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Ve
torial Languages and Linear TemporalLogi
Olivier SerreLIAFA, Universit�e Paris VII2, pla
e Jussieu, 
ase 7014F-75251 Paris Cedex 05Abstra
tDetermining for a given deterministi
 
omplete automaton the sequen
e of visitedstates while reading a given word is the 
ore of important problems with automata-based solutions, su
h as approximate string mat
hing. The main diÆ
ulty is to dothis 
omputation eÆ
iently. Considering words as ve
tors and working on themusing ve
torial operations allows to solve the problem faster than using lo
al oper-ations.In this paper, we show �rst that the set of ve
torial operations needed by analgorithm representing a given automaton depends on the language a

epted bythe automaton. We give pre
ise 
hara
terizations for star-free, solvable and regularlanguages using ve
torial algorithms. We also study 
lasses of languages asso
iatedwith restri
ted sets of ve
torial operations and relate them with languages de�nedby fragments of linear temporal logi
.Finally, we 
onsider the 
onverse problem of 
onstru
ting an automaton from agiven ve
torial algorithm. As a byprodu
t, we show that the satis�ability problem forsome extensions of LTL 
hara
terizing solvable and regular languages is PSPACE-
omplete.1 Introdu
tionGiven a deterministi
 
omplete automaton and an input word, a 
lassi
alquestion is to de
ide whether or not the automaton a

epts the word. A moredetailed information is the sequen
e of visited states while pro
essing theword. Computing this sequen
e is the 
ore of important problems su
h asapproximate string mat
hing. An easy way to solve this problem 
onsists insimulating the run of the automaton (whi
h is deterministi
 and 
omplete)on the input word. However, approximate string mat
hing is generally usedon very long sequen
es (as genomi
 ones) and the natural algorithm, whi
h isPreprint submitted to Elsevier S
ien
e 21 May 2003



linear in the length of the input word, is not performing enough. A naturalsolution to a

elerate the 
omputation is to 
onsider words as ve
tors andtherefore to 
ompute the sequen
e of visited states using ve
torial operations,that 
an be eÆ
iently a
hieved using parallelism.In this paper, we are interested in ve
torial algorithms, that were introdu
edand investigated by A. Bergeron and S. Hamel in [3,4℄. Su
h an algorithm 
om-putes the sequen
e of visited states while reading a word using a �nite number(independent of the length of the word) of ve
torial operations. The existen
eof an algorithm for a given automaton depends on the automaton and on thekind of ve
torial operations we allow. The problem 
an also be studied fromthe language point of view: 
an we �nd a deterministi
 
omplete automatonre
ognizing a given language and an asso
iated ve
torial algorithm? We �rstexhibit a very tight 
onne
tion between temporal logi
 operators and someve
torial operations, that will therefore be 
alled PTL-ve
torial operations.This leads to an alternative proof of the equivalen
e between star-free lan-guages and ve
torial algorithms, whose dire
t in
lusion was �rst establishedin [4℄. Then, we des
ribe extensions of these algorithms, �rst to 
apture a largersub
lass of regular languages, the solvable ones, and �nally for the whole 
lassof regular languages.In the se
ond part of the paper, we investigate fragments of algorithms basedon the set of PTL-ve
torial operations. Here, we want to know whi
h subsetof star-free languages 
an be 
hara
terized by forbidding 
ertain ve
tor oper-ations. We show that these fragments are 
losely related with the fragmentsof past temporal logi
 de�ned and 
hara
terized in [5,16,17℄.Finally, we 
onsider the 
onverse problem, that is we want to 
he
k for a givenve
torial algorithm whether there exists an automaton asso
iated with it. Tosolve this problem, we show how to de
ide the satis�ability of formulas belong-ing to extensions of linear temporal logi
 introdu
ed in [2℄. Our 
onstru
tionsare based on alternating automata.2 Notations and de�nitionsThroughout the paper, ve
tors are noted in bold 
hara
ters (e.g. u) and are
onsidered as words. Conversely, ve
torial operations 
an be applied to words,
onsidering them as ve
tors. Therefore, a word u is asso
iated with a 
anoni
alve
torial representation u and a ve
tor v is asso
iated with a 
anoni
al wordrepresentation v.Let A = (Q;A; �; q0; F ) be a deterministi
 
omplete automaton. With ea
hinput ve
tor u = a1a2 � � �am we asso
iate the output ve
tor r = r1r2 � � � rm2



representing the sequen
e of states rea
hed reading u (we omit the leadinginitial state). Therefore, u and r have the same length. For instan
e, 
onsiderthe automaton given in Example 1. With the input ve
tor u = bbaabbbabababwe asso
iate the output ve
tor r = 2311233121212. A ve
torial algorithm forA 
onsists of a sequen
e of ve
torial operations of �xed length (i.e., a straight-line expression of length whi
h is independent on u) 
omputing r from u.Given a word u = a1a2 � � �am, we 
onsider for every letter a 2 A, the booleanve
tor (u = a) = (a1 = a) � � � (am = a), where (a1 = a) is a boolean whereasthe equality sign after (u = a) represents an assignment. Hen
e, (u = a) isthe 
hara
teristi
 boolean ve
tor of the letter a in the word u. Just as forwords, for any state q 2 Q, with an output ve
tor r = r1r2 � � � rm we asso
iatethe boolean ve
tor (r = q) = (r1 = q) � � � (rm = q) that is, the 
hara
teristi
ve
tor of state q. For example, (bbaabbbababab = a) = 0011000101010 and(2311233121212 = 1) = 0011000101010.The sequen
e (u = a)a2A (respe
tively, the sequen
e (r = q)q2Q) is an equiv-alent boolean representation for the input word u (respe
tively for the outputve
tor r). In fa
t, in order to work only on boolean ve
tors, the ve
torial algo-rithms presented in this paper 
ompute the sequen
e of 
hara
teristi
 ve
tors(r = q)q2Q from the sequen
e of 
hara
teristi
 ve
tors (u = a)a2A.Let 
 be a 
lass of ve
torial operations. Ve
torial algorithms based on this setof operations and on the bit-wise logi
al operations (
ombinations of _, ^ and:) are 
alled 
-ve
torial algorithms. A deterministi
 
omplete automaton is
alled 
-ve
torial if there is an 
-ve
torial algorithm 
omputing the sequen
e(r = q)q2Q from the sequen
e (u = a)a2A. Finally, a language is 
-ve
torial if itis re
ognized by a deterministi
 
omplete 
-ve
torial automaton. Proposition 1below shows that minimization preserves the property of being an 
-ve
torialautomaton. Therefore a language is 
-ve
torial if and only if its minimalautomaton is 
-ve
torial (by minimal automaton we always mean the minimal
omplete automaton). This property is very useful, be
ause to de
ide whetheror not a language is 
-ve
torial, it suÆ
es to know how to de
ide whether ornot a given automaton (the minimal one) is 
-ve
torial.Proposition 1 Let A be a deterministi
 
omplete automaton. If A is 
-ve
torial, then its minimal automaton Amin is also 
-ve
torial.Proof:As A is deterministi
 and 
omplete, the states of Amin 
orrespond to theNerode equivalen
e 
lasses of states of A. An expression 
hara
terizing a stateof the minimal automaton is obtained as the disjun
tion of the expressions forthe states of the asso
iated equivalen
e 
lass.3



�To make our algorithms pre
ise we have to state whi
h ve
torial operationsare allowed. As in [4℄, we �rst 
onsider a basi
 set of ve
torial operations:� Bit-wise logi
al operations su
h as _, ^, : and the atomi
 formulas (u = a) =(u1 = a) � � � (um = a).� Right shift: "i u1 � � �um = iu1 � � �um�1, i 2 f0; 1g.� Binary addition between two ve
tors of same length: we perform the usualbinary addition from left to right but we do not keep the highest bit (
arry)if the length of the result ex
eeds the initial ve
tors' ones. For example"0 110101 + 101011 = 110100.ve
torial algorithms using only these operations will be 
alled in this paperPTL-ve
torial algorithms. PTL stands for Past Temporal Logi
 and we willshow that there exists a 
lose relation between ve
torial operations of this kindand past temporal logi
 operators. A language is therefore a PTL-ve
toriallanguage if its minimal automaton is PTL-ve
torial.Example 1 [3℄The language re
ognized by the following automaton is a PTL-ve
torial lan-guage.
12 3
a

bbaba
A
tually, the state to whi
h a word leads depends only on the last two lettersof the word: if the last letter is a the state is 1, if the length 2 suÆx is ab or ifwe are working on the �rst letter of the word and this letter is b (in this 
asewe 
annot 
onsider the length 2 suÆx) the state is 2 and otherwise it is 3.Therefore, we have the following PTL-ve
torial algorithm for this automaton:

r = 8>>>>><>>>>>: (r = 1) = (u = a)(r = 2) = (u = b)^ "1 (u = a)(r = 3) = (u = b)^ "0 (u = b)4



3 Past temporal logi
The main result of the next se
tion states that a language is a PTL-ve
toriallanguage if and only if it is star-free. Re
all that a language is star-free ifand only if its synta
ti
 monoid is aperiodi
 [11℄. Furthermore a language isstar-free if and only if it 
an be de�ned by �rst-order logi
 of the linear orderFO[<℄ [6,7℄. Our proof relies a third 
hara
terization in terms of past temporallogi
 (PTL). We �rst re
all the syntax of PTL:We use atomi
 propositions pa for ea
h letter a 2 A of a given alphabetA, boolean 
onne
tives (_ and :) and past temporal operators (Yesterday,denoted Y, and Sin
e, denoted S).The formulas are 
onstru
ted indu
tively a

ording to the following rules:(1) For every a 2 A, pa is a formula.(2) If '1 and '2 are formulas, so are '1 _ '2, :'1, Y'1 and '1 S'2.Semanti
s is de�ned by indu
tion on the rules. Given a word w 2 A+ andan integer n 2 f1; 2; : : : ; jwjg, we de�ne that \w satis�es ' at position n",denoted (w; n) j= ', as follows:(1) (w; n) j= pa if the nth letter of w is a.(2) (w; n) j= '1 _ '2 if (w; n) j= '1 or (w; n) j= '2.(3) (w; n) j= :'1 if (w; n) 6j= '1.(4) (w; n) j= Y'1 if n > 1 and (w; n� 1) j= '1.(5) (w; n) j= '1 S'2 if there exists m � n su
h that (w;m) j= '2 and, forevery k su
h that m < k � n, (w; k) j= '1.With ea
h PTL-formula ', we asso
iate the language of �nite words satisfying': L' = fu 2 A+ j (u; juj) j= 'gRe
all that a regular language L is star-free if and only if there exists a PTL-formula ' su
h that L = L' (see for instan
e [5℄), i.e. if and only if L isPTL-de�nable.4 PTL-ve
torial languages are equivalent to star-free languagesOur aim in this se
tion is to prove the following 
hara
terization:Theorem 1 A regular language is star-free if and only if it is PTL-ve
torial.5



