 ψh
−(k,x)+V hψh

−(k,x) = k2ψh
−(k,x), with boundary conditions,

V h(x) = B (x)+V h
0 (x)+Vh

NL(x),

V h
0 (x) = V01[0,1](x)−

N

∑
j=1

Wj

(

x−c j

h

)

,

g(k2) = β−1 ln
(

1+exp(β(1−k2))
)

,

n(x) =

Z +∞

0
g(k2)|ψh

−(k,x)|2 dk
2πh

,

−∆Vh
NL = γn, with Vh

NL(0) = Vh
NL(1) = 0,

(3.2)
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wherex =
x−a

L
, k =

~√
2mEF

k. The parameters equal

h =
~√

2mEF

1
L

=
LF

L
, (3.3)

β =
EF

kBT
and γ =

4L
aB

, (3.4)

where the Bohr radius is defined as usualaB =
4π~

2ε√
m1m2 q2 .

3.7 Current.

Although the current density is a final quantity which will always be presented in its physical units,
we show for the sake of completeness how it can be rescaled in agreement with the previous choices.
Before scaling, the current densityJ (up to the choice of sign) can be computed with the generalized
eigenfunctionsψ−(k,x) according to

LJ =
e~
m

Z +∞

0
g(k2) Im

(

Z b

a
∇ψ−(k,x)ψ−(k,x)dx

)

dk
2π

.

The introduction of the rescaled Fermi-Dirac functiong and the comparison between the generalized
eigenfunctionsψ− andψ− lead to

J =
e~
m

√
m1m2EF

π~2

1
L2

Z +∞

0
g(k2) Im

(

Z 1

0
∇ψh

−(k,x)ψh
−(k,x)dx

)

dk
2πh

=
e
√

m1m2

m
EF

π~L2

Z +∞

0
g(k2) Im

(

Z 1

0
∇ψh

−(k,x)ψh
−(k,x)dx

)

dk
2πh

.

This last expression allows to introduce the rescaled current J by

J =
Z +∞

0
g(k2) Im

(

Z 1

0
∇ψh

−(k,x)ψh
−(k,x)dx

)

dk
2πh

, (3.5)

with the final relationJ =
e
√

m1m2

m
EF

π~L2 J .

4 Theoretical results.

This section gives a short account of the theoretical results which were obtained in [32] about the limit
h→ 0 for the scaled system (3.2). After this presentation, it will be shown how the simple asymptotic
model can be extended in order to include physically relevant situations.

4.1 Linear case.

Consider first a quantum HamiltonianHh =−h2d2/dx2+V h where the potentialV h is defined according
to (3.2) with the nonlinear potentialVh

NL replaced by a non negative potentialVh(x). Another change in
the theoretical analysis is about the beam profileg which is replaced by a compactly supported function
g̃.
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Hypothesis 4.1.The family(Vh)h∈(0,1) is assumed to be uniformly bounded in the space of Lipschitz
functions W1,∞([0,1]) with a limit V in theC 0([0,1]) topology.

Hypothesis 4.2.The functiong̃ (which replaces the function g in (3.2)) is a continuous function with a
compact support included in[Λ∗,Λ∗]⊂ (0,V0−B). Moreover, the potentials Wj are compactly supported
and satisfy−V0 ≤Wj ≤ 0.

Notation 4.3.

• The potentialṼ is the limiting filled (i.e. where the wells Wj have been removed) potential

Ṽ (x) = B (x)+V01[0,1](x)+V(x) .

• For any j= 1, . . . ,N, the Schr̈odinger operator Hj :=−d2/dx2+Wj(x), D(H j) = H2(R)⊂ L2(R),
admits a finite number of negative eigenvalues(−εk

j)1≤k≤K j<+∞ labelled according to the increas-
ing order. The set of energiesE j is defined by

E j =
{

Ṽ (c j)− εk
j , 1≤ k≤ K j

}

. (4.1)

• The quantitiesεk
j , 1≤ k≤ K j , 1≤ j ≤ N are called the resonant depths.

• The set of resonant energies is defined as

E =
N∪

j=1
E j =

{

Ṽ (c j)− εk
j , 1≤ k≤ K j , 1≤ j ≤ N

}

. (4.2)

• For any E∈ R, we set
JE := { j ∈ {1, . . . ,N} s. t. E ∈ E j}.

We say that the well cj is resonant at the energy E when j∈ JE .

• Finally, we set
cE
ℓ := min

j∈JE
c j , cE

r := max
j∈JE

c j ,

and simply
cE when cEℓ = cE

r .

Definition 4.4. For Φ ∈ L∞([0,1];R), the Agmon distance is the degenerate distance given by

dAg(x,y;Φ) =

∣

∣

∣

∣

Z y

x

√

Φ+(t) dt

∣

∣

∣

∣

,

with Φ+(t) = max{Φ(t),0}.
For a resonant energy E∈ E , we set

δE
ℓ := dAg(c

E
r ,1;Ṽ −E)−dAg(0,cE

r ; Ṽ −E),

δE
r := dAg(0,cE

ℓ ; Ṽ −E)−dAg(c
E
ℓ ,1;Ṽ −E) .

Remark 4.5. The Agmon distance is a standard tool in the analysis of WKB methods ([18]) and solves
locally an Hamilton-Jacobi equation. It is usually referred to in the physics literature as the action.
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With this definition,δE
ℓ > 0 if and only if all the resonant wells at the energyE are in the left hand

side of the island (i. e. closer to 0 than 1). Conversely,δE
r > 0 if and only if all the resonant wells at the

energyE are in the right hand side of the island (i. e. closer to 1 than 0). Actually, for x,y ∈ [0,1], the
distance with the asymptotic potential has to be thought as the limit

dAg(x,y; Ṽ −E) = lim
h→0

dAg(x,y; Ṽ h−E) = lim
h→0

dAg(x,y;V h−E) .

Instead of writing explicitly a Theorem which would requireadditional technical (and sometimes
artificial) mathematical assumptions, we simplify here thepresentation of the results obtained in [31, 32].
We refer the reader to those references for more precise statements.
Result 1 : The electronic density defined by

nh(x) =

Z +∞

0
g̃(k2)

∣

∣ψh
−(k,x)

∣

∣

2 dk
2πh

,

defines a non negative measure in[0,1] which admits weak∗ limit points in the setM b([0,1]) of bounded
Radon measures on[0,1] ash→ 0. By assuming Hypothesis 4.1 and Hypothesis 4.2, those limit points
take the form in]0,1[

µ
∣

∣

]0,1[
(x) = ∑

E∈E
∑
j∈JE

tE
j g̃(E) δcj (x) ,

where the coefficientstE
j satisfy

tE
j ∈ [0,1] and

{

δE
ℓ > 0 ⇒ tE

j = 1, ∀ j ∈ JE,

δE
r > 0 ⇒ tE

j = 0, ∀ j ∈ JE.
(4.3)

Generic case :The non degenerate case is when #JE = 1 with δE
ℓ > 0 or δE

r > 0 for all E ∈ E ∩suppg̃ .
Then the sequencenh

∣

∣

]0,1[
admits a unique limit point :

nh
∣

∣

]0,1[
(x)

h→0
⇁ ∑

E∈E
1δE

ℓ >0(E) g̃(E) δcE(x) .

