N

N

Vectorial Languages and Linear Temporal Logic

Olivier Serre

» To cite this version:

Olivier Serre. Vectorial Languages and Linear Temporal Logic. Theoretical Computer Science, 2004,
310/1-3, pp.79-116. 10.1016/S0304-3975(03)00346-3 . hal-00012658

HAL Id: hal-00012658
https://hal.science/hal-00012658
Submitted on 26 Oct 2005

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00012658
https://hal.archives-ouvertes.fr

Vectorial Languages and Linear Temporal
Logic

Olivier Serre

LIAFA, Université Paris VII
2, place Jussieu, case 7014
F-75251 Paris Cedex 05

Abstract

Determining for a given deterministic complete automaton the sequence of visited
states while reading a given word is the core of important problems with automata-
based solutions, such as approximate string matching. The main difficulty is to do
this computation efficiently. Considering words as vectors and working on them
using vectorial operations allows to solve the problem faster than using local oper-
ations.

In this paper, we show first that the set of vectorial operations needed by an
algorithm representing a given automaton depends on the language accepted by
the automaton. We give precise characterizations for star-free, solvable and regular
languages using vectorial algorithms. We also study classes of languages associated
with restricted sets of vectorial operations and relate them with languages defined
by fragments of linear temporal logic.

Finally, we consider the converse problem of constructing an automaton from a
given vectorial algorithm. As a byproduct, we show that the satisfiability problem for
some extensions of LTL characterizing solvable and regular languages is PSPACE-
complete.

1 Introduction

Given a deterministic complete automaton and an input word, a classical
question is to decide whether or not the automaton accepts the word. A more
detailed information is the sequence of visited states while processing the
word. Computing this sequence is the core of important problems such as
approximate string matching. An easy way to solve this problem consists in
simulating the run of the automaton (which is deterministic and complete)
on the input word. However, approximate string matching is generally used
on very long sequences (as genomic ones) and the natural algorithm, which is

Preprint submitted to Elsevier Science 21 May 2003

linear in the length of the input word, is not performing enough. A natural
solution to accelerate the computation is to consider words as vectors and
therefore to compute the sequence of visited states using vectorial operations,
that can be efficiently achieved using parallelism.

In this paper, we are interested in vectorial algorithms, that were introduced
and investigated by A. Bergeron and S. Hamel in [3,4]. Such an algorithm com-
putes the sequence of visited states while reading a word using a finite number
(independent of the length of the word) of vectorial operations. The existence
of an algorithm for a given automaton depends on the automaton and on the
kind of vectorial operations we allow. The problem can also be studied from
the language point of view: can we find a deterministic complete automaton
recognizing a given language and an associated vectorial algorithm? We first
exhibit a very tight connection between temporal logic operators and some
vectorial operations, that will therefore be called PTL-vectorial operations.
This leads to an alternative proof of the equivalence between star-free lan-
guages and vectorial algorithms, whose direct inclusion was first established
in [4]. Then, we describe extensions of these algorithms, first to capture a larger
subclass of regular languages, the solvable ones, and finally for the whole class
of regular languages.

In the second part of the paper, we investigate fragments of algorithms based
on the set of PTL-vectorial operations. Here, we want to know which subset
of star-free languages can be characterized by forbidding certain vector oper-
ations. We show that these fragments are closely related with the fragments
of past temporal logic defined and characterized in [5,16,17].

Finally, we consider the converse problem, that is we want to check for a given
vectorial algorithm whether there exists an automaton associated with it. To
solve this problem, we show how to decide the satisfiability of formulas belong-
ing to extensions of linear temporal logic introduced in [2]. Our constructions
are based on alternating automata.

2 Notations and definitions

Throughout the paper, vectors are noted in bold characters (e.g. u) and are
considered as words. Conversely, vectorial operations can be applied to words,
considering them as vectors. Therefore, a word u is associated with a canonical
vectorial representation u and a vector v is associated with a canonical word
representation v.

Let A = (Q, A, q, F) be a deterministic complete automaton. With each
input vector u = ajas---a,, we associate the output vector r = riry---7,,

representing the sequence of states reached reading u (we omit the leading
initial state). Therefore, u and r have the same length. For instance, consider
the automaton given in Example 1. With the input vector u = bbaabbbababab
we associate the output vector r = 2311233121212. A wvectorial algorithm for
A consists of a sequence of vectorial operations of fixed length (i.e., a straight-
line expression of length which is independent on u) computing r from u.

Given a word u = aqas - - - a,,, we consider for every letter a € A, the boolean
vector (u=a) = (a; = a)---(an = a), where (a; = a) is a boolean whereas
the equality sign after (u = a) represents an assignment. Hence, (u = a) is
the characteristic boolean vector of the letter a in the word u. Just as for
words, for any state ¢ €), with an output vector r = ryry - - - 1, we associate
the boolean vector (r =q) = (r1 = q) -+ - (r,, = ¢) that is, the characteristic
vector of state ¢. For example, (bbaabbbababab = a) = 0011000101010 and
(2311233121212 = 1) = 0011000101010.

The sequence (u = a),., (respectively, the sequence (r = q),co) is an equiv-
alent boolean representation for the input word u (respectively for the output
vector r). In fact, in order to work only on boolean vectors, the vectorial algo-
rithms presented in this paper compute the sequence of characteristic vectors
(r = q)4eq from the sequence of characteristic vectors (u = a)aca.

Let Q2 be a class of vectorial operations. Vectorial algorithms based on this set
of operations and on the bit-wise logical operations (combinations of VV, A and
—) are called Q-vectorial algorithms. A deterministic complete automaton is
called Q-vectorial if there is an (2-vectorial algorithm computing the sequence
(r = a) ¢ from the sequence (u = a), ,. Finally, a language is Q-vectorial if it
is recognized by a deterministic complete 2-vectorial automaton. Proposition 1
below shows that minimization preserves the property of being an 2-vectorial
automaton. Therefore a language is 2-vectorial if and only if its minimal
automaton is Q-vectorial (by minimal automaton we always mean the minimal
complete automaton). This property is very useful, because to decide whether
or not a language is (2-vectorial, it suffices to know how to decide whether or
not a given automaton (the minimal one) is Q-vectorial.

Proposition 1 Let A be a deterministic complete automaton. If A is Q-
vectorial, then its minimal automaton A,,;, s also Q-vectorial.

Proof:

As A is deterministic and complete, the states of A,,;, correspond to the
Nerode equivalence classes of states of A. An expression characterizing a state
of the minimal automaton is obtained as the disjunction of the expressions for
the states of the associated equivalence class.

To make our algorithms precise we have to state which vectorial operations
are allowed. As in [4], we first consider a basic set of vectorial operations:

e Bit-wise logical operations such as V, A, = and the atomic formulas (u = a) =
(ugy =a) - (uy, = a).

e Right shift: 1y uy -y, = duy -y 1,1 € {0,1}.

e Binary addition between two vectors of same length: we perform the usual
binary addition from left to right but we do not keep the highest bit (carry)
if the length of the result exceeds the initial vectors’ ones. For example
1o 110101 4+ 101011 = 110100.

vectorial algorithms using only these operations will be called in this paper
PTL-vectorial algorithms. PTL stands for Past Temporal Logic and we will
show that there exists a close relation between vectorial operations of this kind
and past temporal logic operators. A language is therefore a PTL-vectorial
language if its minimal automaton is PTL-vectorial.

Example 1 [3]

The language recognized by the following automaton is a PTL-vectorial lan-
guage.

Actually, the state to which a word leads depends only on the last two letters
of the word: if the last letter is a the state is 1, if the length 2 suffix is ab or if
we are working on the first letter of the word and this letter is b (in this case
we cannot consider the length 2 suffix) the state is 2 and otherwise it is 3.
Therefore, we have the following PTL-vectorial algorithm for this automaton:

3 Past temporal logic

The main result of the next section states that a language is a PTL-vectorial
language if and only if it is star-free. Recall that a language is star-free if
and only if its syntactic monoid is aperiodic [11]. Furthermore a language is
star-free if and only if it can be defined by first-order logic of the linear order
FO[<] [6,7]. Our proof relies a third characterization in terms of past temporal
logic (PTL). We first recall the syntax of PTL:

We use atomic propositions p, for each letter a € A of a given alphabet
A, boolean connectives (V and —) and past temporal operators (Yesterday,
denoted Y, and Since, denoted S).

The formulas are constructed inductively according to the following rules:

(1) For every a € A, p, is a formula.
(2) If ¢y and @4 are formulas, so are ¢ V @9, =1, Yor and ¢ S ps.

Semantics is defined by induction on the rules. Given a word w € A" and
an integer n € {1,2,..., |w|}, we define that “w satisfies ¢ at position n”,
denoted (w,n) = ¢, as follows:

(1) (w,n) | p, if the nth letter of w is a.

(2) (w,n) = @1 Vg if (w,n) |= @1 or (w,n) = @),

(3) (w,n) | =y if (w, n) [~ ¢1.

(4) (w,n) EYeyifn>1and (w,n—1) = ¢.

(5) (w,n) = @1 Sy if there exists m < n such that (w, m) = ¢y and, for

every k such that m < k <n, (w,k) E ¢1.

With each PTL-formula ¢, we associate the language of finite words satisfying
©:
Ly ={ue A" | (u,]u]) E ¢}

Recall that a regular language L is star-free if and only if there exists a PTL-

formula ¢ such that L = L, (see for instance [5]), i.e. if and only if L is
PTL-definable.

