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Multi-class support vector machines have already proved efficient in protein sec-
ondary structure prediction as ensemble methods, to combine the outputs of sets
of classifiers based on different principles. In this chapter, their implementation as
basic prediction methods, processing the primary structure or the profile of multi-
ple alignments, is investigated. A kernel devoted to the task is introduced, which
incorporates high-level pieces of knowledge. Initial experimental results illustrate
the potential of this approach.

1.1 Introduction

Knowing the structure of a protein is a prerequisite to gain a thorough understand-
ing of its function. The large-scale sequencing projects which have multiplied in the
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last years have produced an exploding number of protein sequences. Unfortunately,
the number of known protein structures has not increased in the same proportion.
Indeed, the experimental methods available to determine the 3D structure, X-ray
crystallography and nuclear magnetic resonance (NMR), are highly labour intensive
and do not ensure the production of the desired result (e.g., some proteins simply
do not crystallize). As a consequence, predicting the tertiary structure of proteins
ab initio, i.e., starting from their sequences, has become one of the most challenging
problems in structural biology. In the sixties, Anfinsen proposed his “Thermody-
namic Hypothesis” (Anfinsen et al., 1963), which implies that there is sufficient
information contained in the protein sequence to guarantee correct folding from
any of a large number of unfolded states. In other words, the problem of interest
can theoretically be solved. However, due to its practical difficulty, highlighted for
instance in (Karplus and Petsko, 1990), it is seldom tackled directly, but rather
through a divide and conquer approach. In that context, a useful intermediate
step consists in predicting first the secondary structure, which is a way to simplify
the prediction problem by projecting the very complicated 3D structure onto one
dimension, i.e., onto a string of secondary structural assignments for each residue
(amino acid). Protein secondary structure refers to regular, repeated patterns of
folding of the protein backbone. The two most common folding patterns are the
alpha heliz and the beta strand. Figure 1.1 is a schematic representation of the sec-
ondary structure of the protein G (Derrick and Wigley, 1994), which was obtained
with the RASMOL software (Sayle and Milner-White, 1995). This structure has
two main parts: an alpha helix, in red on the figure, and a beta sheet made up
of four strands, in yellow. From the point of view of pattern recognition, protein
secondary structure prediction can be seen as a 3-class discrimination task, which
consists in assigning to each residue of a sequence its conformational state, either
a-helix, S-strand or aperiodic (coil). People have started working on this problem
as early as in the late sixties. Since then, almost all the main families of machine
learning methods have been assessed on it. Currently, the best prediction meth-
ods are connectionist architectures (see (Rost and O’Donoghue, 1997; Baldi and
Brunak, 2001; Rost, 2001) for surveys).

Although kernel methods have already found many applications in bioinformat-
ics, as can be seen in the other chapters of this book, to the best of our knowledge,
they have only been applied to protein secondary structure prediction twice. In
(Hua and Sun, 2001), the authors implemented different combinations of bi-class
SVMs to perform the prediction from alignment profiles generated by BLAST. In
(Guermeur, 2002; Guermeur et al., 2003b), different multi-class SVMs (M-SVMs)
were used to combine several prediction methods, as well as the modules (BRNNs)
of the current best prediction method, SSpro (Baldi et al., 1999; Pollastri et al.,
2002). In both cases, the experimental results appeared promising, which was all
the more satisfactory that only standard kernels were used. In this chapter, we
build on these initial works, introducing a M-SVM devoted to the prediction of the
secondary structure from the primary structure, or profiles of multiple alignments.
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Figure 1.1 Schematic representation of the structural elements of the protein G.

Its originality rests in the nature of its kernel, designed to exploit expert knowledge
on the task. The parameterization of this kernel makes use of an original extension
of the principle of kernel alignment (Cristianini et al., 2001, 2002) to the multi-class
case. Once more, experimental results appear promising, as they highlight the rel-
evance of the specification performed. In short, our M-SVM, adequately dedicated,
proves superior to a multi-layer perceptron in all the contexts where the latter is
incorporated in the prediction methods.