Critical case 1 : Already with one resonant state,E ∩suppg̃ = {E0} with #JE0 = 1, a non generic case
may appear. It corresponds to the caseδE0

ℓ = δE0
r = 0 :

dAg(0,cE0; Ṽ −E0) = dAg(c
E0,1;Ṽ −E0) . (4.4)

It was shown that this asymptotic information on the Agmon distances (it is written in terms of the
asymptotic potentialṼ ) does not prevent any valuetE0

1 ∈ [0,1]. Note that the indeterminacy oftE0
1 is

replaced by the constraint (4.4).
Critical case 2 : Another interesting case which is considered by our numerical calculations, is about
the case #JE0 = 2 (for the sake of simplicity we assume here againE ∩suppg̃ = {E0}). First, sinceE0 is
a limiting resonant energy (i.e. the limit ash→ 0 of the real part of a resonance), all the cases whenE0

is the common limit of two distincth-dependent resonant energies have to be considered. In particular,
the generic case and any relevant combination of the Critical case 1 can still occur. Once this is done,
another case is possible whenδE

ℓ ≤ 0 andδE
r ≤ 0. The possible values oftE0

1 andtE0
2 can be restricted to

the next three cases :

tE0
1 = 1, tE0

2 ∈ [0,1] , when dAg(0,cE0
ℓ ; Ṽ −E0) < dAg(c

E0
r ,1;Ṽ −E0) , (4.5)

tE0
1 ∈ [0,1], tE0

2 = 0 , when dAg(0,cE0
ℓ ; Ṽ −E0) > dAg(c

E0
r ,1;Ṽ −E0) , (4.6)

0≤ tE0
2 ≤ tE0

1 ≤ 1 , when dAg(0,cE0
ℓ ; Ṽ −E0) = dAg(c

E0
r ,1;Ṽ −E0) . (4.7)
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Details about this are provided in Appendix A. Cases where more than two resonant energies can meet,
#JE > 2, will not be considered. In this framework, with some specific families (Vh)h∈(0,h0) and with
additional assumptions on the positionsc j , j ∈ {1, . . . ,N}, it is checked in [32] and in Appendix A that
all the above cases can occur and that the previous enumeration exhausts all the possibilities. We shall
take this combination of possibilities for granted in our asymptotic model.

4.2 Nonlinear asymptotics.

Here are the mathematical results which were rigorously proved in [32, 33] with Hypotheses 4.1 and 4.2.
We introduce the functional spaces :

BV2([0,1]) =
{

V ∈ C 0([0,1]) s. t.V ′′ ∈M b(0,1)
}

,

thenBV2([0,1]) is continuously embedded inC 0,α(0,1), for anyα ∈ (0,1).

BV2
0 ([0,1])+ =

{

V ∈ BV2([0,1]) s. t.V ≥ 0, V(0) = V(1) = 0
}

.

By settingc0 = 0 andcN+1 = 1, we introduce the set of piecewise affine functions :

P
1
0(c)+ :=

{

V ∈ P
1(c), V ≥ 0

}

,

with P
1(c) the usual set of continuousP1 finite elements associated with the nodesc= {c0,c1, . . . ,cN+1},

c0 = 0, cN+1 = 1.

Theorem 4.6. Under Hypothesis 4.1 and Hypothesis 4.2 (with g placed byg̃ in (3.2)), the solutions VhNL,
h∈ (0,1], of the system(3.2)

{

−∆Vh
NL = γn,

Vh
NL(0) = Vh

NL(1) = 0,

describe a bounded set of BV2
0 ([0,1])+. The setA of its limit points as h→ 0 is a subset ofP1

0(c)+.
Moreover, any V∈ A solves

−∆V = ∑
E∈E ∩[Λ∗,Λ∗]

∑
j∈JE

tE
j g̃(E) δcj , V(0) = V(1) = 0, (4.8)

where the coefficients tE
j , satisfy

tE
j ∈ [0,1] and

{

δE
ℓ > 0⇒ tE

j = 1, ∀ j ∈ JE,

δE
r > 0⇒ tE

j = 0, ∀ j ∈ JE.
(4.9)

Let C be the set

C := {V ∈ P
1
0(c)+ s. t.∀E ∈ E ∩ [Λ∗,Λ∗] , (δE

ℓ > 0 or δE
r > 0)}.

The possible limits lying inC can be given by a variational formulation using

G(E) = −
Z +∞

E
g̃(λ) dλ.

11



Corollary 4.7. The setA ∩ C is given by the collection of critical points inP1
0(c)+ for the functionals

JK (V) =
1
2

Z 1

0
|∂xV(x)|2 dx− ∑

E∈K
G(E), (4.10)

which satisfy the compatibility condition

K =
{

E ∈ E ∩ [Λ∗,Λ∗] s. t. δE
ℓ > 0

}

.

The previous result covers in a slightly wider generality what we called the “generic case” in the
previous Subsection. It does not say anything aboutA \C . Actually, Theorem 4.6 can be combined with
the discussion of Subsection 4.1 in order to get a full description, possibly too wide, ofA . The important
point is that Theorem 4.6 reduces an infinite dimensional nonlinear system which couples in a non
trivial way spectral quantities with an elliptic PDE, to a collection of simple finite dimensional nonlinear
systems. Further, a full description of this collection of nonlinear systems involves the comparison of
some Agmon distances.

Before going further in this direction, we first present how the theoretical results have to be inter-
preted and adapted in order to fit with the more realistic model.

4.3 Realistic injection profile.

The Hypothesis 4.2 about the compact support of ˜g is a technical assumption which simplifies at different
points the mathematical analysis. Of course it is not satisfied by the Fermi-Dirac distribution functiong
in (3.2) . The two extremities+∞ and 0 are analyzed on different bases.
First the Fermi-Dirac distribution function decays exponentially fast with respect to the energy like any
thermodynamical equilibrium distribution function. Truncating at high energy is physically relevant and
necessary for a numerical treatment. The assumption that the compact support suppg is included in
[0,Λ∗] ⊂ [0,V0 −B) can be extended to[0,Λ∗] ⊂ [0,V0). It will be relevant for realistic physical data
provided that the temperatureT and the donor densitynD are not too high (with our dimensionless
parameterV0 > 1 andβ large enough).
The treatment of the energy 0 has to be done with more care. Actually, it is known that the crossing
of the energy 0 by the resonant energies explains the negative differential resistance or the hysteresis
phenomenon. A complete rigorous mathematical approach canbe performed by starting from Theorem
4.6 as follows :

0) Replace the functiong in (3.2) by a function compactly supported in[0,Λ∗] ⊂ [0,V0);

1) Take a functionχ ∈ C ∞(0,+∞) such thatχ ≡ 1 on [1,+∞) andχ ≡ 0 for [0,1/2];

2) Set forε > 0, g̃ε(x) = χ(x
ε)g(x);

3) Denote byV ε,h
NL the possible solutions of the system (3.2) withg replaced by ˜gε;

4) Consider the two steps asymptotics asε → 0 afterh→ 0.

According to Theorem 4.6 and for anyε > 0, the limit points ofVε,h
NL describe a bounded setA ε of

piecewise affine potentials which solve (4.8) with ˜g replaced by ˜gε. The possible limits asε → 0 belong
to the setA of solutions to

−∆V = ∑
E∈E ∩[0,Λ∗]

∑
j∈JE

tE
j g(E) δcj , V(0) = V(1) = 0, (4.11)

where g(0) ∈
[

0,g(0+)
]

is arbitrary,

12



and where the coefficientstE
j , satisfy

tE
j ∈ [0,1] and

{

δE
ℓ > 0 ⇒ tE

j = 1, ∀ j ∈ JE,

δE
r > 0 ⇒ tE

j = 0, ∀ j ∈ JE .
(4.12)

In connection with the variational formulation of Corollary 4.7, an interesting property related in some
sense to the thermodynamical stability is due to the fact that g is a decaying function. Set

Ċ :=
{

V ∈ P
1
0(c)+ s. t. 0 6∈ E and∀E ∈ E ∩ (0,Λ∗], (δE

ℓ > 0 or δE
r > 0)

}

,

and G(E) = −
Z Λ∗

E
g(λ) dλ, for E ∈ [0,Λ∗] .

