
HAL Id: hal-00012694
https://hal.science/hal-00012694v1

Preprint submitted on 26 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architectural Considerations for a Self-Configuring
Routing Scheme for Spontaneous Networks

José Ignacio Alvarez-Hamelin, Aline Carneiro Viana, Marcelo Dias de Amorim

To cite this version:
José Ignacio Alvarez-Hamelin, Aline Carneiro Viana, Marcelo Dias de Amorim. Architectural Con-
siderations for a Self-Configuring Routing Scheme for Spontaneous Networks. 2005. �hal-00012694�

https://hal.science/hal-00012694v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

12
69

4,
 v

er
si

on
 1

 -
 2

6 
O

ct
 2

00
5

Architectural Considerations for a Self-Configuring
Routing Scheme for Spontaneous Networks

Ignacio Alvarez-Hamelin
LPT – CNRS

University of Paris XI
Bâtiment 210

91405 Orsay Cedex - France
Ignacio.Alvarez-Hamelin@lri.fr

Aline Carneiro Viana
IRISA – INRIA

Campus de Beaulieu
35042 Rennes cedex - France

aline.viana@irisa.fr

Marcelo Dias de Amorim
LIP6 – CNRS

University of Paris VI
8, rue du Capitaine Scott

75015 Paris - France
marcelo.amorim@lip6.fr

Abstract— Decoupling the permanent identifier

of a node from the node’s topology-dependent

address is a promising approach toward completely

scalable self-organizing networks. A group of pro-

posals that have adopted such an approach use

the same structure to: address nodes, perform

routing, and implement location service. In this

way, the consistency of the routing protocol relies

on the coherent sharing of the addressing space

among all nodes in the network. Such proposals

use a logical tree-like structure where routes in this

space correspond to routes in the physical level.

The advantage of tree-like spaces is that it allows

for simple address assignment and management.

Nevertheless, it has low route selection flexibility,

which results in low routing performance and poor

resilience to failures. In this paper, we propose to

increase the number of paths using incomplete hy-

percubes. The design of more complex structures,

like multi-dimensional Cartesian spaces, improves

the resilience and routing performance due to the

flexibility in route selection. We present a frame-

work for using hypercubes to implement indirect

routing. This framework allows to give a solution

adapted to the dynamics of the network, providing

a proactive and reactive routing protocols, our

major contributions. We show that, contrary to

traditional approaches, our proposal supports more

dynamic networks and is more robust to node

failures.

I. Introduction

A scalable location (lookup) service is one of the
main design blocks of a completely self-organizing
architecture for spontaneous networks. In traditional
wired networks, location information can be eas-
ily embedded into the topological-dependent node
address, which also uniquely identifies the node in

the network. In self-organizing networks, however, a
source only knows the destination’s identifier, and
this identifier does not give any clue of the desti-
nation’s address. There is no static relation between
the node’s location and the node’s identifier as a
consequence of the spontaneity and adaptability of
the network.

In response to these requirements, distributed hash
tables (DHT) can be adopted as a scalable sub-
strate to provide location-independent node identi-
fication [1], [2], [3], [4], [5], [6]. The functionalities
of decoupling identification from location, and of
providing a general mapping between them, have
made the DHT abstraction an interesting principle
to be integrated at network layer. Thus, indirect

routing systems that offers a powerful and flexible
rendezvous-based communication abstraction [4], [5],
[6], [7], [8], [9] can be implemented.

A number of works have already proposed to use
DHTs in routing protocols. These works can be clas-
sified in two main groups, which differ in the way the
DHT structure is deployed [10]. In the first group,
the addressing and the lookup models are completely
independent and routing is performed at the designed
addressing structure. A DHT structure is defined to
distribute and locate information among the nodes
in the addressing structure. Examples of proposals
in the literature that implement this approach are:
Terminodes [4], [11], [12], Grid [5], [13], and DLM [6].
Most of them assume, however, that nodes know their
geographic coordinates through some positioning sys-
tem (e.g., GPS). In the second group classification,
the same structure deployed to address nodes and
consequently to perform routing, is also used by the
lookup model. This model describes a coherent shar-



ing of the addressing space among the nodes, which
determines the consistency of the routing protocol.
Tribe [9], PeerNet [8], [14], Landmark [15], [16], and
L+ [7] are examples of such protocols.

The proposals that fall in the second group proved
that it is possible to build a logical and mathe-
matical structure from mere connectivity between
nodes. Routing using this mathematical space gives
the exact behavior of the routing mechanism in the
physical layer. Nevertheless, they lack of robustness
since their space sharing mechanism follows a tree
structure. Although simple to implement, a tree offers
low flexibility in route selection. Furthermore, tree
structures are not robust to node mobility, since a
node departure causes the breakage of the tree.

Motivated by these observations, in this paper,
we propose to use incomplete hypercubes instead
of trees. Contrary to trees, hypercubes allow the
establishment of multiple paths between any two
nodes, which increases the robustness of the topology
to mobility. Indeed, according its literal concept, a
tree not allows nodes, in its subtree, to be connected
to nodes in others subtrees. Moreover, a tree is a
2-dimensional structure. Otherwise, in a hypercube
nodes can communicate in a d-dimensional space,
which allows multiple paths among nodes. We expect
then to represent at least a part of the broadcast
nature of wireless scenarios through the multiple
dimensions of a hypercube. In wireless environments,
the connectivity is controlled by the density and com-
munication range of nodes, which can be relatively
large.

Our contributions are twofold. First, we propose
a proactive routing approach, where routes are de-
termined a priori. Second, we propose a reactive
protocol that establishes routes on an on demand
basis. While the proactive approach is more adapted
to quasi static networks, the reactive protocol is
indicated to mobile networks. We show through a
number of examples that our proposals are promising
and are more robust to dynamic networks than the
existent related tree-like approaches.