4 PTL-vectorial languages are equivalent to star-free languages

Our aim in this section is to prove the following characterization:

Theorem 1 A reqular language is star-free if and only if it is PTL-vectorial.

The equivalence between PTL-definable languages and star-free languages im-
plies that Theorem 1 is equivalent with the following result:

Theorem 2 A reqular language is PTL-vectorial if and only if it is PTL-
definable.

The proof of this result is splitted into two parts: passing from PTL-formulas to
PTL-vectorial algorithms and from PTL-vectorial algorithms to PTL-formulas.
The first part is done in Section 4.1 and the second one in Section 4.2.

4.1 Star-free languages are PTL-vectorial

Let L be a star-free language and let A = (Q, A, -, qo, F)) be its minimal
automaton. Since L is star-free, A is counter-free (note that this property is
independent from the final states). Let ¢ be a state of A, then the language
L, = {u | (u,|u]) = ¢} is recognized by an automaton obtained from A by
letting ¢ be the unique final state. Therefore, L, is star-free (because it is
recognized by a counter-free automaton) and thus PTL-definable: there exists
a PTL-formula ¢, such that gy - u = ¢ if and only if (u, |u|) = ¢,.

We will show that for any input vector u = a; - - - a,, and any PTL-formula ¢,
the computation of the binary vector v = vy - - - v,,, where v; = 1 if and only
if (e1---e;,1) = ¢, can be performed by a PTL-vectorial algorithm &.

The definition of ¢ is given by induction on ¢:

(1) If ¢ = p, then ® = (u = a).

(2) If ¢ = @1 V ¢y then & = &y V &y, where &; and &, are associated
respectively with ¢, and @s.

If o = = then ® = =, where &, is associated with ;.

If o =Yy, then ® = 13 &, where ®; is associated with ;.

If o = 1 S g, then & = Py V[(1g Do) AD |V [P Acarry(Py, (1o Do) ADy)],
where ®; and ®, are associated respectively with ¢; and s.

—~ —~
Ot = W
~— ~— ~—

The formula carry(v, w) is an abbreviation for: =[(v & w) = (v + w)], where
@ is the exclusive-or operator. Therefore, carry(v, w) represents the value of
the carry bit when adding v and w. For instance, carry(101101,100110) =
010011.

Let us justify the construction for the since operator, (5). A word u is such
that (u,n) = ¢1 S @9 in one of the three cases:

(i) (u,m) = @o. This case is treated by the algorithm ®,.

(i) (u,n — 1) = @9 and (u,n) = ;. This case is treated by the algorithm
[(To @2) A 4],

(iii) There is an integer m < n — 1 (which is chosen maximal) such that
(u,m) = ¢ and, for all k such that m < k < n, (u,k) = ¢;. The
vector carry(®q, (To ®o) A ®4] is such that its n-th position is 1 if and
only if there exists m < n — 1 such that (u,m) = ¢y and, for all &
such that m < k < n — 1, (u,k) E 1. Consequently, the algorithm
O, Acarry(Pq, (1o P2) ADy) exactly characterizes our case. Note that the
first component ®; is necessary because the carry has a non immediate
effect: it affects the first position after it is generated. For the same
reason, the second case had to be treated separately.

This inductive construction concludes the proof that any star-free language is
PTL-vectorial.

The following example illustrates the preceding cases for the value ®(u) of ®
applied to a vector u:

P (u) - 00100100
To [®2(u)] = 00010010
P (u) = 11011101
[(To @2) A Dq](u) = 00010000
[carry(®q, (To ®2) A P1)](u) = 00001110
[®1 A carry(Pq, (To P2) APy)](u) = 0 0 0 0 1 1 0 0
®(u) = 0011110 0

4.2 PTL-vectorial languages are star-free

Let L be a PTL-vectorial language. By Proposition 1, its minimal automaton
A= (Q,A, - q,F) is a PTL-vectorial automaton. To prove that L is star-
free (equivalently, PTL-definable) we construct for each state q of A, a PTL-
formula ¢, such that for any word u € A", go-u = ¢ if and only if (u, |u|) = ¢,.

Therefore, L will be characterized by the disjunction \/ ©q, which is a PTL-
qeF
formula.

For each state g of A we have a PTL-vectorial algorithm ®, computing, from
each input vector u, the characteristic output vector of state ¢, (r = q). The
formula ¢, which “translates” ®, is defined by induction on the structure of
®,. Moreover, the logical formula ¢ as defined below for a vectorial algorithm

®, satisfies the following property: the i-th entry of the vector obtained by
applying ® to u is 1 if and only if (u,i) = ¢.

(1)
(2)

If & = (u = a), where a is a letter, then ¢ = p,.

If & = & V&, then ¢ = ¢ V @y, where p; and @y are associated
respectively with ®; and ®,.

If ® = =P, then ¢ = =, where ¢ is associated with ®;.

If & =1y &, then ¢ = Y, where ¢, is associated with ®;. The case
& =1, ®,; follows from the preceding one, because 1 ®; = =(1¢ ~®;).

Ifd = (I)l —|—(I)2, we let

c=Y{[e1 V] S o1 Apol}

where ¢, and ¢y are associated respectively with ®; and ®,. Note that
the formula ¢ characterizes the value of the carry bit while summing the
vectors obtained from ®; and ®,. Thus, the translation of ®; + ®, is the
logical formula:

© =1 ® o] — —c

Finally, the global formula for L is:

YA = \/ Dy
qeF

and for each word u, we have u € L = L(A) if and only if (u, |u|) E ¢4.

This concludes the proof.

5 Extensions of PTL-vectorial algorithms

A natural question is to extend PTL-vectorial algorithms, in order to capture
larger classes of regular languages by parallel operations. To achieve this goal
we need to introduce new operations that are strictly more powerful than
the PTL operations. In a first extension we will characterize solvable regular
languages (a regular language is called solvable if its syntactic monoid does
not contain any non solvable group) and in a second extension all regular
languages.

5.1 A wectorial characterization of solvable languages

The crucial point in defining extensions of PTL-vectorial algorithms is the
choice of the new operations allowed. To determine them, let us give another
proof of the fact that PTL-vectorial languages are star-free. A well known
example of non star-free language is L; = (aa)* whereas, on the alphabet
A ={a,b}, Ly = (ab)* = A* \ [bA* + A*a + A*(aa + bb) A* is a star-free one.
Is there a “vectorial” difference between them? L; and L, are recognized by
the following automata:

a a
a b
Al AQ

Recall that a period of a word u = ajay - - - a, is an integer p < n/2 such that
for any position i, 1 <4 <n —p, a4, = a;. A word having period p is said to
be of periodicity p. For example abbaabbaabbaab is of periodicity 4. Finally, a
word is ultimately periodic of period p if it has a suffix of periodicity p. For
instance, abbbababababababab is ultimately periodic of period 2.

Words recognized by A; are of periodicity 1 whereas the associated sequence
of states is of periodicity 2. This is not the case for the automaton A,. One
can show that any PTL-vectorial algorithm applied to an ultimately periodic
word gives an ultimately periodic result of the same period (PTL-vectorial
operations preserve periods). With any non counter-free automaton one can
associate an ultimately periodic word of period p such that the associated
sequence of states is not of ultimate period p. Thus, a PTL-vectorial language
has to be star-free.

To extend PTL-vectorial algorithms, we need to introduce operators that do
not preserve the period. For every integers k,[such that 0 < [< k, the
modular operator S, is defined by

1 if ZT7 =1 (mod k),
=1

Sik(x1Ta - Ty) = (S1- -) where s; =

0 otherwise.

vectorial algorithms using only the PTL-vectorial operations plus the modular
operations Sy, will be called MTL-vectorial algorithms. A language is an MTL-

vectorial language if there is an M'TL-vectorial algorithm for a deterministic
complete automaton which recognizes it.

With modular operators, one can easily define MTL-vectorial algorithms for
the minimal automaton of languages of the form L(a, k,p") = {u € A*| |u|, =
k (mod p")}, where a is a letter, |u|, is the number of occurrences of a € A
in u, p a prime number and £, n strictly positive numbers.

Since MTL-vectorial languages are a boolean algebra (just consider the prod-
uct automaton to compute an algorithm for intersection or union of two MTL-
vectorial languages) and languages of the form K(a,r) = {u € A*| |ul, = r}
are PTL-vectorial (since star-free), the boolean algebra M, generated by
languages K (a,r) and L(a, k, p™), which is the set of languages whose syntactic
monoid is commutative [8], is a subset of MTL-vectorial languages.

For characterizing the family of solvable languages we need a further operation
on automata, the cascade product. Let A be a finite alphabet and let B; =
(Q1,A,d1) and By = (Q2, Q1 x A, d3) be two finite automata. Their cascade
product C = (Q, A,), denoted By o By is defined as follows:

e Q= xQ
o 5({q1.q2),a) = (61 (a1, a). 0a(qa, (g1, a)))

We can also define the cascade product of more than two automata by the
following recursive formula:

BioByo---oB=(...(BioBy)oB;s)o...)oB

This automata version of the wreath product [9] of aperiodic semigroups,
combined with the Krohn-Rhodes Decomposition Theorem [14], was used to
construct PTL-vectorial algorithms from counter-free automata [3]. It is not
difficult to prove that a family of automata corresponding to a class of vec-
torial algorithms, for instance counter-free automata or automata recognizing
MTL-vectorial languages, is closed under cascade product and under homo-
morphisms. Therefore, as all star-free languages are M'TL-vectorial languages,
any language recognized by an automaton obtained by applying a homomor-
phism to a cascade product of counter-free automata and automata recog-
nizing languages in M, is an MTL-vectorial language. In addition, any
solvable language is recognized by an automaton obtained by applying an ho-
momorphism to a cascade product of counter-free automata and automata
recognizing languages in Mgy, [13], and therefore this proves that solvable
languages are MTL-vectorial languages.