The equivalen
e between PTL-de�nable languages and star-free languages im-plies that Theorem 1 is equivalent with the following result:Theorem 2 A regular language is PTL-ve
torial if and only if it is PTL-de�nable.The proof of this result is splitted into two parts: passing from PTL-formulas toPTL-ve
torial algorithms and from PTL-ve
torial algorithms to PTL-formulas.The �rst part is done in Se
tion 4.1 and the se
ond one in Se
tion 4.2.4.1 Star-free languages are PTL-ve
torialLet L be a star-free language and let A = (Q;A; �; q0; F ) be its minimalautomaton. Sin
e L is star-free, A is 
ounter-free (note that this property isindependent from the �nal states). Let q be a state of A, then the languageLq = fu j (u; juj) j= 'g is re
ognized by an automaton obtained from A byletting q be the unique �nal state. Therefore, Lq is star-free (be
ause it isre
ognized by a 
ounter-free automaton) and thus PTL-de�nable: there existsa PTL-formula 'q su
h that q0 � u = q if and only if (u; juj) j= 'q.We will show that for any input ve
tor u = a1 � � �am and any PTL-formula ',the 
omputation of the binary ve
tor v = v1 � � � vm, where vi = 1 if and onlyif (e1 � � � ei; i) j= ', 
an be performed by a PTL-ve
torial algorithm �.The de�nition of � is given by indu
tion on ':(1) If ' = pa then � = (u = a).(2) If ' = '1 _ '2 then � = �1 _ �2, where �1 and �2 are asso
iatedrespe
tively with '1 and '2.(3) If ' = :'1 then � = :�1, where �1 is asso
iated with '1.(4) If ' = Y'1 then � = "0 �1, where �1 is asso
iated with '1.(5) If ' = '1 S'2, then � = �2_[("0 �2)^�1℄_[�1^
arry(�1; ("0 �2)^�1)℄,where �1 and �2 are asso
iated respe
tively with '1 and '2.The formula 
arry(v;w) is an abbreviation for: :[(v �w) = (v +w)℄, where� is the ex
lusive-or operator. Therefore, 
arry(v;w) represents the value ofthe 
arry bit when adding v and w. For instan
e, 
arry(101101; 100110) =010011.Let us justify the 
onstru
tion for the sin
e operator, (5). A word u is su
hthat (u; n) j= '1 S'2 in one of the three 
ases:(i) (u; n) j= '2. This 
ase is treated by the algorithm �2.6



(ii) (u; n � 1) j= '2 and (u; n) j= '1. This 
ase is treated by the algorithm[("0 �2) ^ �1℄.(iii) There is an integer m < n � 1 (whi
h is 
hosen maximal) su
h that(u;m) j= '2 and, for all k su
h that m < k � n, (u; k) j= '1. Theve
tor 
arry(�1; ("0 �2) ^ �1℄ is su
h that its n-th position is 1 if andonly if there exists m < n � 1 su
h that (u;m) j= '2 and, for all ksu
h that m < k � n � 1, (u; k) j= '1. Consequently, the algorithm�1^
arry(�1; ("0 �2)^�1) exa
tly 
hara
terizes our 
ase. Note that the�rst 
omponent �1 is ne
essary be
ause the 
arry has a non immediatee�e
t: it a�e
ts the �rst position after it is generated. For the samereason, the se
ond 
ase had to be treated separately.This indu
tive 
onstru
tion 
on
ludes the proof that any star-free language isPTL-ve
torial.The following example illustrates the pre
eding 
ases for the value �(u) of �applied to a ve
tor u:�2(u) = 0 0 1 0 0 1 0 0"0 [�2(u)℄ = 0 0 0 1 0 0 1 0�1(u) = 1 1 0 1 1 1 0 1[("0 �2) ^ �1℄(u) = 0 0 0 1 0 0 0 0[
arry(�1; ("0 �2) ^ �1)℄(u) = 0 0 0 0 1 1 1 0[�1 ^ 
arry(�1; ("0 �2) ^ �1)℄(u) = 0 0 0 0 1 1 0 0�(u) = 0 0 1 1 1 1 0 04.2 PTL-ve
torial languages are star-freeLet L be a PTL-ve
torial language. By Proposition 1, its minimal automatonA = (Q;A; �; q0; F ) is a PTL-ve
torial automaton. To prove that L is star-free (equivalently, PTL-de�nable) we 
onstru
t for ea
h state q of A, a PTL-formula 'q su
h that for any word u 2 A+, q0 �u = q if and only if (u; juj) j= 'q.Therefore, L will be 
hara
terized by the disjun
tion _q2F 'q, whi
h is a PTL-formula.For ea
h state q of A we have a PTL-ve
torial algorithm �q 
omputing, fromea
h input ve
tor u, the 
hara
teristi
 output ve
tor of state q, (r = q). Theformula 'q whi
h \translates" �q is de�ned by indu
tion on the stru
ture of�q. Moreover, the logi
al formula ' as de�ned below for a ve
torial algorithm7



�, satis�es the following property: the i-th entry of the ve
tor obtained byapplying � to u is 1 if and only if (u; i) j= '.(1) If � = (u = a), where a is a letter, then ' = pa.(2) If � = �1 _ �2 then ' = '1 _ '2, where '1 and '2 are asso
iatedrespe
tively with �1 and �2.(3) If � = :�1 then ' = :'1, where '1 is asso
iated with �1.(4) If � = "0 �1 then ' = Y'1, where '1 is asso
iated with �1. The 
ase� ="1 �1 follows from the pre
eding one, be
ause "1 �1 = :("0 :�1).(5) If � = �1 + �2, we let
 = Yf['1 _ '2℄ S ['1 ^ '2℄gwhere '1 and '2 are asso
iated respe
tively with �1 and �2. Note thatthe formula 
 
hara
terizes the value of the 
arry bit while summing theve
tors obtained from �1 and �2. Thus, the translation of �1+�2 is thelogi
al formula: ' = ['1 � '2℄ ! :
Finally, the global formula for L is:'A = _q2F 'q;and for ea
h word u, we have u 2 L = L(A) if and only if (u; juj) j= 'A.This 
on
ludes the proof. �
5 Extensions of PTL-ve
torial algorithmsA natural question is to extend PTL-ve
torial algorithms, in order to 
apturelarger 
lasses of regular languages by parallel operations. To a
hieve this goalwe need to introdu
e new operations that are stri
tly more powerful thanthe PTL operations. In a �rst extension we will 
hara
terize solvable regularlanguages (a regular language is 
alled solvable if its synta
ti
 monoid doesnot 
ontain any non solvable group) and in a se
ond extension all regularlanguages. 8



5.1 A ve
torial 
hara
terization of solvable languagesThe 
ru
ial point in de�ning extensions of PTL-ve
torial algorithms is the
hoi
e of the new operations allowed. To determine them, let us give anotherproof of the fa
t that PTL-ve
torial languages are star-free. A well knownexample of non star-free language is L1 = (aa)� whereas, on the alphabetA = fa; bg, L2 = (ab)� = A� n [bA� + A�a + A�(aa + bb)A� is a star-free one.Is there a \ve
torial" di�eren
e between them? L1 and L2 are re
ognized bythe following automata:
1 2aa 1 2abA1 A2Re
all that a period of a word u = a1a2 � � �an is an integer p � n=2 su
h thatfor any position i, 1 � i � n� p, ai+p = ai. A word having period p is said tobe of periodi
ity p. For example abbaabbaabbaab is of periodi
ity 4. Finally, aword is ultimately periodi
 of period p if it has a suÆx of periodi
ity p. Forinstan
e, abbbababababababab is ultimately periodi
 of period 2.Words re
ognized by A1 are of periodi
ity 1 whereas the asso
iated sequen
eof states is of periodi
ity 2. This is not the 
ase for the automaton A2. One
an show that any PTL-ve
torial algorithm applied to an ultimately periodi
word gives an ultimately periodi
 result of the same period (PTL-ve
torialoperations preserve periods). With any non 
ounter-free automaton one 
anasso
iate an ultimately periodi
 word of period p su
h that the asso
iatedsequen
e of states is not of ultimate period p. Thus, a PTL-ve
torial languagehas to be star-free.To extend PTL-ve
torial algorithms, we need to introdu
e operators that donot preserve the period. For every integers k; l su
h that 0 � l < k, themodular operator Sl;k is de�ned bySl;k(x1x2 � � �xm) = (s1 � � � sm) where si = 8>><>>:1 if iXj=1 xj = l (mod k);0 otherwise.ve
torial algorithms using only the PTL-ve
torial operations plus the modularoperations Sl;k will be 
alledMTL-ve
torial algorithms. A language is anMTL-9



ve
torial language if there is an MTL-ve
torial algorithm for a deterministi

omplete automaton whi
h re
ognizes it.With modular operators, one 
an easily de�ne MTL-ve
torial algorithms forthe minimal automaton of languages of the form L(a; k; pn) = fu 2 A�j juja �k (mod pn)g, where a is a letter, juja is the number of o

urren
es of a 2 Ain u, p a prime number and k; n stri
tly positive numbers.Sin
e MTL-ve
torial languages are a boolean algebra (just 
onsider the prod-u
t automaton to 
ompute an algorithm for interse
tion or union of two MTL-ve
torial languages) and languages of the form K(a; r) = fu 2 A�j juja = rgare PTL-ve
torial (sin
e star-free), the boolean algebra MCom generated bylanguagesK(a; r) and L(a; k; pn), whi
h is the set of languages whose synta
ti
monoid is 
ommutative [8℄, is a subset of MTL-ve
torial languages.For 
hara
terizing the family of solvable languages we need a further operationon automata, the 
as
ade produ
t . Let A be a �nite alphabet and let B1 =(Q1; A; Æ1) and B2 = (Q2; Q1 � A; Æ2) be two �nite automata. Their 
as
adeprodu
t C = (Q;A; Æ), denoted B1 Æ B2 is de�ned as follows:� Q = Q1 �Q2� Æ(hq1; q2i; a) = hÆ1(q1; a); Æ2(q2; hq1; ai)iWe 
an also de�ne the 
as
ade produ
t of more than two automata by thefollowing re
ursive formula:B1 Æ B2 Æ � � � Æ Bk = (: : : ((B1 Æ B2) Æ B3) Æ : : : ) Æ BkThis automata version of the wreath produ
t [9℄ of aperiodi
 semigroups,
ombined with the Krohn-Rhodes De
omposition Theorem [14℄, was used to
onstru
t PTL-ve
torial algorithms from 
ounter-free automata [3℄. It is notdiÆ
ult to prove that a family of automata 
orresponding to a 
lass of ve
-torial algorithms, for instan
e 
ounter-free automata or automata re
ognizingMTL-ve
torial languages, is 
losed under 
as
ade produ
t and under homo-morphisms. Therefore, as all star-free languages are MTL-ve
torial languages,any language re
ognized by an automaton obtained by applying a homomor-phism to a 
as
ade produ
t of 
ounter-free automata and automata re
og-nizing languages in MCom is an MTL-ve
torial language. In addition, anysolvable language is re
ognized by an automaton obtained by applying an ho-momorphism to a 
as
ade produ
t of 
ounter-free automata and automatare
ognizing languages in MCom [13℄, and therefore this proves that solvablelanguages are MTL-ve
torial languages.In fa
t, the 
onverse is true as well, any MTL-ve
torial language is a solvablelanguage. We have thus the following result:10