The remainder of the paper is organized as fol-
lows. In Section II, we present the indirect routing
model approach with related work and the proposed
architecture. We introduce the hypercube used as
addressing space in Section III. Section IV presents
our approach and discusses routing-specific issues.
Some cases of study are addressed in Section V
and Section VI discusses the applicability and future

researches of our proposal.

II. Indirect routing strategy

The indirect service model is instantiated as a
rendezvous-based communication abstraction. Nodes
called rendezvous nodes are responsible for storing the
location information of others nodes in the topology.
Routing is performed indirectly and the rendezvous
nodes translate a node’s identifier into its location-
dependent address in the topology.

Routing is performed through a topology-
dependent technique. Every node is identified by its
position in the topology, which is translated into
a topology-dependent address. It is important to
underline that the only way of routing is by using
this address. In the general case, every node has three
identifiers. The first one, called universal identifier,
U , is supposed to be known by any other node
that are supposed to communicate with the node.
This identifier is independent of any network-level
characteristics. It can be a word, a numerical value,
or even an IP-like address. The second identifier,
the virtual address V , is a translation of U into the
virtual addressing space, V. This identifier is used
to name the correspondent rendezvous node. The
last identifier, the relative address E, is the current
topology-dependent address of the node. Observe
that the relative address changes if the node moves,
but both the universal and virtual identifiers remain
unchanged. Fig. 1 illustrates the steps of the routing
procedure and the use of the described identifiers.

When source s wants to communicate with des-
tination d and has no idea of d’s relative address,
it first contacts the node responsible for storing the
relative address of node d (arrow 1). Call this node
Td. Thus, the message sent by s will travel in the
network until it is received by Td. Note that node s
does not know Ed, but it knows Vd (obtained from
Ud). Node Td knows the relative address Ed because
node d has previously informed Td about its current
address. The rendezvous node Td plays the role of
a “rendezvous” point where the location of node d
is stored. The particularity of this approach is that
the rendezvous point is virtually identified and can
be any physical node in the network. Rendezvous
nodes are distributed and depend only on the nodes’
identifiers. When contacted by s, Td responds with
a message containing the relative address of node d,
Ed (arrow 2). Node s can now communicate directly
with d (arrow 3).



d

s

T

1 2
3

Fig. 1. Lookup (arrows 1 and 2) and direct communication
(arrow 3) phases in a DHT-based routing procedure

A. Related work

In the traditional Internet model, routing infor-
mation is embedded into the topological-dependent
node address, i.e. IP addresses have been defined for
both identifying and locating a node in the network.
This does not work well in mobile networks (even if
they are not self-organized networks), because perma-
nent node addresses cannot include dynamic location
information, which invalidates topology information.
More recently, a number of flooding-based protocols
have been used to address this problem in the specific
case of ad hoc networks. Nevertheless, it has been
observed that these architectures do not scale well
beyond a few hundred nodes [17], [18]. For instance,
in sensor or wireless mesh networks, where the po-
tential number of addressable nodes may be in the
order of thousands, current solutions cannot be used.

Most proposed routing algorithms for self-
organizing networks distribute the topology
information to all nodes in the network. Thus,
following the idea of indirection routing, the i3 [19]
proposes an overlays-based infrastructure that offers
a rendezvous based communication abstraction.
i3 decouples the act of sending from the act of
receiving: sources send packets to a logical identifier
and receives express interest in packets sent to this
identifier. i3 uses a set of servers that store identifiers
and map packets with these identifiers to i3 nodes
interested in receiving the packets. This approach
combines the generality of IP-layer solutions with
the versatility of overlay solutions. Our proposition
uses a similar concept of indirect routing, however,
it is not based in an overlay infrastructure and is
independent of IP-layer.

L+ [7] proposes an improved version of Land-
mark [15], [16] routing, which is better suited to
large ad hoc wireless networks. This protocol de-
scribes a more scalable address lookup service and

algorithm improvements that react better to node
mobility. An L+ node updates one location server
for each level in the landmark hierarchy. L+ uses a
routing algorithm similar to DSDV [20] and keeps
more than just the shortest route to each destination.
Nevertheless, L+ and Landmark creates a tree-based
hierarchical topology where nodes are placed, offering
a low flexibility in route selection.

Tribe [9] is a rendezvous-based routing protocol for
self-organizing networks. By managing regions of a
logical addressing space, Tribe nodes route in a hop-
by-hop basis with small amount of information and
communication cost. Nodes that are physically close
in the network also manage close regions in the Tribe
addressing space. Thus, the main component of Tribe
is its proposed simple manageable addressing space
used to assign addresses to nodes. Nevertheless, this
space is also a tree-like structure, which limits paths
by the hierarchical structure of a tree – there is only
one path between any two nodes.

Similarly to Tribe, PeerNet [14] is a peer-to-peer
based network layer for dynamic and large networks.
The address reflects the node’s location in the net-
work and is registered with the respective identifier
in the distributed node lookup service. In PeerNet,
the addresses are organized as leaves of a binary
tree – the address tree. PeerNet routing is a recursive
procedure descending through the address tree. Thus,
in contrast to Tribe, PeerNet routing disseminates
information about the global state of the network,
and nodes maintain a routing table that has l = log N
entries, i.e. O(log N) per-node state (where N is a
number of nodes in the network). Because of the
address tree organization, a node movement may
require the assignment of new addresses to several
nodes in PeerNet infrastructure, which implicitly gen-
erates many updates in lookup entries.

B. Increasing the number of paths connections

The design of a self-organized network architec-
ture requires an efficient combination of robustness
and complexity. The resilience of existent proposals
and, consequently, the performance of the routing
protocols are strongly related to the complexity of
the deployed addressing structure. On the one hand,
tree-like structures (e.g., L+ [7], Tribe [9], and Peer-
Net [8]) lead to simple manageable spaces. Neverthe-
less, they have low route selection flexibility, which
results in low routing performance and poor resilience



to failures/mobility. Their low complexity is obtained
at the cost of some loss of robustness. On the other
hand, more complex structures, like multidimensional
Cartesian spaces, improve the resilience and routing
performance due to the flexibility in route selec-
tion. The associated addressing and location models,
however, become more complex and require a tight
association between the logical and physical planes.
In this paper, we propose to increase the number of
paths connections through hypercubes.