In fact, the converse is true as well, any MTL-vectorial language is a solvable
language. We have thus the following result:

10

Theorem 3 A reqular language is solvable if and only if it is MTL-vectorial.

For the proof, we use an extension of the past temporal logic introduced in
[2], the modular temporal logic (MTL). By modular temporal logic we mean
past temporal logic augmented with the unary operators Mod,;;, for integers
0 <1 < k. The new modular operators have the following natural semantics:
given an MTL formula ¢, we have (u, i) = Mod, x¢ if, there are [positions 7,
1 < ¢ < (modulo k) such that (u,i') | ¢.

It was shown in [2] that a language is expressible in modular temporal logic
if and only if it is solvable. But, with an MTL-vectorial language one can
associate an MTL formula in a straightforward way. This shows that MTL
vectorial languages are solvable languages and achieves the proof of the equiv-
alence between MTL-vectorial languages and solvable languages. Moreover,
as solvability is a syntactic property, the property of being an MTL-vectorial
language does not depend actually on a specific automaton recognizing the
language.

5.2 A wvectorial characterization of reqular languages

MTL-vectorial algorithms do not characterize all regular languages. Therefore,
we propose an extension to MTL-vectorial algorithms, which we denote as
GTL-vectorial algorithms, which captures all regular languages.

We will use again an extension of modular temporal logic introduced in [2].
This extension of temporal logic is obtained by augmenting modular tempo-
ral logic with group temporal operators I'y for any finite group G' and any
element g € G. The operator I'y always binds |G| — 1 formulas.

Let us now explain the semantics of I'y ¢ for a given finite group G and an
element g € G. We first have to order the elements of the group G (this order
will not be modified afterward), say as g1, ¢, . .., g, = id. Let u be an element
of AT and let @1, pa, ..., ¢, 1 be GTL-formulas. With each j, 1 < j < |u| we
associate an element of G, denoted (g1, @9 ... p,-1)(u, j), defined by:

<3013902a CI qu*1><“‘7j> = Gk
where £ = min{l | (u,j) | ¢} with the convention that min () = g¢.

Finally, we define (u,1) =Ty (1,92, .., @q-1) to mean that:

<(101> P2, -, g0q71><u,j> =g
1

[

J

11

It was shown in [2] that a language is expressible in group temporal logic if
and only if it is regular.

Thus, to have a vectorial characterization of all regular languages it suffices to
find vectorial operations equivalent to I'y ¢ for all finite groups G. Let G be a
finite group of cardinality ¢. We consider an isomorphic copy H of G defined as
follows. The elements of H are boolean vectors of length ¢ containing exactly
one 1. Therefore, (1,0,...,0) is associated with g, (0,1,0,...,0) with g, and
so on. The product x on H is defined by the isomorphism o between G and
H. For each group G and each element g € G, we introduce the operator P, ¢
defined by:

P,

i
1 if V1.3, V2.5 ...,Vgi) = 0O
0G(V1, Ve, . V) = (S1...8y) with s; = @(L 20+ V) (9).

0 otherwise.

where we mean by @ an iteration of x and by vy ; the j-th bit of vector vi.

Remark 1 In our definition of P, ¢, we implicitly suppose that for each j, 1 <
J < i, there is exactly one vector vy such that v, ; = 1. If this is not the case,
we have a problem in defining the product @ because some (vy ;, voj, ..., Vg ;)
do not belong to H. The solution consists in defining the product x, and thus
the iterated product), for all boolean vectors of length ¢. To achieve this
we define an equivalence relation ~ for boolean vectors saying that x ~ y if
and only if x and y have their first 1 in the same position. In addition, the
vector (0,0,...,0) is equivalent to the neutral element (0,0,...,0,1). Finally
we define x for all vectors using the equivalence relation ~.

The equivalence relation ~ works like the operator (1, v, ..., @, 1), it just
looks for the first 1 (validate formula) that appears on the vector.

Therefore with ¢ =Ty ¢(¢1,...,¢,-1) we associate :
b = Pyg(Py, ®g, ®3,..., Py 1, 2Py A Ay,
where ®; is the translation of ¢;. Denoting by <I>Z7(u) the j-th bit of the result

of the algorithm ®; applied to u we then have:

()'((SD]’QOQ’l..-,qu.f]><11‘7j>) ~ ‘ ,
(] (w), (), P(u)......, @) 1), @ (W) A~ A =D (u))

and therefore we have (u,i) | ¢ if and only if the i-th bit of the result of ®
applied to uis 1.

12

Conversely, with ® = P, (®y,...,®,) we associate:

Y = Fg,G[(ﬂl; P2, L3,y (101171]

where ¢, is the translation of ®;.Denoting again by ®(u) the j-th bit of the
result of @, applied to u we obtain:

&’ (u), ®)(u), ®i(u),...,

] 11 (), =@ () A A=D)(a)) ~
0((@1, P2, .-, (10q71><u7.j>)

and therefore the i-th bit of the result of & applied to u is 1 if and only if

(u,7) = .

Thus, the operators I'; and P, ¢ have the same expressive power. We can now
characterize all regular languages by vectorial algorithms. Vectorial algorithms
using only the MTL-vectorial operations plus the group operations Py ¢ will
be called GTL-vectorial algorithms. A language is a GTL-vectorial language
if there is a GTL-vectorial algorithm for a deterministic complete automaton
which recognizes it.

Combining the preceding results, we have the following characterization of
regular languages:

Theorem 4 A language is reqular if and only if it is GTL-vectorial.

Effectively, a GTL-vectorial language is regular (because it is recognized by
a finite automaton). Conversely, to any regular language one can associate a
finite deterministic complete recognizing it. To any state of the automaton, one
can associate a regular language (and thus a GTL-formula) representing the
set of words that lead to this state in the automaton. Translating these GTL-
formulas gives us a GTL-vectorial algorithm for the automaton. Hence any
regular language is a G'TL-vectorial language. Regularity being a syntactic
property, the property of being a GTL-vectorial language does not depend
actually on a specific automaton.

6 Fragments of PTL-vectorial languages

In the preceding sections we attempted to extend PTL-vectorial algorithms to
characterize regular languages more complex than star-free ones. For that we
needed new vectorial operators. However, the price to pay is that the extended
vectorial operations are not obviously realizable from a hardware point of view.

13

A dual investigation is to study fragments of PTL-vectorial languages: given a
set of vectorial operators (that can be efficiently performed) we want to deter-
mine which kind of (deterministic complete) automata can be characterized
by algorithms using the given set of vectorial operations. A similar problem
has been studied for temporal logic in [5,16,17] and we will relate it to our
problem.

6.1 Definitions

We first introduce a new vectorial operation called right, denoted by ~ and
defined as: v = v V [=(v 4+ 1)]. It is easily seen that 70 = 0 and that
~0---017---7 = 0---01---1. That is, right matches the first one (from the
left) by completing the vector with ones (to the right) after the first one. We
note that ~ is the vectorial equivalent of the past temporal operator P (past)
whose semantics is defined by: (w,n) = Py if there exists m < n such that

(w,m) = ¢.

We also define a strict version of the = operation, the strict right, denoted

by ~ and defined by —v =1 (7v). Thus, it is easily seen that —0 = 0 and

that 70---017---7=0---001---1. For example, we have: —0001101001 =
~—— N——r"

0000111111 and 001 = 000. The — operator is the vectorial equivalent of
the strict version YP of the operator P, defined by: (w,n) = YPg if there
exists m < n such that (w,m) = ¢.

Given a class € of vectorial operations, we write VA[Q] for the set of vectorial
algorithms using only bit-wise logical operations and operations in 2. For
convenience, we omit the braces: we write VA[—, +] instead of VA[{—, +}].
For example PTL-vector algorithms are exactly the ones in VA[T,, +].

We use the same notation for languages: we will denote by VL[] the set of

languages for which there is an automaton and a corresponding algorithm in
VAIS?]. Therefore VL[Ty, 4| describes the PTL-vectorial languages.

For each fragment of PTL-vectorial languages, we would like to have an ef-
ficient algorithm to decide whether or not a given language belongs to the
fragment. For this, we will use characterizations of fragments of past temporal
logic given in [5,16,17]. A fragment of past temporal logic is defined as fol-
lows: given a class A of temporal modalities, we write PTL[A] for the set of
temporal formulas in which modalities other than ones from N do not occur.
For convenience, we omit the braces, e.g., we write PTL[Y, YP] instead of
PTL[{Y,YP}|. We can also associate with A a set of languages noted L[A]
such that a language L belongs to L£[A] if and only if there exists a formula
¢ € PTL[A] such that L is definable by .

