
HAL Id: hal-00012658
https://hal.science/hal-00012658

Submitted on 26 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vectorial Languages and Linear Temporal Logic
Olivier Serre

To cite this version:
Olivier Serre. Vectorial Languages and Linear Temporal Logic. Theoretical Computer Science, 2004,
310/1-3, pp.79-116. �10.1016/S0304-3975(03)00346-3�. �hal-00012658�

https://hal.science/hal-00012658
https://hal.archives-ouvertes.fr

Vetorial Languages and Linear TemporalLogiOlivier SerreLIAFA, Universit�e Paris VII2, plae Jussieu, ase 7014F-75251 Paris Cedex 05AbstratDetermining for a given deterministi omplete automaton the sequene of visitedstates while reading a given word is the ore of important problems with automata-based solutions, suh as approximate string mathing. The main diÆulty is to dothis omputation eÆiently. Considering words as vetors and working on themusing vetorial operations allows to solve the problem faster than using loal oper-ations.In this paper, we show �rst that the set of vetorial operations needed by analgorithm representing a given automaton depends on the language aepted bythe automaton. We give preise haraterizations for star-free, solvable and regularlanguages using vetorial algorithms. We also study lasses of languages assoiatedwith restrited sets of vetorial operations and relate them with languages de�nedby fragments of linear temporal logi.Finally, we onsider the onverse problem of onstruting an automaton from agiven vetorial algorithm. As a byprodut, we show that the satis�ability problem forsome extensions of LTL haraterizing solvable and regular languages is PSPACE-omplete.1 IntrodutionGiven a deterministi omplete automaton and an input word, a lassialquestion is to deide whether or not the automaton aepts the word. A moredetailed information is the sequene of visited states while proessing theword. Computing this sequene is the ore of important problems suh asapproximate string mathing. An easy way to solve this problem onsists insimulating the run of the automaton (whih is deterministi and omplete)on the input word. However, approximate string mathing is generally usedon very long sequenes (as genomi ones) and the natural algorithm, whih isPreprint submitted to Elsevier Siene 21 May 2003

linear in the length of the input word, is not performing enough. A naturalsolution to aelerate the omputation is to onsider words as vetors andtherefore to ompute the sequene of visited states using vetorial operations,that an be eÆiently ahieved using parallelism.In this paper, we are interested in vetorial algorithms, that were introduedand investigated by A. Bergeron and S. Hamel in [3,4℄. Suh an algorithm om-putes the sequene of visited states while reading a word using a �nite number(independent of the length of the word) of vetorial operations. The existeneof an algorithm for a given automaton depends on the automaton and on thekind of vetorial operations we allow. The problem an also be studied fromthe language point of view: an we �nd a deterministi omplete automatonreognizing a given language and an assoiated vetorial algorithm? We �rstexhibit a very tight onnetion between temporal logi operators and somevetorial operations, that will therefore be alled PTL-vetorial operations.This leads to an alternative proof of the equivalene between star-free lan-guages and vetorial algorithms, whose diret inlusion was �rst establishedin [4℄. Then, we desribe extensions of these algorithms, �rst to apture a largersublass of regular languages, the solvable ones, and �nally for the whole lassof regular languages.In the seond part of the paper, we investigate fragments of algorithms basedon the set of PTL-vetorial operations. Here, we want to know whih subsetof star-free languages an be haraterized by forbidding ertain vetor oper-ations. We show that these fragments are losely related with the fragmentsof past temporal logi de�ned and haraterized in [5,16,17℄.Finally, we onsider the onverse problem, that is we want to hek for a givenvetorial algorithm whether there exists an automaton assoiated with it. Tosolve this problem, we show how to deide the satis�ability of formulas belong-ing to extensions of linear temporal logi introdued in [2℄. Our onstrutionsare based on alternating automata.2 Notations and de�nitionsThroughout the paper, vetors are noted in bold haraters (e.g. u) and areonsidered as words. Conversely, vetorial operations an be applied to words,onsidering them as vetors. Therefore, a word u is assoiated with a anonialvetorial representation u and a vetor v is assoiated with a anonial wordrepresentation v.Let A = (Q;A; �; q0; F) be a deterministi omplete automaton. With eahinput vetor u = a1a2 � � �am we assoiate the output vetor r = r1r2 � � � rm2

representing the sequene of states reahed reading u (we omit the leadinginitial state). Therefore, u and r have the same length. For instane, onsiderthe automaton given in Example 1. With the input vetor u = bbaabbbabababwe assoiate the output vetor r = 2311233121212. A vetorial algorithm forA onsists of a sequene of vetorial operations of �xed length (i.e., a straight-line expression of length whih is independent on u) omputing r from u.Given a word u = a1a2 � � �am, we onsider for every letter a 2 A, the booleanvetor (u = a) = (a1 = a) � � � (am = a), where (a1 = a) is a boolean whereasthe equality sign after (u = a) represents an assignment. Hene, (u = a) isthe harateristi boolean vetor of the letter a in the word u. Just as forwords, for any state q 2 Q, with an output vetor r = r1r2 � � � rm we assoiatethe boolean vetor (r = q) = (r1 = q) � � � (rm = q) that is, the harateristivetor of state q. For example, (bbaabbbababab = a) = 0011000101010 and(2311233121212 = 1) = 0011000101010.The sequene (u = a)a2A (respetively, the sequene (r = q)q2Q) is an equiv-alent boolean representation for the input word u (respetively for the outputvetor r). In fat, in order to work only on boolean vetors, the vetorial algo-rithms presented in this paper ompute the sequene of harateristi vetors(r = q)q2Q from the sequene of harateristi vetors (u = a)a2A.Let
 be a lass of vetorial operations. Vetorial algorithms based on this setof operations and on the bit-wise logial operations (ombinations of _, ^ and:) are alled
-vetorial algorithms. A deterministi omplete automaton isalled
-vetorial if there is an
-vetorial algorithm omputing the sequene(r = q)q2Q from the sequene (u = a)a2A. Finally, a language is
-vetorial if itis reognized by a deterministi omplete
-vetorial automaton. Proposition 1below shows that minimization preserves the property of being an
-vetorialautomaton. Therefore a language is
-vetorial if and only if its minimalautomaton is
-vetorial (by minimal automaton we always mean the minimalomplete automaton). This property is very useful, beause to deide whetheror not a language is
-vetorial, it suÆes to know how to deide whether ornot a given automaton (the minimal one) is
-vetorial.Proposition 1 Let A be a deterministi omplete automaton. If A is
-vetorial, then its minimal automaton Amin is also
-vetorial.Proof:As A is deterministi and omplete, the states of Amin orrespond to theNerode equivalene lasses of states of A. An expression haraterizing a stateof the minimal automaton is obtained as the disjuntion of the expressions forthe states of the assoiated equivalene lass.3

�To make our algorithms preise we have to state whih vetorial operationsare allowed. As in [4℄, we �rst onsider a basi set of vetorial operations:� Bit-wise logial operations suh as _, ^, : and the atomi formulas (u = a) =(u1 = a) � � � (um = a).� Right shift: "i u1 � � �um = iu1 � � �um�1, i 2 f0; 1g.� Binary addition between two vetors of same length: we perform the usualbinary addition from left to right but we do not keep the highest bit (arry)if the length of the result exeeds the initial vetors' ones. For example"0 110101 + 101011 = 110100.vetorial algorithms using only these operations will be alled in this paperPTL-vetorial algorithms. PTL stands for Past Temporal Logi and we willshow that there exists a lose relation between vetorial operations of this kindand past temporal logi operators. A language is therefore a PTL-vetoriallanguage if its minimal automaton is PTL-vetorial.Example 1 [3℄The language reognized by the following automaton is a PTL-vetorial lan-guage.
12 3
a

bbaba
Atually, the state to whih a word leads depends only on the last two lettersof the word: if the last letter is a the state is 1, if the length 2 suÆx is ab or ifwe are working on the �rst letter of the word and this letter is b (in this asewe annot onsider the length 2 suÆx) the state is 2 and otherwise it is 3.Therefore, we have the following PTL-vetorial algorithm for this automaton:

r = 8>>>>><>>>>>: (r = 1) = (u = a)(r = 2) = (u = b)^ "1 (u = a)(r = 3) = (u = b)^ "0 (u = b)4

3 Past temporal logiThe main result of the next setion states that a language is a PTL-vetoriallanguage if and only if it is star-free. Reall that a language is star-free ifand only if its syntati monoid is aperiodi [11℄. Furthermore a language isstar-free if and only if it an be de�ned by �rst-order logi of the linear orderFO[<℄ [6,7℄. Our proof relies a third haraterization in terms of past temporallogi (PTL). We �rst reall the syntax of PTL:We use atomi propositions pa for eah letter a 2 A of a given alphabetA, boolean onnetives (_ and :) and past temporal operators (Yesterday,denoted Y, and Sine, denoted S).The formulas are onstruted indutively aording to the following rules:(1) For every a 2 A, pa is a formula.(2) If '1 and '2 are formulas, so are '1 _ '2, :'1, Y'1 and '1 S'2.Semantis is de�ned by indution on the rules. Given a word w 2 A+ andan integer n 2 f1; 2; : : : ; jwjg, we de�ne that \w satis�es ' at position n",denoted (w; n) j= ', as follows:(1) (w; n) j= pa if the nth letter of w is a.(2) (w; n) j= '1 _ '2 if (w; n) j= '1 or (w; n) j= '2.(3) (w; n) j= :'1 if (w; n) 6j= '1.(4) (w; n) j= Y'1 if n > 1 and (w; n� 1) j= '1.(5) (w; n) j= '1 S'2 if there exists m � n suh that (w;m) j= '2 and, forevery k suh that m < k � n, (w; k) j= '1.With eah PTL-formula ', we assoiate the language of �nite words satisfying': L' = fu 2 A+ j (u; juj) j= 'gReall that a regular language L is star-free if and only if there exists a PTL-formula ' suh that L = L' (see for instane [5℄), i.e. if and only if L isPTL-de�nable.4 PTL-vetorial languages are equivalent to star-free languagesOur aim in this setion is to prove the following haraterization:Theorem 1 A regular language is star-free if and only if it is PTL-vetorial.5