Hypercubes have the inherent property of multiple
paths between any couple of nodes, given a good and
interesting logical-topological mapping. This possibil-
ity gives the following improvements. First, traffic can
be well balanced, in contrast to what occurs in a tree,
where the root is heavily charged. This characteristic
allows to use more efficiently the bandwidth. Another
important improvement is that distances in a network
are closer to real distances, which is not necessarily
true in a tree. This makes communications shorter.
Finally, a hypercube allows to use different routing
methods thanks to its logical-topological mapping
(proactive and reactive routing), i.e. the network
could have a routing schema adapted to the dynamics
of the network.

In the following sections, we present our address-
ing system and explain how hypercube representa-
tion allows the specification of a logical structure
where proactive/reactive routing approaches can be
exploited while the lookup service is performed in a
simple way.

III. Address Spaces based on hypercubes

In this section, we describe how to implement
a virtual addressing space based on a hypercube
structure.

A. A very brief overview of hypercubes

The hypercube is a generalization of a 3-
dimensional cube to an arbitrary number of dimen-
sions d. Each node of the d-hypercube has coordinates
0 or 1 for each dimension, covering all the combina-
tions. This implies that the total number of nodes is
2d. Each node is linked to all nodes whose coordinates
differ only in one dimension. For example, the cube
has a node at coordinates (0, 0, 0), or simply 000,
which is connected with nodes at coordinates 001,
010 and 100, because all these nodes differ only in

one of their dimensions. Thus, the degree, i.e. the
number of edges, of each node equals the dimension
d.

The most important property of the hypercube is
the adjacency of nodes generated by its construction.
Fig. 2 displays a hypercube of dimension 4. We can
use the coordinates of a node as its network address,
then the length of the address is d. It easy to see
that the distance between two nodes is measured by
XORing the two addresses. For example, the distance
between nodes 0100 and 0111 is 2, because there are
two different bits between these nodes, e.g., a route
could be 0100 -> 0110 -> 0111.

0000 0001
00110010

0100 0101
01110110

1000 1001
10111010

1100 110111111110
Fig. 2. Hypercube of dimension d = 4

We find interesting examples of hypercube use
in: parallel computing [21], [22], peer-to-peer net-
works [23], genetic codes [24], fault-tolerant and re-
dundant systems [25], message stability detection
in distributed systems [26], parallel multiprocessor
systems [27], data communication [28].

B. The network layer

Using node coordinates in the hypercube as its
relative address E, it is possible to map a physical
network into a logical one. For an arbitrary physical
network, the corresponding mapping produces an
incomplete hypercube, because the number of nodes
present is less than 2d, and their physical connection
possibilities do not necessarily correspond to all edges
of the hypercube. We display an arbitrary network
in Fig. 3 and its representation on the hypercube in
Fig. 2, where present nodes are filled in black. Fig. 3
also has the routing tables at the right side of the
node, which will be treated latter.

Considering nodes in Fig. 3 have a circular coverage
radius, then some nodes use fewer than their possible
physical connections. For example, node 0100 has



a physical connection with node 1010, but their
addresses differ in more than one bit and they are
not connected in the hypercube structure. We say
then that the hypercube is incomplete. Nevertheless,
even loosing some connections, the network can take
advantage of the hypercube adjacency for routing.0000m2 0100/2 ->01001000/1 ->10001000m3 1010/3 ->10101100/2 ->11000000/0 ->00000100m3 0110/3 ->01101110/3 ->01100000/0 ->00000110m30111 1100/2 ->11110000/0 ->0100 1111m4 0000/1 ->01110000/0 ->11101110m4 1111/4 ->11110100/2 ->11110000/0 ->11001100m3 1110/3 ->11100000/0 ->10001010m3 0000/0 ->1000

Fig. 3. Spontaneous network: physical position of nodes

One way to improve this mapping, i.e. more phys-
ical connections become edges in the hypercube, is
assigning multiple addresses to some nodes. Since
two nodes might not be neighbors in the hypercube
although being physically connected, this allows us
to better represent physical adjacencies.

Summarizing, the information stored in each node
is composed of the main address, the secondary
addresses and its addressing space. The main address
corresponds to a network or relative address E, which
is given during the connection process. When a new
node joins the network, the main address is selected
by itself from the addresses proposed by its neighbors
(already connected to the network). Before obtaining
the main address, the new node could chose one or
more secondary addresses, if it were connected to
other physical neighbor nodes which are not adjacent
in the hypercube, i.e. their network addresses Ei

are not adjacent to the new node’s main address.
For example the node 0110m3 in Fig. 3, has it main
address and the secondary one: 0111. This secondary
address is used for connecting nodes 0110 and 1111,
because 0111 is adjacent to 1111, i.e. they only differ
in one bit.

Each node manages an addressing space. This
addressing space is used to: (i) store the database for
address resolution queries,1 and (ii) give addresses to
new nodes. The later function implies the delegation
of a corresponding portion of addressing space.

1The rendezvous node stores the U → E entry.

The addressing space of a node is determined by its
main address and a mask. This mask is represented
by the number of “ones” from the left side, e.g.,
m3 is the mask 1110 because the address length is
d = 4. The address and its mask (doing bitwise
logic AND) gives the addressing space managed by
the node. This method is very similar to IP subnet
masks, because the part with zeros corresponds to the
addressing space managed by the node. For instance,
node 0000m2 in Fig. 3 manages addresses 0000 (its
main address), 0010, 0001, and 0011.

The first parameter to fix is the dimension d of
the hypercube, which is known a priori by all the
participants of the network. On the one hand, this
parameter limits the maximum number of nodes, but
on the other hand, gives more flexibility to connecting
nodes due to secondary addresses. The problem is
that each new node should be adjacent to a maximum
number of nodes, ideally to all nodes within its
radio coverage, in order to be strongly connected.
Intuitively, the larger the addressing space, the richer
the nodes’ choice. We address this issue in detail in
Section V.