The organization of the paper is as follows. Section 1.2 provides a short intro-
duction to M-SVMs, as well as a description of the standard local approach imple-
mented to predict the secondary structure, approach based on the use of a sliding
window. The main part of our contribution, the specification and parameterization
of a kernel exploiting this input, is discussed in Section 1.3. This section details
our extension of the kernel alignment. Last, the resulting machine is assessed in
Section 1.4, where it is compared with a multi-layer perceptron.



A kernel for protein secondary structure prediction

1.2 Multi-class SVMs for Protein Secondary Structure Prediction
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This section introduces the M-SVMs, and the general principle of their implemen-
tation for protein secondary structure prediction.

1.2.1 M-SVMs

In the early days of the development of the SVM method, multi-class discrimi-
nation was implemented with bi-class machines, through decomposition schemes.
The first of them was the so-called one-against-the-rest or one-per-class approach
(Scholkopf et al., 1995; Vapnik, 1995). Later on came the pairwise-coupling de-
composition scheme (Mayoraz and Alpaydin, 1998; Weston and Watkins, 1998).
The first multi-class SVM, more precisely the first SVM algorithm devoted to a
multivariate affine architecture, was the k-class SVM proposed independently by
Vapnik and Blanz (Vapnik, 1998), Weston and Watkins (1998), and Bredensteiner
and Bennett (1999), among others. Alternative possibilities were then investigated
in (Crammer and Singer, 2001; Lee et al., 2001; Hsu and Lin, 2002; Guermeur,
2002). In (Guermeur et al., 2003a), all these machines were endowed with a unify-
ing theoretical framework.

All the M-SVMs share the same architecture, which corresponds, in the feature
space, to a multivariate affine model. This is expressed formally below. Let X be the
space of description (input space), @ > 3 the number of categories, ¥ the Mercer
kernel used and ® a map into the feature space F induced by k. Let F' be the set
of vector-valued functions f = [f;], (1 < j < @), from X into R?, computed by the
M-SVMs. We have then precisely :

VXEX, vje {17"'7Q}7 fj(x) = <wj7(I)(X))+bj

Thus, each category is associated with one hyperplane, and the discriminant
function computed is obtained by application of the standard max rule: a pattern
x is assigned to the category Cj- satisfying j* = argmax; {f;(x)}. In its primal
formulation, training thus amounts to finding the optimal values of the couples
(wj,b5), (1 <j <Q), for a given choice of the kernel k and the soft margin constant
C. In the bi-class case, this choice is performed so as to maximize the (soft) margin.
Strangely enough, in the first papers dealing with M-SVMs, the algorithms proposed
were not related, at least explicitly, to the maximization of some notion of margin.
This could be due to the fact that the standard pathways used to express the fat-
shattering dimension of a SVM in terms of the constraints on the norm of w, such
as the use of a Rademacher’s sequence (see for instance (Bartlett and Shawe-Taylor,
1999; Cristianini and Shawe-Taylor, 2000; Gurvits, 2001)), do not extend nicely to
the multi-class case. Indeed, our efforts to endow the M-SVMs with the standard
results derived in the framework of the theory of large margin classifiers (Guermeur
et al., 2003a) call for additional work. To the best of our knowledge, the only other
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study on the generalization capabilities of M-SVMs involving an extended notion
of margin is reported in (Crammer and Singer, 2001). As usual, the corresponding
quadratic programming (QP) problem is solved in its Wolfe dual form (Fletcher,
1989). Several algorithm can be applied to perform the optimization. Qur software
of the k-class SVM, used in the experiments described below, and available through
the web site of kernel machinesl, implements a variant of the Frank-Wolfe algorithm
(Frank and Wolfe, 1956) which includes a decomposition method (see also (Elisseeff,
2000)).