Proposition 4.8. The setA ∩ Ċ is given by the collection of critical points inP1
0(c)+ for the functionals

JK (V) =
1
2

Z 1

0
|∂xV(x)|2 dx− ∑

E∈K
G(E), (4.13)

which satisfy the compatibility condition

K =
{

E ∈ E ∩ (0,Λ∗] s. t. δE
ℓ > 0

}

, 0 6∈ E .

When g is decreasing on(0,Λ∗), the functionalJK is strictly convex for any fixedK and there exists at
most one critical point.

Hence for generic cases which avoid 0∈ E , the problem is reduced to a finite collection of well-posed
variational nonlinear problems in finite dimension.

4.4 Injection from the two sides.

For the sake of simplicity but also for pedagogical purpose,the mathematical analysis as well as the
above presentation were done in the case where the function of the momentumg(k) is supported in
{k≥ 0}. This presentation makes more clear the spectral anisotropy when functions of the momentum
are considered instead of functions of the energy. However in realistic diodes electrons are injected from
both sides with different electro-chemical potentials. Actually this two-sided injection of electrons is
easily taken into account in the modelling or in the mathematical analysis as follows.

����PPP
@

@
@

g+

g+
6B

Figure 2: Injection from the two sides

Let us denote byg+ andg− the (truncated) Fermi-Dirac function for the injection profiles from the
left and from the right respectively. When the donor densityare equal in the source and in the drain,
taking into account the height of the biasB provides

g+(E) = g0(E) and g−(E) = g0(E +B).
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Since the momentum function has the form

g(k) = g+(k2)1{k>0} +g−(k2−B)1{k<0},

we write
g(k) =

(

g+(k2)−g−(k2)
)

1{k>0} +
(

g−(k2−B)1{k<0} +g−(k2)1{k>0}
)

.

Using the decomposition of the incoming beam in a part comingfrom the left-hand side and one other
coming from the right-hand side, the operator form of this identity writes

g+(Hh)1{Kh>0} +g−(Hh)1{Kh<0} = (g+(Hh)−g−(Hh))1{Kh>0} +g−(Hh) . (4.14)

The first part of the right-hand side of (4.14) is a function ofthe momentum supported ink > 0 and the
second is a function of the energy.

Hence Theorem 4.6 and its variation of Subsection 4.3 can be adapted by replacingg(E) by g+(E)−
g−(E) in (4.11) while adding a termg−(E) without any coefficienttE

j .

The setA of possible limit points of solutions to (3.2) with a two-sided injection, is the set of non
negative piecewise affine potentials which solve

−∆V = ∑
E∈E

∑
j∈JE

(

tE
j (g+(E)−g−(E))1{[0,Λ∗]}(E)+g−(E)1[0,Λ∗](E)

)

δcj , V(0) = V(1) = 0, (4.15)

with the convention that(g+ −g−)(0) can be any value in[0,(g+ −g−)(0+)] and where the coefficients
tE
j satisfy the property (4.12) .

Moreover the variational formulation of Proposition 4.8 can be adapted with a similar uniqueness result
wheng0 is a decreasing function.

4.5 Conclusion about the theoretical analysis.

The theoretical results show that, asymptotically ash→ 0, the full system (3.2) reduces to a collection
of well posed simple nonlinear equations. The well posedness is confirmed by the uniqueness result
of Proposition 4.8 for some generic case. Another importantpoint which appeared in the discussion of
Subsection 4.1 is that, in all the degenerate cases which were considered, any new indeterminacy of the
coefficientstE

j is compensated by a new equation. Similarly the indeterminacy of g(0) in (4.11) (resp. of
(g+ −g−)(0) in (4.15)) is compensated by the equationE = 0 .

Moreover this mathematical analysis shows what are the important quantities in this nonlinear prob-
lem. Asymptotically and for any fixed case (generic or degenerate case), the unknowns are reduced to
the jumps of the potential derivative∂xV :

{unknowns} = {total masses per well} .

The important parameters are :

• The dimensionless small parameterh → 0 : In practical situations, the parameterh is strictly
positive but reasonably small in order to exhibit resonances as very stiff spectral quantities. Remind
that the asymptotic analysis was carried out in a framework which keeps a finite number of resonant
states in the physically relevant energy interval. This fitsvery well with the cases which will be
presented.
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• The position of the wellc j : In the mathematical analysis, the quantum wells are asymptotically
pointwise concentrated. Of course, this does not hold exactly for realistich > 0. These positions
will be computed as averaged positions in the wells around which the electronic density concen-
trates.

• The bound state energies−εk
j of the Hamiltonian−∆ +Wj : After a translation byV(c j), they are

equal to the real part of the resonances or to the Dirichlet eigenvalues up to some very small error
(this will be checked numerically). Those energies are parameters of the asymptotic nonlinear
problem. They will be computed numerically in a linear setting before being plugged into the
computation of the nonlinear solutions. Actually, as we will see in Subsection 6.1, the parameters
−εk

j andc j will be determined similarly by the same process.

• The Agmon distances : Although they are unknowns before solving the nonlinear problem, they
can be viewed as parameters in the sense that the comparison of Agmon distances parametrizes all
the possible cases. Actually all the possible cases are considered in a first numerical approach and
the constraints on the Agmon distances are checked afterwards in order to eliminate the irrelevant
cases. Note also that the fact that forh > 0, the wells are not pointwise concentrated has to be
taken into account in the computation of the actual Agmon distances. The details are explained in
Section 7.

5 Validity of the asymptotic model.

Here it is checked on some numerical examples that the asymptoticsh→ 0 makes sense in the simulation
of realistic devices. Some examples of electronic densities, numerically computed with a large number
of generalized eigenfunctions, exhibit an anisotropy phenomenon which confirms the rapid variation of
the asymptotic parametertE

j from 1 to 0 in (4.11). All those numerical observations are presented in
order to show that the asymptotic model derived as the dimensionless parameterh goes to 0 makes sense
in the study of realistic devices.

5.1 Generalized eigenfunctions.

In one dimension and with the potentialV h which is constant outside[0,1], the generalized eigenfunc-
tions are fully determined by ak-dependent non homogeneous boundary problem on[0,1].
Let us first consider the casek > 0. The incoming generalized eigenfunction is then characterized by
ψh
−(k) :















−h2 d2

dx2 ψh
−(k,x)+V hψh

−(k,x) = k2ψh
−(k,x) ,

hψh
−
′
(k,0)+ ikψh

−(k,0) = 2ik, k > 0

hψh
−
′
(k,1)− i

√

k2 +Bψh
−(k,1) = 0.

(5.1)

In the casek < 0,k2 6= B, with the convention(k2 −B)1/2 = i
√

B−k2 whenB > k2 (more generally
(ρeiθ)1/2 =

√ρeiθ/2 for ρ > 0 andθ ∈ [0,2π)), the generalized eigenfunctionψh
−(k) is given by















−h2 d2

dx2 ψh
−(k,x)+V hψh

−(k,x) = (k2−B)ψh
−(k,x) ,

hψh
−
′
(k,0)+ i(k2−B)1/2ψh

−(k,0) = 0, k < 0

hψh
−
′
(k,1)+ ikψh

−(k,1) = 2ikeik/h.