C. Indirect routing in the hypercube

Recall that using an indirect routing technique
means that there are two phases for forwarding in-
formation: (i) the source asks, to the rendezvous
node, the destination’s address using its universal
identifier, (ii) the source sends the messages to the
destination. This mechanism presupposes that there
exists a method to find the rendezvous node, because
the only available information is the destination’s
rendezvous address V which is managed by a certain
node.

As previously seen, the main address and the ad-
dressing space are given by already connected nodes.
When a node gives an address, it also delegates
a portion of its used addressing space (generally
the upper half of it) to a new incoming node. For
example, in Fig. 3 the node 0000m2 would give the
main address and addressing space 0010m3 to a new
node, causing the change in the 0000 mask: from
m2 to m3, and it sends all the address resolution
information stored for this addressing space. This
means that the main address of a new node is 0010,
and it manage the addresses 0010 and 0011. The
utilization of this method for all the nodes causes a
tree distribution of the network addresses, which we



call T in the remainder of this paper. Fig. 3 presents
a real topology, where cutting the link between nodes
0111 and 1111 we can observe an example of the T
tree.

Therefore, for a given rendezvous address V , we
should find all the possible nodes which can manage
it in their addressing space. This task might be very
simple using the T tree. In this case, it is enough
to move through the tree following the match of the
rendezvous address V ’s prefix. Again, this search is
trivial for the complete hypercube, but in an incom-
plete case one needs to find the T tree. In a normal
operation, T always exists. We handle different cases
in Section V.

IV. Design issues: Proactive or reactive?

We present two routing methods in this paper:
proactive and reactive. The first builds and maintains
the routing tables all the time, and assures a route
for every node in a network. The second method finds
a route on demand, and maintains the route for a
given period of time. Clearly, the proactive approach
is very useful for quite stable networks, (i.e. where
node mobility is low and nodes’ lifetime is long). For
highly dynamic networks, where nodes are joining
and leaving all the time, the reactive method is more
appropriate.

A. Case 1: Proactive routing protocol

In a complete hypercube, there is no problem for
routing, because all nodes and edges exist, then it
is possible to use the adjacency properties of the
hypercube. In a general case, we should propose a
routing table composed of a combination of default
entries and some other routing entries. The default
entries take advantage of the address assignment
method (the T tree). The other entries consist in
a set of routes for other connections which do not
belong to T , represented by the secondary addresses.
In other words, we put one entry in a routing table for
each connection of the node, and also for the short-
est advised routes. Because the address assignment
method, each node v has a parent node and it may
also has some children nodes, noted by

• Parent node: Pv is the node that assigns a main
address to node v. The parent node also dele-
gates a portion of its addressing space to node
v.

• Child node: Ci
v is the node that has node v as

parent node, i.e. PCi
v

= v, 1 ≤ i ≤ k, being k the
number of v children nodes.

• Children set: represented by Cv = {C1
v , . . . , Ck

v },
is the set of children nodes.

The address assignment method is formalized as
follows. The main address of node v is p 0 m b, where
p is the prefix of the v address, 0 is the zeros which
completes the address length, and b is the number
of bits from the left. The prefix is obtained by doing
v AND Mv, where Mv =

∑d−1
j=b 2j . Thus, the node v

assigns an address as following

pv 0 m bv
address assignament
−−−−−−−−−−−−−→

{

pv 0 m (bv + 1)
pv 0+2d−bv−1 m (bv +1)

(1)

The parent node Pv has always the main
address pv 0 − 2d−βv , where βv is the first
value of bv, i.e. when the main address of v
was assigned. Each child Ci

v in the children
set Cv, when they exist, has as main address
pv 0 + 2(d−1)−xi ,∀xi ∈ {βv, βv + 1, · · · , d − 1}.
Note that the child index is defined as i = xi−βv +1.

Each entry in a routing table is composed of a
prefix, a mask, and a next hop. The masks have the
same form as in the IP case, i.e. the number of ones
from the left side.

As mentioned before, there are two types of entries:

• the entries of T tree, e.g., 0 0/0 → pv 0 − 2d−b

for the parent node Pv, and
pv 0 + 2d−1−xi / xi → pv 0 + 2d−1−xi for each
child node Cxi−βv+1

v ;
• the entries for a neighbor t (i.e. w, u, and z

in the example) which does not belong to the
T tree is pt 0/av

t → t, where pt 0 is the prefix
obtained applying the mask defined by av

t , as
Mt =

∑d−1
j=av

t

2j .

The entries at v’s routing table are

pw 0 / av
w → w

pv 0 + 2d−1−xn / xn → pv 0 + 2d−1−xn

...
... →

...
pu 0 / av

u → u

pv 0 + 2(d−1)−x1 / x1 → pv 0 + 2(d−1)−x1

pz 0 / av
z → z

0 0 / 0 → pv 0 − 2d−b

where av
w ≥ xn ≥ · · · ≥ av

u ≥ x1 ≥ av
z > 0, and

xi is the number of bits from the left, obtained after
the ith = xi − βv + 1 child (Ci

v and xi ∈ {βv, βv +



1, · · · , d − 1}). The order is very important because
the first matching is used for routing.

These entries are determined by Algorithm 1 when
a local node v is connected to u /∈ Cv. The first
step computes the node y which is in the middle
of the path from v to u in the tree T . Then, it
computes s, which is the length of the matching
prefix, either of v or of u, because y is ancestor o
v or u. Finally, a message advertising the new route
is sent to all neighbors. Then, once receiving the
message each neighbor u executes the Algorithm 2
to add and resend the new received routes when
necessary. In this algorithm, dH(·, ·) is the distance
in the hypercube.