The equivalene between PTL-de�nable languages and star-free languages im-plies that Theorem 1 is equivalent with the following result:Theorem 2 A regular language is PTL-vetorial if and only if it is PTL-de�nable.The proof of this result is splitted into two parts: passing from PTL-formulas toPTL-vetorial algorithms and from PTL-vetorial algorithms to PTL-formulas.The �rst part is done in Setion 4.1 and the seond one in Setion 4.2.4.1 Star-free languages are PTL-vetorialLet L be a star-free language and let A = (Q;A; �; q0; F) be its minimalautomaton. Sine L is star-free, A is ounter-free (note that this property isindependent from the �nal states). Let q be a state of A, then the languageLq = fu j (u; juj) j= 'g is reognized by an automaton obtained from A byletting q be the unique �nal state. Therefore, Lq is star-free (beause it isreognized by a ounter-free automaton) and thus PTL-de�nable: there existsa PTL-formula 'q suh that q0 � u = q if and only if (u; juj) j= 'q.We will show that for any input vetor u = a1 � � �am and any PTL-formula ',the omputation of the binary vetor v = v1 � � � vm, where vi = 1 if and onlyif (e1 � � � ei; i) j= ', an be performed by a PTL-vetorial algorithm �.The de�nition of � is given by indution on ':(1) If ' = pa then � = (u = a).(2) If ' = '1 _ '2 then � = �1 _ �2, where �1 and �2 are assoiatedrespetively with '1 and '2.(3) If ' = :'1 then � = :�1, where �1 is assoiated with '1.(4) If ' = Y'1 then � = "0 �1, where �1 is assoiated with '1.(5) If ' = '1 S'2, then � = �2_[("0 �2)^�1℄_[�1^arry(�1; ("0 �2)^�1)℄,where �1 and �2 are assoiated respetively with '1 and '2.The formula arry(v;w) is an abbreviation for: :[(v �w) = (v +w)℄, where� is the exlusive-or operator. Therefore, arry(v;w) represents the value ofthe arry bit when adding v and w. For instane, arry(101101; 100110) =010011.Let us justify the onstrution for the sine operator, (5). A word u is suhthat (u; n) j= '1 S'2 in one of the three ases:(i) (u; n) j= '2. This ase is treated by the algorithm �2.6

(ii) (u; n � 1) j= '2 and (u; n) j= '1. This ase is treated by the algorithm[("0 �2) ^ �1℄.(iii) There is an integer m < n � 1 (whih is hosen maximal) suh that(u;m) j= '2 and, for all k suh that m < k � n, (u; k) j= '1. Thevetor arry(�1; ("0 �2) ^ �1℄ is suh that its n-th position is 1 if andonly if there exists m < n � 1 suh that (u;m) j= '2 and, for all ksuh that m < k � n � 1, (u; k) j= '1. Consequently, the algorithm�1^arry(�1; ("0 �2)^�1) exatly haraterizes our ase. Note that the�rst omponent �1 is neessary beause the arry has a non immediatee�et: it a�ets the �rst position after it is generated. For the samereason, the seond ase had to be treated separately.This indutive onstrution onludes the proof that any star-free language isPTL-vetorial.The following example illustrates the preeding ases for the value �(u) of �applied to a vetor u:�2(u) = 0 0 1 0 0 1 0 0"0 [�2(u)℄ = 0 0 0 1 0 0 1 0�1(u) = 1 1 0 1 1 1 0 1[("0 �2) ^ �1℄(u) = 0 0 0 1 0 0 0 0[arry(�1; ("0 �2) ^ �1)℄(u) = 0 0 0 0 1 1 1 0[�1 ^ arry(�1; ("0 �2) ^ �1)℄(u) = 0 0 0 0 1 1 0 0�(u) = 0 0 1 1 1 1 0 04.2 PTL-vetorial languages are star-freeLet L be a PTL-vetorial language. By Proposition 1, its minimal automatonA = (Q;A; �; q0; F) is a PTL-vetorial automaton. To prove that L is star-free (equivalently, PTL-de�nable) we onstrut for eah state q of A, a PTL-formula 'q suh that for any word u 2 A+, q0 �u = q if and only if (u; juj) j= 'q.Therefore, L will be haraterized by the disjuntion _q2F 'q, whih is a PTL-formula.For eah state q of A we have a PTL-vetorial algorithm �q omputing, fromeah input vetor u, the harateristi output vetor of state q, (r = q). Theformula 'q whih \translates" �q is de�ned by indution on the struture of�q. Moreover, the logial formula ' as de�ned below for a vetorial algorithm7

�, satis�es the following property: the i-th entry of the vetor obtained byapplying � to u is 1 if and only if (u; i) j= '.(1) If � = (u = a), where a is a letter, then ' = pa.(2) If � = �1 _ �2 then ' = '1 _ '2, where '1 and '2 are assoiatedrespetively with �1 and �2.(3) If � = :�1 then ' = :'1, where '1 is assoiated with �1.(4) If � = "0 �1 then ' = Y'1, where '1 is assoiated with �1. The ase� ="1 �1 follows from the preeding one, beause "1 �1 = :("0 :�1).(5) If � = �1 + �2, we let = Yf['1 _ '2℄ S ['1 ^ '2℄gwhere '1 and '2 are assoiated respetively with �1 and �2. Note thatthe formula haraterizes the value of the arry bit while summing thevetors obtained from �1 and �2. Thus, the translation of �1+�2 is thelogial formula: ' = ['1 � '2℄ ! :Finally, the global formula for L is:'A = _q2F 'q;and for eah word u, we have u 2 L = L(A) if and only if (u; juj) j= 'A.This onludes the proof. �
5 Extensions of PTL-vetorial algorithmsA natural question is to extend PTL-vetorial algorithms, in order to apturelarger lasses of regular languages by parallel operations. To ahieve this goalwe need to introdue new operations that are stritly more powerful thanthe PTL operations. In a �rst extension we will haraterize solvable regularlanguages (a regular language is alled solvable if its syntati monoid doesnot ontain any non solvable group) and in a seond extension all regularlanguages. 8

5.1 A vetorial haraterization of solvable languagesThe ruial point in de�ning extensions of PTL-vetorial algorithms is thehoie of the new operations allowed. To determine them, let us give anotherproof of the fat that PTL-vetorial languages are star-free. A well knownexample of non star-free language is L1 = (aa)� whereas, on the alphabetA = fa; bg, L2 = (ab)� = A� n [bA� + A�a + A�(aa + bb)A� is a star-free one.Is there a \vetorial" di�erene between them? L1 and L2 are reognized bythe following automata:
1 2aa 1 2abA1 A2Reall that a period of a word u = a1a2 � � �an is an integer p � n=2 suh thatfor any position i, 1 � i � n� p, ai+p = ai. A word having period p is said tobe of periodiity p. For example abbaabbaabbaab is of periodiity 4. Finally, aword is ultimately periodi of period p if it has a suÆx of periodiity p. Forinstane, abbbababababababab is ultimately periodi of period 2.Words reognized by A1 are of periodiity 1 whereas the assoiated sequeneof states is of periodiity 2. This is not the ase for the automaton A2. Onean show that any PTL-vetorial algorithm applied to an ultimately periodiword gives an ultimately periodi result of the same period (PTL-vetorialoperations preserve periods). With any non ounter-free automaton one anassoiate an ultimately periodi word of period p suh that the assoiatedsequene of states is not of ultimate period p. Thus, a PTL-vetorial languagehas to be star-free.To extend PTL-vetorial algorithms, we need to introdue operators that donot preserve the period. For every integers k; l suh that 0 � l < k, themodular operator Sl;k is de�ned bySl;k(x1x2 � � �xm) = (s1 � � � sm) where si = 8>><>>:1 if iXj=1 xj = l (mod k);0 otherwise.vetorial algorithms using only the PTL-vetorial operations plus the modularoperations Sl;k will be alledMTL-vetorial algorithms. A language is anMTL-9

vetorial language if there is an MTL-vetorial algorithm for a deterministiomplete automaton whih reognizes it.With modular operators, one an easily de�ne MTL-vetorial algorithms forthe minimal automaton of languages of the form L(a; k; pn) = fu 2 A�j juja �k (mod pn)g, where a is a letter, juja is the number of ourrenes of a 2 Ain u, p a prime number and k; n stritly positive numbers.Sine MTL-vetorial languages are a boolean algebra (just onsider the prod-ut automaton to ompute an algorithm for intersetion or union of two MTL-vetorial languages) and languages of the form K(a; r) = fu 2 A�j juja = rgare PTL-vetorial (sine star-free), the boolean algebra MCom generated bylanguagesK(a; r) and L(a; k; pn), whih is the set of languages whose syntatimonoid is ommutative [8℄, is a subset of MTL-vetorial languages.For haraterizing the family of solvable languages we need a further operationon automata, the asade produt . Let A be a �nite alphabet and let B1 =(Q1; A; Æ1) and B2 = (Q2; Q1 � A; Æ2) be two �nite automata. Their asadeprodut C = (Q;A; Æ), denoted B1 Æ B2 is de�ned as follows:� Q = Q1 �Q2� Æ(hq1; q2i; a) = hÆ1(q1; a); Æ2(q2; hq1; ai)iWe an also de�ne the asade produt of more than two automata by thefollowing reursive formula:B1 Æ B2 Æ � � � Æ Bk = (: : : ((B1 Æ B2) Æ B3) Æ : : :) Æ BkThis automata version of the wreath produt [9℄ of aperiodi semigroups,ombined with the Krohn-Rhodes Deomposition Theorem [14℄, was used toonstrut PTL-vetorial algorithms from ounter-free automata [3℄. It is notdiÆult to prove that a family of automata orresponding to a lass of ve-torial algorithms, for instane ounter-free automata or automata reognizingMTL-vetorial languages, is losed under asade produt and under homo-morphisms. Therefore, as all star-free languages are MTL-vetorial languages,any language reognized by an automaton obtained by applying a homomor-phism to a asade produt of ounter-free automata and automata reog-nizing languages in MCom is an MTL-vetorial language. In addition, anysolvable language is reognized by an automaton obtained by applying an ho-momorphism to a asade produt of ounter-free automata and automatareognizing languages in MCom [13℄, and therefore this proves that solvablelanguages are MTL-vetorial languages.In fat, the onverse is true as well, any MTL-vetorial language is a solvablelanguage. We have thus the following result:10

Theorem 3 A regular language is solvable if and only if it is MTL-vetorial.For the proof, we use an extension of the past temporal logi introdued in[2℄, the modular temporal logi (MTL). By modular temporal logi we meanpast temporal logi augmented with the unary operators Modl;k for integers0 � l < k. The new modular operators have the following natural semantis:given an MTL formula ', we have (u; i) j= Modl;k' if, there are l positions i0,1 � i0 � i (modulo k) suh that (u; i0) j= '.It was shown in [2℄ that a language is expressible in modular temporal logiif and only if it is solvable. But, with an MTL-vetorial language one anassoiate an MTL formula in a straightforward way. This shows that MTLvetorial languages are solvable languages and ahieves the proof of the equiv-alene between MTL-vetorial languages and solvable languages. Moreover,as solvability is a syntati property, the property of being an MTL-vetoriallanguage does not depend atually on a spei� automaton reognizing thelanguage.5.2 A vetorial haraterization of regular languagesMTL-vetorial algorithms do not haraterize all regular languages. Therefore,we propose an extension to MTL-vetorial algorithms, whih we denote asGTL-vetorial algorithms, whih aptures all regular languages.We will use again an extension of modular temporal logi introdued in [2℄.This extension of temporal logi is obtained by augmenting modular tempo-ral logi with group temporal operators �g;G for any �nite group G and anyelement g 2 G. The operator �g;G always binds jGj � 1 formulas.Let us now explain the semantis of �g;G for a given �nite group G and anelement g 2 G. We �rst have to order the elements of the group G (this orderwill not be modi�ed afterward), say as g1; g2; : : : ; gq = id. Let u be an elementof A+ and let '1; '2; : : : ; 'q�1 be GTL-formulas. With eah j, 1 � j � juj weassoiate an element of G, denoted h'1; '2 : : : 'q�1ihu; ji, de�ned by:h'1; '2; : : : ; 'q�1ihu; ji = gkwhere k = minfl j (u; j) j= 'lg with the onvention that min ; = q.Finally, we de�ne (u; i) j= �g;Gh'1; '2; : : : ; 'q�1i to mean that:iYj=1h'1; '2; : : : ; 'q�1ihu; ji = g11