Theorem 3 A regular language is solvable if and only if it is MTL-ve
torial.For the proof, we use an extension of the past temporal logi
 introdu
ed in[2℄, the modular temporal logi
 (MTL). By modular temporal logi
 we meanpast temporal logi
 augmented with the unary operators Modl;k for integers0 � l < k. The new modular operators have the following natural semanti
s:given an MTL formula ', we have (u; i) j= Modl;k' if, there are l positions i0,1 � i0 � i (modulo k) su
h that (u; i0) j= '.It was shown in [2℄ that a language is expressible in modular temporal logi
if and only if it is solvable. But, with an MTL-ve
torial language one 
anasso
iate an MTL formula in a straightforward way. This shows that MTLve
torial languages are solvable languages and a
hieves the proof of the equiv-alen
e between MTL-ve
torial languages and solvable languages. Moreover,as solvability is a synta
ti
 property, the property of being an MTL-ve
toriallanguage does not depend a
tually on a spe
i�
 automaton re
ognizing thelanguage.5.2 A ve
torial 
hara
terization of regular languagesMTL-ve
torial algorithms do not 
hara
terize all regular languages. Therefore,we propose an extension to MTL-ve
torial algorithms, whi
h we denote asGTL-ve
torial algorithms, whi
h 
aptures all regular languages.We will use again an extension of modular temporal logi
 introdu
ed in [2℄.This extension of temporal logi
 is obtained by augmenting modular tempo-ral logi
 with group temporal operators �g;G for any �nite group G and anyelement g 2 G. The operator �g;G always binds jGj � 1 formulas.Let us now explain the semanti
s of �g;G for a given �nite group G and anelement g 2 G. We �rst have to order the elements of the group G (this orderwill not be modi�ed afterward), say as g1; g2; : : : ; gq = id. Let u be an elementof A+ and let '1; '2; : : : ; 'q�1 be GTL-formulas. With ea
h j, 1 � j � juj weasso
iate an element of G, denoted h'1; '2 : : : 'q�1ihu; ji, de�ned by:h'1; '2; : : : ; 'q�1ihu; ji = gkwhere k = minfl j (u; j) j= 'lg with the 
onvention that min ; = q.Finally, we de�ne (u; i) j= �g;Gh'1; '2; : : : ; 'q�1i to mean that:iYj=1h'1; '2; : : : ; 'q�1ihu; ji = g11



It was shown in [2℄ that a language is expressible in group temporal logi
 ifand only if it is regular.Thus, to have a ve
torial 
hara
terization of all regular languages it suÆ
es to�nd ve
torial operations equivalent to �g;G for all �nite groups G. Let G be a�nite group of 
ardinality q. We 
onsider an isomorphi
 
opy H of G de�ned asfollows. The elements of H are boolean ve
tors of length q 
ontaining exa
tlyone 1. Therefore, (1; 0; : : : ; 0) is asso
iated with g1, (0; 1; 0; : : : ; 0) with g2 andso on. The produ
t � on H is de�ned by the isomorphism � between G andH. For ea
h group G and ea
h element g 2 G, we introdu
e the operator Pg;Gde�ned by:Pg;G(v1;v2; : : : ;vq) = (s1 : : : sm) with si = 8>><>>:1 if iOj=1(v1;j; v2;j; : : : ; vq;j) = �(g);0 otherwise.where we mean by N an iteration of � and by vk;j the j-th bit of ve
tor vk.Remark 1 In our de�nition of Pg;G, we impli
itly suppose that for ea
h j, 1 �j � i, there is exa
tly one ve
tor vk su
h that vk;i = 1. If this is not the 
ase,we have a problem in de�ning the produ
t N be
ause some (v1;j; v2;j; : : : ; vq;j)do not belong to H. The solution 
onsists in de�ning the produ
t �, and thusthe iterated produ
t N, for all boolean ve
tors of length q. To a
hieve thiswe de�ne an equivalen
e relation � for boolean ve
tors saying that x � y ifand only if x and y have their �rst 1 in the same position. In addition, theve
tor (0; 0; : : : ; 0) is equivalent to the neutral element (0; 0; : : : ; 0; 1). Finallywe de�ne � for all ve
tors using the equivalen
e relation �.The equivalen
e relation � works like the operator h'1; '2; : : : ; 'q�1i, it justlooks for the �rst 1 (validate formula) that appears on the ve
tor.Therefore with ' = �g;G('1; : : : ; 'q�1) we asso
iate �:� = Pg;G(�1;�2;�3; : : : ;�q�1;:�1 ^ � � � ^ :�q�1);where �i is the translation of 'i. Denoting by �ji (u) the j-th bit of the resultof the algorithm �i applied to u we then have:�(h'1; '2; : : : ; 'q�1ihu; ji) �(�j1(u);�j2(u);�j3(u); : : : ;�jq�1(u);:�j1(u) ^ � � � ^ :�jq�1(u))and therefore we have (u; i) j= ' if and only if the i-th bit of the result of �applied to u is 1. 12



Conversely, with � = Pg;G(�1; : : : ;�q) we asso
iate:' = �g;G['1; '2; '3; : : : ; 'q�1℄where 'i is the translation of �i.Denoting again by �ji (u) the j-th bit of theresult of �i applied to u we obtain:�j1(u);�j2(u);�j3(u); : : : ;�jq�1(u);:�j1(u) ^ � � � ^ :�jq�1(u)) ��(h'1; '2; : : : ; 'q�1ihu; ji)and therefore the i-th bit of the result of � applied to u is 1 if and only if(u; i) j= '.Thus, the operators �g;G and Pg;G have the same expressive power. We 
an now
hara
terize all regular languages by ve
torial algorithms. Ve
torial algorithmsusing only the MTL-ve
torial operations plus the group operations Pg;G willbe 
alled GTL-ve
torial algorithms. A language is a GTL-ve
torial languageif there is a GTL-ve
torial algorithm for a deterministi
 
omplete automatonwhi
h re
ognizes it.Combining the pre
eding results, we have the following 
hara
terization ofregular languages:Theorem 4 A language is regular if and only if it is GTL-ve
torial.E�e
tively, a GTL-ve
torial language is regular (be
ause it is re
ognized bya �nite automaton). Conversely, to any regular language one 
an asso
iate a�nite deterministi
 
omplete re
ognizing it. To any state of the automaton, one
an asso
iate a regular language (and thus a GTL-formula) representing theset of words that lead to this state in the automaton. Translating these GTL-formulas gives us a GTL-ve
torial algorithm for the automaton. Hen
e anyregular language is a GTL-ve
torial language. Regularity being a synta
ti
property, the property of being a GTL-ve
torial language does not dependa
tually on a spe
i�
 automaton.6 Fragments of PTL-ve
torial languagesIn the pre
eding se
tions we attempted to extend PTL-ve
torial algorithms to
hara
terize regular languages more 
omplex than star-free ones. For that weneeded new ve
torial operators. However, the pri
e to pay is that the extendedve
torial operations are not obviously realizable from a hardware point of view.13



A dual investigation is to study fragments of PTL-ve
torial languages: given aset of ve
torial operators (that 
an be eÆ
iently performed) we want to deter-mine whi
h kind of (deterministi
 
omplete) automata 
an be 
hara
terizedby algorithms using the given set of ve
torial operations. A similar problemhas been studied for temporal logi
 in [5,16,17℄ and we will relate it to ourproblem.6.1 De�nitionsWe �rst introdu
e a new ve
torial operation 
alled right, denoted by ! andde�ned as: !v = v _ [:(v + 1)℄. It is easily seen that !0 = 0 and that!0 � � �01? � � �? = 0 � � �01 � � �1. That is, right mat
hes the �rst one (from theleft) by 
ompleting the ve
tor with ones (to the right) after the �rst one. Wenote that ! is the ve
torial equivalent of the past temporal operator P (past)whose semanti
s is de�ned by: (w; n) j= P' if there exists m � n su
h that(w;m) j= '.We also de�ne a stri
t version of the ! operation, the stri
t right, denotedby � and de�ned by �v ="0 (!v). Thus, it is easily seen that �0 = 0 andthat � 0 � � �0| {z } 1? � � �? = 0 � � � 0| {z } 01 � � �1. For example, we have: �0001101001 =0000111111 and �001 = 000. The � operator is the ve
torial equivalent ofthe stri
t version YP of the operator P, de�ned by: (w; n) j= YP' if thereexists m < n su
h that (w;m) j= '.Given a 
lass 
 of ve
torial operations, we write VA[
℄ for the set of ve
torialalgorithms using only bit-wise logi
al operations and operations in 
. For
onvenien
e, we omit the bra
es: we write VA[!;+℄ instead of VA[f!;+g℄.For example PTL-ve
tor algorithms are exa
tly the ones in VA["0;+℄.We use the same notation for languages: we will denote by VL[
℄ the set oflanguages for whi
h there is an automaton and a 
orresponding algorithm inVA[
℄. Therefore VL["0;+℄ des
ribes the PTL-ve
torial languages.For ea
h fragment of PTL-ve
torial languages, we would like to have an ef-�
ient algorithm to de
ide whether or not a given language belongs to thefragment. For this, we will use 
hara
terizations of fragments of past temporallogi
 given in [5,16,17℄. A fragment of past temporal logi
 is de�ned as fol-lows: given a 
lass � of temporal modalities, we write PTL[�℄ for the set oftemporal formulas in whi
h modalities other than ones from N do not o

ur.For 
onvenien
e, we omit the bra
es, e.g., we write PTL[Y;YP℄ instead ofPTL[fY;YPg℄. We 
an also asso
iate with � a set of languages noted L[�℄su
h that a language L belongs to L[�℄ if and only if there exists a formula' 2 PTL[�℄ su
h that L is de�nable by '.14



6.2 Chara
terizing fragments of PTL-ve
torial languages6.2.1 PreliminariesIntuitively, there exists a tight link between languages de�ned by logi
al 
on-ditions and languages de�ned by "equivalent" ve
torial 
onditions. For ex-ample, in Se
tion 4 we have seen that PTL-ve
torial languages are the sameas languages de�ned by past temporal logi
. But, whereas logi
al satis�abil-ity depends ex
lusively on the language, ve
torial 
hara
terizations seem tobe 
losely related with a spe
i�
 automaton. Ve
torial 
hara
terizations arestronger than logi
al 
hara
terizations be
ause in order to have a ve
torialalgorithm for a given automaton one must be able to 
hara
terize any state,hen
e any language re
ognized by the automaton obtained by setting a givenstate as unique �nal state. For a logi
al formula one just needs to exhibit theset of �nal states needed for the given language.But under some assumptions, logi
al fragments and ve
torial fragments de�nethe same 
lass of languages. Let us be more expli
it. Given a set 
 of ve
torialoperations and a set � of logi
al operators, we will say that 
 and � areequivalent if they verify the following 
onditions:(1) To any ve
torial algorithm � using only operations in 
 one 
an asso
iatea PTL-formula ' using only operators in � su
h that for any word u andany positive integer i smaller than juj, the i-th entry of the ve
tor obtainedby applying � to u is 1 if and only if (u; i) j= '.(2) To any PTL-formula ' using only operators in �, one 
an asso
iate ave
torial algorithm � using only operators in 
 su
h that for any wordu = u1 � � �um, the 
omputation of the binary ve
tor v' = v1 � � � vm, wherevi = 1, (u1 � � �ui; i) j= ', is performed by the algorithm �.For example, we have seen in Se
tion 4 that the set of ve
torial operations
 = f"0;+g is equivalent to the set of logi
al operators � = fY;Sg. More-over, in this 
ase we have that VL[
℄ = L[�℄. Several fragments of temporallogi
 have been studied and 
hara
terized in [5,16,17℄ and therefore to 
har-a
terize a fragment of PTL-ve
torial languages, a solution 
onsists in �ndingan equivalent fragment in temporal logi
. We have to �nd a 
ondition on twoequivalent sets 
 and � to have VL[
℄ = L[�℄.A set � of logi
al operators will be 
alled �nally stable if for every languageL that belongs to L(�), any language re
ognized by an automaton obtainedfrom the minimal automaton of L by letting some arbitrary state to be theunique �nal state, belongs to L(�).For example, any set � su
h that L(�) is a variety of languages is �nallystable. Formally, if L is a language in L(�) and A its minimal automaton,15