(5.2)
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Numerically, those boundary value problems are simply computed by a finite difference method. The
discretization step∆x = 1/Nx is a parameter of the numerical method. The computation of integrated
quantities with respect tok also requires a discretization in thek variable. The step∆k has to be chosen
small enough in order to catch the resonances which produce very stiff spectral quantities whenh > 0 is
small. Actually, it is known (see for example [19, 20, 38]) that this slope is of order eC/h . The stiffness
of this spectral quantities is a first test to check that the asymptotic model forh→ 0 is relevant. One may
question about the numerical complexity related to the choice of a very small∆k = Λ∗/Nk. Actually,
such calculations are done only once in the beginning in order to guess the parameters−εk

j (andc j , see
Subsection 6.1) and in the end in the computation of the current density (see Subsection 6.2). Once
those parameters are fixed, solving the asymptotic nonlinear problem (4.11) does not involve anymore
the generalized eigenfunctions. Hence the numerical complexity of the accurate computations of the
generalized eigenfunction is not a big issue here. For the alternative efficient numerical methods related
to such problems and which deal with the generalized eigenfunctions on the ground of a WKB analysis,
we quote the works of Ben Abdallah and Pinaud [7, 34, 35].

5.2 Detection of resonances.

After computing the generalized eigenfunctions by a finite difference method, we compute the local
density of states with respect to the energy in each well. Thestiff picks of this density of states are
identified as resonances according to the Breit-Wigner formula (see [15, 32, 38]). Note that forh > 0,
the wells are not reduced to single points. We define for each well aroundc j , the function

M j(E) =
Z

[c−j ,c+
j ]

(

|ψh
−(

√
E,x)|2 + |ψh

−(−
√

E +B,x)|2
)

dx.

The neighbourhood[c−j ,c+
j ] of the center of the wellc j is specified further in Section 7.

Figure 3 shows the functionM1(E) in a fixed well for two valuesB = 0 = Bmin andB = Bmax of the
bias. It corresponds to the physically realistic case with one well presented in Subsection 9.2, case 1. We
simply show the results in terms of dimensionless quantities. The errorbar on the Energy axis represents
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Figure 3: Determination of resonant energies

the detected resonances and the Dirichlet eigenvalues (with boundary conditionsψ(0) = ψ(1) = 0 instead
of transparent boundary conditions in (5.2)). The very stiff picks as well as the proximity of the detected
resonances and the Dirichlet eigenvalues confirms the validity of an asymptotic treatment ash→ 0.
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5.3 Filled and empty wells for functions of the momentum.

On the ground of numerical examples, we now show that the asymptotic behaviour described in (4.9)
makes sense even whenh > 0 is not very small and lies in the range of parameters occurring in realistic
configurations. We simply consider here two asymmetric barrier profiles which are related to the exam-
ples of Subsection 9.2.
The bias is 0 as well as the nonlinear potential. Instead of changing the potential, we consider the two
injection profiles

injection from the left : g(k) = (1−k2)+1[0,+∞)(k),

injection from the right : g(k) = (1−k2)+1(−∞,0](k) .

Let us first analyze the device described on Figure 4. For thisdevice with one well, we haveh = 0.17.
The size of the barriers are respectively 0.5 nm and 0.8 nm and the width of the well is 4 nm. With
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Figure 4: Effect of injection from the left or from the right.

electrons coming from the left-hand side, then the wellc is filled. This illustrates the caset1 = 1 in (4.9).
With electrons coming from the right-hand side, then the well c is not filled. This illustrates the case
t1 = 0 in (4.9). Note thath = 0.17 is not very small and that the width of the barriers does notshow a big
asymmetry. This example is investigated in Subsection 9.2,case 1. Here, the size of the barriers and the
wells have been changed a little in order to emphasize the Agmon distance effects.
Actually in examples associated with AsGa devices, the transition from t1 = 1 to t1 = 0 is even more
sensitive to the variation of the widths of the barriers.

Figure 5 shows a device with two wells. The widths of barriersare respectively 0.5, 0.5 and 0.6 nm
and the widths of the wells are 1.5 and 1 nm. In this device, we haveh = 0.13 and there is one resonant
states per well, with resonant energiesE = {E1,E2}. The corresponding Agmon distance satisfy

dAg(0,c1;V −E1) < dAg(c1,1;V −E1) and dAg(0,c2;V −E2) > dAg(c2,1;V −E2).

If the electrons come only from the left, then (4.9) givest1 = 1 and t2 = 0, in agreement with the
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Figure 5: Effect of injection from the left or from the right on a device with two wells.

numerical results. On the other hand, with injection from the right, no well is filled since the resonant
energyE2 in the second well is too high.
We will come back to this example in Subsection 9.2, case 4.

5.4 Piecewise affine potential.

Restricting the nonlinear potential to the class of piecewise affine potential is the key point which permits
to reduce the complexity of the full nonlinear system (3.2),in the limit h → 0. It is a consequence of

the scaling of the wellsWj

(

x−cj

h

)

as quantum wells in a semiclassical island, for which the classically

permitted region is asymptotically reduced to a single point. Nevertheless in practical cases,h is not 0
although reasonably small (according to the discussion of Subsection 5.2), and the wells have the same
order of size as the barriers. Hopefully, the nonlinearity is not very strong because the size of a well
has the same order of magnitude of the Bohr radiusaB : the effective nonlinearity in thej-th well is
of orderγ j =

4L j

aB
after adapting the scaling (3.4) to a single well. Thereforethe difference between the

true nonlinear potential and its piecewise affine approximation can be neglected when the positionc j is
chosen close to the center of mass of the electron density in the j-th well according to the next picture 6.

V      approximate

VNL

NL

Figure 6: Approximation of the nonlinear potential.

The exactly used value of the positionc j is presented in the Subsection 6.1.

18



6 Implementation of the asymptotic model.

Here we show how the asymptotic model derived after taking the limit h→ 0 in Section 4 is adapted to
physically relevant geometries,h > 0.

6.1 Position of the wellsc j and resonant depthsεk
j .

Here we explain how the parametersc j andεk
j , k = 1, . . . ,K j are determined in realistich> 0 cases. With

those parameters, thek-th resonant energy level attached to thej-th well is given in the asymptotic model
by

Ek
j = Ṽ (c j)− εk

j , (6.1)

according to (4.1)–(4.2). Actually we restrict first our attention to the caseK j = 1 and write simplyε j

instead ofε1
j . Fortunately the process that we describe in this simpler case admits a natural and easily

implementable extension toK j > 1 by accepting several valuesck
j of the center of mass of the well.

Details are given about this in the end of this paragraph and in Section 7.
The determination ofc j andε j is done simultaneously without requiring additional heavynumerical

computation. It is a linear interpolation process which relies on the following heuristic.
An intermediate step to show that the resonant energy in thej-th well is close toṼ (c j)− ε j relies

on the fact that it is at a distancẽO(e−c/h) from some eigenvalue of (5.1), with the energy-dependent
absorbing boundary conditions replaced by homogeneous Dirichlet boundary conditions. Hence one can
work with those Dirichlet eigenvalues of which the eigenfunctions are localized in the quantum wells.
Those Dirichlet eigenvalues admit a first order perturbation according to the Feynmann-Hellman law

δE = 〈ψ |δVψ〉 ,

whenψ is a normalized eigenfunction at energyE, δV is the variation of the Hamiltonian andδE the
corresponding variation of the eigenvalue. Moreover whenδV = δV(νx), with ν > 0 small, varies on a
slower scale thanψ, a second order Taylor expansion ofδV(c+ ν(x−c)) leads to

〈ψ |δVψ〉 =
Z

δV(νx) |ψ(x)|2 dx= δV(c)+O(ν2) ,

wherec is the center of mass of the probability density|ψ|2 :
Z

(x−c) |ψ(x)|2 dx= 0.