14

6.2 Characterizing fragments of PTL-vectorial languages

6.2.1 Preliminaries

Intuitively, there exists a tight link between languages defined by logical con-
ditions and languages defined by "equivalent” vectorial conditions. For ex-
ample, in Section 4 we have seen that PTL-vectorial languages are the same
as languages defined by past temporal logic. But, whereas logical satisfiabil-
ity depends exclusively on the language, vectorial characterizations seem to
be closely related with a specific automaton. Vectorial characterizations are
stronger than logical characterizations because in order to have a vectorial
algorithm for a given automaton one must be able to characterize any state,
hence any language recognized by the automaton obtained by setting a given
state as unique final state. For a logical formula one just needs to exhibit the
set of final states needed for the given language.

But under some assumptions, logical fragments and vectorial fragments define
the same class of languages. Let us be more explicit. Given a set 2 of vectorial
operations and a set A of logical operators, we will say that 2 and A are
equivalent if they verify the following conditions:

(1) To any vectorial algorithm @ using only operations in €2 one can associate
a PTL-formula ¢ using only operators in A such that for any word u and
any positive integer ¢ smaller than |u|, the i-th entry of the vector obtained
by applying ® to u is 1 if and only if (u,) = ¢.

(2) To any PTL-formula ¢ using only operators in A, one can associate a
vectorial algorithm ® using only operators in {2 such that for any word
U = Uy * * * Uy, the computation of the binary vector v, = v; - - - v, where
vi =1 (uy---u;,1) = ¢, is performed by the algorithm .

For example, we have seen in Section 4 that the set of vectorial operations
Q = {10, +} is equivalent to the set of logical operators A = {Y,S}. More-
over, in this case we have that VL[Q] = L[A]. Several fragments of temporal
logic have been studied and characterized in [5,16,17] and therefore to char-
acterize a fragment of PTL-vectorial languages, a solution consists in finding
an equivalent fragment in temporal logic. We have to find a condition on two
equivalent sets Q2 and A to have VL[] = L]A].

A set A of logical operators will be called finally stable if for every language
L that belongs to £(A), any language recognized by an automaton obtained
from the minimal automaton of L by letting some arbitrary state to be the
unique final state, belongs to L(A).

For example, any set A such that £(A) is a variety of languages is finally
stable. Formally, if L is a language in £(A) and A its minimal automaton,

15

any automaton A’ obtained by modifying the final states of A recognizes a
language L' of L£(A) because the syntactic monoid of A’ divides the syntactic
monoid of A.

The notion of final stability gives us the following lemma:

Lemma 1 Let) be a set of vectorial operations and let A be an equivalent
set of logical operators. Then A is finally stable if and only if VL(2) = L(A).

Proof:

First assume that A is a finally stable set of logical operators equivalent to
a set € of vectorial operations. The inclusion VL(Q2) C L(A) is not difficult.
To prove the converse inclusion, VL(2) O L(A), let us consider a language
L € L(A) and its minimal automaton A = (Q, A, -, ¢;, F'). For any state ¢ of
A, the automaton 4, obtained from A by letting ¢ be the unique final state,
recognizes the language L, that belongs to £(A). Therefore we have a formula
¢, in PTL(A) that defines L,. Therefore, we have that ¢; - u = ¢ if and only
if (u,|u|) = ¢, We obtain a simple algorithm in VA(Q) characterizing the
state ¢ in the automaton A just by translating ¢, (and this is possible by the
equivalence between € and A).

Conversely, let us assume that A and Q are equivalent and such that L(A) =
VL(Q) and let us show that A is finally stable. For this, consider a language
L € L£(A). Then L also belongs to VL((2), and therefore its minimal automaton
Apin is Q-vectorial. We have thus an algorithm for any state ¢ of A,,;, (such
that its translation into a PTL-formula belongs to PTL(A)) that characterizes
the language recognized by the automaton obtained from A,,;, by choosing ¢
as unique final state. Therefore these languages belong to £(A), what proves
the final stability of A and achieves the proof.

Remark 2 The preceding lemma and the results about temporal logic given
in [2] yield a generic proof of the results of the preceding sections by noting
that star-free languages, solvable languages and regular languages are varieties
and that their associated sets of logical operators are finally stable.

In [5,16,17] several characterizations of fragments of past temporal logic are
stated. We will use them to characterize fragments of PTL-vectorial languages.
But first of all we need some definitions. The characterizations of fragments
of past temporal logic use the minimal automaton and the presence, or ab-
sence, of specific structures, called forbidden patterns. For instance for star-free
languages we consider a characterization that forbids counting patterns.

16

Given a set N, an N-labeled digraph is a tuple (V, E) where V is an arbi-
trary finite set and E a subset of V' x N x V. The closure of a determinis-
tic finite automaton A, denoted Cy, is the A*-labeled digraph (V, E) where
E={(q,u,q-u)|q € Q and u € A*}. Therefore, the closure of any determin-
istic finite automaton is an infinite graph (it has infinitely many edges, but
only finitely many vertices).

Finally, a pattern is a labeled digraph whose vertices are state variables, usually
denoted p, q, ..., and whose edges are labeled with variables for labels of two
different types: variables for nonempty strings, usually denoted u,v,..., and
variables for letters, usually denoted a, b, In addition, a pattern comes with
side conditions stating which state variables are to be interpreted by distinct
states. We draw patterns just as we draw graphs and adopt the convention
that all states drawn solid must be distinct.

We say that an A*-labeled digraph matches a pattern if there is an assignment
to the variables obeying the type constrains and the side conditions, so that
the digraph obtained by replacing each variable by the value assigned to it is
an induced subgraph of the given digraph.

6.2.2 Characterizing VL[—]

We are now ready to characterize our first fragment of PTL-vectorial lan-
guages:

Theorem 5 Let L be a reqular language over some alphabet A. Then the
following assertions are equivalent:

(1) L belongs to VL[—].
(2) L belongs to LIYP].
(3) The closure of the minimal automaton A (L) of L does not match the

following pattern:
(D7)
7)11,
(D)

The equivalence between (2) and (3) is shown in [16,17]. The other equivalences
come from Lemma 1, from the equivalence between YP and »—, and from the
following lemma (which implies that YP is finally stable):

Lemma 2 Let us consider a deterministic complete automaton that does not

17

match the pattern of Theorem 5. Then its minimal automaton does not match
it either.

Proof:

We show the result by contradiction. Let us consider a deterministic complete
automaton A that does not match the pattern of Theorem 5 and let us assume
that its minimal automaton A,,;, contains the pattern. Thus there exist four
states P, @, P' and Q' of A,,;,, a letter a and two words u and v such that
P-a=@Q, P -a=@Q,P-u=P,P -v=DPand Q # Q. As Ais a
deterministic complete automaton, we can identify the states of A,,;, with
the Nerode equivalence classes of A. In the following we will not make any
distinction between the states of A,,;, and the Nerode equivalence classes of
A. We have the following consequences:

(1) For any states ¢ € Q, ¢' € Q' we have ¢ # ¢'.
(2) For any state p € P, we have p-u € P'.

(3) For any state p’ € P', we have p’ - v € P.
(4)

For any state p € P we have p-a € @ and for any state p’ € P’ we have
p'-a € Q. Therefore, for any states p € P,p' € P’ we have p-a # p' - a.

Our aim is to prove the existence of two words z and ¢, of four states p, p', ¢
and ¢’ wherepe P, p' € P',ge @ and ¢’ € Q' such that p-a=¢, p'-a= ¢,
p-z=1p and p' -t = p. Therefore we will have a contradiction with the fact
that A does not contain the pattern.

Let us assume that |P| < |P'| (the symmetric case is identical) and consider a
state p; € P. Thus the state p| = p; -u belongs to P' and p, = p) - v belongs to
P. As A does not contain the pattern, we have py # p;. For the same reason
the state p;, = po - u belongs to P’ and is different from pf, the state p3 = p,-v
belongs to P and is different from py and p; (because we have p; -uvu = pl, and
ph - v = p3). Iterating this reasoning orders the states of P = {p1,ps,...,pn}
and the states of a subset R = {p},p),...,p,} of P'. Moreover, this order is
such that for any ¢ < j < n, there exists a word u such that p;, - u = p}- and
for any ¢ < j < n there exists a word ¥ such that p; - v = p;. Let us now
consider the state p = p/, - v € P: there exists 7, 1 < i < n such that p = p;.
We thus have a contradiction because there exists a non empty word z such
that p;-z = p), and p.,-v = p; and p; - a # p, - a, hence A contains the pattern.

The proof can be resumed by the following diagram:

18

6.2.3 Characterizing VL(To, =)

The class VL(Ty, —) corresponds to the logical fragment that uses only yes-
terday and past as operators:

Theorem 6 Let L be a reqular language over some alphabet A. Then the
following assertions are equivalent:

(1) L belongs to VL[To, —].

(2) L belongs to L[Y,P].

(3) The closure of the minimal automaton A, (L) of L does not match the
following pattern:

The equivalence between (2) and (3) can be found in [16,17]. The other equiv-
alences come from Lemma 1 and from the following lemma, that implies that
{Y,P} is finally stable:

Lemma 3 Consider a deterministic complete automaton that does not match
the pattern of Theorem 6, then its minimal automaton does not match the
pattern, either.

As for the proof of Lemma 2 we reason by contradiction. Let us consider a
deterministic automaton A that does not match the pattern and assume that
its minimal automaton A,,;,, matches the pattern. We thus have two distinct
states P and @ of A,,;, and three words u, v and w such that: P-u = P,
Q-u=Q, P-v=0Q and Q-w = P. As in the preceding proofs, we identify the
states of A,,;, with Nerode equivalence classes of states of A and therefore we
obtain that:

19

(1) For each state p € P we have p-u € Pand p-v € Q.
(2) For each state ¢ € @ we have ¢-u € Q and ¢q-w € P.