any automaton A0 obtained by modifying the �nal states of A re
ognizes alanguage L0 of L(�) be
ause the synta
ti
 monoid of A0 divides the synta
ti
monoid of A.The notion of �nal stability gives us the following lemma:Lemma 1 Let 
 be a set of ve
torial operations and let � be an equivalentset of logi
al operators. Then � is �nally stable if and only if VL(
) = L(�).Proof:First assume that � is a �nally stable set of logi
al operators equivalent toa set 
 of ve
torial operations. The in
lusion VL(
) � L(�) is not diÆ
ult.To prove the 
onverse in
lusion, VL(
) � L(�), let us 
onsider a languageL 2 L(�) and its minimal automaton A = (Q;A; �; qi; F ). For any state q ofA, the automaton Aq obtained from A by letting q be the unique �nal state,re
ognizes the language Lq that belongs to L(�). Therefore we have a formula'q in PTL(�) that de�nes Lq. Therefore, we have that qi � u = q if and onlyif (u; juj) j= 'q. We obtain a simple algorithm in VA(
) 
hara
terizing thestate q in the automaton A just by translating 'q (and this is possible by theequivalen
e between 
 and �).Conversely, let us assume that � and 
 are equivalent and su
h that L(�) =VL(
) and let us show that � is �nally stable. For this, 
onsider a languageL 2 L(�). Then L also belongs to VL(
), and therefore its minimal automatonAmin is 
-ve
torial. We have thus an algorithm for any state q of Amin (su
hthat its translation into a PTL-formula belongs to PTL(�)) that 
hara
terizesthe language re
ognized by the automaton obtained from Amin by 
hoosing qas unique �nal state. Therefore these languages belong to L(�), what provesthe �nal stability of � and a
hieves the proof. �Remark 2 The pre
eding lemma and the results about temporal logi
 givenin [2℄ yield a generi
 proof of the results of the pre
eding se
tions by notingthat star-free languages, solvable languages and regular languages are varietiesand that their asso
iated sets of logi
al operators are �nally stable.In [5,16,17℄ several 
hara
terizations of fragments of past temporal logi
 arestated. We will use them to 
hara
terize fragments of PTL-ve
torial languages.But �rst of all we need some de�nitions. The 
hara
terizations of fragmentsof past temporal logi
 use the minimal automaton and the presen
e, or ab-sen
e, of spe
i�
 stru
tures, 
alled forbidden patterns. For instan
e for star-freelanguages we 
onsider a 
hara
terization that forbids 
ounting patterns.16



Given a set N , an N -labeled digraph is a tuple (V;E) where V is an arbi-trary �nite set and E a subset of V � N � V . The 
losure of a determinis-ti
 �nite automaton A, denoted CA, is the A+-labeled digraph (V;E) whereE = f(q; u; q �u) j q 2 Q and u 2 A+g. Therefore, the 
losure of any determin-isti
 �nite automaton is an in�nite graph (it has in�nitely many edges, butonly �nitely many verti
es).Finally, a pattern is a labeled digraph whose verti
es are state variables, usuallydenoted p; q; : : : , and whose edges are labeled with variables for labels of twodi�erent types: variables for nonempty strings, usually denoted u; v; : : : , andvariables for letters, usually denoted a; b; : : : . In addition, a pattern 
omes withside 
onditions stating whi
h state variables are to be interpreted by distin
tstates. We draw patterns just as we draw graphs and adopt the 
onventionthat all states drawn solid must be distin
t.We say that an A+-labeled digraphmat
hes a pattern if there is an assignmentto the variables obeying the type 
onstrains and the side 
onditions, so thatthe digraph obtained by repla
ing ea
h variable by the value assigned to it isan indu
ed subgraph of the given digraph.6.2.2 Chara
terizing VL[�℄We are now ready to 
hara
terize our �rst fragment of PTL-ve
torial lan-guages:Theorem 5 Let L be a regular language over some alphabet A. Then thefollowing assertions are equivalent:(1) L belongs to VL[�℄.(2) L belongs to L[YP℄.(3) The 
losure of the minimal automaton Amin(L) of L does not mat
h thefollowing pattern: qq0 pp0
a
a uv

The equivalen
e between (2) and (3) is shown in [16,17℄. The other equivalen
es
ome from Lemma 1, from the equivalen
e between YP and�, and from thefollowing lemma (whi
h implies that YP is �nally stable):Lemma 2 Let us 
onsider a deterministi
 
omplete automaton that does not17



mat
h the pattern of Theorem 5. Then its minimal automaton does not mat
hit either.
Proof:We show the result by 
ontradi
tion. Let us 
onsider a deterministi
 
ompleteautomatonA that does not mat
h the pattern of Theorem 5 and let us assumethat its minimal automaton Amin 
ontains the pattern. Thus there exist fourstates P , Q, P 0 and Q0 of Amin, a letter a and two words u and v su
h thatP � a = Q, P 0 � a = Q0, P � u = P 0, P 0 � v = P and Q 6= Q0. As A is adeterministi
 
omplete automaton, we 
an identify the states of Amin withthe Nerode equivalen
e 
lasses of A. In the following we will not make anydistin
tion between the states of Amin and the Nerode equivalen
e 
lasses ofA. We have the following 
onsequen
es:(1) For any states q 2 Q, q0 2 Q0 we have q 6= q0.(2) For any state p 2 P , we have p � u 2 P 0.(3) For any state p0 2 P 0, we have p0 � v 2 P .(4) For any state p 2 P we have p � a 2 Q and for any state p0 2 P 0 we havep0 � a 2 Q0. Therefore, for any states p 2 P ,p0 2 P 0 we have p � a 6= p0 � a.Our aim is to prove the existen
e of two words z and t, of four states p, p0, qand q0 where p 2 P , p0 2 P 0, q 2 Q and q0 2 Q0 su
h that p � a = q, p0 � a = q0,p � z = p0 and p0 � t = p. Therefore we will have a 
ontradi
tion with the fa
tthat A does not 
ontain the pattern.Let us assume that jP j � jP 0j (the symmetri
 
ase is identi
al) and 
onsider astate p1 2 P . Thus the state p01 = p1 �u belongs to P 0 and p2 = p01 �v belongs toP . As A does not 
ontain the pattern, we have p2 6= p1. For the same reasonthe state p02 = p2 �u belongs to P 0 and is di�erent from p01, the state p3 = p02 � vbelongs to P and is di�erent from p2 and p1 (be
ause we have p1 �uvu = p02 andp02 � v = p3). Iterating this reasoning orders the states of P = fp1; p2; : : : ; pngand the states of a subset R = fp01; p02; : : : ; p0ng of P 0. Moreover, this order issu
h that for any i � j � n, there exists a word eu su
h that pi � eu = p0j andfor any i < j � n there exists a word ev su
h that p0i � ev = pj. Let us now
onsider the state p = p0n � v 2 P : there exists i, 1 � i � n su
h that p = pi.We thus have a 
ontradi
tion be
ause there exists a non empty word z su
hthat pi � z = p0n and p0n �v = pi and pi �a 6= p0n �a, hen
e A 
ontains the pattern.The proof 
an be resumed by the following diagram:18



p1p01
p2p02

p3 pi p0n�1
pnp0nu u u u u uv v v vv �6.2.3 Chara
terizing VL("0;!)The 
lass VL("0;!) 
orresponds to the logi
al fragment that uses only yes-terday and past as operators:Theorem 6 Let L be a regular language over some alphabet A. Then thefollowing assertions are equivalent:(1) L belongs to VL["0;!℄.(2) L belongs to L[Y;P℄.(3) The 
losure of the minimal automaton Amin(L) of L does not mat
h thefollowing pattern:

p qvwu u
The equivalen
e between (2) and (3) 
an be found in [16,17℄. The other equiv-alen
es 
ome from Lemma 1 and from the following lemma, that implies thatfY;Pg is �nally stable:Lemma 3 Consider a deterministi
 
omplete automaton that does not mat
hthe pattern of Theorem 6, then its minimal automaton does not mat
h thepattern, either.As for the proof of Lemma 2 we reason by 
ontradi
tion. Let us 
onsider adeterministi
 automaton A that does not mat
h the pattern and assume thatits minimal automaton Amin mat
hes the pattern. We thus have two distin
tstates P and Q of Amin and three words u, v and w su
h that: P � u = P ,Q �u = Q, P �v = Q and Q �w = P . As in the pre
eding proofs, we identify thestates of Amin with Nerode equivalen
e 
lasses of states of A and therefore weobtain that: 19



(1) For ea
h state p 2 P we have p � u 2 P and p � v 2 Q.(2) For ea
h state q 2 Q we have q � u 2 Q and q �w 2 P .Let us 
onsider the Nerode equivalen
e 
lass asso
iated with state P (thereasoning is the same for Q). Sin
e P � u = P , we 
an de
ompose it into
omponents of states that are obtained by iterating the a
tion of word u ona beginning state (as in Pollard's � method). So an equivalen
e 
lass 
an beseen as a union of 
omponents having the following form:
p1 p01u u u u u u u

uuuq1 v
Now, let us 
onsider a state p1 2 P . There exist k; k0 � 0 and a state p01 2 Psu
h that p1 �uk = p01 and p01 �uk0 = p01 (p01 belongs to the loop of the 
omponent
ontaining p1). The state q1 = p01 � v belongs to Q. Let us 
onsider the state q01de�ned from q1, v as we have de�ned p01 from p1: there exists a word ev su
hthat p01 � ev = q01 and a word eu = uh (where h is the least 
ommon multiple ofthe lengths of the loops 
ontaining the states p01 and q01) su
h that p01 � eu = p01and q01 � ev = q01. Therefore, as A does not mat
h the pattern, q01 � w must notbelong to the 
omponent of p01. We 
an iterate this reasoning as in the proofof Lemma 2 and we �nd a similar 
ontradi
tion. In fa
t this proof is analogousbut we must work on 
omponents instead of states.6.2.4 Chara
terizing VL("0)To 
hara
terize VL("0), we 
an use either a result about languages de�nableusing the yesterday operator, or give a dire
t proof (whi
h gives us thereforea 
hara
terization of L(Y)).We begin with the dire
t proof be
ause it illustrates the use of ve
torial lan-guages. Intuitively, if we have for a given deterministi
 
omplete automatonan algorithm using only the right-shift operation "0, let us say k times, thismeans that for any word and for any position in this word we have to 
onsideronly the k + 1 last letters for knowing the state rea
hed by the automaton.Formally:Theorem 7 An automaton has an asso
iated algorithm in VA["℄ if and only20