Algorithm 1 Routing tables construction at node v

1 Reach a node y, such that d(y, x) ≤ d(v, y) ≤ d(y, x)+
1, where d(·, ·) is the distance on the default tree T .

2 Set the entry y/s->x in v’s routing table, where s is
the number of unchanged bits between y and, x if it
is a y’s descendant in a T , else v is a y’s descendant.

3 Send a message to all neighbors, except x, with
y/s->v.

Algorithm 2 Forwarding routing tables messages

1 Node u receives {y/s->v} from neighbor v
2 If the d(y, u) ≤ dH(y, v) + 1 then

3 Add the entry y/s->v
4 Send a message to all the neighbors, except v, with

{y/s->u}.

We should consider also the case when a node v
lost the connection with its parent node Pv. In this
case it sends a message M to its neighbors, in order
to find a connection with the T tree. This message
M is resent by each node until one, e.g. w, which is
connected to its parent node Pw and the prefix Pv of
the first node v is not contained in Pw. Then, node
w resends a message reply to v which confirms and
sets the default route of v: 0/0 → u, such as u is
the v’s neighbor having a path to w. The node w
also sends a message, following the T tree, to reach
Pv or its closer ancestor, we call this node Pv. The
objective is to establish a route from Pv to v passing
by w, restoring the T tree. In this way the T tree is
reconnected, assuring the default route for nodes v
and Ci

v.

Pv

x3

x2

x1

vw
u

1
2

3

4

11

6.2

6.1

zx

?

Fig. 4. Execution of Algorithm 3

B. Case 2: Reactive routing protocol

In our case, the logical topology is built following
adjacent addresses, hence there is a coherent map-
ping between the physical positions and the logical
addresses.

There are two complementary methods for routing:
the first is for address resolution messages and the
second is for other messages.

Let us begin with the second case. This method
considers that the hypercube is complete, and routes
the message by sending it to neighbors whose ad-
dresses are closer to the destination. When a message
is blocked, i.e. there is no route, the message goes
backwards and it is sent through a different route,
leaving a mark on the unsuccessful route. Algorithm 3
presents the method used to forward a message at
node v, received of node w, when the source is x and
the destination is z. Fig. 4 shows an example where
there is no route from v to z. The number over the
arrows corresponds to step number of the algorithm.
The curved arrows are the sent message M and the
right arrows is the return of the message M. The
special case of arrows with 6.1 and 6.2 correspond to
the first and second iteration of the loop, respectively.

Remember that dH(·, ·) is the distance in the hy-
percube, and T is the initial tree used for distribut-
ing the addressing space. This algorithm favors the
exploration of farther regions from the root of T . If
it does not find a route then it sends the message
towards the root, and finally if it still does not find a
route, it performs an exhaustive exploration. A timer
is used by resetting the marks in unsuccessful routes,
but they can also reset by an update message. The
value of this timer is long, and is only used to give a
robust behavior, i.e. when an update message is lost.

The update messages are sent when new topolog-
ical connections are made. When a node v has been
connected with another node w, node v sends update



Algorithm 3 Forwarding in reactive routing at node v

1 v receives a message M(x, z) form neighbor w.
2 v sends the message to a neighbor u 6= {Pv, w}, such

that u minimizes dH(u, z)
3 If there is no route from u then mark this route and

resend the message to other neighbor 6= {Pv, w}.
4 If the message is returned again then send the mes-

sage to its parent Pv in T and mark all the remaining
neighbors as unexplored.

5 If the message returns then do
until all neighbors are explored:

6 send the message to a neighbor marked as
unexplored

7 if the message returns then mark this neighbor
as blocked, and return to step 5.

8 If there is no route then

9 If the original sender is the local node v:
10 then no route to host := true.
11 else resend the message M(x, z) to the neigh-

bor sender w.

messages with its address and the new neighbor ad-
dress w to all its neighbors (w does not consider this
message). Other case is when v receives an update
message from a neighbor u, then v clears the blocked
routes in the u corresponding interface.

The first routing case, which corresponds to a
resolution request, uses a variation of Algorithm 3.
This variation consist in, firstly to change of step 2,
and secondly to eliminate the step 3. The elimination
of step 3 is motivated to give more priority, to address
resolution messages, to reach their destination. It is
clear that the number of address resolution messages
2 are lower than the data messages, and then they
have less contribution to the congestion of the T ’s
root. The step 2 of Algorithm 3 is replaced by

2 v sends the message to a neighbor u 6= w, such that

u minimizes dT (u, pz 0) ∀ s / pz 0 = z AND
∑

d−1

i=s
2i.

That is, it finds the neighbor which minimizes the
distant to one of the possible prefixes of the virtual
address in the T tree. The reason is that the virtual
address is contained in the managed addressing space
of a certain node, because the T tree distribution
method.

2Discovered addresses are stored in a local cache table and
associated to a timeout. Resolution messages are sent one time
for the first communication, and then, when the timeout of the
corresponding cache table’s entry has expired.

V. Practical considerations and case

studies

In this section we will consider the application
of our architecture in different scenarios. Then, we
present two examples for each routing method.

A. Choosing the dimension d

One important issue of hypercubes is the address-
ing space, because it defines multiple possibilities
of connection and routing. We consider two cases:
sparse and dense networks. Given a fixed d, nodes
are connected until their radio neighbors have not any
available addresses. In sparse case, nodes are mainly
connected augmenting the diameter of the logical
graph. Dense networks, however, are susceptible to
have a lot of connections per node, increasing the
number of secondary addresses, consuming a lot of
address per node, and given a small diameter of the
logical graph. Therefore, there is a trade-off between
the radio coverage and the maximum size of the
network for choosing the dimension.