Let us consider the Nerode equivalence class associated with state P (the
reasoning is the same for @)). Since P - u = P, we can decompose it into
components of states that are obtained by iterating the action of word u on
a beginning state (as in Pollard’s p method). So an equivalence class can be
seen as a union of components having the following form:

Now, let us consider a state p; € P. There exist k, k" > 0 and a state p| € P
such that p, -u® = p} and p,-u* = p (p} belongs to the loop of the component
containing p;). The state ¢g; = p} - v belongs to). Let us consider the state ¢}
defined from ¢, v as we have defined p} from p;: there exists a word ¥ such
that p) - = ¢} and a word & = u" (where h is the least common multiple of
the lengths of the loops containing the states p| and ¢}) such that p| - @ = p|
and ¢} - v = ¢;. Therefore, as A does not match the pattern, ¢} - w must not
belong to the component of p|. We can iterate this reasoning as in the proof
of Lemma 2 and we find a similar contradiction. In fact this proof is analogous
but we must work on components instead of states.

6.2.4 Characterizing VL(T)

To characterize VL(Ty), we can use either a result about languages definable
using the yesterday operator, or give a direct proof (which gives us therefore
a characterization of £(Y)).

We begin with the direct proof because it illustrates the use of vectorial lan-
guages. Intuitively, if we have for a given deterministic complete automaton
an algorithm using only the right-shift operation 1, let us say k times, this
means that for any word and for any position in this word we have to consider
only the k£ + 1 last letters for knowing the state reached by the automaton.
Formally:

Theorem 7 An automaton has an associated algorithm in VA[1] if and only

20

if it is trivial (any letter loops on any state) or if there exists an integer k such
that the transition functions defined by the words of length k are constant.

Effectively, let us consider a non trivial automaton A having an algorithm in
VA[1]. We then have an algorithm computing the output vector r of the visited
states from the input vector u and using only bit-wise logical operations and
the right-shift. Let £ be the number of right shift operations used. Therefore,
it is easily seen that the nth position of r only depends on the positions
n,n —1,...,n — k of u. Thus, if u is a word of length £ + 1, then u leads to
a state independent of the initial state, i.e, u defines a constant mapping in
Q°, where (Q is the set of states of A, what proves the first implication.

Conversely, let us consider an automaton having this property and let us
construct an algorithm in VA[1] for it. The case of the trivial automaton is
not difficult and we will no longer deal with it.

For any word v of length k, we compute the characteristic vector e, of v:

k—1

e, = N\(1h (u=ax 1)

i=0
_ 7/
where v = ag - - - ax_; and note by 1} the operation 1y iterated 7 times.

For any state g , we design by L’; the set of words of length k£ sending any state
on q. Therefore, the vector (r' = q) = \/ e, matches, except possibly on the
veLk

k — 1 first terms, the characteristic vector (r = q). But it is easy to compute
the & — 1 first terms of (r = q): it suffices to consider the words w of length
less or equal than k — 1 that lead to ¢ from the initial state. Therefore, we just
have to compute their characteristic vectors e,, and to take their disjunction.
Thus we obtain the vector (r” = q) that matches (r = q) on the k£ — 1 first
terms. The vector (r = q) is finally given then by:

(r=q)=[(r'=q) Ax]V[[r"=q) A-x]

where we let x =% 1 = 0%1*. Therefore we obtain an algorithm for A in
VA[to].

We can give a corollary of this result in algebraic terms:

Corollary 1 A regular language belongs to L[1] if and only if its syntactic
semigroup belongs to the variety D of semigroups defined by the equation yx* =

v,

In fact the equation yz¥ = z* is associated with languages of the form A* XUY
where X and Y are finite sets of non-empty words on an alphabet A [8]. It

21

is therefore easy to verify, using Theorem 7, that the languages of L[1,] are
exactly those associated with the variety of semigroups D. Effectively, let
us consider an automaton for which any word of a given length k defines a
constant mapping in Q€. Let e be an idempotent of the transition semigroup.
As e = €*, e can be associated with a word of length greater or equal than
k and therefore e is associated with a constant mapping and thus it is right
absorbing, i.e., for any element v of the transition semigroup we have ve =
e. Consequently, the transition semigroup verifies the equation yz* = x“.
Conversely, let us consider a language recognized by an automaton (that can be
chosen deterministic and complete) such that its transition semigroup verifies
the equation yz“ = z*. To any state ¢ of the automaton, we can associate
a language L, composed of all words that lead from the initial state to g.
The syntactic semigroup of this language divides the transition semigroup
of the given automaton and thus verifies the equation yz“ = 2. Therefore,
L, = A*XUY where X and Y are two finite sets of words. The elements of X
define constant mappings that send any state on ¢g. Making this reasoning for
all states gives us for any state a set of characteristic words. Considering the
longest word of these sets we find an integer k£ such that any word of length &
defines a constant transition function.

Using a result on a fragment of temporal logic [16,17] and Lemma 1 we have
the following characterizations:

Theorem 8 Let L be a reqular language over some alphabet A. Then the
following assertions are equivalent:

(1) L belongs to VL[T).
(2) L belongs to L[Y].
(3) The closure of the minimal automaton of L, Apmin(L) does not match

the following pattern:
u u

(4) The syntactic semigroup of L belongs to the variety D defined by the
equation yxr* = xv.

6.2.5 Characterizing unambiguous languages

In this section we give a characterization of unambiguous languages using
a fragment of PTL-vectorial languages. Let us consider an alphabet A. A
product of the form Aja; Ajay---arAj, where A; is a subset of A and a; is a

22

letter, is called unambiguous if for any word u on the alphabet A, if u belongs
to the product then there is a unique decomposition wug, uy, . .., u; such that
U = U Uias - - apuy with u; € AY. An unambiguous language is a finite,
disjoint union of unambiguous products.

Unambiguous languages are well studied. We will use there two results: the
fact that unambiguous languages form a variety of languages and a character-
ization using a symmetric fragment of temporal logic. A symmetric fragment
of temporal logic is defined as a classical fragment except that the use of fu-
ture operators (and not only past operators) is allowed [16,17]. The symmetric
fragment L[| XF|] associated with unambiguous languages is the one allowing
the use of the strict operators past (YP) and future (XF). The operator XF
has the following semantics: (w,n) = XFy if there exists n < m < |u| such

that (w, m) | ¢.

Defining the operation strict left «< as a symmetric version of —, using Lemma
1 and the equivalence between unambiguous languages and the symmetric
fragment L[|XF|], we have the following result:

Theorem 9 Let L be a reqular language over some alphabet A. Then the
following assertion are equivalent:

(1) L is unambiguous.
(2) L belongs to L[| XF|].
(3) L belongs to VL[—, —]

7 Reconstructing an automaton from a PTL-vectorial algorithm

In the preceding sections we wanted to find a vectorial algorithm from a given
automaton. We now consider the converse problem, that is we want to check for
a given PTL-vectorial algorithm whether there exists a deterministic complete
automaton associated with it (and determine an automaton, if this is the
case). This question becomes interesting for instance when we modify a given
vectorial algorithm (associated with a deterministic automaton) and we want
to check afterward that the new algorithm is equivalent to the old one. We
will show that the complexity of this test is actually the same as testing the
satisfiability of an LTL-formula (PSPACE-complete).

Vectorial algorithms are associated with deterministic complete automata and
therefore depend on the initial state (and not only on the underlying labeled
graph structure of the given automaton). We will thus suppose that the initial
state is part of the input.

23

To begin with, let us consider a valid PTL-vectorial algorithm (i.e. an algo-
rithm for which there exists a corresponding deterministic complete automa-
ton) and let us explain how to construct such an associated automaton. Let
A ={ay,...,ar} be the alphabet of the automaton and let n be the number
of states (we will identify them with the integers 1...n). To compute an as-
sociated automaton Ag from a given PTL-vectorial algorithm & we perform
a depth-first search of Ag, that is we start from the initial state ¢ and com-
pute the states that can be reached by reading a letter from ¢y and then we
repeat this step with the new states found so far. We are done when we have
explored all reachable states. With this method we explore all the transitions
of the accessible part of the automaton. We just have to explain how to com-
pute the reachable states from a given state. In our algorithm we maintain a
vector, state_direction, giving for any state encounter ¢ a word u leading from
the initial state to ¢g. Therefore, when considering a state ¢, and a letter a to
compute the transition from ¢ reading a we have to apply ® to the word ua
and consider the |u| + 1 component of the result, denoted ®/“*!(ua).

We thus have the following algorithm:

e Variables and initialization:
- 0: (n x k)-vector.
- new_states = [1] : LIFO structure.
- known_states = {1} : Set structure.
- state_direction = [e,¢e,... €]
~———
e Main loop: !
While new_states # () Do
Let ¢ =Delete element from new _states.
Let u = state_direction.(q).
Let h = |ul.
Fori=1to k Do
Let ¢ = ®"*1(ua;).
Let 6(q,i) = ¢'.
If ¢ ¢ known_states Then
Add ¢’ to new_states and to known_states.
Set state_direction.(q") = ua.
End If.
End For.
End While.
e Return 4.