if it is trivial (any letter loops on any state) or if there exists an integer k su
hthat the transition fun
tions de�ned by the words of length k are 
onstant.E�e
tively, let us 
onsider a non trivial automaton A having an algorithm inVA["℄. We then have an algorithm 
omputing the output ve
tor r of the visitedstates from the input ve
tor u and using only bit-wise logi
al operations andthe right-shift. Let k be the number of right shift operations used. Therefore,it is easily seen that the nth position of r only depends on the positionsn; n � 1; : : : ; n� k of u. Thus, if u is a word of length k + 1, then u leads toa state independent of the initial state, i.e, u de�nes a 
onstant mapping inQQ, where Q is the set of states of A, what proves the �rst impli
ation.Conversely, let us 
onsider an automaton having this property and let us
onstru
t an algorithm in VA["℄ for it. The 
ase of the trivial automaton isnot diÆ
ult and we will no longer deal with it.For any word v of length k, we 
ompute the 
hara
teristi
 ve
tor ev of v:ev = k�1̂i=0("i0 (u = ak�1�i)where v = a0 � � �ak�1 and note by "i0 the operation "0 iterated i times.For any state q , we design by Lkq the set of words of length k sending any stateon q. Therefore, the ve
tor (r0 = q) = _v2Lkq ev mat
hes, ex
ept possibly on thek � 1 �rst terms, the 
hara
teristi
 ve
tor (r = q). But it is easy to 
omputethe k � 1 �rst terms of (r = q): it suÆ
es to 
onsider the words w of lengthless or equal than k�1 that lead to q from the initial state. Therefore, we justhave to 
ompute their 
hara
teristi
 ve
tors ew and to take their disjun
tion.Thus we obtain the ve
tor (r00 = q) that mat
hes (r = q) on the k � 1 �rstterms. The ve
tor (r = q) is �nally given then by:(r = q) = [(r0 = q) ^ x℄ _ [(r00 = q) ^ :x℄where we let x ="k0 1 = 0k1�. Therefore we obtain an algorithm for A inVA["0℄.We 
an give a 
orollary of this result in algebrai
 terms:Corollary 1 A regular language belongs to L["0℄ if and only if its synta
ti
semigroup belongs to the variety D of semigroups de�ned by the equation yx! =x!.In fa
t the equation yx! = x! is asso
iated with languages of the form A�X[Ywhere X and Y are �nite sets of non-empty words on an alphabet A [8℄. It21



is therefore easy to verify, using Theorem 7, that the languages of L["0℄ areexa
tly those asso
iated with the variety of semigroups D. E�e
tively, letus 
onsider an automaton for whi
h any word of a given length k de�nes a
onstant mapping in QQ. Let e be an idempotent of the transition semigroup.As e = ek, e 
an be asso
iated with a word of length greater or equal thank and therefore e is asso
iated with a 
onstant mapping and thus it is rightabsorbing, i.e., for any element v of the transition semigroup we have ve =e. Consequently, the transition semigroup veri�es the equation yx! = x!.Conversely, let us 
onsider a language re
ognized by an automaton (that 
an be
hosen deterministi
 and 
omplete) su
h that its transition semigroup veri�esthe equation yx! = x!. To any state q of the automaton, we 
an asso
iatea language Lq 
omposed of all words that lead from the initial state to q.The synta
ti
 semigroup of this language divides the transition semigroupof the given automaton and thus veri�es the equation yx! = x!. Therefore,Lq = A�X [Y where X and Y are two �nite sets of words. The elements of Xde�ne 
onstant mappings that send any state on q. Making this reasoning forall states gives us for any state a set of 
hara
teristi
 words. Considering thelongest word of these sets we �nd an integer k su
h that any word of length kde�nes a 
onstant transition fun
tion.Using a result on a fragment of temporal logi
 [16,17℄ and Lemma 1 we havethe following 
hara
terizations:Theorem 8 Let L be a regular language over some alphabet A. Then thefollowing assertions are equivalent:(1) L belongs to VL["0℄.(2) L belongs to L[Y℄.(3) The 
losure of the minimal automaton of L, Amin(L) does not mat
hthe following pattern:
p qu u

(4) The synta
ti
 semigroup of L belongs to the variety D de�ned by theequation yx! = x!.6.2.5 Chara
terizing unambiguous languagesIn this se
tion we give a 
hara
terization of unambiguous languages usinga fragment of PTL-ve
torial languages. Let us 
onsider an alphabet A. Aprodu
t of the form A�0a1A�1a2 � � �akA�k, where Ai is a subset of A and ai is a22



letter, is 
alled unambiguous if for any word u on the alphabet A, if u belongsto the produ
t then there is a unique de
omposition u0; u1; : : : ; uk su
h thatu = u0a1u1a2 � � �akuk with ui 2 A�i . An unambiguous language is a �nite,disjoint union of unambiguous produ
ts.Unambiguous languages are well studied. We will use there two results: thefa
t that unambiguous languages form a variety of languages and a 
hara
ter-ization using a symmetri
 fragment of temporal logi
. A symmetri
 fragmentof temporal logi
 is de�ned as a 
lassi
al fragment ex
ept that the use of fu-ture operators (and not only past operators) is allowed [16,17℄. The symmetri
fragment L[jXFj℄ asso
iated with unambiguous languages is the one allowingthe use of the stri
t operators past (YP) and future (XF). The operator XFhas the following semanti
s: (w; n) j= XF' if there exists n < m � juj su
hthat (w;m) j= '.De�ning the operation stri
t left� as a symmetri
 version of�, using Lemma1 and the equivalen
e between unambiguous languages and the symmetri
fragment L[jXFj℄, we have the following result:Theorem 9 Let L be a regular language over some alphabet A. Then thefollowing assertion are equivalent:(1) L is unambiguous.(2) L belongs to L[jXFj℄.(3) L belongs to VL[�;�℄7 Re
onstru
ting an automaton from a PTL-ve
torial algorithmIn the pre
eding se
tions we wanted to �nd a ve
torial algorithm from a givenautomaton. We now 
onsider the 
onverse problem, that is we want to 
he
k fora given PTL-ve
torial algorithm whether there exists a deterministi
 
ompleteautomaton asso
iated with it (and determine an automaton, if this is the
ase). This question be
omes interesting for instan
e when we modify a givenve
torial algorithm (asso
iated with a deterministi
 automaton) and we wantto 
he
k afterward that the new algorithm is equivalent to the old one. Wewill show that the 
omplexity of this test is a
tually the same as testing thesatis�ability of an LTL-formula (PSPACE-
omplete).Ve
torial algorithms are asso
iated with deterministi
 
omplete automata andtherefore depend on the initial state (and not only on the underlying labeledgraph stru
ture of the given automaton). We will thus suppose that the initialstate is part of the input. 23



To begin with, let us 
onsider a valid PTL-ve
torial algorithm (i.e. an algo-rithm for whi
h there exists a 
orresponding deterministi
 
omplete automa-ton) and let us explain how to 
onstru
t su
h an asso
iated automaton. LetA = fa1; : : : ; akg be the alphabet of the automaton and let n be the numberof states (we will identify them with the integers 1 : : : n). To 
ompute an as-so
iated automaton A� from a given PTL-ve
torial algorithm � we performa depth-�rst sear
h of A�, that is we start from the initial state q0 and 
om-pute the states that 
an be rea
hed by reading a letter from q0 and then werepeat this step with the new states found so far. We are done when we haveexplored all rea
hable states. With this method we explore all the transitionsof the a

essible part of the automaton. We just have to explain how to 
om-pute the rea
hable states from a given state. In our algorithm we maintain ave
tor, state dire
tion, giving for any state en
ounter q a word u leading fromthe initial state to q. Therefore, when 
onsidering a state q, and a letter a to
ompute the transition from q reading a we have to apply � to the word uaand 
onsider the juj+ 1 
omponent of the result, denoted �juj+1(ua).We thus have the following algorithm:� Variables and initialization:� Æ: (n� k)-ve
tor.� new states = [1℄ : LIFO stru
ture.� known states = f1g : Set stru
ture.� state dire
tion = ["; "; : : : ; "℄| {z }n .� Main loop:While new states 6= ; DoLet q =Delete element from new states.Let u = state dire
tion:(q).Let h = juj.For i = 1 to k DoLet q0 = �h+1(uai).Let Æ(q; i) = q0.If q0 =2 known states ThenAdd q0 to new states and to known states.Set state dire
tion:(q0) = ua.End If.End For.End While.� Return Æ.To test the validity of a given algorithm � we will �rst use the pre
edingalgorithm to 
ompute the automaton A� asso
iated with �, if it is valid. Ifthe algorithm does not work (that is if �h+1(uai) is not de�ned for a given stepof the algorithm) this implies that � is not valid. Otherwise we need to use24



the validity test stated in the theorem below. For any state q, let L(q) denotethe regular language de�ned by the logi
al formula obtained as in Se
tion 4.2from the algorithm 
omputing (r = q).Theorem 10 Let � be a PTL-ve
torial algorithm and let A� be the deter-ministi
 
omplete automaton 
onstru
ted by the algorithm above. Then � is avalid algorithm asso
iated with A� if and only if:(1) For any non rea
hable state q of A�, we have L(q) = ;.(2) For any rea
hable state q, we have that L(q) 6= ;. In addition, the fol-lowing assertions are equivalent:(i) L(q) = L(q1)a1 [ � � � [ L(qi)ai [ Eq, where Eq = f"g if q is theinitial state and Eq = ; otherwise. Moreover, aj is a letter andea
h qj is a rea
hable state.(ii) f(q1; a1); : : : ; (qi; ai)g is exa
tly the set of the pairs (qj; aj) su
hthat qj:aj = q in A�.Proof:First let us assume that � is valid. This implies that for any state q, the wordu belongs to L(q) if and only if q0 � u = q, where q0 denotes the initial state ofA�. Therefore, we easily obtain that L(q) = ;, for any non rea
hable state qof A�.Let us now 
onsider the 
ase of a rea
hable state q and assume that (i) holds:L(q) = L(q1)a1 [ � � � [ L(qi)ai [ Eq. For any pair (qj; aj), as qj is rea
hable,there exists v 2 L(qj) su
h that q0 � v = qj and vaj 2 L(q). Consequently wehave qj �aj = (q0 �v)�aj = q0 �u = q. Conversely, 
onsider a pair (q0; a) su
h thatq0 �a = q and let us prove that L(q) � L(q0)a. Let us 
onsider a word w 2 L(q0).As � is valid this implies that q0 � w = q0 and therefore q0 � wa = q0 � a = q,what shows that L(q0)a � L(q). We have thus shown that (i) implies (ii).Let us now assume that (ii) holds. We will prove that L(q) = L(q1)a1 [ � � � [L(qi)ai [Eq where f(q1; a1); : : : ; (qi; ai)g is exa
tly the set of the pairs (qj; aj)su
h that qj � aj = q. So let us 
onsider a word u 2 L(q). As � is valid, wehave that q0 � u = q and therefore if juj � 2, we 
an write u as u = va withq0 �u = (q0 � v) �a. So there exists j su
h that (q0 � v; a) = (qj; aj) and v 2 L(qj)and thus u 2 L(qj)aj. The 
ases juj = 0 and juj = 1 are immediate as "belongs to L(q0). Conversely, if we 
onsider a word u = vaj 2 L(qj)aj we havethat q0 � u = (q0 � v) � aj = qj � aj = q and thus u 2 Lq. We have thus provedthat (ii) implies (i).Suppose now that for any non rea
hable state q, L(q) = ; and that for anyrea
hable state q, the set L(q) is non empty and that (i) and (ii) are equivalent.25