More precisely, the extreme case on sparse network
is when a node has only two neighbors, this results
in a linear chain with 2d nodes because the address
distribution method follows a T tree. In general, the
maximum number of nodes nmax that can join a
sparse network with k neighbors is

nmax =
k

∑

i=1

s(d − i, k) , ∀ 2 < k < d

where d is the dimension of the hypercube, and s(·, ·)
is the following recursive function

s(h, k) =

{
∑k−1

j=1 s(h − j, k) , ∀ h > k

2h , ∀ h ≤ k

For dense networks, the number of addresses in
each node depends on the number of physical neigh-
bors, considering that all nodes could be obtained
from a compatible secondary address with their
neighbors. Therefore, a high percentage of neighbors
of a node are connected among them, which means
that the network has a lot of triangles. If the percent-
age is denoted by c < 1, k is the number of neighbors,
and d is the number of dimensions, then, for each
c · k nodes there is a clique3. Consequently, if nmax is
the number of nodes that can join a dense network,

3In a clique of n nodes each node is connected to all nodes,
and the total number of connections is n(n − 1)/2.



there are nmax/(c ·k) cliques and c·k(c·k−1)
2 number of

connections , i.e. secondary addresses, for each clique.
Then,

nmax

c · k
·
c · k(c · k − 1)

2
≤ 2d

nmax(c · k − 1) ≤ 2d+1

nmax ≤
2d+1

c · k − 1
,

where 2d is the total number of nodes in a d-
dimensional hypercube.

A useful approximation of maximum path length,
for both cases, is the following. Considering n(ℓ) the
number of total neighbors up-to distance ℓ for a node
in a k regular network (i.e., each node has k neigh-
bors). Then, for ℓ = 2 we have n(ℓ) = (k − 1)2 + 1,
because the neighbors at distance 1 are k, and each
of these neighbors has other k−1 different neighbors.
The maximum path length ℓmax for a network with
n nodes is

n = n(ℓmax)

n = (k − 1)ℓmax + 1

logk−1 n ≃ ℓmax ,

which is valid for k < d/2. The main difference of ℓmax

between sparse and dense networks is the value of k,
because dense networks has a higher k than sparse
ones, thus the maximum path distance will be smaller
in dense networks.

Therefore, considering the general purpose case,
where the addresses are not too long and where it is
also possible to obtain some secondary addresses, an
empirical choice of d could be nmax = 24d/5. That is,
we propose to increase the addressing space by 20%
of the address length, allowing up to 2d/5 secondary
addresses per node.

B. An example of the proactive protocol

We present here examples of the routing table
construction, communication between two nodes, and
address resolution.

For the proactive method, each node has a pre-
established table. Consider Fig. 3 and the routing
table of node 1000m3:

destination next hop
1010/3 -> 1010

1100/2 -> 1100

0000/0 -> 0000

The first entry means that all messages addressed
to destinations whose most significant bits are 101

must be sent through node 1010 (one of its children).
The second line is for addresses attained through
the child 1100. It is worth noting here the strict
relationship between the addressing space of a child
and the destination entry in the table at the time
the child was connected, e.g., the entry 1100/2 and
its first child 1100m2. Currently, node 1100 has mask
m3 because it has already assigned an address to a
new node (but its mask was m2 before the arrival of
the new node). We call the addressing space of a node
at the time it joins the network the initial addressing

space of the node.

Finally, the last line is the default route to its
parent node 0000. (Note that “/0” means the first
“0” most significant bits.) The default route is rep-
resented by 0000/0 because it matches all nodes.

It is important to stress that the order of the lines
in the routing table is important. The first line is
the most constraining entry, because the 3rd most
significant bits must match (due to “/3”). The last
line is the least constraining entry, hence, the default
route entry. The first node in the network does not
have a default route, because it has no parent and
it is the parent of all nodes. However, it has entries
for its children, then all the possible addresses in the
hypercube are represented.

There are others types of entries in order to repre-
sent a connection that does not follow the tree struc-
ture. This is the goal of our proposal. For example,
Fig. 3 displays the connection between nodes 1111

and 0111, and the corresponding routing tables. In
this scenario, node 1111 has the following routing
table:

destination next hop
0000/1 -> 0111

0000/0 -> 1110

The default route is through the node’s parent, and
the other route means that all the addresses whose
most significant bit is 0 can be reached through node
0111. This entry, at local node v =1111, can be
determined by Algorithm 1 after the connection with
u =0111.

Now we illustrate a case where a node exchanges
data. Consider that node 1110 sends a message to
node 0110. The first entry in the routing table of
1110 is 1111/4 ->1111. This means that the com-
parison is done using the four most significant bits



(because of “/4”) of the destination node 0110. We
observe that the final destination is different to the
entry at routing table, i.e. 0110 6=1111, and there-
fore the matching fails. The second line is 0100/2

->1111, the two most significant bits of the destina-
tion are 01, and they equal the two most significant
bits of 0100/2. Therefore, this entry matches and the
packet is forwarded to node 1111. The first entry of
the routing table of 1111 is 0000/1 ->0111 and the
most significant bit of destination is 0 – this entry
matches and the packet is forwarded to 0111. As 0111
is a secondary address, the packet is now at node
0110, which is the final destination address.

Finally, we present an address resolution request.
This kind of message is routed in the same form
as data messages. The only difference is that the
destination, i.e. the rendezvous address, may or may
not be the main address of a node. If it is not the
main address, the message will arrive at the node
which manages this address. Therefore, before apply-
ing the routing algorithm, each node must verify if
the destination belongs to addresses that it manages.
For example, node 0110 wants to know which is the
network address of a particular identifier U . Then
it applies the hash function to know the rendezvous
address, that is hash(U) =1101. Because this address
is not managed by the local node 0110m3, it sends the
message to 1101. The first entry in 0110’s routing
table is 1100/2 ->1111, and it matches because the
two most significant bits of 1101 are 11. Then the
request message is sent to node 1111. This node does
not manage the address in the request either, so it
forwards the message using its routing table. The first
entry is 0000/1 ->0111, which does not match. The
second is 0000/0 ->1110, which matches because
it is the default routing entry, and the message
is forwarded to node 1110. Since this node has a
m4 mask, it does not manage the address into the
request, so it will forward the message. The first entry
in its routing table is 1111/4 ->1111, which does not
match, and the second one is 0100/2 ->1111 which
does not match either. Finally, the last entry matches
because it is the default route. The node 1100 receives
the request for the server resolution of address 1101,
and the addresses managed by 1100m3 are 1100 and
1101. This node looks up the network address E
corresponding to node U , and sends a reply to the
source node 0110 with the network address E. The
source can then directly communicate to the node
whose address is E.