1.2.2 Selection of the predictors

The standard way to perform protein secondary structure prediction with statistical
discriminant methods consists in applying a local approach. Precisely, the predictors
used to predict the conformational state of a given residue are the amino acids
contained in a window of fixed size centered on this residue. To code the content of
each position in the window, a vector of 22 components is used. Each of the 20 first
components correspond to a specific amino acid (there are 20 of them), whereas
the 2 remaining ones are used to take into account unknown amino acids, usually
designed by an ’X’ in the databases, as well as empty positions in the window.
Empty positions occur when the window extends over the N terminus or the C
terminus of the chain of interest. In short, the coding used to represent the window
content is the standard orthonormal one, which induces no correlation between the
symbols of the alphabet. What appears a priori as an advantage is an inconvenience
here, as will be pointed out below. Given a window size |W| = 2n + 1 (typically,
n will range from 5 to 10), the number of predictors is thus equal to (2n + 1).22,
only 2n + 1 of them being equal to 1, the rest being equal to 0. We thus end up
with large but very sparse vectors. Things are different when profiles of multiple
alignments are used in place of the primary structure. Special attention must be
paid to the inclusion of evolutionary information in this form, since it is known to
improve significantly the performance of the prediction methods (see for instance
(Rost and Sander, 1993; Geourjon and Deléage, 1995)). For the sake of simplicity,
details on this alternative possibility are postponed to Section 1.3.3.

1.3 Specification of the Kernel

Protein secondary structure prediction is a field that has emerged more than thirty
years ago, and has been since then the subject of intensive researches. Nowadays,
one cannot expect to improve over the state-of-the-art but with a discriminant
method specifically designed for the task. In the case of a kernel method, this
means of course designing a new kernel. The one that is introduced in this section

1. http://www.kernel-machines.org
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rests on very simple biological considerations.
1.3.1 Shortcomings of the standard kernels

Consider the vector x used to predict the conformational state of a given
residue. Then, according to the choice of predictors described above, x =
[x,n,...,mi,...,xn]T e {0, 1}(2"+1)'22, where z; is the canonical coding of the
amino acid which occupies the it position in the window. Consequently, the func-
tion computed by a Gaussian kernel applied on two window contents x and x’ can
be rewritten as :

k(X, xl) = exp (_M) — exp <_ (2n + ]-) - E?:*n 6z,,wi> (11)

202 o2

where ¢ is the Kronecker symbol. The right-hand side of (1.1) highlights the fact that
the kernel only depends on the Hamming distance between the two strings. This
is a poor summary of the information contained in the data. Indeed, two segments
corresponding to 3D-superposable parts of homolog proteins, and thus sharing the
same secondary structure, can differ significantly due to two evolution phenomena,
insertion/deletion and substitution. The Hamming distance is very sensitive to the
first one, whereas it does not take into account the nature of the substitutions,
just their number. As a consequence, one cannot expect such a combination of
kernel and coding (things would be similar with the other standard kernels), to
give satisfactory results for the problem of interest. This simple observation is at
the origin of the work on kernel design described in the following subsections, work
which makes a central use of an original extension to the multi-class case of the
notion of kernel alignment.

1.3.2 Multi-class kernel alignment
1.3.2.1 Framework

Kernel alignment has been introduced in (Cristianini et al., 2001), as a mean
to assess the degree of fitness of a kernel to a given learning task, and adapt in
consequence the Gram matrix to increase this fitness. It is thus basically a method
conceived to perform transduction, since the resulting kernel is not available in
analytical form. However, we use it here with another purpose, namely to estimate
some kernel parameters. The reason for this choice is the following. Consider a
family of kernels, where each element is characterized by the value of a formal
parameter  belonging to a set ©. This family, (ky)gco, is supposed to be built
upon some knowledge on the task of interest. In order to select a kernel function
kg+ that will give good performance, a natural and practical approach consists of
endowing the whole family with a measure of adequacy, and then optimizing this
measure with respect to the parameter. A typical example of measure of adequacy,
often used in practice, is the score given by a cross-validation procedure. However,
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choosing it raises two difficulties. First, this can only be done when the set © is
finite (or was discretized). Second, it is computation consuming, since the cross-
validation procedure is to be run for each value 6; in ©. The solution advocated in
(Chapelle et al., 2002) has the same drawback, since it requires to train a SVM at
each step of a gradient descent. Kernel target alignment is a score which does not
exhibit these shortcomings. In what follows, we first define it, and then describe its
use to tune a kernel with respect to some parameter.

