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Abstract

We prove the almost sure central limit theorem for martingales via an original
approach which uses the Carleman moment theorem together with the convergence
of moments of martingales. Several statistical applications to autoregressive and
branching processes are also provided.
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1 Introduction.

Let (Xn) be a sequence of independent and identically distributed random
variables with E[Xn] = 0, E[X2

n] = σ2. The almost sure central limit theorem
(ASCLT) associated with (Xn) states that the empirical measure

Gn =
1

log n

n∑
k=1

1

k
δSk/

√
k with Sn =

n∑
k=1

Xk

converges a.s. to the standard N (0, σ2) distribution. It was simultaneously es-
tablished by Brosambler [4] and Schatte [17], [18] and in the present form by
Lacey and Phillip [12]. While a wide literature concerning the ASCLT for inde-
pendent random variables is now available, very few references may be found
on the ASCLT for martingales apart from the important contribution of Chaa-
bane et al. [5], [6], [7] and Lifshits [14], [15]. Let (εn) be a martingale difference
sequence adapted to an appropriate filtration F = (Fn) with E[ε2

n+1|Fn] = σ2
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a.s. and denote by (φn) a sequence of random variables adapted to F. We shall
investigate the ASCLT for the real martingale transform (Mn) given by

Mn =
n∑

k=1

φk−1εk.

The explosion coefficient associated with (φn)

fn =
φ2

n

sn

where sn =
n∑

k=0

φ2
k

will play a crucial role in all the sequel. Hereafter, we assume that (sn) increases
a.s. to infinity. The more accurate ASCLT for martingales, due to Chaabane
[5], is as follows.

Theorem 1. Let ∆Mn = Mn−Mn−1 and denote by (Vn) a positive predictable
sequence such that

lim
n→∞

V −2
n sn−1 = 1 a.s (1.1)

For all ε > 0
∞∑

n=1

V −2
n E[∆M2

n1I(|∆Mn|>εVn)|Fn−1] < ∞ a.s (1.2)

For some a > 0
∞∑

n=1

V −2a
n E[|∆Mn|2a1I(|∆Mn|≤Vn)|Fn−1] < ∞ a.s (1.3)

Then, (Mn) satisfies the ASCLT

1

log V 2
n

n∑
k=1

(
V 2

k+1 − V 2
k

V 2
k+1

)
δMk/Vk

=⇒ G a.s.

where G stands for the standard N (0, σ2) distribution.

One can easily check that, under the assumptions of Theorem 1, V 2
n+1 is a.s.

equivalent to V 2
n so that the explosion coefficient fn tends to zero a.s. In

addition, the simple choice V 2
n = sn−1 leads to

1

log sn

n∑
k=1

fkδMk/
√

sk−1
=⇒ G a.s. (1.4)

In other words, for any bounded continuous real function h

lim
n→∞

1

log sn

n∑
k=1

fkh
(

Mk√
sk−1

)
=
∫

R
h(x)dG(x) a.s. (1.5)

In all what follows, we shall say that (Mn) satisfies a polynomial almost sure
central limit theorem (PASCLT) if convergence (1.5) holds for any polynomial
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function h over R. Of course, a PASCLT immediately implies a standard
ASCLT. One might wonder if the theoretical study of ASCLT for martingales
is completely acheived by Theorem 1. To be more precise, is it possible to
characterize the largest class of real martingale transforms satisfying (1.4)?
As notice by Lifshits [14], the assumptions of Theorem 1 are too restrictive.
For example, (1.2) is not satisfied for martingales with rare jumps of magnitude
greater than Vn as (1.2) immediately implies that, for all ε > 0,

∞∑
n=1

1I(|∆Mn|>εVn) < ∞ a.s

Moreover, one can realize that (1.3) does not hold for martingales with explo-
sion coefficient fn decreasing slowly to zero. For example, assume that (εn) are
i.i.d. with symetric Bernoulli distribution and let (φn) be positive deterministic
such that φ0 = 1 and for all n ≥ 1

φ2
n =

1

log(e + n)

n∏
k=1

log(e + k)

log(e + k)− 1
. (1.6)

Then, (sn) increases to infinity, fn tends to zero almost surely as

sn =
n∏

k=1

log(e + k)

log(e + k)− 1
and fn =

1

log(e + n)
.

However, (1.3) always fails as it reduces to

∞∑
n=0

fa
n = ∞ a.s

Nevertheless, we will show in the sequel that (Mn) satisfies an ASCLT.