It was shown in [2℄ that a language is expressible in group temporal logi ifand only if it is regular.Thus, to have a vetorial haraterization of all regular languages it suÆes to�nd vetorial operations equivalent to �g;G for all �nite groups G. Let G be a�nite group of ardinality q. We onsider an isomorphi opy H of G de�ned asfollows. The elements of H are boolean vetors of length q ontaining exatlyone 1. Therefore, (1; 0; : : : ; 0) is assoiated with g1, (0; 1; 0; : : : ; 0) with g2 andso on. The produt � on H is de�ned by the isomorphism � between G andH. For eah group G and eah element g 2 G, we introdue the operator Pg;Gde�ned by:Pg;G(v1;v2; : : : ;vq) = (s1 : : : sm) with si = 8>><>>:1 if iOj=1(v1;j; v2;j; : : : ; vq;j) = �(g);0 otherwise.where we mean by N an iteration of � and by vk;j the j-th bit of vetor vk.Remark 1 In our de�nition of Pg;G, we impliitly suppose that for eah j, 1 �j � i, there is exatly one vetor vk suh that vk;i = 1. If this is not the ase,we have a problem in de�ning the produt N beause some (v1;j; v2;j; : : : ; vq;j)do not belong to H. The solution onsists in de�ning the produt �, and thusthe iterated produt N, for all boolean vetors of length q. To ahieve thiswe de�ne an equivalene relation � for boolean vetors saying that x � y ifand only if x and y have their �rst 1 in the same position. In addition, thevetor (0; 0; : : : ; 0) is equivalent to the neutral element (0; 0; : : : ; 0; 1). Finallywe de�ne � for all vetors using the equivalene relation �.The equivalene relation � works like the operator h'1; '2; : : : ; 'q�1i, it justlooks for the �rst 1 (validate formula) that appears on the vetor.Therefore with ' = �g;G('1; : : : ; 'q�1) we assoiate �:� = Pg;G(�1;�2;�3; : : : ;�q�1;:�1 ^ � � � ^ :�q�1);where �i is the translation of 'i. Denoting by �ji (u) the j-th bit of the resultof the algorithm �i applied to u we then have:�(h'1; '2; : : : ; 'q�1ihu; ji) �(�j1(u);�j2(u);�j3(u); : : : ;�jq�1(u);:�j1(u) ^ � � � ^ :�jq�1(u))and therefore we have (u; i) j= ' if and only if the i-th bit of the result of �applied to u is 1. 12

Conversely, with � = Pg;G(�1; : : : ;�q) we assoiate:' = �g;G['1; '2; '3; : : : ; 'q�1℄where 'i is the translation of �i.Denoting again by �ji (u) the j-th bit of theresult of �i applied to u we obtain:�j1(u);�j2(u);�j3(u); : : : ;�jq�1(u);:�j1(u) ^ � � � ^ :�jq�1(u)) ��(h'1; '2; : : : ; 'q�1ihu; ji)and therefore the i-th bit of the result of � applied to u is 1 if and only if(u; i) j= '.Thus, the operators �g;G and Pg;G have the same expressive power. We an nowharaterize all regular languages by vetorial algorithms. Vetorial algorithmsusing only the MTL-vetorial operations plus the group operations Pg;G willbe alled GTL-vetorial algorithms. A language is a GTL-vetorial languageif there is a GTL-vetorial algorithm for a deterministi omplete automatonwhih reognizes it.Combining the preeding results, we have the following haraterization ofregular languages:Theorem 4 A language is regular if and only if it is GTL-vetorial.E�etively, a GTL-vetorial language is regular (beause it is reognized bya �nite automaton). Conversely, to any regular language one an assoiate a�nite deterministi omplete reognizing it. To any state of the automaton, onean assoiate a regular language (and thus a GTL-formula) representing theset of words that lead to this state in the automaton. Translating these GTL-formulas gives us a GTL-vetorial algorithm for the automaton. Hene anyregular language is a GTL-vetorial language. Regularity being a syntatiproperty, the property of being a GTL-vetorial language does not dependatually on a spei� automaton.6 Fragments of PTL-vetorial languagesIn the preeding setions we attempted to extend PTL-vetorial algorithms toharaterize regular languages more omplex than star-free ones. For that weneeded new vetorial operators. However, the prie to pay is that the extendedvetorial operations are not obviously realizable from a hardware point of view.13

A dual investigation is to study fragments of PTL-vetorial languages: given aset of vetorial operators (that an be eÆiently performed) we want to deter-mine whih kind of (deterministi omplete) automata an be haraterizedby algorithms using the given set of vetorial operations. A similar problemhas been studied for temporal logi in [5,16,17℄ and we will relate it to ourproblem.6.1 De�nitionsWe �rst introdue a new vetorial operation alled right, denoted by ! andde�ned as: !v = v _ [:(v + 1)℄. It is easily seen that !0 = 0 and that!0 � � �01? � � �? = 0 � � �01 � � �1. That is, right mathes the �rst one (from theleft) by ompleting the vetor with ones (to the right) after the �rst one. Wenote that ! is the vetorial equivalent of the past temporal operator P (past)whose semantis is de�ned by: (w; n) j= P' if there exists m � n suh that(w;m) j= '.We also de�ne a strit version of the ! operation, the strit right, denotedby � and de�ned by �v ="0 (!v). Thus, it is easily seen that �0 = 0 andthat � 0 � � �0| {z } 1? � � �? = 0 � � � 0| {z } 01 � � �1. For example, we have: �0001101001 =0000111111 and �001 = 000. The � operator is the vetorial equivalent ofthe strit version YP of the operator P, de�ned by: (w; n) j= YP' if thereexists m < n suh that (w;m) j= '.Given a lass
 of vetorial operations, we write VA[
℄ for the set of vetorialalgorithms using only bit-wise logial operations and operations in
. Foronveniene, we omit the braes: we write VA[!;+℄ instead of VA[f!;+g℄.For example PTL-vetor algorithms are exatly the ones in VA["0;+℄.We use the same notation for languages: we will denote by VL[
℄ the set oflanguages for whih there is an automaton and a orresponding algorithm inVA[
℄. Therefore VL["0;+℄ desribes the PTL-vetorial languages.For eah fragment of PTL-vetorial languages, we would like to have an ef-�ient algorithm to deide whether or not a given language belongs to thefragment. For this, we will use haraterizations of fragments of past temporallogi given in [5,16,17℄. A fragment of past temporal logi is de�ned as fol-lows: given a lass � of temporal modalities, we write PTL[�℄ for the set oftemporal formulas in whih modalities other than ones from N do not our.For onveniene, we omit the braes, e.g., we write PTL[Y;YP℄ instead ofPTL[fY;YPg℄. We an also assoiate with � a set of languages noted L[�℄suh that a language L belongs to L[�℄ if and only if there exists a formula' 2 PTL[�℄ suh that L is de�nable by '.14

6.2 Charaterizing fragments of PTL-vetorial languages6.2.1 PreliminariesIntuitively, there exists a tight link between languages de�ned by logial on-ditions and languages de�ned by "equivalent" vetorial onditions. For ex-ample, in Setion 4 we have seen that PTL-vetorial languages are the sameas languages de�ned by past temporal logi. But, whereas logial satis�abil-ity depends exlusively on the language, vetorial haraterizations seem tobe losely related with a spei� automaton. Vetorial haraterizations arestronger than logial haraterizations beause in order to have a vetorialalgorithm for a given automaton one must be able to haraterize any state,hene any language reognized by the automaton obtained by setting a givenstate as unique �nal state. For a logial formula one just needs to exhibit theset of �nal states needed for the given language.But under some assumptions, logial fragments and vetorial fragments de�nethe same lass of languages. Let us be more expliit. Given a set
 of vetorialoperations and a set � of logial operators, we will say that
 and � areequivalent if they verify the following onditions:(1) To any vetorial algorithm � using only operations in
 one an assoiatea PTL-formula ' using only operators in � suh that for any word u andany positive integer i smaller than juj, the i-th entry of the vetor obtainedby applying � to u is 1 if and only if (u; i) j= '.(2) To any PTL-formula ' using only operators in �, one an assoiate avetorial algorithm � using only operators in
 suh that for any wordu = u1 � � �um, the omputation of the binary vetor v' = v1 � � � vm, wherevi = 1, (u1 � � �ui; i) j= ', is performed by the algorithm �.For example, we have seen in Setion 4 that the set of vetorial operations
 = f"0;+g is equivalent to the set of logial operators � = fY;Sg. More-over, in this ase we have that VL[
℄ = L[�℄. Several fragments of temporallogi have been studied and haraterized in [5,16,17℄ and therefore to har-aterize a fragment of PTL-vetorial languages, a solution onsists in �ndingan equivalent fragment in temporal logi. We have to �nd a ondition on twoequivalent sets
 and � to have VL[
℄ = L[�℄.A set � of logial operators will be alled �nally stable if for every languageL that belongs to L(�), any language reognized by an automaton obtainedfrom the minimal automaton of L by letting some arbitrary state to be theunique �nal state, belongs to L(�).For example, any set � suh that L(�) is a variety of languages is �nallystable. Formally, if L is a language in L(�) and A its minimal automaton,15

any automaton A0 obtained by modifying the �nal states of A reognizes alanguage L0 of L(�) beause the syntati monoid of A0 divides the syntatimonoid of A.The notion of �nal stability gives us the following lemma:Lemma 1 Let
 be a set of vetorial operations and let � be an equivalentset of logial operators. Then � is �nally stable if and only if VL(
) = L(�).Proof:First assume that � is a �nally stable set of logial operators equivalent toa set
 of vetorial operations. The inlusion VL(
) � L(�) is not diÆult.To prove the onverse inlusion, VL(
) � L(�), let us onsider a languageL 2 L(�) and its minimal automaton A = (Q;A; �; qi; F). For any state q ofA, the automaton Aq obtained from A by letting q be the unique �nal state,reognizes the language Lq that belongs to L(�). Therefore we have a formula'q in PTL(�) that de�nes Lq. Therefore, we have that qi � u = q if and onlyif (u; juj) j= 'q. We obtain a simple algorithm in VA(
) haraterizing thestate q in the automaton A just by translating 'q (and this is possible by theequivalene between
 and �).Conversely, let us assume that � and
 are equivalent and suh that L(�) =VL(
) and let us show that � is �nally stable. For this, onsider a languageL 2 L(�). Then L also belongs to VL(
), and therefore its minimal automatonAmin is
-vetorial. We have thus an algorithm for any state q of Amin (suhthat its translation into a PTL-formula belongs to PTL(�)) that haraterizesthe language reognized by the automaton obtained from Amin by hoosing qas unique �nal state. Therefore these languages belong to L(�), what provesthe �nal stability of � and ahieves the proof. �Remark 2 The preeding lemma and the results about temporal logi givenin [2℄ yield a generi proof of the results of the preeding setions by notingthat star-free languages, solvable languages and regular languages are varietiesand that their assoiated sets of logial operators are �nally stable.In [5,16,17℄ several haraterizations of fragments of past temporal logi arestated. We will use them to haraterize fragments of PTL-vetorial languages.But �rst of all we need some de�nitions. The haraterizations of fragmentsof past temporal logi use the minimal automaton and the presene, or ab-sene, of spei� strutures, alled forbidden patterns. For instane for star-freelanguages we onsider a haraterization that forbids ounting patterns.16