To test the validity of a given algorithm ® we will first use the preceding
algorithm to compute the automaton A¢ associated with @, if it is valid. If
the algorithm does not work (that is if ®"*'(ua;) is not defined for a given step
of the algorithm) this implies that ® is not valid. Otherwise we need to use

24

the validity test stated in the theorem below. For any state ¢, let L(g) denote
the regular language defined by the logical formula obtained as in Section 4.2
from the algorithm computing (r = q).

Theorem 10 Let ® be a PTL-vectorial algorithm and let Ag be the deter-
ministic complete automaton constructed by the algorithm above. Then ® is a
valid algorithm associated with Ag if and only if:

(1) For any non reachable state q of Ae, we have L(q) = 0.

(2) For any reachable state q, we have that L(q) # 0. In addition, the fol-
lowing assertions are equivalent:
(i) L(q) = L(q1)a1 U ---U L(g;)a; U E,, where E, = {e} if q is the
initial state and E, = 0 otherwise. Moreover, a; is a letter and
each q; is a reachable state.

(i) {(q1,a1),...,(qi,a:)} is exactly the set of the pairs (q;,a;) such
that ¢j.a; = q in As.

Proof:

First let us assume that & is valid. This implies that for any state ¢, the word
u belongs to L(q) if and only if ¢ - u = ¢, where ¢y denotes the initial state of
Ag. Therefore, we easily obtain that L(g) = (J, for any non reachable state ¢
of .A@.

Let us now consider the case of a reachable state ¢ and assume that (i) holds:
L(q) = L(q1)a; U --- U L(¢;)a; U E,. For any pair (g;, a;), as ¢; is reachable,
there exists v € L(g;) such that ¢y - v = ¢; and va; € L(g). Consequently we
have ¢;-a; = (q-v)-a; = ¢o-u = q. Conversely, consider a pair (¢', a) such that
q'-a = g and let us prove that L(g) O L(¢')a. Let us consider a word w € L(q").
As @ is valid this implies that ¢o - w = ¢’ and therefore ¢y - wa = ¢’ - a = q,
what shows that L(¢')a C L(g). We have thus shown that (i) implies (ii).

Let us now assume that (ii) holds. We will prove that L(q) = L(g1)a; U---U
L(gi)a; U E, where {(¢1,a1), ..., (¢, a;)} is exactly the set of the pairs (g;, a;)
such that ¢; - a; = ¢. So let us consider a word u € L(g). As @ is valid, we
have that ¢y - u = ¢ and therefore if |u| > 2, we can write u as u = va with
Qo - u = (go-v) - a. So there exists j such that (¢ -v,a) = (¢;,a;) and v € L(g;)
and thus v € L(gj)a;. The cases |u| = 0 and |u| = 1 are immediate as ¢
belongs to L(go). Conversely, if we consider a word u = va; € L(g;)a; we have
that qo - v = (qo - v) - a; = ¢; - a; = q and thus v € L,. We have thus proved
that (ii) implies (i).

Suppose now that for any non reachable state ¢, L(q) = () and that for any
reachable state ¢, the set L(q) is non empty and that (i) and (ii) are equivalent.

25

Let us prove that this implies the validity of ®. We work by contradiction
assuming that ® is not valid. We have two cases:

(1)

There exists u € L(q) and ¢o-u # g. We can choose u of minimal length.
With this property, as u € L(q) = L(q1)a; U - -- U L(g;)a; U E,, we have
u = va; (the case |u| = ¢ is immediate) where 1 < j < iand v € L(q;) (v
can be empty). By minimality of u we must have go.v = ¢; and therefore,
Qo -u=(q-v)-a; =q; a; = q (by equivalence between (i) and (ii))
what leads to a contradiction.

There exists a word u such that ¢y -u = ¢ and u ¢ L(q). We can
choose again u of minimal length. The case u = ¢ is immediate and
we can therefore decompose u as u = va (where v can be empty). The
minimality of w implies that v € L(q') where we set ¢’ = qo - v. But we
also have that ¢'-a = ¢ and thus, by equivalence between (i) and (ii) we
have that v = va € L(¢')a C L(q), what leads to a contradiction with

u ¢ L(q).

We have thus proved that ® is valid and so it is associated with Ag.

We can now give a method to test the validity of a PTL-vectorial algorithm

d:

(1)

We apply the depth-first search algorithm described above to ®. If the
algorithm does not yield a deterministic automaton Ag, then ® is not a
valid algorithm and we can stop. Otherwise we go to the next step.

We determine the reachable states and the non reachable states of the
automaton Ag constructed in the preceding step.

For every non reachable state ¢ we translate the associated component in
® into a PTL-formula ¢, and test whether or not it can be satisfied (see
Section 8 and [12]). If ¢, is satisfiable for a non reachable-state ¢ then ®
is not valid and we stop. Otherwise we go to the next step.

For every reachable state ¢ we determine the set {(¢1,a1),..., (¢, a;)}
of the pairs (g;,a;) such that ¢; - a; = ¢ in As and we verify that
L(q) = L(q1)ay U --- U L(g;)a; U E,. To achieve this efficiently we can
determine for every j a PTL-formula associated with L(g;)a;. It suffices
to consider the formula p,; AYp, where ¢, is the translation of the com-
ponent of ® associated with ¢;. Then, we can construct a PTL-formula
for the language L(q)A[L(g1)a; U --- U L(¢;)a; U E,], where A holds for
the symmetric difference, and verify that it cannot be satisfied, what is
equivalent to the equality L(q) = L(gq1)a; U ---U L(¢;)a; U E,. If the test
does not fail, then ® is valid and associated with Ag, otherwise ® is not
valid.

26

Let us now give the complexity of this algorithm. We will prove that determin-
ing whether or not a PTL-algorithm is valid is a PSPACE-complete problem.
We first show that this test can be achieved in polynomial space.

The first step, the depth-first search algorithm, calculates all the transitions
of the reachable part of Ag. As Ag is a deterministic complete automaton,
there are O(n|A|) transitions, where n denotes the number of states of Ag
and A is the alphabet of Ag. The result of ® applied to a given word can be
computed in logarithmic space. Effectively the PTL-operations are logarithmic
space operations and logarithmic space operations are closed by composition.
Therefore, as n = O(|®|) and |A| = O(|®|) (the size of the algorithm is the
size of the PTL-formula plus the size of A), the first step can be achieved
in polynomial time. The second step, is performed also in polynomial time
(and thus in polynomial space). In the third step, the construction and the
size of ¢, is polynomial in |®|. Determining whether or not a PTL-formula
can be satisfied, is known to be a PSPACE-complete problem (see Section 8.5
and [12]). As |,/ is polynomial in |®|, this step can be achieved in polynomial
space. For the same reasons the fourth step can also be achieved in polynomial
space.

We have thus proved:

Proposition 2 Deciding whether or not a PTL-vectorial algorithm is valid
can be done in polynomial space.

In fact, we can give a more precise result:

Theorem 11 Deciding whether or not a PTL-vectorial algorithm is valid is

a PSPACE-complete problem.

Proof:

We just have to prove the PSPACE-hardness. For this, we reduce the PSPACE-
complete problem of deciding whether or not a PTL-formula can be satisfied.
So let us consider a PTL-formula ¢ over some alphabet A. We will consider
an automaton with two states, 1 and 2. Let ® be the translation of ¢ into a
PTL-vectorial formula. Then, we define a PTL-vectorial algorithm & by:

o — {(r =1) =true
(

r=2)=9o
where the initial state is 1.

We have that ¢ can be satisfied if and only if ®' is not valid. The automaton
constructed using the depth-first search algorithm is the solid part of the
following automaton:

27

a€ A

If © can be satisfied, say by a word u, the algorithm ®' does not give a correct
result on u. Conversely, if ®' is not correct, using Theorem 10, we have two
cases:

(1) L(2) is non empty, that is ¢ can be satisfied.
(2) L(1) is empty (what is wrong) or L(1) # L(1)aU{e} (what is also wrong).

Therefore we have proved that ¢ can be satisfied if and only if ®' is not valid.
This proves that determining whether or not a PTL-vectorial algorithm is
valid is a PSPACE-complete problem.

We now consider the same problem but for fragments of PTL-vectorial lan-
guages. For instance we have the following result for algorithms in VA (1y):

Theorem 12 Deciding whether or not an algorithm in VA(To) is valid is an
NP-complete problem.

As for the general problem we first use the depth-first search algorithm to
determine an automaton such that our algorithm is valid if and only if it is
associated with this automaton.

Using Theorem 8 it is easily seen that an algorithm in VA(1y) is associated
with a given automaton if and only if it is associated with it for words of length
less or equal than k£ + 1, where k£ designs the maximum number of nested shift
operations. This implies the membership in NP (we have to determine k and
then to guess a word of length less or equal than k£ + 1 and finally to test the
correctness of the algorithm for it).

In order to prove the NP-hardness we reduce the problem of deciding whether
or not a formula in PTL(Y) can be satisfied to our problem. For this we
use the same reduction as in Theorem 11. We conclude the proof using the
following lemma:

Lemma 4 Deciding whether or not a formula in PTL(Y) is satisfiable, is an
NP-complete problem.

Proof:

28

The membership in NP is not difficult: a formula in PTL(Y) can be satisfied
if and only if it can be satisfied by a word of length less or equal than k + 1,
where k designs the maximum number of nested Y operators (effectively the
truth of a formula in PTL(Y) applied to a word u only depends on the suffix
of length k + 1 of u).