The paper is organized as follows. In section 2, we establish a new ASCLT
based on the Carleman moment theorem together with the convergence of mo-
ments of martingales. Section 3 is devoted to similar results when the explosion
coefficient fn converges a.s. to a positive random variable. Statistical appli-
cations to autoregressive and branching processes are developed in section 4,
while all technical proofs are postponed in the Appendices.

2 On Carleman approach.

The classical moment problem concerns the question whether or not a given
sequence of moments (mn) uniquely determines the associated probability dis-
tribution. One can find many probability distribution which are not uniquely
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determined by their moments, for example the log-normal distribution. How-
ever, the celebrated Carleman theorem gives a positive answer to that question
under a suitable condition on the moments (mn).

Theorem 2. A probability distribution is uniquely determined by its moments
(mn) if

∞∑
n=1

m
−1/2n
2n = ∞. (2.1)

We will make use of this result in the martingale framework via the following
theorem where the first convergence (2.3) was recently proven in [2].

Theorem 3. Assume that (εn) is a martingale difference sequence such that
E[ε2

n+1|Fn] = σ2 a.s. and satisfying, for some integer p ≥ 1 and some real
a > 2p, the moment condition

sup
n≥0

E[|εn+1|a|Fn] < ∞ a.s. (2.2)

In addition, assume that the explosion coefficient fn tends to zero a.s. Then

lim
n→∞

1

log sn

n∑
k=1

fk

(
Mk√
sk−1

)2p

=
σ2p(2p)!

2pp!
a.s. (2.3)

In addition, we also have

lim
n→∞

1

log sn

n∑
k=1

fk

(
Mk√
sk−1

)2p−1

= 0 a.s. (2.4)

One can observe that the Gaussian limit distribution clearly satisfies Carle-
man’s moment condition (2.1). Gathering the last two theorems, we deduce
the following PASCLT for martingales.

Theorem 4. Assume that (εn) is a martingale difference sequence such that
E[ε2

n+1|Fn] = σ2 a.s. and satisfying, for all integer p ≥ 1,

sup
n≥0

E[|εn+1|p|Fn] < ∞ a.s. (2.5)

In addition, assume that the explosion coefficient fn tends to zero a.s. Then,
the martingale transform (Mn) satisfies the PASCLT given by (1.5).

Proof. For all n ≥ 1, define the empirical measure

Gn =
1

log sn

n∑
k=1

fkδMk/
√

sk−1
.
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For all integer p ≥ 0, we obviously have

sup
p≥0

∫
R

x2pdGn(x) < ∞ a.s.

This is a well-known condition ensuring the tightness of the sequence (Gn)
(see e.g. Duflo [8] Proposition 2.1.6 p. 41). As the Gaussian limit distribu-
tion satisfies (2.1), (Gn) weakly converges a.s. toward the standard N (0, σ2)
distribution which completes the proof of Theorem 4.

Consider once again the enlightening example of the introduction where (εn)
are i.i.d. with symetric Bernoulli distribution and (φn) satisfies (1.6). The mo-
ment condition (2.5) clearly holds for all integer p ≥ 1 since (εn) is bounded by
one. Moreover, fn decreases to zero a.s. with a logarithmic rate of convergence.
Consequently, (Mn) satisfies the PASCLT given by (1.5).

3 Extension to explosive martingales.

One might wonder whether or not an ASCLT holds when fn converges a.s. to
a positive random variable f . Our goal is now to show that this is the case.
First of all, we need an asymptotic result for the moments similar to that of
Theorem 3. For any integer p ≥ 1, set

σn(p) = E[εp
n+1|Fn].

Theorem 5. Assume that (εn) is a martingale difference sequence such that
E[ε2

n+1|Fn] = σ2 a.s. and satisfying, for some integer p ≥ 1, the moment
condition (2.2). In addition, suppose that for any 2 ≤ q ≤ 2p,

lim
n→∞

σn(q) = σ(q) a.s. (3.1)

where σ(q) = 0 if q is odd. Moreover, assume that the explosion coefficient fn

converges a.s. to a random variable f with 0 < f < 1. Then

lim
n→∞

1

n

n∑
k=1

(
Mk√
sk−1

)2p

= l(p, f) a.s. (3.2)

lim
n→∞

1

n

n∑
k=1

(
Mk√
sk−1

)2p−1

= 0 a.s. (3.3)

where l(0, f) = 1 and, for p ≥ 1, l(p, f) satisfies the recurrence equation

l(p, f) =
1

1− (1− f)p

p∑
k=1

C2k
2p fk(1− f)p−kσ(2k)l(p− k, f). (3.4)
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We now propose a non Gaussian ASCLT for explosive martingales.