Let us prove that this implies the validity of �. We work by 
ontradi
tionassuming that � is not valid. We have two 
ases:(1) There exists u 2 L(q) and q0 �u 6= q. We 
an 
hoose u of minimal length.With this property, as u 2 L(q) = L(q1)a1 [ � � � [ L(qi)ai [ Eq, we haveu = vaj (the 
ase juj = " is immediate) where 1 � j � i and v 2 L(qj) (v
an be empty). By minimality of u we must have q0:v = qj and therefore,q0 � u = (q0 � v) � aj = qj � aj = q (by equivalen
e between (i) and (ii))what leads to a 
ontradi
tion.(2) There exists a word u su
h that q0 � u = q and u =2 L(q). We 
an
hoose again u of minimal length. The 
ase u = " is immediate andwe 
an therefore de
ompose u as u = va (where v 
an be empty). Theminimality of u implies that v 2 L(q0) where we set q0 = q0 � v. But wealso have that q0 � a = q and thus, by equivalen
e between (i) and (ii) wehave that u = va 2 L(q0)a � L(q), what leads to a 
ontradi
tion withu =2 L(q).We have thus proved that � is valid and so it is asso
iated with A�. �We 
an now give a method to test the validity of a PTL-ve
torial algorithm�:(1) We apply the depth-�rst sear
h algorithm des
ribed above to �. If thealgorithm does not yield a deterministi
 automaton A�, then � is not avalid algorithm and we 
an stop. Otherwise we go to the next step.(2) We determine the rea
hable states and the non rea
hable states of theautomaton A� 
onstru
ted in the pre
eding step.(3) For every non rea
hable state q we translate the asso
iated 
omponent in� into a PTL-formula 'q and test whether or not it 
an be satis�ed (seeSe
tion 8 and [12℄). If 'q is satis�able for a non rea
hable-state q then �is not valid and we stop. Otherwise we go to the next step.(4) For every rea
hable state q we determine the set f(q1; a1); : : : ; (qi; ai)gof the pairs (qj; aj) su
h that qj � aj = q in A� and we verify thatL(q) = L(q1)a1 [ � � � [ L(qi)ai [ Eq. To a
hieve this eÆ
iently we 
andetermine for every j a PTL-formula asso
iated with L(qj)aj. It suÆ
esto 
onsider the formula paj^Y'qj where 'qj is the translation of the 
om-ponent of � asso
iated with qj. Then, we 
an 
onstru
t a PTL-formulafor the language L(q)�[L(q1)a1 [ � � � [ L(qi)ai [ Eq℄, where � holds forthe symmetri
 di�eren
e, and verify that it 
annot be satis�ed, what isequivalent to the equality L(q) = L(q1)a1 [ � � � [ L(qi)ai [Eq. If the testdoes not fail, then � is valid and asso
iated with A�, otherwise � is notvalid. 26



Let us now give the 
omplexity of this algorithm. We will prove that determin-ing whether or not a PTL-algorithm is valid is a PSPACE-
omplete problem.We �rst show that this test 
an be a
hieved in polynomial spa
e.The �rst step, the depth-�rst sear
h algorithm, 
al
ulates all the transitionsof the rea
hable part of A�. As A� is a deterministi
 
omplete automaton,there are O(njAj) transitions, where n denotes the number of states of A�and A is the alphabet of A�. The result of � applied to a given word 
an be
omputed in logarithmi
 spa
e. E�e
tively the PTL-operations are logarithmi
spa
e operations and logarithmi
 spa
e operations are 
losed by 
omposition.Therefore, as n = O(j�j) and jAj = O(j�j) (the size of the algorithm is thesize of the PTL-formula plus the size of A), the �rst step 
an be a
hievedin polynomial time. The se
ond step, is performed also in polynomial time(and thus in polynomial spa
e). In the third step, the 
onstru
tion and thesize of 'q is polynomial in j�j. Determining whether or not a PTL-formula
an be satis�ed, is known to be a PSPACE-
omplete problem (see Se
tion 8.5and [12℄). As j'qj is polynomial in j�j, this step 
an be a
hieved in polynomialspa
e. For the same reasons the fourth step 
an also be a
hieved in polynomialspa
e.We have thus proved:Proposition 2 De
iding whether or not a PTL-ve
torial algorithm is valid
an be done in polynomial spa
e.In fa
t, we 
an give a more pre
ise result:Theorem 11 De
iding whether or not a PTL-ve
torial algorithm is valid isa PSPACE-
omplete problem.Proof:We just have to prove the PSPACE-hardness. For this, we redu
e the PSPACE-
omplete problem of de
iding whether or not a PTL-formula 
an be satis�ed.So let us 
onsider a PTL-formula ' over some alphabet A. We will 
onsideran automaton with two states, 1 and 2. Let � be the translation of ' into aPTL-ve
torial formula. Then, we de�ne a PTL-ve
torial algorithm �0 by:�0 = 8<:(r = 1) = true(r = 2) = �where the initial state is 1.We have that ' 
an be satis�ed if and only if �0 is not valid. The automaton
onstru
ted using the depth-�rst sear
h algorithm is the solid part of thefollowing automaton: 27



1 2a 2 A uIf ' 
an be satis�ed, say by a word u, the algorithm �0 does not give a 
orre
tresult on u. Conversely, if �0 is not 
orre
t, using Theorem 10, we have two
ases:(1) L(2) is non empty, that is ' 
an be satis�ed.(2) L(1) is empty (what is wrong) or L(1) 6= L(1)a[f"g (what is also wrong).Therefore we have proved that ' 
an be satis�ed if and only if �0 is not valid.This proves that determining whether or not a PTL-ve
torial algorithm isvalid is a PSPACE-
omplete problem. �We now 
onsider the same problem but for fragments of PTL-ve
torial lan-guages. For instan
e we have the following result for algorithms in VA("0):Theorem 12 De
iding whether or not an algorithm in VA("0) is valid is anNP-
omplete problem.As for the general problem we �rst use the depth-�rst sear
h algorithm todetermine an automaton su
h that our algorithm is valid if and only if it isasso
iated with this automaton.Using Theorem 8 it is easily seen that an algorithm in VA("0) is asso
iatedwith a given automaton if and only if it is asso
iated with it for words of lengthless or equal than k+1, where k designs the maximum number of nested shiftoperations. This implies the membership in NP (we have to determine k andthen to guess a word of length less or equal than k + 1 and �nally to test the
orre
tness of the algorithm for it).In order to prove the NP-hardness we redu
e the problem of de
iding whetheror not a formula in PTL(Y) 
an be satis�ed to our problem. For this weuse the same redu
tion as in Theorem 11. We 
on
lude the proof using thefollowing lemma:Lemma 4 De
iding whether or not a formula in PTL(Y) is satis�able, is anNP-
omplete problem.Proof: 28



The membership in NP is not diÆ
ult: a formula in PTL(Y) 
an be satis�edif and only if it 
an be satis�ed by a word of length less or equal than k + 1,where k designs the maximum number of nested Y operators (e�e
tively thetruth of a formula in PTL(Y) applied to a word u only depends on the suÆxof length k + 1 of u).The NP-hardness is shown by a redu
tion from the NP-
omplete problemSAT. Let us 
onsider a propositional formula F and let us 
onstru
t a formula' in PTL(Y) su
h that F 
an be satis�ed if and only if ' 
an be satis�ed. Wedenote by p1; : : : ; pn the propositional variables used in F . The alphabet ofthe temporal formula ' is the boolean alphabet: f>;?g, and ' is 
onstru
tedfrom F by repla
ing ea
h propositional variable pi by Y : : :Y| {z }n�i p> (p> is thepredi
ate asso
iated with the letter >).For example for F = (p2 _ p1) ^ :[p1 _ (p3 ^ p2)℄ we de�ne:' = (Yp> _YYp>) ^ :[YYp> _ (p> ^Yp>)℄For any formula F , we easily have that F is satis�ed by a valuation (b1; : : : ; bn),where ea
h bi is a boolean (bi = > or ?), if and only if (b1 : : : bn; n) j= '. Thisshows that SAT 
an be polynomially redu
ed to our problem and thereforea
hieves the proof. �8 Re
onstru
ting automata from GTL-ve
torial algorithmsIn the pre
eding se
tion we have shown how to de
ide whether there existsan asso
iated 
ounter-free automaton with a given PTL-ve
torial algorithm�. For this, we �rst 
onstru
t an automaton A� asso
iated with �, if is valid.Then, using Theorem 10 we de
ide whether � is valid. A natural investigationis to try to extend these results to MTL-ve
torial and GTL-ve
torial languagesintrodu
ed in Se
tions 5.1 and 5.2. The main result of this se
tion statesthat de
iding the validity of a GTL-ve
torial algorithm is PSPACE-
omplete.For obtaining this result, we review the 
onstru
tion of alternating automatafrom temporal logi
 formulas and show how to deal with modular and groupoperators and we also use that Theorem 10 does not a
tually depend on theve
torial operations allowed in our algorithm and 
an be stated in a moregeneral way, by assuming � is a ve
torial algorithm.For a PTL-ve
torial algorithm �, in order to 
ompute the automaton A� wesimulate a depth-�rst sear
h algorithm. This algorithm 
an be adapted to29



MTL-ve
torial algorithms and to GTL-ve
torial algorithms without 
hange.Nevertheless, its 
omplexity is not the same as the simulation of � in thegeneral 
ase of modular and group operators is more 
ostly. A
tually, we havethe following result:Lemma 5 Let � be a GTL-ve
torial algorithm and let u be a word. Thenthe 
omputation of the result of � applied to u 
an be a
hieved in O(juj:j�j)operations.Proof:The result trivially holds in the spe
ial 
ase of PTL-ve
torial algorithms. Wedenote by C(�; u) the 
ost of the 
omputation of � applied to u. If � =Sl;k(�1), to 
ompute the result of � applied to u, we �rst 
ompute the resultof �1 applied to u and then read it from left to right to determine the �nalresult. We have that C(�; u) = C(�1; u) + juj. Therefore modular operators
ost linear time. If � = Pg;G(�1; : : : ;�q), to 
ompute the result of � appliedto u, we �rst 
ompute the results of �1; : : : ;�q applied to u and then readthem simultaneously from left to right to determine the �nal result. We havethat C(�; u) = C(�1; u)+ � � �+C(�q; u)+ juj. Thus group operators also 
ostlinear time. Therefore, the 
omputation of the result of � applied to u 
an bea
hieved in O(juj:j�j) operations. �Lemma 5 implies that the 
omputation by the depth-�rst sear
h algorithmof an asso
iated automaton A� with � 
an be made in polynomial time.There is another question left in order to solve our problem, that is howto use Theorem 10 for MTL-ve
torial and GTL-ve
torial algorithms. As forPTL-ve
torial languages, the equality on languages to verity 
an be translatedinto a satis�ability problem, for GTL-formula in this 
ase. In Se
tion 8.5, weprove that the satis�ability problem for GTL-formula is PSPACE-
ompleteand therefore, we have the following result:Theorem 13 De
iding whether or not a GTL-ve
torial algorithm is valid isa PSPACE-
omplete problem.To prove the satis�ability result for GTL-formulas, we use alternating au-tomata and redu
e the satis�ability problem to a non emptiness problem foralternating automata. 30