1.3.2.2 Kernel alignment principle

Definition 1.1 Kernel alignment

Let k and &' be two measurable kernel functions defined on X x X', where the space
X is endowed with a probability measure P. The alignment between k and %' is
defined as follows :

(k, k"2 [ k(x,x")k'(x,x")dP(x)dP(x")
[1Ell=[1%"1l2 VI B x)2dP()dP(x') [ [ B/ (x,x')2dP(x)dP(x')

Ak, k) = (1.2)

Definition 1.2 Empirical kernel alignment

Let k and k' be two kernel functions defined on X x X and consider a data set
X = (x1,...,X;) € X™. The empirical alignment of k with k' with respect to X
is the quantity:

(K,K')r
IK |7 [IK[| 7
where K and K' respectively denote the kernel Gram matrices associated with k
and %', computed on the sample X, {.,.)r denotes the Frobenius inner product
between matrices, so that (K, K')r = Y770, 3700, k(xi, x;)k' (xi,%;), and ||.||F is
the corresponding norm.

Ax(K,K') = (1.3)

The alignment between two kernels k and k' should be thought of as a measure of
their similarity. Roughly speaking, if k' is a well suited kernel for the problem at
hand and k is well aligned with &', then & should also be a good kernel for the same
problem. In practice, as the alignment is not computable (since the underlying
distribution P is unknown), it is estimated empirically, with (1.3). Some concen-
tration properties of Ax (K, K') around its expected value A(k, k') were studied in
(Cristianini et al., 2001).

1.3.2.3 Tuning parameter 0 using kernel target alignment

Now, the strategy to tune parameters based on this measure can be summarized as
follows:

(1) Select a theoretically ideal kernel k;, hereafter called the target kernel, ideal in
the sense that it leads to perfect classification. Practically, the Gram matrix of &



2003/10/20 14:00

A kernel for protein secondary structure prediction

should be computable.

(2) Given a training set of labelled examples Z = ((x1,%1),-- -, (Xm,Ym)), choose
0* satisfying :

0* = argmax Az(ka, k)
fco
In doing so, the conjecture is that the kernel kg« will behave well, provided the family
(kg)oco is relevant for the problem at hand. In (Cristianini et al., 2001), the authors
only considered the case of dichotomies. Their ideal kernel is the obvious one,
namely k;(x,x’) = yy'. Our extension to the multi-class case, based on geometrical
considerations developed in (Vert, 2002), is the following one:

1 ify=yvy
ke(x,x') = Ty y
-1/(Q — 1) otherwise
This target kernel corresponds to a mapping ®; associating each description x to

one of the @ vertices of a (Q — 1)-dimensional centered simplex, according to the
category to which it belongs (see Figure 1.2). This clusterisation in the feature

initial input space target feature space
+
+ O + FARN
(0] , N
0O x + y \
0O X ki (D) N\
+ X X —— 120°
+Xo = X4 . \
0 + (0] y \
X 0X g + o X

Figure 1.2 3-class problem in 2D : the target kernel performs an optimal clustering
of the data in the feature space.

space is obviously the one that makes the subsequent (multi) linear separation
performed by the M-SVM easiest. Note that under some regularity assumptions on
kg, Az (kg, k) is differentiable with respect to 6, and can thus be optimized using
classical techniques, such as gradient descents.
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1.3.3 Incorporating biological knowledge in a convolution kernel

In what follows, we adopt the terminology of (Williamson et al., 2001), where a
convolution kernel is a kernel satisfying k(x,x’) = k(x — x',0). Our goal is to
take into account in such kernels two of the factors which have proved important
to predict the secondary structure: the nature of the substitutions between two
segments, and the relative influence of the amino acids involved as a function of
their position in the window.

1.3.3.1 Dot products between amino acids

In Section 1.2.2, we pointed out the fact that the standard processing of protein
sequences for secondary structure prediction involves a canonical orthonormal cod-
ing of the amino acids. This is all the more unsatisfactory that the biologists have
derived well known similarity matrices for the amino acids, which differ significantly
from the identity. It is the case of the PAM (Percent Accepted Mutations) (Dayhoff
et al., 1978) and BLOSUM (BLOcks SUbstitution Matrix) (Henikoff and Henikoff,
1992) matrices, sometimes called substitution matrices, which are especially well
suited in their log odds form. The problem raised by their use in a kernel springs
from the fact that they are not symmetric positive semidefinite, and thus are not
associated with an underlying dot product. To overcome this difficulty, one can
think of several off-the-shelve solutions. Since the matrices are symmetric, one sim-
ple way to approximate them with a Gram matrix consists in diagonalizing them
and replacing all the negative eigenvalues with 0. Another possibility consists in
looking for their projection on the space of symmetric positive semidefinite matri-
ces, the operator being associated with a matrix norm, for instance the Frobenius
one. Although the projection operator will usually not be available in analytical
form (the problem to be solved is a non-convex one), satisfactory estimates can
result from a simple gradient descent. This descent is performed with respect to
the components of the vectors representing the amino acids.