Given a set N , an N -labeled digraph is a tuple (V;E) where V is an arbi-trary �nite set and E a subset of V � N � V . The losure of a determinis-ti �nite automaton A, denoted CA, is the A+-labeled digraph (V;E) whereE = f(q; u; q �u) j q 2 Q and u 2 A+g. Therefore, the losure of any determin-isti �nite automaton is an in�nite graph (it has in�nitely many edges, butonly �nitely many verties).Finally, a pattern is a labeled digraph whose verties are state variables, usuallydenoted p; q; : : : , and whose edges are labeled with variables for labels of twodi�erent types: variables for nonempty strings, usually denoted u; v; : : : , andvariables for letters, usually denoted a; b; : : : . In addition, a pattern omes withside onditions stating whih state variables are to be interpreted by distintstates. We draw patterns just as we draw graphs and adopt the onventionthat all states drawn solid must be distint.We say that an A+-labeled digraphmathes a pattern if there is an assignmentto the variables obeying the type onstrains and the side onditions, so thatthe digraph obtained by replaing eah variable by the value assigned to it isan indued subgraph of the given digraph.6.2.2 Charaterizing VL[�℄We are now ready to haraterize our �rst fragment of PTL-vetorial lan-guages:Theorem 5 Let L be a regular language over some alphabet A. Then thefollowing assertions are equivalent:(1) L belongs to VL[�℄.(2) L belongs to L[YP℄.(3) The losure of the minimal automaton Amin(L) of L does not math thefollowing pattern: qq0 pp0
a
a uv

The equivalene between (2) and (3) is shown in [16,17℄. The other equivalenesome from Lemma 1, from the equivalene between YP and�, and from thefollowing lemma (whih implies that YP is �nally stable):Lemma 2 Let us onsider a deterministi omplete automaton that does not17

math the pattern of Theorem 5. Then its minimal automaton does not mathit either.
Proof:We show the result by ontradition. Let us onsider a deterministi ompleteautomatonA that does not math the pattern of Theorem 5 and let us assumethat its minimal automaton Amin ontains the pattern. Thus there exist fourstates P , Q, P 0 and Q0 of Amin, a letter a and two words u and v suh thatP � a = Q, P 0 � a = Q0, P � u = P 0, P 0 � v = P and Q 6= Q0. As A is adeterministi omplete automaton, we an identify the states of Amin withthe Nerode equivalene lasses of A. In the following we will not make anydistintion between the states of Amin and the Nerode equivalene lasses ofA. We have the following onsequenes:(1) For any states q 2 Q, q0 2 Q0 we have q 6= q0.(2) For any state p 2 P , we have p � u 2 P 0.(3) For any state p0 2 P 0, we have p0 � v 2 P .(4) For any state p 2 P we have p � a 2 Q and for any state p0 2 P 0 we havep0 � a 2 Q0. Therefore, for any states p 2 P ,p0 2 P 0 we have p � a 6= p0 � a.Our aim is to prove the existene of two words z and t, of four states p, p0, qand q0 where p 2 P , p0 2 P 0, q 2 Q and q0 2 Q0 suh that p � a = q, p0 � a = q0,p � z = p0 and p0 � t = p. Therefore we will have a ontradition with the fatthat A does not ontain the pattern.Let us assume that jP j � jP 0j (the symmetri ase is idential) and onsider astate p1 2 P . Thus the state p01 = p1 �u belongs to P 0 and p2 = p01 �v belongs toP . As A does not ontain the pattern, we have p2 6= p1. For the same reasonthe state p02 = p2 �u belongs to P 0 and is di�erent from p01, the state p3 = p02 � vbelongs to P and is di�erent from p2 and p1 (beause we have p1 �uvu = p02 andp02 � v = p3). Iterating this reasoning orders the states of P = fp1; p2; : : : ; pngand the states of a subset R = fp01; p02; : : : ; p0ng of P 0. Moreover, this order issuh that for any i � j � n, there exists a word eu suh that pi � eu = p0j andfor any i < j � n there exists a word ev suh that p0i � ev = pj. Let us nowonsider the state p = p0n � v 2 P : there exists i, 1 � i � n suh that p = pi.We thus have a ontradition beause there exists a non empty word z suhthat pi � z = p0n and p0n �v = pi and pi �a 6= p0n �a, hene A ontains the pattern.The proof an be resumed by the following diagram:18

p1p01
p2p02

p3 pi p0n�1
pnp0nu u u u u uv v v vv �6.2.3 Charaterizing VL("0;!)The lass VL("0;!) orresponds to the logial fragment that uses only yes-terday and past as operators:Theorem 6 Let L be a regular language over some alphabet A. Then thefollowing assertions are equivalent:(1) L belongs to VL["0;!℄.(2) L belongs to L[Y;P℄.(3) The losure of the minimal automaton Amin(L) of L does not math thefollowing pattern:

p qvwu u
The equivalene between (2) and (3) an be found in [16,17℄. The other equiv-alenes ome from Lemma 1 and from the following lemma, that implies thatfY;Pg is �nally stable:Lemma 3 Consider a deterministi omplete automaton that does not maththe pattern of Theorem 6, then its minimal automaton does not math thepattern, either.As for the proof of Lemma 2 we reason by ontradition. Let us onsider adeterministi automaton A that does not math the pattern and assume thatits minimal automaton Amin mathes the pattern. We thus have two distintstates P and Q of Amin and three words u, v and w suh that: P � u = P ,Q �u = Q, P �v = Q and Q �w = P . As in the preeding proofs, we identify thestates of Amin with Nerode equivalene lasses of states of A and therefore weobtain that: 19

(1) For eah state p 2 P we have p � u 2 P and p � v 2 Q.(2) For eah state q 2 Q we have q � u 2 Q and q �w 2 P .Let us onsider the Nerode equivalene lass assoiated with state P (thereasoning is the same for Q). Sine P � u = P , we an deompose it intoomponents of states that are obtained by iterating the ation of word u ona beginning state (as in Pollard's � method). So an equivalene lass an beseen as a union of omponents having the following form:
p1 p01u u u u u u u

uuuq1 v
Now, let us onsider a state p1 2 P . There exist k; k0 � 0 and a state p01 2 Psuh that p1 �uk = p01 and p01 �uk0 = p01 (p01 belongs to the loop of the omponentontaining p1). The state q1 = p01 � v belongs to Q. Let us onsider the state q01de�ned from q1, v as we have de�ned p01 from p1: there exists a word ev suhthat p01 � ev = q01 and a word eu = uh (where h is the least ommon multiple ofthe lengths of the loops ontaining the states p01 and q01) suh that p01 � eu = p01and q01 � ev = q01. Therefore, as A does not math the pattern, q01 � w must notbelong to the omponent of p01. We an iterate this reasoning as in the proofof Lemma 2 and we �nd a similar ontradition. In fat this proof is analogousbut we must work on omponents instead of states.6.2.4 Charaterizing VL("0)To haraterize VL("0), we an use either a result about languages de�nableusing the yesterday operator, or give a diret proof (whih gives us thereforea haraterization of L(Y)).We begin with the diret proof beause it illustrates the use of vetorial lan-guages. Intuitively, if we have for a given deterministi omplete automatonan algorithm using only the right-shift operation "0, let us say k times, thismeans that for any word and for any position in this word we have to onsideronly the k + 1 last letters for knowing the state reahed by the automaton.Formally:Theorem 7 An automaton has an assoiated algorithm in VA["℄ if and only20

if it is trivial (any letter loops on any state) or if there exists an integer k suhthat the transition funtions de�ned by the words of length k are onstant.E�etively, let us onsider a non trivial automaton A having an algorithm inVA["℄. We then have an algorithm omputing the output vetor r of the visitedstates from the input vetor u and using only bit-wise logial operations andthe right-shift. Let k be the number of right shift operations used. Therefore,it is easily seen that the nth position of r only depends on the positionsn; n � 1; : : : ; n� k of u. Thus, if u is a word of length k + 1, then u leads toa state independent of the initial state, i.e, u de�nes a onstant mapping inQQ, where Q is the set of states of A, what proves the �rst impliation.Conversely, let us onsider an automaton having this property and let usonstrut an algorithm in VA["℄ for it. The ase of the trivial automaton isnot diÆult and we will no longer deal with it.For any word v of length k, we ompute the harateristi vetor ev of v:ev = k�1̂i=0("i0 (u = ak�1�i)where v = a0 � � �ak�1 and note by "i0 the operation "0 iterated i times.For any state q , we design by Lkq the set of words of length k sending any stateon q. Therefore, the vetor (r0 = q) = _v2Lkq ev mathes, exept possibly on thek � 1 �rst terms, the harateristi vetor (r = q). But it is easy to omputethe k � 1 �rst terms of (r = q): it suÆes to onsider the words w of lengthless or equal than k�1 that lead to q from the initial state. Therefore, we justhave to ompute their harateristi vetors ew and to take their disjuntion.Thus we obtain the vetor (r00 = q) that mathes (r = q) on the k � 1 �rstterms. The vetor (r = q) is �nally given then by:(r = q) = [(r0 = q) ^ x℄ _ [(r00 = q) ^ :x℄where we let x ="k0 1 = 0k1�. Therefore we obtain an algorithm for A inVA["0℄.We an give a orollary of this result in algebrai terms:Corollary 1 A regular language belongs to L["0℄ if and only if its syntatisemigroup belongs to the variety D of semigroups de�ned by the equation yx! =x!.In fat the equation yx! = x! is assoiated with languages of the form A�X[Ywhere X and Y are �nite sets of non-empty words on an alphabet A [8℄. It21

is therefore easy to verify, using Theorem 7, that the languages of L["0℄ areexatly those assoiated with the variety of semigroups D. E�etively, letus onsider an automaton for whih any word of a given length k de�nes aonstant mapping in QQ. Let e be an idempotent of the transition semigroup.As e = ek, e an be assoiated with a word of length greater or equal thank and therefore e is assoiated with a onstant mapping and thus it is rightabsorbing, i.e., for any element v of the transition semigroup we have ve =e. Consequently, the transition semigroup veri�es the equation yx! = x!.Conversely, let us onsider a language reognized by an automaton (that an behosen deterministi and omplete) suh that its transition semigroup veri�esthe equation yx! = x!. To any state q of the automaton, we an assoiatea language Lq omposed of all words that lead from the initial state to q.The syntati semigroup of this language divides the transition semigroupof the given automaton and thus veri�es the equation yx! = x!. Therefore,Lq = A�X [Y where X and Y are two �nite sets of words. The elements of Xde�ne onstant mappings that send any state on q. Making this reasoning forall states gives us for any state a set of harateristi words. Considering thelongest word of these sets we �nd an integer k suh that any word of length kde�nes a onstant transition funtion.Using a result on a fragment of temporal logi [16,17℄ and Lemma 1 we havethe following haraterizations:Theorem 8 Let L be a regular language over some alphabet A. Then thefollowing assertions are equivalent:(1) L belongs to VL["0℄.(2) L belongs to L[Y℄.(3) The losure of the minimal automaton of L, Amin(L) does not maththe following pattern:
p qu u