8.1 Alternating automataAn alternating automaton is a tuple A = (Q;A; Æ; q0; F ), where Q is a �niteset of states, A is a �nite alphabet, q0 is the initial state, F is the set of �nalstates and Æ : Q� A! B+(Q) is the transition fun
tion, where B+(Q) is theset of all negation-free boolean formulas over Q.A run of an alternating automaton is a �nite tree whose nodes are labeled withstates of Q and edges with elements of A. The level of a node is the length ofthe word labeling the path from the root to this node. A run asso
iated witha �nite word u = a1a2 � � �an is de�ned by indu
tion:(1) The root is q0.(2) The nodes of level n are leaves (i.e. they have no sons).(3) If q is a state of level i < n and Æ(q; ai) = C1 _ C2 _ � � � _ Cm withCj = qj;1 ^ qj;2 ^ � � � ^ qj;nj then q has nj sons for some j, 1 � j � m,labeled by q1;k1; qj;1; : : : ; qj;nj . That is, q must have as sons all the statesappearing in one of the 
onjun
tions Cj.Remark 3 In our de�nition of a run, Æ(q; a) is in disjun
tive normal form forany state q and any letter a. Of 
ourse, Æ 
ould be de�ned as a fun
tion takingits values in negation-free boolean formulas in disjun
tive normal form, but the
onstru
tions given in Se
tions 8.3 and 8.4 would lead to 
onsider alternatingautomata with an exponential number of transitions. In fa
t we will not beinterested in 
omputing su
h automata but in runs of them. Therefore, forany formula Æ(q; a), a minimal model (whose size will always be linear inthe number of states) will be 
omputed whenever we need it. A model for aformula is a set R of states, su
h that assigning to the states in R the value ttand to those on Q n R the value ff makes the formula true. Nevertheless, forrepresenting alternating automata we will work with formulas in disjun
tivenormal form.A word u is a

epted by A if there exists a run r asso
iated with u su
h thatall the leaves of r are �nal states. The language re
ognized by an alternatingautomaton A is noted L(A).Alternating automata will be drawn as 
lassi
al automata ex
ept for the fa
tthat the outgoing edges go �rst into a square (that is not a state!) that redire
tsthe transition into groups of states (represented by the same index written ontheir in
oming edges). For example the transition Æ(q0; a) = (q1^q0)_(q1^q2)is represented by: 31



q0 q1
q2aa 2 1; 21

In the spe
ial 
ase where Æ(q; a) is a disjun
tion (that is nj = 1 for all j =1 : : :m) we represent the transition Æ(q; a) as a 
lassi
al existential (i.e. nondeterministi
) transition.Example 2 Consider the alternating automatonA = (fq0; q1; q2g; fa; bg; Æ; fq0g; fq1; q2g),where we have:� Æ(q0; a) = (q0 ^ q2) _ q1, Æ(q1; a) = q1 _ q2 and Æ(q2; a) = q0 ^ q1.� Æ(q0; b) = q1 _ q0, Æ(q1; b) = q1 and Æ(q2; b) = q2.A is represented by the following pi
ture:
q0 q1

q2aa 1 21b
a; b

b aa1 1
b

a
Let us now give two runs for the word u = aaba in A: the �rst one is a

epting(therefore u is re
ognized by A), whereas the se
ond one is not a

epting.
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q0q0 q2q1 q0 q1q1 q1 q1q2 q1 q2

q0q1q2q2q0 q1

a a
a a a
b b ba a a

aaba a
8.2 Linear temporal logi
Similar to the past temporal logi
, the future temporal logi
, 
alled LinearTemporal Logi
 (LTL) is de�ned using the temporal operators Next (denotedX), and Until (denoted U).X and U are respe
tively the future equivalents of the operators Y and S.Therefore their semanti
s is de�ned by:(1) (w; n) j= X'1 if n < jwj and (w; n+ 1) j= '1.(2) (w; n) j= '1U'2 if there exists m � n su
h that (w;m) j= '2 and, forevery k su
h that n � k < m, (w; k) j= '1.An LTL-formula ' is satis�ed by a word w if (w; 1) j= '. An LTL-formula 'is 
alled satis�able if its asso
iated language L' = fw j (w; 1) j= 'g is notempty.With an LTL-formula ' one 
an asso
iate a PTL-formula e' by repla
ing theoperator X by the operator Y and the operator S by the operator U. It iseasily seen that, for any word w, (w; 1) j= ' if and only if ( ew; jwj) j= e', whereew designs the mirror image of w. Thus, to de
ide whether a PTL-formula issatis�able, it suÆ
es to know how to solve the problem for LTL-formulas.33



In the next se
tion we re
all the 
onstru
tion of an alternating automatonre
ognizing the language L', where ' is an LTL-formula [15℄. We need the
onstru
tion in order to generalize it to the more expressive temporal logi
s.For 
onvenien
e, we use a new operator 
alled Release (denoted R). The re-lease operator is de�ned by the formula '1R'2 = :(:'1U:'2), or equiva-lently by: (w; n) j= '1R'2 if and only if for all m, n � m � jwj, su
h that(w;m) 6j= '2, there exists n � i < m su
h that (w; i) 6j= '1. The release op-erator requires its se
ond argument to be true, a 
ondition that is released assoon as the �rst argument be
omes true.Introdu
ing the release operator allows to 
onstru
t, for any LTL-formula ',an equivalent positive formula  , i.e. a formula that does not use the negation.The formula  is 
onstru
ted by indu
tion on ' and is of size O(j'j):(1) If ' = pa where a is a letter,  = '.(2) If ' = :pa where a is a letter,  = _b2Anfag pb.(3) If ' = '1 _ '2 then  =  1 _  2 where  1 and  2 are respe
tively
onstru
ted from '1 and '2.(4) If ' = :('1 _ '2) then  =  1 ^  2 where  1 and  2 are respe
tively
onstru
ted from :'1 and :'2.(5) If ' = '1 ^ '2 then  =  1 ^  2 where  1 and  2 are respe
tively
onstru
ted from '1 and '2.(6) If ' = :('1 ^ '2) then  =  1 _  2 where  1 and  2 are respe
tively
onstru
ted from :'1 and :'2.(7) If ' = X'1 then  = X 1 where  1 is 
onstru
ted from '1.(8) If ' = :X'1 then  = X 1 where  1 is 
onstru
ted from :'1.(9) If ' = '1U'2 then  =  1U 2 where  1 and  2 are respe
tively
onstru
ted from'1 and '2.(10) If ' = :('1U'2) then  =  1R 2 where  1 and  2 are respe
tively
onstru
ted from :'1 and :'2.(11) If ' = '1R'2 then  =  1R 2 where  1 and  2 are respe
tively
onstru
ted from '1 and '2.(12) If ' = :('1R'2) then  =  1U 2 where  1 and  2 are respe
tively
onstru
ted from :'1 and :'2.For example if ' = :[paU(pb_Xpa)℄ and A = fa; b; 
g, the asso
iated formulais  = (pb _ p
)R[(pa _ p
) ^X(pb _ p
)℄34



8.3 From LTL-formulas to equivalent alternating automataGiven a positive LTL-formula ', there exists an alternating automaton A' =(Q;A; Æ; q0; F ), whose number of states is linear in the size of ' re
ognizingthe language L' (see also [15℄).(1) The alphabet A of A' is the alphabet of the words on whi
h ' is eval-uated.(2) The states ofA' are the sub-formulas appearing in ' and their negations' (written without using the negation as des
ribed in Se
tion 8.2) plusthe 
onstants tt (True) and ff (False).(3) q0 = '.(4) F = fttg [ f' = '1R'2 j ' 2 Qg.(5) Æ is indu
tively de�ned by the following rules:(i) Æ(tt; a) = tt and Æ(ff; a) = ff for any letter a.(ii) Æ(pa; b) = 8<:tt if a = b,ff otherwise.(iii) Æ('1 _ '2; a) = Æ('1; a) _ Æ('2; a).(iv) Æ('1 ^ '2; a) = Æ('1; a) ^ Æ('2; a).(v) Æ(X'; a) = ' for all a 2 A.(vi) Æ('1U'2; a) = Æ('2; a) _ [Æ('1; a) ^ ('1U'2)℄.(vii) Æ('1R'2; a) = Æ('2; a) ^ [Æ('1; a) _ ('1R'2)℄ = [Æ('2; a) ^Æ('1; a)℄ _ [Æ('2; a) ^ ('1R'2)℄.We have the following result what is shown in [15℄. The detailed proof 
an befound in appendix.Theorem 14 Let ' be a positive LTL-formula and let A' be the automatonasso
iated with '. Then L' = L(A').8.4 From GTL-formulas to equivalent alternating automataAs alternating automata allow to re
ognize all regular languages, a naturalinvestigation 
onsists in asso
iating an alternating automaton to formulas us-ing modular or group operators. These operators were introdu
ed in Se
tions5.1 and 5.2. The modular operators were de�ned as past temporal operators.As we want to de
ide whether or not a temporal formula 
an be satis�ed,we will work with the dual operators, as de�ned for LTL. Therefore to de
idewhether a MTL-formula or a GTL-formula 
an be satis�ed it suÆ
es to de
idethe same problem for the dual formula.35



We thus give the de�nitions of the modular and group temporal operators forLTL (we will not 
hange the notation with past temporal logi
 as no 
onfusion
an be made here):� With any pair (l; k) of integers su
h that 0 � l < k we asso
iate a unarymodular operator Modl;k su
h that for any word u, we have (u; i) j= Modl;k(')if and only if, modulo k, there are l positions j � i su
h that (u; j) j= '.� With any pair (g;G), where G is a group and g is an element of G, we asso-
iate a group operator �g;G that always binds jGj�1 formulas. The elementsof G must have been ordered, say as g1; g2; : : : ; gq = id (the last elementmust be the identity). Let u be an element of A+ and let '1; '2; : : : ; 'q�1be logi
al formulas. With ea
h j, 1 � j � juj we asso
iate an element of G,denoted h'1; '2 : : : 'q�1ihu; ji, de�ned by:h'1; '2; : : : ; 'q�1ihu; ji = gkwhere k = minfl j (u; j) j= 'lg with the 
onvention that min; = q.Finally we have (u; i) j= �g;Gh'1; '2; : : : ; 'q�1i if and only ifjujYj=ih'1; '2; : : : ; 'q�1ihu; ji = gLTL extended by the modular operators will be denoted as MLTL. The ex-tension by the group operators will be denoted GLTL. We have the followingextension of Theorem 14:Theorem 15 Let ' be a GLTL-formula. Then there exists an alternatingautomaton A' su
h that L' = L(A'). In addition, the number of states of A'is quadrati
 in the size of '.Proof:The modular operator is a spe
ial 
ase of group temporal operators usingonly 
y
li
 groups (Z=kZ;+), as (u; i) j= Modl;k(') if and only if we have(u; i) j= �l;(Z=kZ;+)h'; ff; ff; : : : ; ffi Therefore it suÆ
es to 
onsider the general
ase of GLTL.To keep working only with negation-free formulas, we have to explain, asin Se
tion 8.2, how to 
onstru
t a positive formula  from a formula ' =:�g;Gh'1; '2; : : : ; 'q�1i. Here it suÆ
es to take: = _g0 6=g �g0;Gh'1; '2; : : : ; 'q�1iThe alternating automaton A' = (Q;A; Æ; q0; F ) re
ognizing L' is de�nedalmost as in Se
tion 8.3: 36