The resonant energies associated with each well can be determined according to the process described
in Subsection 5.2. These computations are done for the two extreme values of the applied bias,Bmin

and Bmax, and with no nonlinear potential (Vh
NL ≡ 0). This provides in the wellj the two resonant

energiesE j(Bmin) andE j(Bmax). The variation of the potential by changing the bias is the affine function
δV(x) = −(Bmax−Bmin)x for x∈ [0,1]. The previous discussion says that the center of massc j can be
approximated according to

E j(Bmax)−E j(Bmin) = −(Bmax−Bmin)c j . (6.2)

Finally the approximationE j ∼ Ṽ (c j)− ε j provides the valueε j by using

E j(B) = V0−Bcj − ε j , (6.3)
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Figure 7: Determination of the resonant depthε j and of the averaged positionc j of the j-th well.

applied withB = Bmax or B = Bmin (both are compatible according to (6.2)) .
Figure 7 summarizes how the parameters(c j ,ε j) (occurring in the asymptotic modelh→ 0) are fitted

to the numerical values of resonant energies (h> 0) . Figure 8 shows in a practical case the actual density
and the positionc j of the simplifying delta function. We end this paragraph with two remarks.
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Figure 8: Density on the well and position of the asymptoticswell.

Remark 6.1. 1) The case of Figure 8 seems at a first glance to be far from the situation of (narrow)
quantum wells in a semiclassical island (wide barriers). Actually the barriers can be considered as wide
enough when they lead to a stiff localization of the resonantenergies (see Subsection 5.2). Meanwhile
replacing the real electronic density by a delta function will not bring a big error when the width of the
well is less than the Bohr radius aB.
2) We focused on the case when there is one single resonant stateper well. A simple way to introduce
several resonant energies Ek

j , 1≤ k≤K j , per well can be done by determining several averaged positions

according to (6.2), ckj , 1≤ k ≤ K j . This can also be interpreted as Kj wells separated by barriers with
vanishing widths (cf. Figure 11).

6.2 Current density.

Another drawback of the asymptotic model obtained ash → 0 is that the current densityJ defined in
Subsection 3.7 vanishes ash→ 0. In the current-voltage characteristic curves which are presented here,
the current density is computed forh > 0 with the help of the generalized eigenfunctions, once the
nonlinear potential is computed with the asymptotic model.Hence the computation of the generalized
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eigenfunction which presents the highest complexity is done first to determine the parameters(c j ,ε j) of
the asymptotic nonlinear problem and in the end in order to compute the current density.

7 Computation of Agmon distances for a piecewise affine potential.

After Subsection 5.4, the nonlinear potentialVh
NL can be replaced by the piecewise affine asymptotic

potentialV of Theorem 4.6. Then the Agmon distances, which are involvedin the definition of the
different cases, admit an explicit algebraic expression which is specified here. Since small variations
of the Agmon distances have a strong effect on the nonlinear problem, it is better here to compute
these quantities with the real size of the wells and barriers. The left-hand side of Figure 9 illustrates
the asymptotics model with a total potentialṼ , which is piecewise affine, while the right-hand side
presents a physically realistic case, with non vanishing well widths, for which the potential is denoted
V = Ṽ +W, with −V0 ≤W ≤ 0.

Asymptotical model
Ṽ

V = Ṽ +W
Ei = Ṽ (ci)− εi

Ei

c−i c+
i ci c−i+1 c+

i+1

Figure 9: Determination of the points characterizing a well

With the pointci , the left and right ends of the barrier beforeci are denoted byc−i andc+
i . For an

energyE ≥ max
{

V (x), x∈ [c+
i ,c−i+1]

}

, the Agmon distances satisfy the relationship :

dAg(c
−
i ,ci ;V −E) = dAg(c

−
i ,c+

i ; Ṽ −E) ,

and dAg(ci ,c
+
i+1;V −E) = dAg(c

−
i+1,c

+
i+1; Ṽ −E) .

According to (6.1) and by considering only the caseKi = 1 according to Remark 6.1, the resonant energy
attached to the welli equals :

Ei = Ṽ (ci)− εi .

In agreement with all our numerical experiments, the non negative resonant energies are assumed to lie
above the bottom of the wells :Ei ≥ max

{

V (x), x∈ [c+
k ,c−k+1], 1≤ k≤ N

}

whenEi ≥ 0 . Then, the
Agmon distances which are involved in the weightti , attached to the non negative resonant energyEi ≥ 0,
are given by

d−,i = dAg(0,ci ;V −Ei)

=
i

∑
k=1

dAg(ck−1,ck;V −Ei) =
i

∑
k=1

dAg(c
−
k ,c+

k ; Ṽ −Ei) , (7.1)

and d+,i = dAg(ci ,1;V −Ei)

=
N+1

∑
k=i+1

dAg(ck−1,ck;V −Ei) =
N+1

∑
k=i+1

dAg(c
−
k ,c+

k ; Ṽ −Ei) , (7.2)
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with c0 = 0 andcN+1 = 1. It remains to compute each term,dAg(c
−
k ,c+

k ; Ṽ −Ei). It is convenient to
introduce the quantity

y±k,i =
Ṽ (c±k )− Ṽ (ci)

εi
,

which permits to simplify the expression ofdAg(c
−
k ,c+

k ; Ṽ −Ei) and to write

y±k,i ≥−1 ⇐⇒ Ei = Ṽ (ci)− εi ≤ Ṽ (c±k ) .

Several cases have to be considered (cf. Figure 11) :

First case :Ei ≤ Ṽ (c−k ) and Ei ≤ Ṽ (c+
k ) . A simple integration gives

dAg(c
−
k ,c+

k ; Ṽ −Ei) =
Z c+

k

c−k

√

Ṽ (x)− Ṽ (ci)+ εi dx

=
2
3

√
εi(c

+
k −c−k )

(y+
k,i +1)3/2− (y−k,i +1)3/2

y+
k,i −y−k,i

,

with y±k,i ≥−1 .

Second case :Ei ≤ Ṽ (c−k ) and Ei ≥ Ṽ (c+
k ).

Z
Z

Z
Z

Z
Z

Z
Z

c−k c+
kxk

Ṽ (c−k )

Ṽ (c+
k )

Ei = Ṽ (ci)− εi

Figure 10: Configuration of the second case

As illustrated in Figure 10, the intersection pointxk ∈ [c−k ,c+
k ] such thatṼ (xk) = Ei = Ṽ (ci)−εi is given

by
xk−c−k
c+

k −c−k
=
Ṽ (c−k )− Ṽ (ci)+ εi

Ṽ (c−k )− Ṽ (c+
k )

.

This leads to

dAg(c
−
k ,c+

k ; Ṽ −Ei) = dAg(c
−
k ,xk; Ṽ −Ei)

=

Z xk

c−k

√

Ṽ (x)− Ṽ (ci)+ εi dx= −2
3

√
εi(c

+
k −c−k )

(y−k,i +1)3/2

y+
k,i −y−k,i

.
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All the other cases amount to these two ones.
This leads to the expressions

di,− =
2
3

√
εi

i

∑
k=1

(c+
k −c−k ) f (y+

k ,y−k ) , (7.3)

d+,i =
2
3

√
εi

N+1

∑
k=i+1

(c+
k −c−k ) f (y+

k ,y−k ) , (7.4)

where the symmetric functionf is given by

f (y1,y2) =























































(y1 +1)3/2− (y2 +1)3/2

y1−y2
if y1 ≥−1, y2 ≥−1 andy1 6= y2 ,

3
2

√

y1 +1 if y1 ≥−1, y2 ≥−1 andy1 = y2 + ε ,

−(y2 +1)3/2

y1−y2
if y1 ≤−1 andy2 ≥−1,

(y1 +1)3/2

y1−y2
if y1 ≥−1 andy2 ≤−1,

0 else.

