A Kernel for Protein Secondary Structure Prediction - Archive ouverte HAL
Chapitre D'ouvrage Année : 2004

A Kernel for Protein Secondary Structure Prediction

Yann Guermeur
  • Fonction : Auteur
  • PersonId : 830806
Alain Lifchitz
  • Fonction : Auteur
  • PersonId : 830776
Régis Vert
  • Fonction : Auteur
  • PersonId : 830807

Résumé

Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is introduced, which incorporates high-level pieces of knowledge. Initial experimental results illustrate the potential of this approach.
Fichier principal
Vignette du fichier
04guermeur.pdf (279.26 Ko) Télécharger le fichier

Dates et versions

hal-00012701 , version 1 (01-12-2005)
hal-00012701 , version 2 (11-12-2005)

Identifiants

  • HAL Id : hal-00012701 , version 2

Citer

Yann Guermeur, Alain Lifchitz, Régis Vert. A Kernel for Protein Secondary Structure Prediction. Bernhard Schölkopf, Koji Tsuda, Jean-Philippe Vert. Kernel Methods in Computational Biology, The MIT Press, Cambridge, Massachussetts, pp.193-206, 2004, 0-262-19509-7. ⟨hal-00012701v2⟩
354 Consultations
420 Téléchargements

Partager

More