This change in the coding of the amino acids extends nicely to the case where
multiple alignments are used. In that case, the profile presented as input of a
connectionist classifier (see for instance (Rost and Sander, 1993; Jones, 1999;
Pollastri et al., 2002)) is simply obtained by computing, for each position in the
window, a weighted average of the vectors coding the amino acids present in the
corresponding position of the alignment. The weight associated with a particular
amino acid is its frequency of appearance in this position. In practice, let aj,
(1 < j < 22), be the coding of the j** amino acid (or an unknown residue, or the
empty position), and 6;; its frequency of appearance in the position of the alignment
corresponding to the it® position of the sliding window. Then the window can be
represented by x = [ir_n,...,iri,...,irn]T, with #; = Z;il 0;5a;. Thus, in the
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computation of the kernel, the dot product {z;, z}) is simply replaced with:

22 22 22 22
(@, ) = (O 6ia5, > Oar) =Y Y 6:;0i(a;, ar) (1.4)
j=1 k=1 j=1 k=1

1.3.3.2 Influence of the position in the window

As stated in Section 1.2.2, the use of the sliding window is standard in protein
secondary structure prediction. Many studies have dealt with the choice of its size,
or the exploitation of its content. Good illustrations are given by (Qian and Se-
jnowski, 1988; Zhang et al., 1992; Rost and Sander, 1993). In short, a too small
window will not include enough information on the local conformation, whereas
a too large one will incorporate data that risks to behave like noise. A way to
overcome this difficulty consists in choosing a priori a large value for the size of the
window, and associating each position with a weight (irrespective of the nature of
the amino acid), so as to modulate its influence in the subsequent computations.
This was already performed with success by different teams (Gascuel and Golmard,
1988; Guermeur, 1997). An interesting point is that these studies, although they
involved very different approaches, produced similar distributions of the weights
as a function of the position. This suggests that they were capable of highlighting
some intrinsic property of the problem of interest. We thus decided to incorporate
such a weighting in our kernel, with the values of the weights being derived through
the multi-class kernel alignment.

Both parameterizations, the change in the “dot products between amino acids”
and the weighting of the positions in the window, can be applied to any kind of
convolution kernel. For the sake of simplicity, their incorporation is illustrated below
in the case of a Gaussian kernel processing multiple alignments:

oo S (1212 + 1751 — 234, 73))
k.gﬁD( ,X)—eXp -

202 (15)

where 6 is the vector of weights and D the matrix of dot products.

1.4 Experimental Results

2003/10/20 14:00

We have already pointed out above the difficulty to develop a state-of-the-art
secondary structure prediction method. Nowadays, all the most accurate statistical
methods are based on huge hierarchical and modular architectures. The best
illustration of this phenomenon is given by the methods PSIPRED (Jones, 1999),
SSpro2 (Pollastri et al., 2002) as well as those described in (Riis and Krogh, 1996;
Petersen et al., 2000). In these architectures, which can incorporate up to several
hundreds of components, the contribution of a single module (ordinarily a neural
network) can hardly be assessed. From a general point of view, our goal hereafter
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is not to obtain recognition rates comparable with those of the above methods, but
rather to highlight the fact that in each of the various contexts where a MLP can
be used to perform protein secondary structure prediction (as part of a hierarchical
classifier, as ensemble method, etc.), significant benefits result from replacing it with
our M-SVM. In that respect, this study can be seen as the natural continuation of
those reported in (Guermeur, 2002; Guermeur et al., 2003b).