C. An example of the reactive protocol

In the reactive case, there are no routing tables,
but some information concerning temporary path re-
cently used by each node. This information is created
in a communication step, storing the unsuccessful
paths. In this section we present two communication
cases and an address resolution procedure.

Because this method starts with no a priori knowl-
edge of how complete the hypercube is, it uses stan-
dard routing in hypercubes. This means that routing
is done by changing the different bits one by one, i.e.

sending to neighbors closer to the destination (recall
that a node is a neighbor if their addresses differ on
one bit). For example, if node 0100 sends a message
to 1111, it does (0100 XOR 1111)=1011, that is
the first, third, and fourth bits change. Then node
0100 can send the message to one of the following
neighbors: 1100, 0110 or 0101, because they differ,
from 0100, in only one bit. The only node present
in the network is 0110 (see Fig. 3), therefore the
message is forwarded to this node. At node 0110,
XOR is applied again, which results in 1001. The
only existing neighbor is 0111, which corresponds its
secondary address. Finally, the result of XOR is 0001,
and the neighbor 1111 is the last step.

We illustrate a more complicated case with the
following example. Node 1000 sends a message to
node 0110, then (1000 XOR 0110) = 1110, and the
possible forwarders in the network are 1010 and 1100.
Node 1000 sends then the message through 1010.
Candidate forwarder neighbors of node 1010 are 1110
and 0010, because (1010 XOR 0110) = 1100. But
0010 does not exist in the network and 1110 is
not connected to it. Node 1010 sends the message
backwards, and node 1000 sets a temporary entry
because now it knows that there exists no path.
Of course, this entry should be removed after a
timeout, or if the node becomes connected to other
nodes. Finally, the message is forwarded to node
1100. At this node, the result of (1100 XOR 0110)
is 1010, then a possible forwarder, present in the
network, is 1110. This latter receives the message and
computes (1110 XOR 0110) = 1000, but the nodes
1110 and 0110 are not interconnected. In this case,
it is better to take a new path in the opposite
way. Then, the message is sent to node 1111. This
node computes (1111 XOR 0110) = 1001, and the
possible forwarder is 0111. As 0111 is a secondary



address and its primary address is 0110, the message
has arrived to the final destination.

For the address resolution case, we use the modified
Algorithm 3. Suppose that node 1110 wants to send
a message to node with universal address U , then
it obtains hash(U) =0101 (the rendezvous address).
The node who minimize dT (1110, 0101) is its parent
node Pv = 1100. Since the other nodes are in a similar
situation, the message is forwarded to consecutive
parent nodes until it reaches 0000. Because the first
most significant bit is the same as the desired address
0101, the actual node checks if this address belongs
to its managed space. The result is negative and the
message is sent to the neighbor 0100 which is the
closest to 0101. This node has in its managed space
the addresses 0100 and 0101 (because its mask is m3).
Therefore, node 0100 looks up the virtual address and
sends it to 1110 in a response message. In this case,
the communication was done using the T tree. If the
T tree is disconnected, the message is sent backwards
until a route is found, as in the data communication
case.

VI. Discussion and further research

The most effective protocol to self-organization
networks is a combination of a good physical-to-
logical mapping with a simple and robust routing
protocol, and small routing tables. The geographi-
cal routing could be the most promising, but the
reception of GPS can not be enough, e.g., inside of a
building. Moreover, the GPS error, which depends
also the reception quality, is too large for some
dense networks. Next candidates are those that use
indirect routing and build a logical and mathematical
structure from mere connectivity between nodes. Up
to now, this protocols propose a logical tree for
connecting nodes [7], [8], [9], [14], [15], [16], [29].

In the deployment of self-organized systems, flex-
ibility in route selection is an important issue to be
considered, which affects the performance in terms of
path length, traffic concentration, and resilience to
failures. In this context, the organization of the ad-
dressing structure has a strong influence. In the tree-
based structures, paths are limited by the hierarchical
structure of a tree – there is only one path between
any two nodes. A tree offers low flexibility in route
selection, contrary to the greater flexibility offered
by the multi-dimensional approaches. Our hypercube

approach offers multiple links options that get the
path closer to the physical distance.

A spontaneous network could have a well balanced
traffic only when the distance between two nodes
is closer to their physical distance. In a case that
the logical structure is a tree, is very difficult to fill
this condition, mainly because the connection order.
Even, following the optimal connection order, when
the density of nodes is high, a message sent to a
physical neighbor should pass to other node before
to arrive at the destination. Instead, the incomplete
hypercube is better because it allows multiple links,
even for far nodes, giving more privilege to the neigh-
bors connections. This also makes a more coherent
physical-to-logical mapping, given a similar physical
and logical distances. Therefore, using the hypercube
as underling logical structure, coupled with indirect
routing, we provide redundant connections, a better
load distribution and two different routing methods.
These characteristics permit to cover a wide range of
applications according to their mobility characteris-
tics.

Although the greater flexibility in route selection
offered by the multi-dimensional approaches, their
associated addressing and location models are more
complex, contrarily to simple manageable structures
offered by tree-like structures. The main problem
with the incomplete hypercubes could be their rela-
tive complexity, but evidently there exist a trade-off
between the simplicity and the robustness. Our pro-
posal provides the advantages of a good physical-to-
logical mapping, and two routing protocols adapted
to the mobility characteristics, given a robust behav-
ior.

Since this paper had as objective to describe a
hypercube-based architecture to implement indirect
routing, future research includes a complete eval-
uation of the proposed protocol under fixed and
mobile environments. Some optimization mechanisms
and implementation issues for improving robustness
in terms of location information availability, load
balancing, and failures are also interesting to analyze.