The Newton algorithms used in solving numerically the nonlinear problem also requires the expressions
of the derivatives of (7.3)–(7.4). By settingVj = Ṽ (c j), the definition ofy±k,i leads to

∂dAg(c
−
k ,c+

k ; Ṽ −Ei)

∂Vj
=

2
3

(ck−ck−1)(r
+
k − r−k )√

Ei

[

(

(1− r+
k )∂1 f (y+

k ,y−k )+ (1− r−k )∂1 f (y−k ,y+
k )
)

δk, j+1

+
(

r+
k ∂1 f (y+

k ,y−k )+ r−k ∂1 f (y−k ,y+
k )
)

δk, j −
(

∂1 f (y+
k ,y−k )+ ∂1 f (y−k ,y+

k )
)

δi, j

]

,

with r±k =
c±k −ck−1

ck−ck−1
, for anyi, j ∈ {1, . . . ,N} and anyk∈ {1, . . . ,N+1} . The derivative∂1 f equals

∂1 f (y1,y2) =



























































































3
2(y1 +1)1/2(y1−y2)− (y1 +1)3/2 +(y2 +1)3/2

(y1−y2)2 if y1 ≥−1, y2 ≥−1 andy1 6= y2,

3
8

1√
y1 +1

if y1 ≥−1, y2 ≥−1 andy1 = y2,

(y2 +1)3/2

(y1−y2)2 if y1 ≤−1 andy2 ≥−1,

3
2(y1 +1)1/2(y1−y2)− (y1 +1)3/2

(y1−y2)2 if y1 ≥−1 andy2 ≤−1,

0 else.

The derivatives∂Vj d±,i are obtained by summing overk∈ {1, . . . , i} or k∈ {i +1, . . . ,N+1} .
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Figure 11: Notation for a device

8 Penalization method.

The constraints which involve the Agmon distance in Theorem4.6 have no obvious convexity properties.
The simplest and robust way to take them into account is a penalization method. We sett j = τ jθ j with

θ j =
1

1+exp
dAg(0,c j ;V −E j)−dAg(c j ,1;V −E j)

ε

,

and for any resonances, we distinguish three cases :

E j = Ṽ (c j)− ε j > 0, τ j = 1,

E j = Ṽ (c j)− ε j < 0, τ j = 0,

E j = Ṽ (c j)− ε j = 0, τ j ∈ (0,1).

The penalization parameterε > 0 has to be small enough in order to have a realistic treatmentof the con-
straint but not too small in order to keep a well-behaved Newton algorithm. In the original problem, the

Agmon distances occur in factors which behave like e
dAg(0,cj ;V −Ej )−dAg(cj ,1;V −Ej )

h . Therefore, values between
ε = 0 andε = h make sense. The two extreme casesε = 0 andε = h have been tested. The possibility to
takeε = O (h) implements a soft transition betweenθ j = 0 andθ j = 1 as it may occur whenh is not very
small.

The algorithm relies on a continuation for the 3N cases corresponding to the three possible values of
τ j and theN wells. The critical case coming from the equality of the Agmon distance (only) in the case
with 2 wells, is treated separatly.
The conditionsτ j ∈ [0,1], E j > 0, E j < 0 are verifieda posteriori.

9 Numerical results.

In this Section, we show how our numerical approach is flexible and seems to catch in a very efficient
way the main quantities involved in the nonlinear problem. These computations were realized on a laptop
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with a Gnu Octave program (similar to MATLAB). The indicated“CPU time” refers to the CPU time in
seconds used to solve the non linear problem without computing the current. The time used for this last
part varies from one case to the other and can be significantlylonger. The core of the program which is
the rapid one permits to get very quickly an idea of the bifurcation diagram.

9.1 Computations for GaAs.

We consider data of O. Pinaud proposed in [34, 35]. Let us recall some physical parameters :

Relative mass 0.067 h 0.22
Relative permitivity 11.4 Bmin 0 eV
Temperature 300 K Bmax 0.25 eV
Donor density 1024 m−3 Height of barriers 0.3 eV
Fermi levelEF 0.054 eV

9.1.1 Case 1.

Let us consider firstly a device with one well and two barriersat equal size. The characteristic of this
device and the parameter of experiment are the following :
Size of barriers 50 10−10, 50 10−10 m
Size of well 50 10−10 m
Penalization parameter ε = 0.001
Discretization in voltage 100 points
Discretization in energy 1000 points
Position of the well c1 = 78 10−10 m
Resonance depth ε1 = 0.21 eV
CPU time 9.21

hhhhh

hhhhh

hhhhh
E1

6V0

6Bias
-

�
c−1 c+

1 c1 c−2 c+
2

0 0.05 0.1 0.15 0.2 0.25
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Bias (eV)

E
ne

rg
y 

(e
V

)

Energy on the well according to the bias

E
1

τ = 1

t = 0

τ = 0

t = 0

0 0.05 0.1 0.15 0.2 0.25
−2

0

2

4

6

8

10
x 10

8

B (eV)

I (
A

 m
−

2 )

Diagramm current−voltage

Current

Figure 12: Negative differential resistance

We notice that there is no hysteresis phenomenon. The approximation of the current needs a fine
discretization in energy. Those results are close to those of O. Pinaud (see [34]) : For the same config-
uration, we obtain a similar magnitude for the current and the negative differential resistance occurs for
the same place.
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9.1.2 Case 2.

We now consider a new device for which we observe a hysteresisphenomenon.
Size of barriers 30 10−10, 60 10−10 m
Size of well 60 10−10 m
Penalization parameter ε = 0.01
Discretization in voltage 100 points
Discretization in energy 200 points
Position of the well c1 = 63 10−10 m
Resonance depth ε1 = 0.227 eV
CPU time 9.92
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Figure 13: Hysteresis phenomenum

The hysteresis curve is not complete here. Actually, after trying several configurations, obtaining a
complete hysteresis phenomenon appeared rather difficult in a GaAs-AlGaAs heterostructures.

9.2 Computations for Si.

9.2.1 Case 1.

We now consider a device in Si-SiO, whose characteristics were taken in [26]. The physical parameters
are given by

Relative mass (0.19,0.92,0.19) Donor density 1026 m−3

Relative permitivity 11.9 Fermi levelEF 0.245 eV
Temperature 300 K

In this example where the two barriers have the same size, several values of the penalization param-
eter were tested according to the discussion of Section 8 andled here to interesting variations. Figure 14
was obtained with a smaller parameterε = 0.01 while Figure 15 shows the results forε = h∼ 0.3. The
common characteristics between these two numerical experiments are :
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Bmin 0 eV
Bmax 4 eV
Height of barrier 3 eV
Size of barriers 5 10−10, 5 10−10 m
Size of well 20 10−10 m
h 0.301933
Discretization in voltage 100 points
Discretization in energy 200 points
Position of the wells c1 = 14.6 10−10, c2 = 17.7 10−10 m
Resonance depth (ε1,ε2) = (1.8,2.7) eV
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If the penalization parameter is small,ε = 0.01, then no hysteresis phenomenon appears as shown in Fig-
ure 14 (CPU time is equal to 38.2). The resonant energies varylinearly and only the negative differential
resitance remains on the I-V diagram of Figure 14.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Bias (eV)

E
ne

rg
y 

(e
V

)

Energy on the well according to the bias

E
1

E
2

t1 = 0

t2 = 0 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18
x 10

11

B (eV)

I (
A

 m
−

2 )
Diagramm current−voltage

Current

Figure 14: Small penalization parameter
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Figure 15: Penalization parameter of sizeh
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The second choice of the penalization parameter,ε = h = 0.301933, shows in Figure 15 a small double
hysteresis phenomenon for biases in agreement with the onesobtained in [26] (the CPU time was 54.57).