1.4.1 Experimental protocol

To assess our classifier, we used the set of 1096 protein sequences introduced in
(Guermeur et al., 2003b) under the reference P1096. This set was designed so as
to meet the toughest requirements in terms of percentage of identity (see (Sander
and Schneider, 1991) for details). Secondary structure assignment was performed
with the DSSP program (Kabsch and Sander, 1983). This assignment is essentially
based on hydrogen-bonding patterns. The reduction from 8 to 3 conformational
states was derived according to the CASP method, given by: H+G — H (a-helix),
E+B — E (8-strand), and all the other states in C (aperiodic or coil). This assign-
ment is known to be somewhat harder to predict than the other ones used in the
literature (see for instance (Cuff and Barton, 1999)). The PSI-BLAST alignments
were compiled according to the protocol described in (Pollastri et al., 2002).

As stated in the introduction, the prediction of the secondary structure is seldom
a goal in its own right. It is primarily a step towards the prediction of the tertiary
structure. As a consequence, the main concern of the biologist is the recognition
of all the structural elements in their order of appearance in the sequence. A small
shift in the relative locations of the true and predicted structures can be tolerated,
but the prediction must remain biologically plausible (no helix can be shorter than
4 residues, two periodic structures cannot be consecutive, etc.). As a consequence,
the sole per residue recognition rate, hereafter denoted by @3, is not sufficient
to characterize the quality of the prediction. To overcome this difficulty, many
alternative measures of quality have been proposed. The interested reader will
find in (Baldi et al., 2000) a review on the subject. In what follows, we use the
three most common quality measures: the ()3, the Pearson’s/Matthews’ correlation
coefficients C' (Matthews, 1975), and the segment overlap measure Sov (Rost et al.,
1994; Zemla et al., 1999), which give complementary indications. Whereas each
of the Matthews’ coefficients characterizes the quality of the prediction for one
particular conformational state (a/8/ coil), which makes it possible, for instance,
to emphasize a poor identification of the sheets, the values of the Sov coefficients
give an idea of the prediction accuracy at the segment level, meeting by way of
consequence one of the central requirements listed above.



12

2003/10/20 14:00

A kernel for protein secondary structure prediction

1.4.2 Estimation of the parameters

The matrix of dot products between amino acids was derived from the similarity
matrix introduced in (Levin et al., 1986). This choice resulted from the fact that
this matrix had been specifically devised to perform secondary structure prediction
based on the similarity of small peptides, i.e. on local sequence homology (see also
(Levin and Garnier, 1988; Geourjon and Deléage, 1995)). In this context, it has
reportedly proved superior to the Dayhoff substitution matrix. Among the two
possibilities considered in Section 1.3.3.1 to generate the Gram matrix, we chose
the one based on diagonalization. However, this choice was primarily made for the
sake of reproducibility, since a simple gradient descent gave very similar results
(Didiot, 2003). With this set of dot products at hand, the vector of weights 8
could be obtained thanks to the implementation of the multi-class target alignment
principle, through a stochastic gradient descent procedure (see (Vert, 2002) for
details). The training set was the set of 1180 sequences used to train SSprol and
SSpro2. This set, described in (Baldi et al., 1999; Pollastri et al., 2002), will be
referred to below as P1180. This choice could be made since no sequence in this
base is the homolog of a sequence of the P1096 base (see also (Guermeur et al.,
2003b)). Figure 1.3 illustrates the resulting values of the coefficients 6;. This curve is

theta

| | | | | | | | | | |
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
position in the window

Figure 1.3 Vector 4 of (1.5) maximizing the kernel target alignment.

very similar to those mentioned in Section 1.3.3.2. One of their common features is
a significant dissymmetry in favour of the right-hand side context. This intriguing
phenomenon, the observation of which utterly rests on statistical basis, and by
no means on the incorporation of a priori knowledge on the task, has found no
biological justification so far.
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sequences alignments
MLP | M-SVM | MLP | M-SVM
Qs 61.6 62.0 72.0 72.3
Ca 0.46 0.47 0.63 0.64
Cp 0.33 0.35 0.53 0.54
Ce 0.38 0.38 0.53 0.54
Sov 53.9 54.2 65.1 65.3
Sove | 57.8 57.9 66.5 66.7
Sovg 44.7 46.1 61.5 62.3
Sove | 57.3 57.3 66.7 66.8

Table 1.1 Relative prediction accuracy of a MLP and the M-SVM on the P1096
data set.