(4) The syntati semigroup of L belongs to the variety D de�ned by theequation yx! = x!.6.2.5 Charaterizing unambiguous languagesIn this setion we give a haraterization of unambiguous languages usinga fragment of PTL-vetorial languages. Let us onsider an alphabet A. Aprodut of the form A�0a1A�1a2 � � �akA�k, where Ai is a subset of A and ai is a22

letter, is alled unambiguous if for any word u on the alphabet A, if u belongsto the produt then there is a unique deomposition u0; u1; : : : ; uk suh thatu = u0a1u1a2 � � �akuk with ui 2 A�i . An unambiguous language is a �nite,disjoint union of unambiguous produts.Unambiguous languages are well studied. We will use there two results: thefat that unambiguous languages form a variety of languages and a harater-ization using a symmetri fragment of temporal logi. A symmetri fragmentof temporal logi is de�ned as a lassial fragment exept that the use of fu-ture operators (and not only past operators) is allowed [16,17℄. The symmetrifragment L[jXFj℄ assoiated with unambiguous languages is the one allowingthe use of the strit operators past (YP) and future (XF). The operator XFhas the following semantis: (w; n) j= XF' if there exists n < m � juj suhthat (w;m) j= '.De�ning the operation strit left� as a symmetri version of�, using Lemma1 and the equivalene between unambiguous languages and the symmetrifragment L[jXFj℄, we have the following result:Theorem 9 Let L be a regular language over some alphabet A. Then thefollowing assertion are equivalent:(1) L is unambiguous.(2) L belongs to L[jXFj℄.(3) L belongs to VL[�;�℄7 Reonstruting an automaton from a PTL-vetorial algorithmIn the preeding setions we wanted to �nd a vetorial algorithm from a givenautomaton. We now onsider the onverse problem, that is we want to hek fora given PTL-vetorial algorithm whether there exists a deterministi ompleteautomaton assoiated with it (and determine an automaton, if this is thease). This question beomes interesting for instane when we modify a givenvetorial algorithm (assoiated with a deterministi automaton) and we wantto hek afterward that the new algorithm is equivalent to the old one. Wewill show that the omplexity of this test is atually the same as testing thesatis�ability of an LTL-formula (PSPACE-omplete).Vetorial algorithms are assoiated with deterministi omplete automata andtherefore depend on the initial state (and not only on the underlying labeledgraph struture of the given automaton). We will thus suppose that the initialstate is part of the input. 23

To begin with, let us onsider a valid PTL-vetorial algorithm (i.e. an algo-rithm for whih there exists a orresponding deterministi omplete automa-ton) and let us explain how to onstrut suh an assoiated automaton. LetA = fa1; : : : ; akg be the alphabet of the automaton and let n be the numberof states (we will identify them with the integers 1 : : : n). To ompute an as-soiated automaton A� from a given PTL-vetorial algorithm � we performa depth-�rst searh of A�, that is we start from the initial state q0 and om-pute the states that an be reahed by reading a letter from q0 and then werepeat this step with the new states found so far. We are done when we haveexplored all reahable states. With this method we explore all the transitionsof the aessible part of the automaton. We just have to explain how to om-pute the reahable states from a given state. In our algorithm we maintain avetor, state diretion, giving for any state enounter q a word u leading fromthe initial state to q. Therefore, when onsidering a state q, and a letter a toompute the transition from q reading a we have to apply � to the word uaand onsider the juj+ 1 omponent of the result, denoted �juj+1(ua).We thus have the following algorithm:� Variables and initialization:� Æ: (n� k)-vetor.� new states = [1℄ : LIFO struture.� known states = f1g : Set struture.� state diretion = ["; "; : : : ; "℄| {z }n .� Main loop:While new states 6= ; DoLet q =Delete element from new states.Let u = state diretion:(q).Let h = juj.For i = 1 to k DoLet q0 = �h+1(uai).Let Æ(q; i) = q0.If q0 =2 known states ThenAdd q0 to new states and to known states.Set state diretion:(q0) = ua.End If.End For.End While.� Return Æ.To test the validity of a given algorithm � we will �rst use the preedingalgorithm to ompute the automaton A� assoiated with �, if it is valid. Ifthe algorithm does not work (that is if �h+1(uai) is not de�ned for a given stepof the algorithm) this implies that � is not valid. Otherwise we need to use24

the validity test stated in the theorem below. For any state q, let L(q) denotethe regular language de�ned by the logial formula obtained as in Setion 4.2from the algorithm omputing (r = q).Theorem 10 Let � be a PTL-vetorial algorithm and let A� be the deter-ministi omplete automaton onstruted by the algorithm above. Then � is avalid algorithm assoiated with A� if and only if:(1) For any non reahable state q of A�, we have L(q) = ;.(2) For any reahable state q, we have that L(q) 6= ;. In addition, the fol-lowing assertions are equivalent:(i) L(q) = L(q1)a1 [� � � [L(qi)ai [Eq, where Eq = f"g if q is theinitial state and Eq = ; otherwise. Moreover, aj is a letter andeah qj is a reahable state.(ii) f(q1; a1); : : : ; (qi; ai)g is exatly the set of the pairs (qj; aj) suhthat qj:aj = q in A�.Proof:First let us assume that � is valid. This implies that for any state q, the wordu belongs to L(q) if and only if q0 � u = q, where q0 denotes the initial state ofA�. Therefore, we easily obtain that L(q) = ;, for any non reahable state qof A�.Let us now onsider the ase of a reahable state q and assume that (i) holds:L(q) = L(q1)a1 [� � � [L(qi)ai [Eq. For any pair (qj; aj), as qj is reahable,there exists v 2 L(qj) suh that q0 � v = qj and vaj 2 L(q). Consequently wehave qj �aj = (q0 �v)�aj = q0 �u = q. Conversely, onsider a pair (q0; a) suh thatq0 �a = q and let us prove that L(q) � L(q0)a. Let us onsider a word w 2 L(q0).As � is valid this implies that q0 � w = q0 and therefore q0 � wa = q0 � a = q,what shows that L(q0)a � L(q). We have thus shown that (i) implies (ii).Let us now assume that (ii) holds. We will prove that L(q) = L(q1)a1 [� � � [L(qi)ai [Eq where f(q1; a1); : : : ; (qi; ai)g is exatly the set of the pairs (qj; aj)suh that qj � aj = q. So let us onsider a word u 2 L(q). As � is valid, wehave that q0 � u = q and therefore if juj � 2, we an write u as u = va withq0 �u = (q0 � v) �a. So there exists j suh that (q0 � v; a) = (qj; aj) and v 2 L(qj)and thus u 2 L(qj)aj. The ases juj = 0 and juj = 1 are immediate as "belongs to L(q0). Conversely, if we onsider a word u = vaj 2 L(qj)aj we havethat q0 � u = (q0 � v) � aj = qj � aj = q and thus u 2 Lq. We have thus provedthat (ii) implies (i).Suppose now that for any non reahable state q, L(q) = ; and that for anyreahable state q, the set L(q) is non empty and that (i) and (ii) are equivalent.25

Let us prove that this implies the validity of �. We work by ontraditionassuming that � is not valid. We have two ases:(1) There exists u 2 L(q) and q0 �u 6= q. We an hoose u of minimal length.With this property, as u 2 L(q) = L(q1)a1 [� � � [L(qi)ai [Eq, we haveu = vaj (the ase juj = " is immediate) where 1 � j � i and v 2 L(qj) (van be empty). By minimality of u we must have q0:v = qj and therefore,q0 � u = (q0 � v) � aj = qj � aj = q (by equivalene between (i) and (ii))what leads to a ontradition.(2) There exists a word u suh that q0 � u = q and u =2 L(q). We anhoose again u of minimal length. The ase u = " is immediate andwe an therefore deompose u as u = va (where v an be empty). Theminimality of u implies that v 2 L(q0) where we set q0 = q0 � v. But wealso have that q0 � a = q and thus, by equivalene between (i) and (ii) wehave that u = va 2 L(q0)a � L(q), what leads to a ontradition withu =2 L(q).We have thus proved that � is valid and so it is assoiated with A�. �We an now give a method to test the validity of a PTL-vetorial algorithm�:(1) We apply the depth-�rst searh algorithm desribed above to �. If thealgorithm does not yield a deterministi automaton A�, then � is not avalid algorithm and we an stop. Otherwise we go to the next step.(2) We determine the reahable states and the non reahable states of theautomaton A� onstruted in the preeding step.(3) For every non reahable state q we translate the assoiated omponent in� into a PTL-formula 'q and test whether or not it an be satis�ed (seeSetion 8 and [12℄). If 'q is satis�able for a non reahable-state q then �is not valid and we stop. Otherwise we go to the next step.(4) For every reahable state q we determine the set f(q1; a1); : : : ; (qi; ai)gof the pairs (qj; aj) suh that qj � aj = q in A� and we verify thatL(q) = L(q1)a1 [� � � [L(qi)ai [Eq. To ahieve this eÆiently we andetermine for every j a PTL-formula assoiated with L(qj)aj. It suÆesto onsider the formula paj^Y'qj where 'qj is the translation of the om-ponent of � assoiated with qj. Then, we an onstrut a PTL-formulafor the language L(q)�[L(q1)a1 [� � � [L(qi)ai [Eq℄, where � holds forthe symmetri di�erene, and verify that it annot be satis�ed, what isequivalent to the equality L(q) = L(q1)a1 [� � � [L(qi)ai [Eq. If the testdoes not fail, then � is valid and assoiated with A�, otherwise � is notvalid. 26