The NP-hardness is shown by a reduction from the NP-complete problem
SAT. Let us consider a propositional formula F' and let us construct a formula
¢ in PTL(Y) such that F' can be satisfied if and only if ¢ can be satisfied. We
denote by p1,...,p, the propositional variables used in F'. The alphabet of
the temporal formula ¢ is the boolean alphabet: {T, L}, and ¢ is constructed
from F' by replacing each propositional variable p; by Y ... Y pr (pr is the

n—u

predicate associated with the letter T).
For example for F' = (pa V p1) A =[p1 V (ps A p2)] we define:

¢ =(Ypr VYYpr) A=[YYpr V (pr A Ypr)]

For any formula F', we easily have that F'is satisfied by a valuation (b, ..., b,),
where each b; is a boolean (b; = T or L), if and only if (by...b,,n) E . This
shows that SAT can be polynomially reduced to our problem and therefore
achieves the proof.

8 Reconstructing automata from GTL-vectorial algorithms

In the preceding section we have shown how to decide whether there exists
an associated counter-free automaton with a given PTL-vectorial algorithm
®. For this, we first construct an automaton Ag associated with ®, if is valid.
Then, using Theorem 10 we decide whether @ is valid. A natural investigation
is to try to extend these results to MTL-vectorial and GTL-vectorial languages
introduced in Sections 5.1 and 5.2. The main result of this section states
that deciding the validity of a GTL-vectorial algorithm is PSPACE-complete.
For obtaining this result, we review the construction of alternating automata
from temporal logic formulas and show how to deal with modular and group
operators and we also use that Theorem 10 does not actually depend on the
vectorial operations allowed in our algorithm and can be stated in a more
general way, by assuming ® is a vectorial algorithm.

For a PTL-vectorial algorithm @, in order to compute the automaton Ags we
simulate a depth-first search algorithm. This algorithm can be adapted to

29

MTL-vectorial algorithms and to GTL-vectorial algorithms without change.
Nevertheless, its complexity is not the same as the simulation of ® in the
general case of modular and group operators is more costly. Actually, we have
the following result:

Lemma 5 Let ® be a GTL-vectorial algorithm and let u be a word. Then
the computation of the result of ® applied to u can be achieved in O(|ul.|®|)
operations.

Proof:

The result trivially holds in the special case of PTL-vectorial algorithms. We
denote by C(®,u) the cost of the computation of ® applied to u. If & =
S1x(®1), to compute the result of ® applied to u, we first compute the result
of ®; applied to v and then read it from left to right to determine the final
result. We have that C'(®,u) = C(®y,u) + |u|. Therefore modular operators
cost linear time. If & = P, o(®y,...,®,), to compute the result of ® applied
to u, we first compute the results of ®,,...,®, applied to u and then read
them simultaneously from left to right to determine the final result. We have
that C'(®,u) = C(®y,u) +-- -+ C(P,, u) + |u|. Thus group operators also cost
linear time. Therefore, the computation of the result of ® applied to u can be
achieved in O(|u/.|®|) operations.

Lemma 5 implies that the computation by the depth-first search algorithm
of an associated automaton Ag with ® can be made in polynomial time.
There is another question left in order to solve our problem, that is how
to use Theorem 10 for MTL-vectorial and GTL-vectorial algorithms. As for
PTL-vectorial languages, the equality on languages to verity can be translated
into a satisfiability problem, for GTL-formula in this case. In Section 8.5, we
prove that the satisfiability problem for GTL-formula is PSPACE-complete
and therefore, we have the following result:

Theorem 13 Deciding whether or not a GTL-vectorial algorithm s valid is
a PSPACE-complete problem.

To prove the satisfiability result for GTL-formulas, we use alternating au-
tomata and reduce the satisfiability problem to a non emptiness problem for
alternating automata.

30

8.1 Alternating automata

An alternating automaton is a tuple A = (Q, A, d, qo, F'), where @ is a finite
set of states, A is a finite alphabet, ¢y is the initial state, F'is the set of final
states and ¢ : Q@ X A — BT(Q) is the transition function, where B*(Q) is the
set of all negation-free boolean formulas over Q).

A run of an alternating automaton is a finite tree whose nodes are labeled with
states of) and edges with elements of A. The level of a node is the length of
the word labeling the path from the root to this node. A run associated with
a finite word u = aqas - - - a, is defined by induction:

(1) The root is qq.
(2) The nodes of level n are leaves (i.e. they have no sons).

(3) If ¢ is a state of level i < n and §(¢q,a;) = C; V Cy V ---V C,, with
Cj = qja Ngja N+ Ngjn, then g has n; sons for some j, 1 < 7 < m,
labeled by g1k, 41, -, qjn,- That is, ¢ must have as sons all the states
appearing in one of the conjunctions Cj.

Remark 3 In our definition of a run, §(g, a) is in disjunctive normal form for
any state ¢ and any letter a. Of course, § could be defined as a function taking
its values in negation-free boolean formulas in disjunctive normal form, but the
constructions given in Sections 8.3 and 8.4 would lead to consider alternating
automata with an exponential number of transitions. In fact we will not be
interested in computing such automata but in runs of them. Therefore, for
any formula (¢, a), a minimal model (whose size will always be linear in
the number of states) will be computed whenever we need it. A model for a
formula is a set R of states, such that assigning to the states in R the value #
and to those on @ \ R the value ff makes the formula true. Nevertheless, for
representing alternating automata we will work with formulas in disjunctive
normal form.

A word u is accepted by A if there exists a run r associated with u such that
all the leaves of r are final states. The language recognized by an alternating
automaton A is noted L(.A).

Alternating automata will be drawn as classical automata except for the fact
that the outgoing edges go first into a square (that is not a state!) that redirects
the transition into groups of states (represented by the same index written on
their incoming edges). For example the transition §(qo, a) = (g1 Aqo) V (q1 Aq2)
is represented by:

31

In the special case where (g, a) is a disjunction (that is n; = 1 for all j =
1...m) we represent the transition §(¢,a) as a classical existential (i.e. non
deterministic) transition.

Example 2 Consider the alternating automaton A = ({qo, ¢1, g2}, {a,b}, 0, {qo}, {q1, ¢2}),
where we have:

(qo,a) = (@0 N a2) Va1, 0(q1,0) = 1 V g2 and 6(g2,a) = qo A\ ¢1.

)
e 5(qo,b) = q1 V qo, 9(q1,b) = ¢1 and §(go,b) = qo.

A is represented by the following picture:

Let us now give two runs for the word u = aaba in A: the first one is accepting
(therefore u is recognized by A), whereas the second one is not accepting.

32

qo qo

a a a
do q2 a1
a1 do a1 q2
b b b b
q a1 q q2
a a a % y
q2 1 q2 do a1

8.2 Linear temporal logic

Similar to the past temporal logic, the future temporal logic, called Linear
Temporal Logic (LTL) is defined using the temporal operators Next (denoted
X), and Until (denoted U).

X and U are respectively the future equivalents of the operators Y and S.
Therefore their semantics is defined by:

(1) (w,n) | Xey if n < Jw| and (w,n+ 1) = ¢.
(2) (w,n) = ¢1 Uy, if there exists m > n such that (w,m) = ¢, and, for
every k such that n <k <m, (w, k) = ¢1.

An LTL-formula ¢ is satisfied by a word w if (w,1) ¢. An LTL-formula ¢
is called satisfiable if its associated language L, = {w | (w,1) = ¢} is not
empty.

With an LTL-formula ¢ one can associate a PTL-formula ¢ by replacing the
operator X by the operator Y and the operator S by the operator U. It is
easily seen that, for any word w, (w,1) = ¢ if and only if (@, |w|) = @, where
w designs the mirror image of w. Thus, to decide whether a PTL-formula is
satisfiable, it suffices to know how to solve the problem for LTL-formulas.

33

In the next section we recall the construction of an alternating automaton
recognizing the language L,, where ¢ is an LTL-formula [15]. We need the
construction in order to generalize it to the more expressive temporal logics.

For convenience, we use a new operator called Release (denoted R). The re-
lease operator is defined by the formula ¢1 R ¢y = =(—¢; U —yy), or equiva-
lently by: (w,n) = @1 Ry if and only if for all m, n < m < |w|, such that
(w,m) # o, there exists n < i < m such that (w,i) & ¢1. The release op-
erator requires its second argument to be true, a condition that is released as
soon as the first argument becomes true.

Introducing the release operator allows to construct, for any LTL-formula ¢,
an equivalent positive formula v, i.e. a formula that does not use the negation.
The formula 1) is constructed by induction on ¢ and is of size O(|¢)|):

(1) If ¢ = p, where a is a letter, ¢ = .
(2) If ¢ = —p, where a is a letter, y = \/ p,.
beA\{a}

(3) If ¢ = @1 V g then 1) = 1 V 1)y where 11 and 1), are respectively
constructed from ¢; and 5.

(4) If ¢ = = (@1 V o) then ¢ = Yy A 1y where 1 and 1)y are respectively
constructed from —p; and —,.

(5) If ¢ = w1 A g then b =)1 A by where 1 and 1), are respectively
constructed from ¢; and ¢,.

(6) If ¢ = =(p1 A pg) then ¢ = 1)1 V 1, where ¢y and 1)y are respectively
constructed from —p; and —ps.