Theorem 6. Assume that (εn) is a martingale difference sequence such that
E[ε2

n+1|Fn] = σ2 a.s. and satisfying, for all integer p ≥ 1, the moment con-
dition (2.5). and (3.1). In addition, assume that the explosion coefficient fn

converges a.s. towards a random variable f with 0 < f < 1, and that the
sequence (l(p, f)) satisfies Carleman’s moment condition. Then, there exists a
unique probability distribution Hf such that

1

n

n∑
k=1

δMk/
√

sk−1
=⇒ Hf a.s. (3.5)

Moreover, if the limiting moments sequence (σ(p)) define a probability distri-
bution with Laplace transform Lσ finite on a neighborhood of the origin, then
the Laplace transform LHf

of Hf exists a.s. on a neighborhood of the origin
and is given by

LHf
(t) =

∞∏
k=0

Lσ(f 1/2(1− f)k/2t) a.s. (3.6)

Remark 7. On the one hand, an easy sufficient condition which ensures that
the sequence (l(p, f)) satisfies Carleman’s moment condition is that there exists
some constant C > 0 such that

σ(2p) = O(Cpp2p).

On the other hand, one can see that (3.5) holds for any polynomial function. In
addition, if all the moments σ(2p) coincide with those of an N (0, σ2) random
variable, then Hf is simply the N (0, σ2) distribution.
Lastly, set r = (1 − f)−1/2 and assume that r is an integer. From equation
(3.6), it follows that Hf has the same distibution as

(
1− 1

r2

)1/2 ∞∑
k=0

ξk

rk

where the ξk are independant random variables with moments σ(p). Let (Bn)
be a sequence of independant random variables uniformly distributed over
{0, 1, · · · , r − 1}. If we choose ξk = 2Bk − (r − 1), then Hf coincides with
the uniform distibution on the interval [−(r2 − 1)1/2, (r2 − 1)1/2] (see e.g. [8]
page 44). As a matter of fact, Hf shares the same distribution as

(
1− 1

r2

)1/2 ∞∑
k=0

ξk

rk
=
(
1− 1

r2

)1/2
(

2
∞∑

k=0

Bk

rk
− r

)
.

Proof. We obtain convergence (3.5) proceeding exactly as in the proof of
Theorem 4. Hence, it only remains to prove relation (3.6). We introduce the
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following Laplace transforms or moment generating functions as extended real
numbers

LHf
(t) =

∞∑
p=0

l(p, f)

(2p)!
t2p and Lσ(t) =

∞∑
p=0

σ(2p)

(2p)!
t2p.

One can observe that if Lσ is finite on a neighborhood of the origin, then
σ(2p) = O(Cpp2p) for some constant C > 0. Then, we easily deduce from
equation (3.4) that l(p, f) = O(Dpp2p) for some other constant D > 0 which
yields the existence of LHf

on a neighborhood of zero. Using again formula
(3.4), we obtain that

LHf
(t) =

∞∑
p=0

t2p

(2p)!

p∑
k=0

C2k
2p fk(1− f)p−kσ(2k)l(p− k, f),

=
∞∑

k=0

σ(2k)

(2k)!
fkt2k

∞∑
p=k

l(p− k, f)

(2(p− k))!
(1− f)p−kt2(p−k),

= Lσ(f 1/2t)
∞∑

p=0

l(p, f)

(2p)!
((1− f)1/2t)p,

= Lσ(f 1/2t)LHf
((1− f)1/2t),

which immediately leads to (3.6), completing the proof of Theorem 6.

4 Applications.

4.1 Linear regressions.

Consider the stochastic linear regression model given by

Xn = θφn−1 + εn (4.1)

where Xn and φn are the observation and the regression variable, respectively.
We assume that the driven noise (εn) is a martingale difference sequence such
that E[ε2

n+1|Fn] = σ2 a.s. In order to estimate the unknown real parameter θ,

we shall make use of the least squares estimator θ̂n which satisfies

θ̂n − θ =
Mn

sn−1

where Mn =
n∑

k=1

φk−1εk.

A straightforward application of Theorem 4 is as follows.

Corollary 8. Assume that (εn) is a martingale difference sequence satisfying,
for all integer p ≥ 1, the moment condition (2.5). In addition, suppose that
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sn increases a.s. to infinity and that fn converge a.s. towards zero. Then, (θ̂n)
satisfies the PASCLT

1

log sn

n∑
k=1

fk δ√
sk(θ̂k−θ)

=⇒ N (0, σ2) a.s. (4.2)

More particularly, assume that for some positive constant τ

lim
n→∞

sn

n
= τ a.s.