Let us now give the omplexity of this algorithm. We will prove that determin-ing whether or not a PTL-algorithm is valid is a PSPACE-omplete problem.We �rst show that this test an be ahieved in polynomial spae.The �rst step, the depth-�rst searh algorithm, alulates all the transitionsof the reahable part of A�. As A� is a deterministi omplete automaton,there are O(njAj) transitions, where n denotes the number of states of A�and A is the alphabet of A�. The result of � applied to a given word an beomputed in logarithmi spae. E�etively the PTL-operations are logarithmispae operations and logarithmi spae operations are losed by omposition.Therefore, as n = O(j�j) and jAj = O(j�j) (the size of the algorithm is thesize of the PTL-formula plus the size of A), the �rst step an be ahievedin polynomial time. The seond step, is performed also in polynomial time(and thus in polynomial spae). In the third step, the onstrution and thesize of 'q is polynomial in j�j. Determining whether or not a PTL-formulaan be satis�ed, is known to be a PSPACE-omplete problem (see Setion 8.5and [12℄). As j'qj is polynomial in j�j, this step an be ahieved in polynomialspae. For the same reasons the fourth step an also be ahieved in polynomialspae.We have thus proved:Proposition 2 Deiding whether or not a PTL-vetorial algorithm is validan be done in polynomial spae.In fat, we an give a more preise result:Theorem 11 Deiding whether or not a PTL-vetorial algorithm is valid isa PSPACE-omplete problem.Proof:We just have to prove the PSPACE-hardness. For this, we redue the PSPACE-omplete problem of deiding whether or not a PTL-formula an be satis�ed.So let us onsider a PTL-formula ' over some alphabet A. We will onsideran automaton with two states, 1 and 2. Let � be the translation of ' into aPTL-vetorial formula. Then, we de�ne a PTL-vetorial algorithm �0 by:�0 = 8<:(r = 1) = true(r = 2) = �where the initial state is 1.We have that ' an be satis�ed if and only if �0 is not valid. The automatononstruted using the depth-�rst searh algorithm is the solid part of thefollowing automaton: 27

1 2a 2 A uIf ' an be satis�ed, say by a word u, the algorithm �0 does not give a orretresult on u. Conversely, if �0 is not orret, using Theorem 10, we have twoases:(1) L(2) is non empty, that is ' an be satis�ed.(2) L(1) is empty (what is wrong) or L(1) 6= L(1)a[f"g (what is also wrong).Therefore we have proved that ' an be satis�ed if and only if �0 is not valid.This proves that determining whether or not a PTL-vetorial algorithm isvalid is a PSPACE-omplete problem. �We now onsider the same problem but for fragments of PTL-vetorial lan-guages. For instane we have the following result for algorithms in VA("0):Theorem 12 Deiding whether or not an algorithm in VA("0) is valid is anNP-omplete problem.As for the general problem we �rst use the depth-�rst searh algorithm todetermine an automaton suh that our algorithm is valid if and only if it isassoiated with this automaton.Using Theorem 8 it is easily seen that an algorithm in VA("0) is assoiatedwith a given automaton if and only if it is assoiated with it for words of lengthless or equal than k+1, where k designs the maximum number of nested shiftoperations. This implies the membership in NP (we have to determine k andthen to guess a word of length less or equal than k + 1 and �nally to test theorretness of the algorithm for it).In order to prove the NP-hardness we redue the problem of deiding whetheror not a formula in PTL(Y) an be satis�ed to our problem. For this weuse the same redution as in Theorem 11. We onlude the proof using thefollowing lemma:Lemma 4 Deiding whether or not a formula in PTL(Y) is satis�able, is anNP-omplete problem.Proof: 28

The membership in NP is not diÆult: a formula in PTL(Y) an be satis�edif and only if it an be satis�ed by a word of length less or equal than k + 1,where k designs the maximum number of nested Y operators (e�etively thetruth of a formula in PTL(Y) applied to a word u only depends on the suÆxof length k + 1 of u).The NP-hardness is shown by a redution from the NP-omplete problemSAT. Let us onsider a propositional formula F and let us onstrut a formula' in PTL(Y) suh that F an be satis�ed if and only if ' an be satis�ed. Wedenote by p1; : : : ; pn the propositional variables used in F . The alphabet ofthe temporal formula ' is the boolean alphabet: f>;?g, and ' is onstrutedfrom F by replaing eah propositional variable pi by Y : : :Y| {z }n�i p> (p> is theprediate assoiated with the letter >).For example for F = (p2 _ p1) ^ :[p1 _ (p3 ^ p2)℄ we de�ne:' = (Yp> _YYp>) ^ :[YYp> _ (p> ^Yp>)℄For any formula F , we easily have that F is satis�ed by a valuation (b1; : : : ; bn),where eah bi is a boolean (bi = > or ?), if and only if (b1 : : : bn; n) j= '. Thisshows that SAT an be polynomially redued to our problem and thereforeahieves the proof. �8 Reonstruting automata from GTL-vetorial algorithmsIn the preeding setion we have shown how to deide whether there existsan assoiated ounter-free automaton with a given PTL-vetorial algorithm�. For this, we �rst onstrut an automaton A� assoiated with �, if is valid.Then, using Theorem 10 we deide whether � is valid. A natural investigationis to try to extend these results to MTL-vetorial and GTL-vetorial languagesintrodued in Setions 5.1 and 5.2. The main result of this setion statesthat deiding the validity of a GTL-vetorial algorithm is PSPACE-omplete.For obtaining this result, we review the onstrution of alternating automatafrom temporal logi formulas and show how to deal with modular and groupoperators and we also use that Theorem 10 does not atually depend on thevetorial operations allowed in our algorithm and an be stated in a moregeneral way, by assuming � is a vetorial algorithm.For a PTL-vetorial algorithm �, in order to ompute the automaton A� wesimulate a depth-�rst searh algorithm. This algorithm an be adapted to29

MTL-vetorial algorithms and to GTL-vetorial algorithms without hange.Nevertheless, its omplexity is not the same as the simulation of � in thegeneral ase of modular and group operators is more ostly. Atually, we havethe following result:Lemma 5 Let � be a GTL-vetorial algorithm and let u be a word. Thenthe omputation of the result of � applied to u an be ahieved in O(juj:j�j)operations.Proof:The result trivially holds in the speial ase of PTL-vetorial algorithms. Wedenote by C(�; u) the ost of the omputation of � applied to u. If � =Sl;k(�1), to ompute the result of � applied to u, we �rst ompute the resultof �1 applied to u and then read it from left to right to determine the �nalresult. We have that C(�; u) = C(�1; u) + juj. Therefore modular operatorsost linear time. If � = Pg;G(�1; : : : ;�q), to ompute the result of � appliedto u, we �rst ompute the results of �1; : : : ;�q applied to u and then readthem simultaneously from left to right to determine the �nal result. We havethat C(�; u) = C(�1; u)+ � � �+C(�q; u)+ juj. Thus group operators also ostlinear time. Therefore, the omputation of the result of � applied to u an beahieved in O(juj:j�j) operations. �Lemma 5 implies that the omputation by the depth-�rst searh algorithmof an assoiated automaton A� with � an be made in polynomial time.There is another question left in order to solve our problem, that is howto use Theorem 10 for MTL-vetorial and GTL-vetorial algorithms. As forPTL-vetorial languages, the equality on languages to verity an be translatedinto a satis�ability problem, for GTL-formula in this ase. In Setion 8.5, weprove that the satis�ability problem for GTL-formula is PSPACE-ompleteand therefore, we have the following result:Theorem 13 Deiding whether or not a GTL-vetorial algorithm is valid isa PSPACE-omplete problem.To prove the satis�ability result for GTL-formulas, we use alternating au-tomata and redue the satis�ability problem to a non emptiness problem foralternating automata. 30

8.1 Alternating automataAn alternating automaton is a tuple A = (Q;A; Æ; q0; F), where Q is a �niteset of states, A is a �nite alphabet, q0 is the initial state, F is the set of �nalstates and Æ : Q� A! B+(Q) is the transition funtion, where B+(Q) is theset of all negation-free boolean formulas over Q.A run of an alternating automaton is a �nite tree whose nodes are labeled withstates of Q and edges with elements of A. The level of a node is the length ofthe word labeling the path from the root to this node. A run assoiated witha �nite word u = a1a2 � � �an is de�ned by indution:(1) The root is q0.(2) The nodes of level n are leaves (i.e. they have no sons).(3) If q is a state of level i < n and Æ(q; ai) = C1 _ C2 _ � � � _ Cm withCj = qj;1 ^ qj;2 ^ � � � ^ qj;nj then q has nj sons for some j, 1 � j � m,labeled by q1;k1; qj;1; : : : ; qj;nj . That is, q must have as sons all the statesappearing in one of the onjuntions Cj.Remark 3 In our de�nition of a run, Æ(q; a) is in disjuntive normal form forany state q and any letter a. Of ourse, Æ ould be de�ned as a funtion takingits values in negation-free boolean formulas in disjuntive normal form, but theonstrutions given in Setions 8.3 and 8.4 would lead to onsider alternatingautomata with an exponential number of transitions. In fat we will not beinterested in omputing suh automata but in runs of them. Therefore, forany formula Æ(q; a), a minimal model (whose size will always be linear inthe number of states) will be omputed whenever we need it. A model for aformula is a set R of states, suh that assigning to the states in R the value ttand to those on Q n R the value ff makes the formula true. Nevertheless, forrepresenting alternating automata we will work with formulas in disjuntivenormal form.A word u is aepted by A if there exists a run r assoiated with u suh thatall the leaves of r are �nal states. The language reognized by an alternatingautomaton A is noted L(A).Alternating automata will be drawn as lassial automata exept for the fatthat the outgoing edges go �rst into a square (that is not a state!) that rediretsthe transition into groups of states (represented by the same index written ontheir inoming edges). For example the transition Æ(q0; a) = (q1^q0)_(q1^q2)is represented by: 31

q0 q1
q2aa 2 1; 21

In the speial ase where Æ(q; a) is a disjuntion (that is nj = 1 for all j =1 : : :m) we represent the transition Æ(q; a) as a lassial existential (i.e. nondeterministi) transition.Example 2 Consider the alternating automatonA = (fq0; q1; q2g; fa; bg; Æ; fq0g; fq1; q2g),where we have:� Æ(q0; a) = (q0 ^ q2) _ q1, Æ(q1; a) = q1 _ q2 and Æ(q2; a) = q0 ^ q1.� Æ(q0; b) = q1 _ q0, Æ(q1; b) = q1 and Æ(q2; b) = q2.A is represented by the following piture:
q0 q1

q2aa 1 21b
a; b

b aa1 1
b

a
Let us now give two runs for the word u = aaba in A: the �rst one is aepting(therefore u is reognized by A), whereas the seond one is not aepting.