1.4.3 Prediction from the primary structure and multiple alignments

This subsection describes the implementation and results of two experiments in-
spired by the pioneering works reported in (Qian and Sejnowski, 1988), and (Rost
and Sander, 1993). In the first one, the M-SVM is compared with a MLP in the case
where the input (vector x) is simply given by the content of a window of size 13
sliding on the sequence. In the second one, single sequences are replaced with PSI-
BLAST multiple alignments. To perform these experiments, we used twice the same
procedure, a standard five-fold cross-validation (the P1096 base was devided into
four sets of 219 sequences, and one set of 220 sequences). In both cases, the MLP
had one hidden layer of eight units with sigmoid activation functions, and softmax
output units. The parameterization of the M-SVM also remained unchanged, with
the soft margin constant C being equal to 10.0, and the width of the Gaussian
kernel being set to 0 = 10.0. Table 1.1 summarizes the results obtained.

In both configurations, the gain in recognition rate resulting from using the
M-SVM in place of the MLP is statistically significant with confidence exceeding
0.95. The size of the base (255551) compensates for the small value of the in-
crease. However, what is more promising, all measures of accuracy benefit from
the change. This is particularly noticeable for the g-strands, usually the hardest
conformational segments to predict. In (Hua and Sun, 2001), the authors noticed
that the superiority of combinations of (bi-class) SVMs over MLPs was highlighted
with the Sov coefficients. Although we were unable to duplicate their experiments
and get similar results (we observed far lower Sov coefficients than they did), the
same conclusion can be inferred here.

The number of dual variables of a M-SVM is equal to the number of categories
minus one times the size of the training set ((Q —1)m). An idea of the complexity of
the discriminant function it computes is given by the number of training examples
for which at least one of the dual variables is different both from 0 and from C
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(examples which should lie on one of the margins). In all our experiments (ten
trainings of the M-SVM), the ratio of such points ranged between 25% and 30%.

1.4.4 Discussion

The results of the experiments reported above support the thesis of the superiority
of our M-SVM over the standard MLP for the task at hand. However, the real
touchstone to judge its usefulness is obviously the incorporation in a state-of-the-
art prediction method, as we already did with SSpro2. To pave the way for this
new step, one can think of implementing several straightforward improvements.
A simple one is the choice of a better matrix of dot products between amino
acids (matrix D). Instead of choosing, a priori or by any model selection method,
one specific similarity matrix, one can take benefit of the fact that a convex
combination of symmetric positive semidefinite matrices is still a symmetric positive
semidefinite matrix. This makes it possible to select a whole set of similarity
matrices, estimate them with Gram matrices, and compute the optimal combination
thanks to the procedure described in Section 1.3.2.3. Another useful development
is the post-processing of the conformational scores generated, to produce class
posterior probability estimates. These estimates could then be used to compute
the observation probability density functions of a HMM, as we did for instance in
(Guermeur, 2002). Both possibilities are the subject of an ongoing work.

1.5 Conclusion and Future Work

2003/10/20 14:00

We have described a first attempt to implement M-SVMs to perform protein
secondary structure prediction from the primary structure, or profiles of multiple
alignments. This study has focused on the design of a kernel incorporating high-level
knowledge on the task. The process of evolution, which makes two homolog proteins
differ in their sequences, while keeping similar folds, is based in two phenomena:
substitution and insertion/deletion. If one can think of simple solutions to take
the first phenomenon into account with a kernel, as the one we used, the second
one raises more difficulties. Indeed, if substituting a multiple alignment to a single
sequence provides useful additional evolutionary information, this procedure alone
does not solve the problem of the comparison of two window contents by means of
a dot product. What if they only differ by an insertion ? A priori, a natural way
to overcome this difficulty would consist in making use of the results established
by Haussler (1999), or Watkins (1999), regarding dynamic alignment kernels and
select, for instance, an adequately designed pair HMM (Durbin et al., 1998) to
compute the kernel function. However, this solution currently remains unfeasible
for such large problems as those we are interested in, due to its prohibitive CPU time
requirements coming from too high computational complexity. Cheaper alternatives
are thus badly needed. Well suited spectrum (Leslie and Kuang, 2003) and rational
(Cortes et al., 2003) string kernels, which can extract the similarity of unequal
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length pairs of strings, are potentially good candidates with their efficient linear
computational complexity. Their incorporation in our machine is currently under
investigation.
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