Then, we have the PASCLT

1

log n

n∑
k=1

1

k
δ√

k(θ̂k−θ)
=⇒ N

(
0,

σ2

τ

)
a.s. (4.3)

Remark 9. We immediately infer from (4.3) that for all integer p ≥ 1

lim
n→∞

1

log n

n∑
k=1

kp−1(θ̂k − θ)2p =
σ2p(2p)!

τ p2pp!
a.s.

while

lim
n→∞

1

log n

n∑
k=1

kp−3/2(θ̂k − θ)2p−1 = 0 a.s.

The simple choice φn = Xn in (4.1) leads to the linear autoregressive model

Xn = θXn−1 + εn. (4.4)

In the stable case |θ| < 1, it is well-known that fn tends a.s. to zero and sn/n
converges a.s. to σ2/(1 − θ2) (see e.g. [8], [13], [19]). Hence, it follows from
(4.3) that (θ̂n) satisfies the PASCLT

1

log n

n∑
k=1

1

k
δ√

k(θ̂k−θ)
=⇒ N (0, 1− θ2) a.s.

In the unstable case |θ| = 1, once again fn → 0 but sn/n
2 diverges. However,

by formula (3.5) of Wei [19], log sn is a.s. equivalent to 2 log n. Consequently,
only (4.2) holds replacing log sn by 2 log n.

Similarly to Corollary 8, a direct application of Theorem 6 for explosive mar-
tingales is as follows.

Corollary 10. Assume that (εn) is a martingale difference sequence satisfy-
ing, for all integer p ≥ 1, the moment condition (2.5) and (3.1). In addition,
assume that the explosion coefficient fn converges a.s. towards a random vari-
able f with 0 < f < 1, and that the sequence (l(p, f)) satisfies Carleman’s
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moment condition. Then, (θ̂n) satisfies the PASCLT

1

n

n∑
k=1

δ√
sk−1(θ̂k−θ)

=⇒ Hf a.s. (4.5)

In addition, assume that for some positive random variable τ

lim
n→∞

(1− f)nsn = τ a.s.

Then, there exists a unique probability distribution Hf (τ) such that

1

n

n∑
k=1

δ
(θ̂k−θ)/(1−f)k/2 =⇒ Hf (τ) a.s. (4.6)

Lastly, if all the moments σ(2p) coincide with those of an N (0, σ2) random
variable, then we have the PASCLT

1

n

n∑
k=1

δ
(θ̂k−θ)/(1−f)k/2 =⇒ N

(
0,

σ2

τ(1− f)

)
a.s.

Remark 11. As (4.6) holds for any polynomial function, We find that for all
integer p ≥ 1

lim
n→∞

1

n

n∑
k=1

(θ̂k − θ)2p

(1− f)kp
=

l(p, f)

τ p(1− f)p
a.s.

while

lim
n→∞

1

n

n∑
k=1

(θ̂k − θ)2p−1

(1− f)k(p−1/2)
= 0 a.s.

Consider once again the linear autoregressive model given by (4.4). In the
explosive case |θ| > 1, θ−nXn converges a.s. and in mean square to the positive
random variable

Y = X0 +
∞∑

k=1

θ−kεk.

Hence, it follows from Toeplitz’s lemma that fn → (θ2− 1)/θ2 a.s. and sn/θ
2n

converges a.s. to θ2Y 2/(θ2 − 1) (see e.g. [8], [13]). Consequently, we deduce
from (4.6) that

1

n

n∑
k=1

δ|θ|k(θ̂k−θ)
=⇒ Hf (τ) a.s.

with τ = θ2Y 2/(θ2 − 1). More particularly, if all the moments σ(2p) coincide
with those of an N (0, σ2) random variable, we have the PASCLT

1

n

n∑
k=1

δ|θ|k(θ̂k−θ)
=⇒ N

(
0,

σ2(θ2 − 1)

Y 2

)
a.s.
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4.2 Branching processes.