32

q0q0 q2q1 q0 q1q1 q1 q1q2 q1 q2

q0q1q2q2q0 q1

a a
a a a
b b ba a a

aaba a
8.2 Linear temporal logiSimilar to the past temporal logi, the future temporal logi, alled LinearTemporal Logi (LTL) is de�ned using the temporal operators Next (denotedX), and Until (denoted U).X and U are respetively the future equivalents of the operators Y and S.Therefore their semantis is de�ned by:(1) (w; n) j= X'1 if n < jwj and (w; n+ 1) j= '1.(2) (w; n) j= '1U'2 if there exists m � n suh that (w;m) j= '2 and, forevery k suh that n � k < m, (w; k) j= '1.An LTL-formula ' is satis�ed by a word w if (w; 1) j= '. An LTL-formula 'is alled satis�able if its assoiated language L' = fw j (w; 1) j= 'g is notempty.With an LTL-formula ' one an assoiate a PTL-formula e' by replaing theoperator X by the operator Y and the operator S by the operator U. It iseasily seen that, for any word w, (w; 1) j= ' if and only if (ew; jwj) j= e', whereew designs the mirror image of w. Thus, to deide whether a PTL-formula issatis�able, it suÆes to know how to solve the problem for LTL-formulas.33

In the next setion we reall the onstrution of an alternating automatonreognizing the language L', where ' is an LTL-formula [15℄. We need theonstrution in order to generalize it to the more expressive temporal logis.For onveniene, we use a new operator alled Release (denoted R). The re-lease operator is de�ned by the formula '1R'2 = :(:'1U:'2), or equiva-lently by: (w; n) j= '1R'2 if and only if for all m, n � m � jwj, suh that(w;m) 6j= '2, there exists n � i < m suh that (w; i) 6j= '1. The release op-erator requires its seond argument to be true, a ondition that is released assoon as the �rst argument beomes true.Introduing the release operator allows to onstrut, for any LTL-formula ',an equivalent positive formula , i.e. a formula that does not use the negation.The formula is onstruted by indution on ' and is of size O(j'j):(1) If ' = pa where a is a letter, = '.(2) If ' = :pa where a is a letter, = _b2Anfag pb.(3) If ' = '1 _ '2 then = 1 _ 2 where 1 and 2 are respetivelyonstruted from '1 and '2.(4) If ' = :('1 _ '2) then = 1 ^ 2 where 1 and 2 are respetivelyonstruted from :'1 and :'2.(5) If ' = '1 ^ '2 then = 1 ^ 2 where 1 and 2 are respetivelyonstruted from '1 and '2.(6) If ' = :('1 ^ '2) then = 1 _ 2 where 1 and 2 are respetivelyonstruted from :'1 and :'2.(7) If ' = X'1 then = X 1 where 1 is onstruted from '1.(8) If ' = :X'1 then = X 1 where 1 is onstruted from :'1.(9) If ' = '1U'2 then = 1U 2 where 1 and 2 are respetivelyonstruted from'1 and '2.(10) If ' = :('1U'2) then = 1R 2 where 1 and 2 are respetivelyonstruted from :'1 and :'2.(11) If ' = '1R'2 then = 1R 2 where 1 and 2 are respetivelyonstruted from '1 and '2.(12) If ' = :('1R'2) then = 1U 2 where 1 and 2 are respetivelyonstruted from :'1 and :'2.For example if ' = :[paU(pb_Xpa)℄ and A = fa; b; g, the assoiated formulais = (pb _ p)R[(pa _ p) ^X(pb _ p)℄34

8.3 From LTL-formulas to equivalent alternating automataGiven a positive LTL-formula ', there exists an alternating automaton A' =(Q;A; Æ; q0; F), whose number of states is linear in the size of ' reognizingthe language L' (see also [15℄).(1) The alphabet A of A' is the alphabet of the words on whih ' is eval-uated.(2) The states ofA' are the sub-formulas appearing in ' and their negations' (written without using the negation as desribed in Setion 8.2) plusthe onstants tt (True) and ff (False).(3) q0 = '.(4) F = fttg [f' = '1R'2 j ' 2 Qg.(5) Æ is indutively de�ned by the following rules:(i) Æ(tt; a) = tt and Æ(ff; a) = ff for any letter a.(ii) Æ(pa; b) = 8<:tt if a = b,ff otherwise.(iii) Æ('1 _ '2; a) = Æ('1; a) _ Æ('2; a).(iv) Æ('1 ^ '2; a) = Æ('1; a) ^ Æ('2; a).(v) Æ(X'; a) = ' for all a 2 A.(vi) Æ('1U'2; a) = Æ('2; a) _ [Æ('1; a) ^ ('1U'2)℄.(vii) Æ('1R'2; a) = Æ('2; a) ^ [Æ('1; a) _ ('1R'2)℄ = [Æ('2; a) ^Æ('1; a)℄ _ [Æ('2; a) ^ ('1R'2)℄.We have the following result what is shown in [15℄. The detailed proof an befound in appendix.Theorem 14 Let ' be a positive LTL-formula and let A' be the automatonassoiated with '. Then L' = L(A').8.4 From GTL-formulas to equivalent alternating automataAs alternating automata allow to reognize all regular languages, a naturalinvestigation onsists in assoiating an alternating automaton to formulas us-ing modular or group operators. These operators were introdued in Setions5.1 and 5.2. The modular operators were de�ned as past temporal operators.As we want to deide whether or not a temporal formula an be satis�ed,we will work with the dual operators, as de�ned for LTL. Therefore to deidewhether a MTL-formula or a GTL-formula an be satis�ed it suÆes to deidethe same problem for the dual formula.35

We thus give the de�nitions of the modular and group temporal operators forLTL (we will not hange the notation with past temporal logi as no onfusionan be made here):� With any pair (l; k) of integers suh that 0 � l < k we assoiate a unarymodular operator Modl;k suh that for any word u, we have (u; i) j= Modl;k(')if and only if, modulo k, there are l positions j � i suh that (u; j) j= '.� With any pair (g;G), where G is a group and g is an element of G, we asso-iate a group operator �g;G that always binds jGj�1 formulas. The elementsof G must have been ordered, say as g1; g2; : : : ; gq = id (the last elementmust be the identity). Let u be an element of A+ and let '1; '2; : : : ; 'q�1be logial formulas. With eah j, 1 � j � juj we assoiate an element of G,denoted h'1; '2 : : : 'q�1ihu; ji, de�ned by:h'1; '2; : : : ; 'q�1ihu; ji = gkwhere k = minfl j (u; j) j= 'lg with the onvention that min; = q.Finally we have (u; i) j= �g;Gh'1; '2; : : : ; 'q�1i if and only ifjujYj=ih'1; '2; : : : ; 'q�1ihu; ji = gLTL extended by the modular operators will be denoted as MLTL. The ex-tension by the group operators will be denoted GLTL. We have the followingextension of Theorem 14:Theorem 15 Let ' be a GLTL-formula. Then there exists an alternatingautomaton A' suh that L' = L(A'). In addition, the number of states of A'is quadrati in the size of '.Proof:The modular operator is a speial ase of group temporal operators usingonly yli groups (Z=kZ;+), as (u; i) j= Modl;k(') if and only if we have(u; i) j= �l;(Z=kZ;+)h'; ff; ff; : : : ; ffi Therefore it suÆes to onsider the generalase of GLTL.To keep working only with negation-free formulas, we have to explain, asin Setion 8.2, how to onstrut a positive formula from a formula ' =:�g;Gh'1; '2; : : : ; 'q�1i. Here it suÆes to take: = _g0 6=g �g0;Gh'1; '2; : : : ; 'q�1iThe alternating automaton A' = (Q;A; Æ; q0; F) reognizing L' is de�nedalmost as in Setion 8.3: 36

(1) The alphabet A of A' is the alphabet of the words on whih ' is eval-uated.(2) The states ofA' are the sub-formulas appearing in ' and their negations' (written without using the negation, as desribed in Setion 8.2) plusthe onstants tt (True) and ff (False). In addition, for any sub-formula�g;Gh'1; '2; : : : ; 'q�1i appearing in ' we add, for any g0 6= g, the state�g0;Gh'1; '2; : : : ; 'q�1i and its \positive negation".(3) q0 = '.(4) F = fttg[f' = '1R'2 j ' 2 Qg[f' = �id;Gh'1; '2; : : : ; 'q�1i j ' 2 Qg.(5) Æ is indutively de�ned by the following rules:(i) Æ(tt; a) = tt and Æ(ff; a) = ff for any letter a.(ii) Æ(pa; b) = 8<:tt if a = b,ff otherwise.(iii) Æ('1 _ '2; a) = Æ('1; a) _ Æ('2; a).(iv) Æ('1 ^ '2; a) = Æ('1; a) ^ Æ('2; a).(v) Æ(X'; a) = ' for all a 2 A.(vi) Æ('1U'2; a) = Æ('2; a) _ [Æ('1; a) ^ ('1U'2)℄(vii) Æ('1R'2; a) = Æ('2; a) ^ [Æ('1; a) _ ('1R'2)℄ = [Æ('2; a) ^Æ('1; a)℄ _ [Æ('2; a) ^ ('1R'2)℄(viii) Æ(Modk;l('); a) = [Æ('; a) ^Modk�1;l(')℄ _ [Æ('; a) ^Modk;l(')℄for all a 2 A.(ix) Æ(�g;Gh'1; '2; : : : ; 'q�1i; a) = _gigj=g[�(i; a)^�gj ;Gh'1; '2; : : : ; 'q�1i℄,where �(i; a) = Æ('1; a)^Æ('2; a)^� � �^Æ('i�1; a)^Æ('i; a), where'q = tt.where (viii) is in fat a speial ase of (ix).The number of states of A' is e�etively linear in the size of ' times the sumof the ardinalities of the groups used in modular operators appearing in 'and as this sum is linear in the size of ', it follows that the number of statesof A is quadrati in the size of '.The proof is the same as for Theorem 14. We reason by indution on the for-mula '. The only new ase to onsider is the one of ' = �g;Gh'1; '2; : : : ; 'q�1i.Any run of A' on a non-empty word u whose �rst letter is a1 has the followingform: 37

'a1T1 a1Ti1�1 a1 Ti1 a1 T: : :
where T is a run of A j , j = �gj ;Gh'1; '2; : : : ; 'q�1i and gi1gj = g, and whereany tree of the following form is a run of Ak for k = 1 : : : i1, where k = :'kif k < i1 and i1 = 'i1 (reall that 'q = tt):'a1TkBy indution hypothesis, this run is aepting if and only if (u; 1) j= :'1 ^:'2^� � �^:'i1�1^'i1 and (u; 2) j= �gj ;Gh'1; '2; : : : ; 'q�1i that is if and onlyif h'1; '2; : : : ; 'q�1ihu; 1i = gi1 and (u; 2) j= �gj ;Gh'1; '2; : : : ; 'q�1i.Iterating this onstrution shows that with an aepting run of A' on a wordu = a1 � � �an one an assoiate a sequene gi1 ; : : : gin ; gin+1 of elements ofG suhthat g = gi1gi2 : : : gingin+1, for any k = 1 : : : n, h'1; '2; : : : ; 'q�1ihu; ki = gikand suh that (u; n) j= �gin+1 ;Gh'1; '2; : : : ; 'q�1i. But, as the unique �nalstate of the form �gj ;Gh'1; '2; : : : ; 'q�1i is �id=gq ;Gh'1; '2; : : : ; 'q�1i it followsthat gin+1 must be equal to the neutral element gq of G and therefore thatg = gi1gi2 : : : gin, that is (u; n) j= '. Conversely, with a word satisfying ' it iseasily seen how to onstrut an aepting run in A, what shows that we haveL(A') = L' and ahieves the proof. �
Example 3 Consider the MTL-formula ' = [Mod1;3(Xpa _ pb)℄ ^ [paU pb℄and let us desribe the transition funtion Æ assoiated with A':