(1) The alphabet A of A' is the alphabet of the words on whi
h ' is eval-uated.(2) The states ofA' are the sub-formulas appearing in ' and their negations' (written without using the negation, as des
ribed in Se
tion 8.2) plusthe 
onstants tt (True) and ff (False). In addition, for any sub-formula�g;Gh'1; '2; : : : ; 'q�1i appearing in ' we add, for any g0 6= g, the state�g0;Gh'1; '2; : : : ; 'q�1i and its \positive negation".(3) q0 = '.(4) F = fttg[f' = '1R'2 j ' 2 Qg[f' = �id;Gh'1; '2; : : : ; 'q�1i j ' 2 Qg.(5) Æ is indu
tively de�ned by the following rules:(i) Æ(tt; a) = tt and Æ(ff; a) = ff for any letter a.(ii) Æ(pa; b) = 8<:tt if a = b,ff otherwise.(iii) Æ('1 _ '2; a) = Æ('1; a) _ Æ('2; a).(iv) Æ('1 ^ '2; a) = Æ('1; a) ^ Æ('2; a).(v) Æ(X'; a) = ' for all a 2 A.(vi) Æ('1U'2; a) = Æ('2; a) _ [Æ('1; a) ^ ('1U'2)℄(vii) Æ('1R'2; a) = Æ('2; a) ^ [Æ('1; a) _ ('1R'2)℄ = [Æ('2; a) ^Æ('1; a)℄ _ [Æ('2; a) ^ ('1R'2)℄(viii) Æ(Modk;l('); a) = [Æ('; a) ^Modk�1;l(')℄ _ [Æ('; a) ^Modk;l(')℄for all a 2 A.(ix) Æ(�g;Gh'1; '2; : : : ; 'q�1i; a) = _gigj=g[�(i; a)^�gj ;Gh'1; '2; : : : ; 'q�1i℄,where �(i; a) = Æ('1; a)^Æ('2; a)^� � �^Æ('i�1; a)^Æ('i; a), where'q = tt.where (viii) is in fa
t a spe
ial 
ase of (ix).The number of states of A' is e�e
tively linear in the size of ' times the sumof the 
ardinalities of the groups used in modular operators appearing in 'and as this sum is linear in the size of ', it follows that the number of statesof A is quadrati
 in the size of '.The proof is the same as for Theorem 14. We reason by indu
tion on the for-mula '. The only new 
ase to 
onsider is the one of ' = �g;Gh'1; '2; : : : ; 'q�1i.Any run of A' on a non-empty word u whose �rst letter is a1 has the followingform: 37



'a1T1 a1Ti1�1 a1 Ti1 a1 T: : :
where T is a run of A j ,  j = �gj ;Gh'1; '2; : : : ; 'q�1i and gi1gj = g, and whereany tree of the following form is a run of A
k for k = 1 : : : i1, where 
k = :'kif k < i1 and 
i1 = 'i1 (re
all that 'q = tt):'a1TkBy indu
tion hypothesis, this run is a

epting if and only if (u; 1) j= :'1 ^:'2^� � �^:'i1�1^'i1 and (u; 2) j= �gj ;Gh'1; '2; : : : ; 'q�1i that is if and onlyif h'1; '2; : : : ; 'q�1ihu; 1i = gi1 and (u; 2) j= �gj ;Gh'1; '2; : : : ; 'q�1i.Iterating this 
onstru
tion shows that with an a

epting run of A' on a wordu = a1 � � �an one 
an asso
iate a sequen
e gi1 ; : : : gin ; gin+1 of elements ofG su
hthat g = gi1gi2 : : : gingin+1, for any k = 1 : : : n, h'1; '2; : : : ; 'q�1ihu; ki = gikand su
h that (u; n) j= �gin+1 ;Gh'1; '2; : : : ; 'q�1i. But, as the unique �nalstate of the form �gj ;Gh'1; '2; : : : ; 'q�1i is �id=gq ;Gh'1; '2; : : : ; 'q�1i it followsthat gin+1 must be equal to the neutral element gq of G and therefore thatg = gi1gi2 : : : gin, that is (u; n) j= '. Conversely, with a word satisfying ' it iseasily seen how to 
onstru
t an a

epting run in A, what shows that we haveL(A') = L' and a
hieves the proof. �
Example 3 Consider the MTL-formula ' = [Mod1;3(Xpa _ pb)℄ ^ [paU pb℄and let us des
ribe the transition fun
tion Æ asso
iated with A':

38



q Æ(q; a) Æ(q; b)pa tt ffpb ff ttXpa pa paXpa = Xpb pb pbpaU pb paU pb ttXpa _ pb pa ttXpa _ pb = Xpb ^ pa pb ff'1 = Mod1;3(Xpa _ pb) (pa ^ '0) _ (pb ^ '1) '0'2 = Mod2;3(Xpa _ pb) (pa ^ '1) _ (pb ^ '2) '1'0 = Mod0;3(Xpa _ pb) (pa ^ '2) _ (pb ^ '0) '2' [pa ^ '0 ^ (paU pb)℄ _ [pb ^ '1 ^ (paU pb)℄ '0The alternating automatonA' is represented in Figure 1. In fa
t, we representonly the rea
hable part and represent in dash a 
opy of pa and a 
opy of pb toimprove readability.8.5 Emptiness problem for alternating automata and its 
onsequen
esIn Se
tions 8.3 and 8.4 we have shown how to asso
iate with a GLTL-formula' an alternating automatonA' re
ognizing exa
tly the models of '. Thereforeto de
ide satis�ability for GLTL-formulas (or for GTL-formulas) it suÆ
es toknow how to de
ide emptiness for alternating automata. We have the followingresult:Theorem 16 Let A be an alternating automaton, then testing whether L(A) =; 
an be realized in polynomial spa
e.Proof:As non-deterministi
 polynomial spa
e is equal to deterministi
 polynomialspa
e, we give a non-deterministi
 algorithm. To prove the non-emptiness ofthe language re
ognized by A we only have to 
onstru
t an a

epting run ofA'. The algorithm starts with the initial state ' and guesses a letter a1 anda minimal model for Æ('; a1) (seen as a boolean positive formula). Then, itguesses the next letter a2 and for any state appearing in the minimal model, itguesses a minimal model for its image by Æ reading a2 and therefore 
omputes39



Fig. 1. A' for ' = [Mod1;3(Xpa _ pb)℄ ^ [paU pb℄
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a set of states modeling all the pre
eding formulas (the algorithm works witha set of states and therefore it only needs a linear spa
e to re
all it) and so on.Finally, it de
ides to stop and a

epts if all the a
tual states are �nal states.To guess a minimal model of a boolean positive formula it suÆ
es to exploreall the possible valuations what gives the size of a minimal model and thento guess one of the minimal models. This 
an be made in polynomial spa
e40



and therefore the entire algorithm only needs polynomial spa
e. In fa
t, thealgorithm 
ould just guess a model without verifying it is a minimal one, as bynon determinism there exists a run of the algorithm where all guessed modelsare minimal. �We therefore have the following 
orollary:Corollary 2 De
iding whether an GLTL-formula (or a GTL-formula) is sat-is�able is a PSPACE-
omplete problem.Proof:The PSPACE membership is a 
onsequen
e of Theorem 15 and Theorem 16.The PSPACE-hardness is a 
onsequen
e of the PSPACE-hardness for the sameproblem restri
ted to PTL-formulas [12℄.9 Con
lusionUsing ve
torial algorithms we have given new 
hara
terizations of star-freelanguages (as the 
lass of PTL-ve
torial languages), of solvable languages (asthe 
lass of MTL-ve
torial languages) and of regular languages (as the 
lass ofGTL-ve
torial languages). However, even in the easiest 
ase, that is for star-free languages, there is no general eÆ
ient method to 
ompute an algorithmasso
iated with a given language. Nevertheless, sin
e ve
torial languages are
losely related with temporal logi
 this is not that surprising at all, as the
omputation of an algorithm asso
iated with an automaton is at least as dif-�
ult as �nding a temporal logi
 formula asso
iated with a given language,whi
h is exponential with regard to the automaton.We have 
hara
terized subsets of ve
torial operations by equivalent sets oftemporal logi
 operators.It is interesting to note that ve
torial algorithms provide a more detailedinformation about an automaton than logi
al formulas without any loss in
omputational 
omplexity and in the 
omplexity of the operators used in bothmodels.Finally, we have shown that de
iding the validity of a GTL-ve
torial algorithmis PSPACE-
omplete. As a byprodu
t we have obtained that the extension ofLTL with group operators does not 
hange the 
omplexity of the satis�abil-ity problem, whi
h is still PSPACE-
omplete, and we have given an e�e
tivealgorithm de
iding this question. 41



10 Appendix: proof of Theorem 14
The aim is to prove that if ' is a positive LTL-formula, then we have thatL' = L(A'), where A' is the automaton asso
iated with '.For this we reason by indu
tion on the formula ':(1) If ' = pa then A' is the following alternating automaton:pa ttff

ab 6= a 
 2 A
 2 Aand therefore it easily seen that A' re
ognizes the language: L(A') =faw j w 2 A�g = L'.(2) If ' = '1 _ '2 then any run of A' has the following form:'a1Twhere a1 is the �rst letter of the word and where one of the followingruns is a run of A'1 for the �rst one and of A'2 for the se
ond one:'1a1T '2a1TTherefore, we have that L(A') = L(A'1) [ L(A'2). By indu
tion hy-pothesis we thus have that L' = L(A').(3) If ' = '1 ^ '2 then any run of A' has the following form:42



'1a1T1 a1 T2where a1 is the �rst letter of the word and where the following runs areruns of A'1 for the �rst one and of A'2 for the se
ond one:'1a1T1 '2a1T2Therefore, we have that L(A') = L(A'1) \ L(A'2). By indu
tion hy-pothesis we thus have that L' = L(A').(4) If ' = X'1 then A' has the following form:' A0'1a 2 Awhere A0'1 is equal to A'1 ex
ept that '1 is not an initial state. Theoutgoing transitions from ' to A0'1 go to the state '1.Therefore, we have that L(A') = [a2A aL(A'1), and the indu
tion hy-pothesis 
on
ludes this 
ase: L' = L(A').(5) If ' = '1U'2. A run for A' on a non empty word u whose �rst letteris a1 
an have two di�erent forms:'a1T2 'a1T1 a1 T3where T3 is a run of A', and where the following runs are respe
tively arun of A'1 for the �rst one and a run of A'2 for the se
ond one:
43



'1a1T1 '2a1T2By indu
tion hypothesis, the �rst run is an a

epting run for u if and onlyif (u; 1) j= '2 and the se
ond one is a

epting if and only if (u; 1) j= '1and T3 is an a

epting run of A'. As the root of T3 is ' = '1U'2 and as' is not a �nal state this implies that T3 
annot be redu
ed to its root.Therefore, by an easy indu
tion on the length of u, it follows that u isre
ognized by A' if and only if there exists i, 1 � i � juj su
h that forall j, 1 � j < i we have (u; j) j= '1 and (u; i) j= '2 (This means that we
annot have always the se
ond kind of run). Therefore, u is re
ognizedby A' if and only if (u; 1) j= '. This implies that L' = L(A').(6) If ' = '1R'2. A run for A' on a non empty word u whose �rst letteris a1 
an have two di�erent forms:'a1T2 a1 T1 'a1T2 a1 T3where T3 is a run of A', and where the following runs are respe
tively arun of A'1 for the �rst one and a run of A'2 for the se
ond one:'1a1T1 '2a1T2By indu
tion hypothesis, the �rst run is an a

epting run for u if andonly if (u; 1) j= '2 and (u; 1) j= '1. The se
ond one is a

epting if andonly if (u; 1) j= '2 and T3 is an a

epting run of A'. As the root of T3 is' and as ' = '1R'2 is a �nal state this implies that T3 
an be redu
edto its root. Therefore, by an easy indu
tion on the length of u, it followsthat u is re
ognized by A' if and only if one of the following 
ases istrue(i) For all i, 1 � i � juj, (u; i) j= '2.(ii) There exists i, 1 � i � juj su
h that for all j, 1 � j � i we have44



(u; j) j= '2 and (u; i) j= '1 (The 
ondition on '2 to be satis�ed isreleased at position i as '1 is satis�ed).This exa
tly means that u is re
ognized by A' if and only if (u; 1) j= '.This implies that L' = L(A').This indu
tion proves that for any LTL-formula ' we have that L' = L(A').�A
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