Consider the Galton-Watson process given by

Xn =
Xn−1∑
k=1

Yn,k (4.7)

with X0 = 1. The random variable Xn denotes the size of the n-th generation
while Yn,k is the number of offsprings of the k-th individual in the (n− 1)-th
generation. We assume that (Yn,k) is a sequence of independant and identically
distributed random variables taking their values in N∗, which means that
Yn,k ≥ 1. The distribution of (Yn,i), with finite mean m and positive variance
σ2, is commonly called the offspring distribution. We also suppose that (Yn,i)
has finite moments of any order. Relation (4.7) can be rewritten as

Xn = mXn−1 + ξn (4.8)

where ξn = Xn − E[Xn|Fn−1]. If

εn =
ξn√
Xn−1

,

we clearly have E[εn+1|Fn] = 0 and E[ε2
n+1|Fn] = σ2 a.s. The conditional least

square estimator of m is given by

m̂n =

∑n
k=1 Xk∑n

k=1 Xk−1

.

Consequently, we obtain from (4.8) that

m̂n −m =
Mn

sn−1

where Mn =
n∑

k=1

φk−1εk

and φn =
√

Xn. In the supercritical case m > 1, it is well-known that m−nXn

converges a.s. and in mean square to the nonzero random variable

L = X0 +
∞∑

k=1

m−kξk.

Thus, we deduce from Toeplitz’s lemma that fn → (m− 1)/m a.s. and sn/m
n

converges a.s. to mL/(m − 1) (see e.g. [9]). Our purpose is now to propose
a second application of Theorem 6 to (m̂n). Since (Yn,k) has finite moments
of any order, the same remains true for the sequence (εn). Hence, in order to
make use of Theorem 6, it is enough to verify the convergence of the conditional
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moments associated with (εn). However, it follows from (4.7) that

εn =

∑Xn−1

k=1 (Yn,k −m)√
Xn−1

.

Consequently, applying the standard central limit theorem, the distribution
of εn+1 conditionally to Fn converges to the gaussian distribution N (0, σ2).
For any p ≥ 1, as the moments of order 2p of εn+1 conditionally to Fn are
bounded, a classsical argument of uniform integrability (see e.g. [3], theorem
25. 12) leads to the convergence of these moments to those of the N (0, σ2)
distribution. Therefore, a straightforward application of Theorem 6, similar to
Corollary 10, is as follows.

Corollary 12. In the supercritical case m > 1, (m̂n) satisfies the PASCLT

1

n

n∑
k=1

δ√sk−1(m̂k−m) =⇒ N (0, σ2) a.s. (4.9)

Moreover, we also have

1

n

n∑
k=1

δmk/2(m̂k−m) =⇒ N
(
0,

(m− 1)σ2

L

)
a.s. (4.10)

Remark 13. A standard ASCLT can be found in [16]. In addition, we infer
from (4.10) that for all integer p ≥ 1

lim
n→∞

1

n

n∑
k=1

mkp(m̂k −m)2p =
(m− 1)pσ2p(2p)!

Lp2pp!
a.s.

while

lim
n→∞

1

n

n∑
k=1

mk(p−1/2)(m̂k −m)2p−1 = 0 a.s.

Appendix A.

Appendix A is devoted to the proof of Theorem 3. We shall only prove con-
vergence for odd moments (2.4) as convergence for even moments (2.3) was
already established in [2]. First of all, for any p ≥ 1, set

vn(p) =
(
√

sn)2p−1 − (
√

sn−1)
2p−1

(
√

sn)2p−1
.

As Mn+1 = Mn + φnεn+1, we have for any p ≥ 1

M2p−1
n+1 =

2p−1∑
k=0

Ck
2p−1φ

k
nε

k
n+1M

2p−1−k
n . (A.1)
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Consequently, putting

Vn =
(

Mn√
sn−1

)2p−1

we easily deduce from (A.1) that for any n ≥ 1

Vn+1 +An = V1 + Bn+1 +Wn+1 (A.2)

where

An =
n∑

k=1

vk(p)Vk, Wn+1 =
n∑

k=1

s−p
k

√
skφ

2p−1
k ε2p−1

k+1 ,

Bn+1 =
2p−2∑
l=1

C l
2p−1Bn+1(l), Bn+1(l) =

n∑
k=1

ϕk(l)ε
l
k+1,

and for any 1 ≤ l ≤ 2(p − 1), ϕk(l) = s−p
k

√
skM

2p−1−l
k φl

k. Via a standard
truncation argument, we may assume without loss of generality that each
ϕk(l) is a bounded random variable. Hereafter, by use of (A.2), we are in
position to prove convergence (2.4) by induction on the power p ≥ 1. For
p = 1, the term Bn+1 in the right-hand side of (A.2) vanishes. In addition,
it is well-known from [2], [8] or [13] that M2

n = O(sn−1 log sn−1) a.s. so that
Vn+1 = o(log sn) a.s. Moreover, (Wn) is a locally square integrable martingale
with increasing process

<W>n+1= σ2
n∑

k=1

fk.