Actually the sensitivity to the penalization parameter is due to the fact that this case with two equal
barriers, shows rather small differences between the rightand left Agmon distances. Practically this
would mean that the hysteresis phenomenon (or its absence) is rather unstable with respect to small
variations of the data. As this is shown below, and as other numerical experiments in [31] showed, the
hysteresis phenomenon can be strengthened when the second barrier is wider than the first one. On the
contrary, it disappears as the width of the second barrier becomes significantly smaller than the first one.
The choice of a penalization parameter close toh > 0 broadens this transition.

9.2.2 Case 2.

We now consider the device characterized by :
Donor density 1026 m−3

Fermi levelEF 0.245 eV
Bmin 0 eV
Bmax 3 eV
Height of barrier 3 eV
Size of barriers 5 10−10, 10 10−10 m
Size of well 25 10−10 m
h 0.22
Penalization parameter ε = 0.01
Discretization in voltage 100 points
Discretization in energy 200 points
Position of the well c1 = 17 10−10, c2 = 21 10−10 m
Resonance depth (ε1,ε2) = (2.2,2.8) eV
CPU time 45.50
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Figure 16: Hysteresis

The hysteresis appears more easily with the silicium heterostructures than with the As-Ga ones and
it is more intensive, as it appears in Figure 16. In comparison with the first silicium device, the width of
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the second barrier and of the well have been increased.

9.2.3 Case 3.

The very high barrier potentials permit to create cases witha double well were the two (asymptotic) res-
onant energies eventually take the same value. Let us consider a device with the following parameters :
Donor density 1026 m−3

Fermi levelEF 0.245 eV
Bmin 0 eV
Bmax 2.5 eV
Height of barrier 3 eV
Size of barriers 5 10−10, 5 10−10, 10 10−10 m
Size of well 15 10−10, 10 10−10 m
h 0.2
Penalization parameter ε = 0.01
Discretization in voltage 100 points
Discretization in energy 200 points
Position of the well c1 = 12 10−10, c2 = 30 10−10 m
Resonance depth (ε1,ε2) = (2.5,2.1) eV
CPU time 42.45
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Figure 17: Crossing and Hysteresis

The second resonant energy decreases faster than the first one. They reach the same value for the bias
B∼ 1eV and a new bifurcation branch seems to develop. This last point is even more obvious in the next
case.
Note that there is small piece of hysteresis phenomenon for ahigh applied voltage. It is coupled with
an apparently strange behaviour of the current density, for1.7eV≤ B≤ 2eV . Actually it is an artefact
of our approach : the nonlinear potential is essentially determined via the asymptotic model while the
current is computed with the full linear Schrödinger system once the potential is known. The bias for
which the resonant energy crosses the value 0 is not exactly detected with the asymptotic model. This
generates a substancial error on the current density at thismoment.
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9.2.4 Case 4.

We now consider a case similar to Case 3, with a donor density equal to 5×1026 m−3.
With two wells and according to the discussion of [31, 32, 33]summarized in Subsection 4.1, some
critical cases are possible depending on the comparison of the two extreme Agmon distances. This is
produced in the next example in which the first and third barrier have almost the same size.

Donor density 5 1026 m−3

Fermi levelEF 0.716 eV
Bmin 0 eV
Bmax 2.5 eV
Height of barrier 3 eV
Size of barriers 5 10−10, 5 10−10, 6 10−10 m
Size of well 15 10−10, 10 10−10 m
h 0.13
Penalization parameter ε = 0.01
Discretization in voltage 100 points
Discretization in energy 200 points
Position of the well c1 = 12 10−10, c2 = 30 10−10 m
Resonance depth (ε1,ε2) = (2.5,2.1) eV
CPU time 84.99

\\

\
\

\
\

\\

\
\\

\\

E1

E2

6

V0

6

Bias

-

�c1 c2

0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

Bias (eV)

E
ne

rg
y 

(e
V

)

Energy on the wells according to the applied bias

E
1

E
2

Critical energies

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bias (eV)

E
ne

rg
y 

(e
V

)

Energy on the wells according to the applied bias

E
1

E
2

Critical energies, E
1
=E

2

   t1 = 1

0 ≤ t2  ≤ 1

 0 ≤ t2 ≤ t1  ≤ 1

 0 ≤ t1 ≤ 1

     t 2 = 0

0 0.5 1 1.5 2 2.5
−2

0

2

4

6

8

10

12
x 10

12

B (eV)

I (
A 

m
(−

2)
)

Diagramm current−voltage

Current

Figure 18: Critical solutions
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9.2.5 Case 5.

The last example is a device with four wells. The bifurcationdiagram (figure 19) in which only the
generic cases were considered (no specific solution due to the crossing of resonant energies) suggests a
complex interaction between the different resonant levels.
Donor density 5 1026 m−3

Fermi levelEF 0.716 eV
Bmin 0 eV
Bmax 3 eV
Height of barrier 3 eV
Size of barriers 5 10−10, 5 10−10, 5 10−10, 5 10−10, 5 10−10 m
Size of well 10 10−10, 10 10−10, 5 10−10, 5 10−10 m
h 0.13
Penalization parameter ε = 0.096
Discretization in voltage 100 points
Discretization in energy 400 points
Position of the well c1 = 11 10−10, c2 = 24 10−10, c3 = 39 10−10, c2 = 45 10−10, c5 = 55 10−10 m
Resonance depth (ε1,ε2,ε3,ε4) = (2.09,2.24,1.1,1.68) eV
CPU time 528.63
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Figure 19: Solutions for a device with four wells

10 Conclusion.

These numerical experiments have shown on realistic cases that rather complex bifurcation diagramm
can occur and are numerically accessible. This extends the previous works which were concerned with
the hysteresis phenomenon (see for example [21, 37]). Our model permits to get very rapidly the shape of
the bifurcation diagram. It relies on rigorous mathematical results concerned with the asymptotic regime
of quantum wells in a semiclassical island, given in [32, 33]. Although the asymptotic model required
some modifications in order to fit with the parameters of realistic devices, the numerical results happen
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to be close to the ones of [26, 34, 35] based on a full treatmentof the Schrödinger-Poisson system in the
Landauer-Büttiker approach.

Those calculations must not be considered as final ones. Firstly, as it is discussed after Figure 17,
the values of the current density have to be interpreted withsome care. Secondly, our model does not
take into account the nonlinear effect outside the quantum wells-barriers structure. Actually the space-
charge effects in those area have been shown to be significantin some cases according to [27]. Finally
the asymptotic model on which those calculations are based detects all the possible asymptotic solutions,
without discriminating whether these solutions really exist or not. For example and even without consid-
ering the stability question, it is not clear that the detected critical solution of Figure 18 really exists or
is replaced by some nonlinear beating effect.

Nevertheless these drawbacks are compensated by the rapidity of the method. This numerical ap-
proach can first be used in order to get an insight of the influence of the data (geometry and height
of the barriers, donor density, temperature, applied bias ...) on the shape of bifurcation diagram. Fi-
nally, when several nonlinear solutions are possible, a Newton algorithm for complete simulations of the
Schrödinger-Poisson system requires an initial guess. This approach provides it.

A Critical cases with two wells.