References

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A scalable content-addressable network,” in
Proceedings of ACM SIGCOMM’01, Aug. 2001.

[2] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: a
scalable peer-to-peer lookup protocol for internet applica-
tions,” IEEE/ACM Transactions on Networking, vol. 11,
no. 1, pp. 17–32, Feb. 2003.



[3] A. Rowstron and P. Druschel, “Pastry: Scalable, dis-
tributed object location and routing for large-scale peer-
to-peer systems,” in Proceedings of IFIP/ACM Middle-
ware’01, Nov. 2001.

[4] L. Blazevic, L. Buttyan, S. G. S. Capkun, J. P. Hubaux,
and J. Y. L. Boudec, “Self-organization in mobile ad-hoc
networks: the approach of terminodes,” IEEE Computer
Communications Magazine, June 2001.

[5] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and
R. Morris, “A scalable location service for geographic ad
hoc routing,” in Proceedings of ACM MOBICOM’00, Aug.
2000.

[6] Y. Xue, B. Li, and K. Nahrstedt, “A scalable location
management scheme in mobile ad-hoc networks,” in Pro-
ceedings of IEEE Conference on Local Computer Networks
(LCN), (Tampa, FL, USA), Nov. 2001.

[7] B. Chen and R. Morris, “L+: Scalable landmark routing
and address lookup for multi-hop wireless networks,” tech.
rep., Massachusetts Institute of Technology, Cambridge,
Massachusetts - MIT LCS Technical Report 837 (MIT-
LCS-TR-837), Mar. 2002.

[8] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Scal-
able ad hoc routing: The case for dynamic addressing,” in
Proceedings of IEEE INFOCOM’04, (Hong Kong), Mar.
2004.

[9] A. C. Viana, M. D. Amorim, S. Fdida, and J. F. Rezende,
“Indirect routing using distributed location information,”
ACM Wireless Networks, vol. 10, no. 6, pp. 747–758, Dec.
2004.

[10] A. C. Viana, M. D. Amorim, S. Fdida, and J. F. Rezende,
“Self-organization in spontaneous networks: the approach
of dht-based routing protocols.” to appear in Ad Hoc
Networks Journal, 2005.

[11] J. P. Hubaux, T. Gross, J. Y. L. Boudec, and M. Vet-
terli, “Towards self-organized mobile ad hoc networks: the
terminodes project,” IEEE Communications Magazine,
vol. 39, no. 1, pp. 118–124, Jan. 2001.

[12] Terminodes Project. http://www.terminodes.com/.
[13] Grid Project. http://www.pdos.lcs.mit.edu/grid/.
[14] J. Eriksson, M. Faloutsos, and S. Krishnamurthy, “Peer-

net: Pushing peer-to-peer down the stack,” Proceed-
ings of International Workshop on Peer-To-Peer Systems
(IPTPS’03), Feb. 2003.

[15] P. F. Tsuchiya, “The landmark hierarchy: a new hierarchy
for routing in very large networks,” in Proceedings of ACM
SIGCOMM’88, Aug. 1988.

[16] P. F. Tsuchiya, “Landmark routing: Architecture, algo-
rithms and issues,” tech. rep., MTR-87W00174, MITRE
Corporation, Sept. 1987.

[17] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu, and
J. Jetcheva, “A performance comparison of multi-hop
wireless ad hoc network routing protocols,” in Proceedings
of ACM MOBICOM’98, Oct. 1998.

[18] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast
storm problem in a mobile ad hoc network,” in Proceedings
of ACM MOBICOM’99, pp. 152–162, Aug. 1999.

[19] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
“Internet indirection infrastructure,” in Proceedings of
ACM SIGCOMM’02, Aug. 2002.

[20] C. E. Perkins and P. Bhagwat, “Highly dynamic destina-
tion sequenced distance-vector routing (dsdv) for mobile
computers,” in Proceedings of ACM SIGCOMM’94, Oct.
1994.

[21] F. T. Leighton, Introduction to parallel algorithms and
architectures: array, trees, hypercubes. Morgan Kaufmann
Publishers Inc. San Francisco, CA, US, 1991.

[22] E. Oh and J. Chen, “Parallel routing in hypercube net-
works with faulty nodes,” in IEEE International Confer-
ence on Parallel and Distributed Systems (ICPADS ’01),
pp. 338–345, July 2001.

[23] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “Hyper-
cup - hypercubes, ontologies, and efficient search on peer-
to-peer networks,” in Agents and Peer-to-Peer Computing:
A Promising Combination of Paradigms, LNCS 2530,
pp. 112–124, July 2003.

[24] M. A. Jimenez-Montano, C. R. de la Mora-Basanez, and
T. Poeschel, “On the hypercube structure of the genetic
code,” in Proceedings of Bioinformatics and Genome Re-
search, pp. 445–459, Oct. 1994.

[25] D. Wang, “A low-cost fault-tolerant structure for the
hypercube,” Journal of Supercomputing, vol. 20, no. 3,
Nov. 2001.

[26] R. Friedman, S. Manor, and K. Guo, “Scalable stability
detection using logical hypercube,” tech. rep., Technion,
Department of Computer Science Technical Report 0960,
May 1999.

[27] J. Slack, “Visualization of embedded binary trees in the
hypercube,” tech. rep., Final Report of the Project for
Information Visualization, Department of Computer Sci-
ence, University of British Columbia, Apr. 2003.

[28] Y. Saad, “Data communication in hypercubes,” tech. rep.,
Research Report 428, Department of Computer Science,
Yale University, New Haven, CT, 1985.

[29] A. C. Viana, M. D. Amorim, S. Fdida, and J. F. Rezende,
“Indirect routing using distributed location information,”
in Proceedings of IEEE International Conference on Per-
vasive Computing and Communications (PERCOM’03),
(Dallas-Fort Worth, Texas), Mar. 2003.