By the elementary inequality x ≤ − log(1 − x) for 0 < x < 1, we have for
all n ≥ 1, fn ≤ − log(1 − fn) so that fn ≤ log sn − log sn−1 which implies
that <W >n+1≤ σ2 log sn. Hence, we deduce from the standard strong law
of large numbers for martingales that Wn+1 = o(log sn) a.s. Consequently, it
immediately follows from (A.2) that An = o(log sn) a.s. However, we clearly
have fn = an(1)vn(1) with

an(1) =

√
sn +

√
sn−1√

sn

. (A.3)

As an(1) → 2 and An = o(log sn) a.s. it is not hard to see that a.s.

n∑
k=1

fkVk = o(log sn) + o(Tn) with Tn =
n∑

k=1

vk(1)|Vk|. (A.4)

Moreover, via the Cauchy-Schwarz inequality

T 2
n ≤

n∑
k=1

fk

n∑
k=1

fkV
2
k

12



because, for all n ≥ 1, an(1) ≥ 1 so vn(1) ≤ fn. Furthermore, we can deduce
from convergence (2.3) with p = 1 that

n∑
k=1

fkV
2
k = O(log sn) a.s.

Consequently, Tn = O(log sn) a.s. which, by use of (A.4), clearly leads to (2.4)
for p = 1. Now, let p ≥ 2 and assume that convergence (2.4) holds for any
power q with 1 ≤ q ≤ p − 1. We infer from formula (2.5) of [2] or formula
(2.30) of [19] that M2p

n = O(sp
n−1 log sn−1) a.s. so that Vn+1 = o(log sn) a.s.

Next, we may assume without loss of generality that for all n ≥ 0, σn(2p) ≤ C
a.s. for some constant C ≥ 1. On the one hand, it follows from Chow’s lemma
(see e.g. Duflo [8] Theorem 1.3.18 p. 22) that

Wn+1 = o

(
n∑

k=1

fp
k

)
+ O

(
n∑

k=1

f
p−1/2
k

)
a.s.

Hence, as fn ≤ 1 and fn → 0 a.s., we find that

Wn+1 = o(log sn) a.s. (A.5)

On the other hand, we also claim that

Bn+1 = o(log sn) a.s. (A.6)

In order to prove (A.6), it is only necessary to show that for any integer
1 ≤ l ≤ 2(p− 1), Bn+1(l) = o(log sn) a.s. We can split Bn+1(l) into two terms,
Bn+1(l) = Cn+1(l) + Dn(l) where

Cn+1(l) =
n∑

k=1

ϕk(l)ek+1(l) and Dn(l) =
n∑

k=1

ϕk(l)σk(l)

with, for any 1 ≤ l ≤ 2(p− 1), ek+1(l) = εl
k+1−σk(l). First, for any 1 ≤ l ≤ p,

the sequence (Cn(l)) is a locally square integrable martingale satisfying via
the strong law of large numbers for martingales |Cn+1(l)|2 = O(τn(l) log τn(l))
a.s. where

τn(l) =
n∑

k=1

|ϕk(l)|2.

Moreover, one can easily deduce from formulas (2.5) and (2.6) of [2] that
τn(l) = O((log sn)d) a.s. with d = 2(p − 1)/p. Consequently, as d < 2, we
immediately obtain that for any 1 ≤ l ≤ p,

Cn+1(l) = o(log sn) a.s. (A.7)

13



Next, for p ≥ 3 and for any p + 1 ≤ l ≤ 2(p − 1), we find via Chow’s lemma
that either (Cn(l)) converges a.s. or Cn+1(l) = o(νn(l)) a.s. where

νn(l) =
n∑

k=1

|ϕk(l)|δ ≤
n∑

k=1

fp
k

(
M2

k

sk−1

)ρ

with δ = 2p/l and 2ρ = p(δ−1)− δ. Since p ≥ 3, we obviously have 1 < δ < 2
and 0 < ρ < p. In addition, it follows from the Hölder inequality that

νn(l) ≤
(

n∑
k=1

fp
k

)1−ρ/p ( n∑
k=1

fp
k

(
M2

k

sk−1

)p
)ρ/p

.