Relations (4.5)–(4.7) are derived here from analytical formulas of [32]. We keep the hypotheses and
notations of Subsection 4.1.
In critical cases with two wells, the possible values oftE0

1 andtE0
2 are the limit points of quantities similar

to

τh
1 = cos2 ϕh

∣

∣θh
1

∣

∣

2

κ0 +
∣

∣θh
1

∣

∣

2 +sin2ϕh

∣

∣θh
2

∣

∣

2

κ0 +
∣

∣θh
2

∣

∣

2 , (A.1)

τh
2 = sin2 ϕh

∣

∣θh
1

∣

∣

2

κ0 +
∣

∣θh
1

∣

∣

2 +cos2ϕh

∣

∣θh
2

∣

∣

2

κ0 +
∣

∣θh
2

∣

∣

2 , (A.2)

with κ0 > 0 and

θh
1 = κ1e

d̃h(c
E0
r ,1)−d̃h(0,c

E0
ℓ )

h
1+ κ2 tanϕh e−

d̃h(c
E0
ℓ

,c
E0
r )

h

tanϕh+ κ3e−
d̃h(c

E0
ℓ

,c
E0
r )

h

, (A.3)

θh
2 = κ1e

d̃h(c
E0
r ,1)−d̃h(0,c

E0
ℓ

)

h
− tanϕh+ κ2e−

d̃h(c
E0
ℓ

,c
E0
r )

h

1−κ3 tanϕhe−
d̃h(c

E0
ℓ

,c
E0
r )

h

. (A.4)

The numbersκi are non vanishing real numbers and the quantityd̃h(x,y) is known up to some small error

d̃h(x,y) = dAg(x,y; Ṽ −E0)+ ε(x,y,h) , with lim
h→0

max
x,y∈[0,1]

|ε(x,y;h)| = 0,

and whereϕh can take any value in[0,π/2] without any additional information onVh. We refer the
reader to [32] pp 250–256 for details about this.
After possibly extracting a subsequence, several cases have to be considered :
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1st case :ϕh h→0→ ϕ0 ∈ (0,π/2)
This asymptotic behaviour ofϕh implies

∣

∣θh
1

∣

∣ ∼ |κ1| e
d̃h(c

E0
r ,1)−d̃h(0,c

E0
ℓ

)

h
1

tanϕ0 , (A.5)

∣

∣θh
2

∣

∣ ∼ |κ1| e
d̃h(c

E0
r ,1)−d̃h(0,c

E0
ℓ )

h tanϕ0. (A.6)

Such a behaviour ofθh
1, θh

2 implies

1≥ lim
n→∞

τh
1 ≥ lim

n→∞
τh

2 ≥ 0.

Indeed, we write

τh
1 ∼ cos2ϕh

1
tan2 ϕh

ch + 1
tan2 ϕh

+sin2ϕh tan2ϕh

ch + tan2ϕh ,

τh
2 ∼ sin2ϕh

1
tan2 ϕh

ch + 1
tan2 ϕh

+cos2ϕh tan2ϕh

ch + tan2ϕh
,

with ch =
κ0

|κ1|2 e2
d(c

E0
r ,1)−d(0,c

E0
ℓ

)

h

.

A simple factorization leads to

τh
1− τh

2 =
ch
(

cos2ϕh−sin2 ϕh
)2(

cos2ϕh +sin2 ϕh
)

(

ch sin2 ϕh+cos2ϕh
)(

ch cos2ϕh +sin2ϕh
) ≥ 0. (A.7)

Three different possibilities can occur :

• dAg(cE0
r ,1;Ṽ −E0) > dAg(0,cE0

ℓ ; Ṽ −E0) : With d̃h(x,y) = dAg(x,y; Ṽ −E0)+ ε(x,y,h) , this
leads to

lim
h→0

∣

∣θh
i

∣

∣= +∞, lim
h→0

τh
i = 1,

and finally t1 = t2 = 1.

• dAg(cE0
r ,1;Ṽ −E0) < dAg(0,cE0

ℓ ; Ṽ −E0) : This case leads to

lim
h→0

∣

∣θh
i

∣

∣= 0, lim
h→0

τh
i = 0,

and finally t1 = t2 = 0.

• dAg(cE0
r ,1;Ṽ −E0) = dAg(0,cE0

ℓ ; Ṽ −E0) : In this case, the asymptotic values oft1, t2 ∈ [0,1]
are undetermined with the constraint

1≥ t1 ≥ t2 ≥ 0,

coming from (A.7). Note that here again the indeterminacy oft1 andt2 is replaced by the two
constraints #JE0 = 2 anddAg(cE0

r ,1;Ṽ −E0) = dAg(0,cE0
ℓ ; Ṽ −E0).
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2nd case : ϕh h→0→ 0
This implies limh→0 tanϕh = 0, limh→0 cosϕh = 1, limh→0 sinϕh = 0 and therefore

τh
i ∼

∣

∣θh
i

∣

∣

2

κ0 +
∣

∣θh
i

∣

∣

2 .

The quotient between
∣
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∣
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1

∣

∣ behaves according to
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∣
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tanϕh + κ3e−d̃h(c
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r )/h

∣

∣

∣

h→0→ 0.

Here are two possibilities (after extraction of subsequences) :

• limh→0
∣

∣θh
2

∣

∣ ∈ (0,+∞] and limh→0
∣

∣θh
1

∣

∣= +∞ : The first condition implies

dAg(c
E0
r ,1;Ṽ −E0) ≥ dAg(0,cE0

ℓ ; Ṽ −E0)

and permits any value
t2 = lim

h→0
τh

2 ∈ (0,1] .

Meanwhile the second condition implies

t1 = lim
h→0

τh
1 = 1.

• limh→0
∣

∣θh
1

∣

∣ ∈ [0,+∞) and limh→0
∣

∣θh
2

∣

∣= 0 : The first condition implies

dAg(c
E0
r ,1;Ṽ −E0) ≤ dAg(0,cE0

ℓ ; Ṽ −E0)

and permits any value
t1 = lim

h→0
τh

1 ∈ [0,1) .

Meanwhile the second condition implies

t2 = lim
h→0

τh
2 = 0.

3rd case : ϕh h→0→ π/2
After replacingϕh by π/2−ϕh, it amounts to the second case.

Remark A.1. The second case contains the limit points of case 1-third part. This suggests that all the
values which satisfy1≥ t1 ≥ t2 ≥ 0 can be achieved.

References

[1] A. A RNOLD, Numerical absorbing boundary conditions for quantum evolution equation. VLSI
Design 6, 1-4 (1998), 313–319.

[2] A. A RNOLD, Mathematical concepts of open quantum boundary conditions. Transp. Theory Stat.
Phys. 30, 4-6 (2001), 561–584.

34



[3] M. BARO, N. BEN ABDALLAH AND P. DEGOND, A 1D coupled Schrödinger drift-diffusion
model including collisions.J. Comp. Phys. 203(2005), 129–153.

[4] M. BARO, H. NEIDHARDT AND J. REHBERG, Current coupling of drift-diffusion models and
Schrödinger–Poisson systems: dissipative hybrid models. SIAM J. Math. Anal.(2005).

[5] N. BEN ABDALLAH , On a multidimensional Schrödinger-Poisson scattering model for semicon-
ductors.J. Math. Phys. 41, 7 (2000), 4241–4261.

[6] N. BEN ABDALLAH , P. DEGOND AND P. A. MARKOWICH, On a one-dimensional Schrödinger-
Poisson scattering model.Z. Angew. Math. Phys. 48, 1 (1997), 135–155.

[7] N. BEN ABDALLAH AND O. PINAUD , Multiscale simulation of transport in an open quantum
system: Resonances and WKB interpolation.To appear J. Comp. Phys.(2005).
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