38

q Æ(q; a) Æ(q; b)pa tt ffpb ff ttXpa pa paXpa = Xpb pb pbpaU pb paU pb ttXpa _ pb pa ttXpa _ pb = Xpb ^ pa pb ff'1 = Mod1;3(Xpa _ pb) (pa ^ '0) _ (pb ^ '1) '0'2 = Mod2;3(Xpa _ pb) (pa ^ '1) _ (pb ^ '2) '1'0 = Mod0;3(Xpa _ pb) (pa ^ '2) _ (pb ^ '0) '2' [pa ^ '0 ^ (paU pb)℄ _ [pb ^ '1 ^ (paU pb)℄ '0The alternating automatonA' is represented in Figure 1. In fat, we representonly the reahable part and represent in dash a opy of pa and a opy of pb toimprove readability.8.5 Emptiness problem for alternating automata and its onsequenesIn Setions 8.3 and 8.4 we have shown how to assoiate with a GLTL-formula' an alternating automatonA' reognizing exatly the models of '. Thereforeto deide satis�ability for GLTL-formulas (or for GTL-formulas) it suÆes toknow how to deide emptiness for alternating automata. We have the followingresult:Theorem 16 Let A be an alternating automaton, then testing whether L(A) =; an be realized in polynomial spae.Proof:As non-deterministi polynomial spae is equal to deterministi polynomialspae, we give a non-deterministi algorithm. To prove the non-emptiness ofthe language reognized by A we only have to onstrut an aepting run ofA'. The algorithm starts with the initial state ' and guesses a letter a1 anda minimal model for Æ('; a1) (seen as a boolean positive formula). Then, itguesses the next letter a2 and for any state appearing in the minimal model, itguesses a minimal model for its image by Æ reading a2 and therefore omputes39

Fig. 1. A' for ' = [Mod1;3(Xpa _ pb)℄ ^ [paU pb℄

pb '2 pa
'1 '0a a

a

'a
paU pbpa pbtt ff

b b b
a2

a 2 a 22
2

21

1
1

b aba ba

1
11

a1; 2 21
12 b

a set of states modeling all the preeding formulas (the algorithm works witha set of states and therefore it only needs a linear spae to reall it) and so on.Finally, it deides to stop and aepts if all the atual states are �nal states.To guess a minimal model of a boolean positive formula it suÆes to exploreall the possible valuations what gives the size of a minimal model and thento guess one of the minimal models. This an be made in polynomial spae40

and therefore the entire algorithm only needs polynomial spae. In fat, thealgorithm ould just guess a model without verifying it is a minimal one, as bynon determinism there exists a run of the algorithm where all guessed modelsare minimal. �We therefore have the following orollary:Corollary 2 Deiding whether an GLTL-formula (or a GTL-formula) is sat-is�able is a PSPACE-omplete problem.Proof:The PSPACE membership is a onsequene of Theorem 15 and Theorem 16.The PSPACE-hardness is a onsequene of the PSPACE-hardness for the sameproblem restrited to PTL-formulas [12℄.9 ConlusionUsing vetorial algorithms we have given new haraterizations of star-freelanguages (as the lass of PTL-vetorial languages), of solvable languages (asthe lass of MTL-vetorial languages) and of regular languages (as the lass ofGTL-vetorial languages). However, even in the easiest ase, that is for star-free languages, there is no general eÆient method to ompute an algorithmassoiated with a given language. Nevertheless, sine vetorial languages arelosely related with temporal logi this is not that surprising at all, as theomputation of an algorithm assoiated with an automaton is at least as dif-�ult as �nding a temporal logi formula assoiated with a given language,whih is exponential with regard to the automaton.We have haraterized subsets of vetorial operations by equivalent sets oftemporal logi operators.It is interesting to note that vetorial algorithms provide a more detailedinformation about an automaton than logial formulas without any loss inomputational omplexity and in the omplexity of the operators used in bothmodels.Finally, we have shown that deiding the validity of a GTL-vetorial algorithmis PSPACE-omplete. As a byprodut we have obtained that the extension ofLTL with group operators does not hange the omplexity of the satis�abil-ity problem, whih is still PSPACE-omplete, and we have given an e�etivealgorithm deiding this question. 41

10 Appendix: proof of Theorem 14
The aim is to prove that if ' is a positive LTL-formula, then we have thatL' = L(A'), where A' is the automaton assoiated with '.For this we reason by indution on the formula ':(1) If ' = pa then A' is the following alternating automaton:pa ttff

ab 6= a 2 A 2 Aand therefore it easily seen that A' reognizes the language: L(A') =faw j w 2 A�g = L'.(2) If ' = '1 _ '2 then any run of A' has the following form:'a1Twhere a1 is the �rst letter of the word and where one of the followingruns is a run of A'1 for the �rst one and of A'2 for the seond one:'1a1T '2a1TTherefore, we have that L(A') = L(A'1) [L(A'2). By indution hy-pothesis we thus have that L' = L(A').(3) If ' = '1 ^ '2 then any run of A' has the following form:42

'1a1T1 a1 T2where a1 is the �rst letter of the word and where the following runs areruns of A'1 for the �rst one and of A'2 for the seond one:'1a1T1 '2a1T2Therefore, we have that L(A') = L(A'1) \ L(A'2). By indution hy-pothesis we thus have that L' = L(A').(4) If ' = X'1 then A' has the following form:' A0'1a 2 Awhere A0'1 is equal to A'1 exept that '1 is not an initial state. Theoutgoing transitions from ' to A0'1 go to the state '1.Therefore, we have that L(A') = [a2A aL(A'1), and the indution hy-pothesis onludes this ase: L' = L(A').(5) If ' = '1U'2. A run for A' on a non empty word u whose �rst letteris a1 an have two di�erent forms:'a1T2 'a1T1 a1 T3where T3 is a run of A', and where the following runs are respetively arun of A'1 for the �rst one and a run of A'2 for the seond one:
43

'1a1T1 '2a1T2By indution hypothesis, the �rst run is an aepting run for u if and onlyif (u; 1) j= '2 and the seond one is aepting if and only if (u; 1) j= '1and T3 is an aepting run of A'. As the root of T3 is ' = '1U'2 and as' is not a �nal state this implies that T3 annot be redued to its root.Therefore, by an easy indution on the length of u, it follows that u isreognized by A' if and only if there exists i, 1 � i � juj suh that forall j, 1 � j < i we have (u; j) j= '1 and (u; i) j= '2 (This means that weannot have always the seond kind of run). Therefore, u is reognizedby A' if and only if (u; 1) j= '. This implies that L' = L(A').(6) If ' = '1R'2. A run for A' on a non empty word u whose �rst letteris a1 an have two di�erent forms:'a1T2 a1 T1 'a1T2 a1 T3where T3 is a run of A', and where the following runs are respetively arun of A'1 for the �rst one and a run of A'2 for the seond one:'1a1T1 '2a1T2By indution hypothesis, the �rst run is an aepting run for u if andonly if (u; 1) j= '2 and (u; 1) j= '1. The seond one is aepting if andonly if (u; 1) j= '2 and T3 is an aepting run of A'. As the root of T3 is' and as ' = '1R'2 is a �nal state this implies that T3 an be reduedto its root. Therefore, by an easy indution on the length of u, it followsthat u is reognized by A' if and only if one of the following ases istrue(i) For all i, 1 � i � juj, (u; i) j= '2.(ii) There exists i, 1 � i � juj suh that for all j, 1 � j � i we have44

(u; j) j= '2 and (u; i) j= '1 (The ondition on '2 to be satis�ed isreleased at position i as '1 is satis�ed).This exatly means that u is reognized by A' if and only if (u; 1) j= '.This implies that L' = L(A').This indution proves that for any LTL-formula ' we have that L' = L(A').�AknowledgmentsI gratefully aknowledge the many helpful suggestions of Ana Musholl duringthe preparation of the paper. I also wish to express my thanks to Jean-EriPin for suggesting many stimulating ideas.Referenes[1℄ M Ar�. Op�erations polynomiales et hi�erarhie de onat�enation. TheoretialComputer Siene, 91:71{84, 1991.[2℄ A. Baziramwabo, P. MKenzie, and D. Therien. Modular temporal logi. In 14thSymposium on Logi in Computer Siene (LICS'99), pages 344{351. IEEE,1999.[3℄ A. Bergeron and S. Hamel. Casade deomposition are bit-vetor algorithms.In Implementation and Appliation of Automata, 6th International Conferene,CIAA 2001, Pretoria, South Afria, July 23-25, 2001, Revised Papers, volume2494 of Leture Notes in Computer Siene, pages 13{26. Springer, 2002.[4℄ A. Bergeron and S. Hamel. Vetor algorithms for approximate string mathing.International Journal of Foundations of Computer Siene, 13(1):53{66, 2002.[5℄ J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal logifor �nite words. Journal of Computer and System Sienes, 46:271{294, 1993.[6℄ J.A. Kamp. Tense Logi and the Theory of Linear Order. Ph.d. thesis,University of California, Los Angeles, 1968.[7℄ R. MNaughton and S. Papert. Counter-free Automata. MIT Press, 1971.[8℄ J.-E. Pin. Varieties of formal languages. North Oxford, LondonPlenum, New-York, 1986. (Translation of Vari�et�es de langages formels).[9℄ J.-E. Pin. Syntati semigroups. In G. Rozenberg and A. Salomaa, editors,Handbook of formal languages, volume 1, hapter 10, pages 679{746. SpringerVerlag, 1997. 45

[10℄ Jean-Eri Pin and Pasal Weil. Polynomial losure and unambiguous produt.Theory Comput. Systems, 30:1{39, 1997. version ompl�ete de [10℄.[11℄ M.P. Sh�utzenberger. On �nite monoids having only trivial subgroups.Information and Control, 8:190{194, 1965.[12℄ A. P. Sistla and E. M. Clarke. The omplexity of propositional linear temporallogis. Journal of the Assoiation for Computing Mahinery, 32(3):733{749,July 1985.[13℄ H. Straubing. Families or reognizable sets orresponding to ertain varietiesof �nite monoids. Journal of Pure and Applied Algebra, 15:305{318, 1979.[14℄ H. Straubing. Finite automata, formal logi, and iruit omplexity. Birkh�auser,1994.[15℄ M. Y. Vardi. An automata-theoreti approah to linear-temporal logi. InF. Moller and G. Birtwistle, editors, Logis for onurreny, number 1043 inLeture Notes in Computer Siene, pages 238{266. Springer, 1996.[16℄ Th. Wilke. Classifying disrete temporal properties. Habilitation thesis, Kiel,Germany, 1998.[17℄ Th. Wilke. Classifying disrete temporal properties. In STACS 99, number 1563in Leture Notes in Computer Siene, pages 32{46, Berlin, 1999. Springer.

46