Hence, as fn → 0 a.s., we infer from (2.3) that νn(l) = o(log sn) so that (A.7)
holds fo any 1 ≤ l ≤ 2(p−1). In order to prove (A.6), as Dn(1) = 0, it remains
to show that for any 2 ≤ l ≤ 2(p− 1)

Dn(l) = o(log sn) a.s. (A.8)

One can easily see from the Hölder inequality that for each 2 ≤ l ≤ 2(p− 1),
|σn(l)| ≤ C a.s. Consequently, we find that for any 2 ≤ l ≤ 2(p− 1)

|Dn(l)| ≤ C
n∑

k=1

f
l/2
k

(
Mk√
sk−1

)2p−1−l

a.s. (A.9)

We shall study the asymptotic behavior of Dn(l) in the three following cases
for proving (A.8).

Case 1. Let l = 2. It follows from the induction assumption that for any
integer 1 ≤ q ≤ p− 1

n∑
k=1

fk

(
Mk√
sk−1

)2q−1

= o(log sn) a.s. (A.10)

By use of (A.10) with q = p− 1, we obtain that

Dn(2) = σ2
n∑

k=1

fk(1− fk)
p−3/2

(
Mk√
sk−1

)2p−3

= o(log sn) a.s.

Case 2. Assume that 4 ≤ l ≤ 2(p− 1) with l even. If 2 ≤ p ≤ 5, we proceed
exactly as in b). Next, if p ≥ 6, we have to consider two cases.
a) If 4 ≤ l ≤ p−2 with l even, we can find 1 ≤ q ≤ p−5 such that q = p−l−1.
Hence, it follows from (A.9) together with the Cauchy-Schwarz inequality and
(2.3) that

|Dn(l)| = O

(
n∑

k=1

f l−1
k

(
Mk√
sk−1

)2q n∑
k=1

fk

(
Mk√
sk−1

)2p
)1/2

= o(log sn) a.s.

14



b) If p − 1 ≤ l ≤ 2(p − 1) with l even, we can choose 1 ≤ q ≤ p such that
q = 2p − l − 1. Then, we deduce once again from (A.9) together with the
Cauchy-Schwarz inequality and (2.3) that

|Dn(l)| = O

(
n∑

k=1

f l−1
k

n∑
k=1

fk

(
Mk√
sk−1

)2q
)1/2

= o(log sn) a.s.

Case 3. Assume that 3 ≤ l ≤ 2p−3 with l odd. Then, we can find 1 ≤ q ≤ p−2
such that 2q = 2p − l − 1. Consequently, we immediately obtain from (A.9)
and (2.3) that

|Dn(l)| = O

(
n∑

k=1

f
l/2
k

(
Mk√
sk−1

)2q
)

= o(log sn) a.s.

Therefore, (A.8) clearly follows from the above three cases. Finally, we find
from (A.2) together with (A.5) and (A.6) that An = O(log sn) a.s. Further-
more, we have the decomposition fn = an(p)vn(p) where an(p) is given by

an(p) =
1− b2

n

1− b2p−1
n

with bn =

√
sn−1√
sn

.

As bn tends to 1 a.s., we obtain by use of L’Hopital’s rule that an(p) converges
to 2/(2p− 1) a.s. Whence, as An = o(log sn) a.s., it ensures that a.s.

n∑
k=1

fkVk = o(log sn) + o(Tn) with Tn =
n∑

k=1

vk(p)|Vk|. (A.11)

In addition, we obtain from the Hölder inequality

Tn ≤
(

n∑
k=1

vk(p)

)1/2p ( n∑
k=1

vk(p)
(

Mk√
sk−1

)2p
)1−1/2p

However, by the convexity of the function xp−1/2, we have for all n ≥ 1 and
for any p ≥ 2, 2(2p− 1)−1 ≤ an(p) ≤ 1 which implies that vn(p) ≤ pfn and

Tn ≤ p

(
n∑

k=1

fk

)1/2p ( n∑
k=1

fk

(
Mk√
sk−1

)2p
)1−1/2p

.

Finally, it follows from (2.3) that Tn = O(log sn) a.s. which, by use of (A.11),
leads to convergence (2.4) completing the proof of Theorem 3.
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Appendix B.

Appendix B deals with the proof of Theorem 5. As in Appendix A, we shall
only study convergence for odd moments (3.3) as convergence for even mo-
ments (3.2) was already established in [2]. We shall prove convergence (3.3) by
induction on the power p ≥ 1 with a repeated use of decomposition (A.2). For
p = 1, we already saw that V 2

n+1 = O(log sn) a.s. In addition, as the explosion
coefficient fn converges a.s. to f , sn−1/sn tends a.s. to 1 − f and log sn is
a.s. equivalent to −n log(1 − f). Consequently, we obtain that V 2

n+1 = O(n)
which leads to Vn+1 = o(n) a.s. Moreover, (Wn) is a locally square integrable
martingale with increasing process (<W>n) such that

lim
n→∞

1

n
Wn+1 = σ2f a.s.

Hence, according to the standard strong law of large numbers for martingales
Wn+1 = o(n) a.s. Therefore, it clearly follows from (A.2) that An = o(n) a.s.
Furthermore, as fn → f a.s., vn(1) converges a.s. to 1−

√
1− f . Consequently,

we obtain that a.s.

n∑
k=1

Vk = o(n) + o(Tn) with Tn =
n∑

k=1

|Vk|. (B.1)

Moreover, it follows from the Cauchy-Schwarz inequality together with con-
vergence (3.2) for p = 1 that Tn = O(n) a.s. Thus, (B.1) immediately implies
(3.3) for p = 1. Now, let p ≥ 2 and assume that convergence (3.3) holds
for any power q with 1 ≤ q ≤ p − 1. We already saw in Appendix A that
Vn+1 = o(log sn) so that Vn+1 = o(n) a.s. In addition, it follows from Chow’s
lemma that

Wn+1 = o

(
n∑

k=1

fp
k

)
+ O

(
n∑

k=1

f
p−1/2
k |σk(2p− 1)|

)
a.s.

Hence, as fn → f and σn(2p− 1) tends to zero a.s., we deduce that

Wn+1 = o(n) a.s. (B.2)

Next, via the same reasoning as in Appendix A, we find that for any 1 ≤ l ≤
2(p− 1), Cn+1(l) = o(n) a.s which leads to

Bn+1 =
2p−2∑
l=2

C l
2p−1Dn(l) + o(n) a.s. (B.3)

It remains to study the asymptotic behavior of Dn(l) in the three following
cases.
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Case 1. Let l = 2. It follows from the induction assumption that for any
integer 1 ≤ q ≤ p− 1

n∑
k=1

(
Mk√
sk−1

)2q−1

= o(n) a.s. (B.4)

Then, we infer from (B.4) with q = p− 1 that

Dn(2) = σ2
n∑

k=1

fk(1− fk)
p−3/2

(
Mk√
sk−1

)2p−3

= o(n) a.s.

Case 2. Assume that 4 ≤ l ≤ 2(p − 1) with l even. We split Dn(l) into two
terms,

Dn(l) = σ(l)
n∑

k=1

ϕk(l) +
n∑

k=1

ϕk(l)(σk(l)− σ(l)). (B.5)

Moreover, we can find 1 ≤ q ≤ p− 2 such that such that 2q = 2p− l. Hence,
we deduce from (B.4) that

n∑
k=1

ϕk(l) =
n∑

k=1

fp−q
k (1− fk)

q−1/2
(

Mk√
sk−1

)2q−1

= o(n) a.s.

Furthermore, it follows from the Hölder inequality that

n∑
k=1

|ϕk(l)| ≤
n∑

k=1

( |Mk|√
sk−1

)2q−1

≤ nρ/p

(
n∑

k=1

(
Mk√
sk−1

)2p
)1−ρ/p

with ρ = p− q + 1/2 which, via (3.2), ensures that

n∑
k=1

|ϕk(l)| = O(n) a.s.

Consequently, we obtain from (3.1) and (B.5) that

Dn(l) = o(n) + o

(
n∑

k=1

|ϕk(l)|
)

= o(n) a.s.

Case 3. Assume that 3 ≤ l ≤ 2p−3 with l odd. Then, we can find 1 ≤ q ≤ p−2
such that 2q = 2p− l − 1 and we directly obtain from (3.2) that

n∑
k=1

|ϕk(l)| = O

(
n∑

k=1

(
Mk√
sk−1

)2q
)

= O(n) a.s.

Whence, as σn(l) → 0 a.s., we infer that

Dn(l) = O(1) + o

(
n∑

k=1

|ϕk(l)|
)

= o(n) a.s.
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According to the above three cases, we find that for any 2 ≤ l ≤ 2(p − 1),
Dn(l) = o(n) a.s. and we immediately deduce from (B.3) that

Bn+1 = o(n) a.s. (B.6)

Consequently, it follows from the conjunction of (A.2), (B.2) and (B.6) that
An = o(n) a.s. Finally, as fn → f a.s., vn(p) converges a.s. to 1− (1− f)p−1/2

which ensures that
n∑

k=1

Vk = o(n) a.s.

completing the proof of Theorem 5.
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