(7) If ¢ = Xy then ¢ = X¢b; where 9y is constructed from ¢;.

(8) If ¢ = =Xpq then ¢ = X1); where ¢ is constructed from —;.

(9) If ¢ = @1 Ugpy then ¢ = 1), Uthy where ¢; and v, are respectively
constructed fromep; and s.

(10) Tf ¢ = =(p1 U gy) then ¢ = 1b; Ry where ¢y and 1)y are respectively
constructed from —p; and —,.

(11) If ¢ = 1 Ry then ¢ = 1y R1py where ¢); and 1)y are respectively
constructed from ¢y and 5.

(12) If ¢ = =(¢1 Ryy) then ¢ = 1y Uty where ¢ and 1)y are respectively
constructed from —p; and —s.

For example if ¢ = =[p, U(py VXp,)] and A = {a, b, ¢}, the associated formula
is ¥ = (po V pe) R[(pa V pc) A X(pp V pc)]

34

8.8 From LTL-formulas to equivalent alternating automata

Given a positive LTL-formula ¢, there exists an alternating automaton A, =
(Q, A, 0,q, F), whose number of states is linear in the size of ¢ recognizing
the language L, (see also [15]).

(1) The alphabet A of A, is the alphabet of the words on which ¢ is eval-
uated.

(2) The states of A, are the sub-formulas appearing in ¢ and their negations
P (written without using the negation as described in Section 8.2) plus
the constants # (True) and ff (False).

(3) 00 =

(4) F={#}U{p= iR | ¢ € Q).

(5) 0 is inductively defined by the following rules:

(i) o(#,a) =t and §(ff,a) = Jff for any letter a.

. t ifa=0,
(i) d(pa,b) = {

ff otherwise.
(1 V @a,a) = 0(p1,a) V §(pa, a).
(iv) 6(p1 A pa,a) = (g1, a) A d(pa, a).
(v) d(X¢,a) = ¢ for all a € A.
(vi) (w1 U, a) = 6(p2,a) V [6(p1,a) A (01 U po)].
(vii) 0(p1 Repa,a) = (pa,a) A [6(p1,a) V (o1 Rps)] = [6(p2,a) A
6(p1,a)] V [0(p2,a) A (01 Rpy)].

(iii) &

) 8
5
5

We have the following result what is shown in [15]. The detailed proof can be
found in appendix.

Theorem 14 Let ¢ be a positive LTL-formula and let A, be the automaton
associated with p. Then L, = L(A,).

8.4 From GTL-formulas to equivalent alternating automata

As alternating automata allow to recognize all regular languages, a natural
investigation consists in associating an alternating automaton to formulas us-
ing modular or group operators. These operators were introduced in Sections
5.1 and 5.2. The modular operators were defined as past temporal operators.
As we want to decide whether or not a temporal formula can be satisfied,
we will work with the dual operators, as defined for LTL. Therefore to decide
whether a MTL-formula or a GTL-formula can be satisfied it suffices to decide
the same problem for the dual formula.

35

We thus give the definitions of the modular and group temporal operators for
LTL (we will not change the notation with past temporal logic as no confusion
can be made here):

e With any pair (/, k) of integers such that 0 < [< k we associate a unary
modular operator Mod, 5 such that for any word u, we have (u, 1) = Mod, x(¢)
if and only if, modulo k, there are [positions j > i such that (u, j) = ¢.

e With any pair (g, G), where G is a group and g is an element of G, we asso-
ciate a group operator I'y ; that always binds |G|—1 formulas. The elements
of G must have been ordered, say as g, gs,..., 9, = id (the last element
must be the identity). Let u be an element of A™ and let ¢y, @q, ..., @, 1
be logical formulas. With each j, 1 < j < |u| we associate an element of G,
denoted (@1, pa ... @4-1){u,), defined by:

<Q01a3027---agoq*]><uaj> = Gk

where kK = min{l | (u, j) |E ¢} with the convention that min() = q.
Finally we have (u,i) = Tya{¢1, @2, .., pq-1) if and only if

ul
[I{e1, 00, i 0g-1){u,5) = g
j=i
LTL extended by the modular operators will be denoted as MLTL. The ex-

tension by the group operators will be denoted GLTL. We have the following
extension of Theorem 14:

Theorem 15 Let ¢ be a GLTL-formula. Then there exists an alternating
automaton A, such that L, = L(Ay). In addition, the number of states of A,
s quadratic in the size of .

Proof:

The modular operator is a special case of group temporal operators using
only cyclic groups (Z/kZ,+), as (u,i) = Mod,;(¢) if and only if we have
(u,) = Ly wz oo, [, ff, - - -, Jf) Therefore it suffices to consider the general
case of GLTL.

To keep working only with negation-free formulas, we have to explain, as
in Section 8.2, how to construct a positive formula ¢ from a formula ¢ =
Ly a{e1, @a, ..., pq—1). Here it suffices to take:

1/) - \/ Fg’,G<(101; 25 P Soq71>
g'#g

The alternating automaton A, = (Q, A, 0, go, F') recognizing L, is defined
almost as in Section 8.3:

36

(1) The alphabet A of A, is the alphabet of the words on which ¢ is eval-
uated.

(2) The states of A, are the sub-formulas appearing in ¢ and their negations
® (written without using the negation, as described in Section 8.2) plus
the constants # (True) and ff (False). In addition, for any sub-formula
Lyal(er, 92, ..., ¢4 1) appearing in ¢ we add, for any ¢’ # g, the state
Ly (1,92, ..., @04-1) and its “positive negation”.

(3) @ = ¢

(4) F={t}u{o =1 Ry |0 € Q}U{p =Tiac(p1,¥2,....04-1) | ¥ € Q}.

(5) 0 is inductively defined by the following rules:

(i) o(#,a) =t and §(ff,a) = ff for any letter a.

. t ifa=0,
(i) 6(pa, b) = .
ff otherwise.
(iii)
)

(01 Vpa,a) = d(p1,a) V (g2, a).

(iv) 01 Ao, a) = 0(¢p1,a) Ad(p2, a).

(v) d(X¢,a) = ¢ for all a € A.

(vi) 0(¢1 Uz, a) = 6(p2,a) V [6(¢1,a) A (91 U p3)]

(vii) d(p1 Ry, a) = 6(p2,a) A[6(p1,a) V (01 Rea)] = [6(02,0) A
(1, a)] V [0(p2,a) A (01 R)]

(viii) 6(Mody,(p),a) = [0(p,a) A Modi_1,(¢)] V [0(5,a) A Mody ()]

3
J
J
J

for all a € A.
(IX) 6(FQ,G<(;017 @2, .-, §0q71>7 CL) = \/ [A(ZJ a)/\ng,G«Ola @2, .-, @q71>]=
9i9;=9
where A(i, @) = (@7, 0) AS(F2, a) A+ - AD(FTT,) AS(pr, @), where
pg = t.

where (viii) is in fact a special case of (ix).

The number of states of A, is effectively linear in the size of ¢ times the sum
of the cardinalities of the groups used in modular operators appearing in ¢
and as this sum is linear in the size of ¢, it follows that the number of states
of A is quadratic in the size of .

The proof is the same as for Theorem 14. We reason by induction on the for-
mula ¢. The only new case to consider is the one of ¢ = T'y ¢ (¢1, @2, ..., ©4-1).
Any run of A, on a non-empty word u whose first letter is a; has the following

form:

37

a1 ai
a1 a1

T T;, - T; T

where T'is a run of Ay, ¥; = Iy, a(p1, 02, ... @4-1) and g;, g; = g, and where
any tree of the following form is a run of A, for k =1...7;, where v, = -~y
if £ < iy and v;, = ¢;, (recall that ¢, = #):

¥
.

AN

By induction hypothesis, this run is accepting if and only if (u,1) E —¢; A
—pa A A= 1 Awiy and (u,2) = Ty a(@1, @2, .. ., pg-1) that is if and only
if <Q01a P2y cpq71><“‘7 1> = Gi, and ('U/, 2)): ng,G<90]a P2y 80q71>-

[terating this construction shows that with an accepting run of A, on a word
u = ay - - - a, One can associate a sequence g;,, . . . gi,., gi,.,, of elements of GG such
that g = gi,Gi - - - 9inGinyr, for any k = 1...n, (@1, 02,..., 94 1)(u, k) = gi,
and such that (u,n) | Ty, (1, ¢2,....9e-1). But, as the unique final
state of the form I'y, ¢(@1, @2, ..., 9q-1) is Tig—g, (@1, 02, - - -, q-1) it follows
that g; ., must be equal to the neutral element g, of G' and therefore that
9= 9i,Yi, - - - gi,, that is (u,n) = ¢. Conversely, with a word satisfying ¢ it is
easily seen how to construct an accepting run in A, what shows that we have
L(A,) = L, and achieves the proof.

Example 3 Consider the MTL-formula ¢ = [Mod; 35(Xp, V p)] A [pa U p]
and let us describe the transition function ¢ associated with A,:

38

q d(q,a) d(q,b)
Pa i If
Db I i
XPa Pa Pa
Xpa = Xps Do Do
Pa Upy Pa Upy it
Xpa V po Pa t
Xpa V oy = Xpy A pa Db ff
1 = Mody 3(Xpa V pp) (Pa N p0) V (Db A 1) Yo
@2 = Mods3(Xp, V pp) (Pa N 1) V (pn A 2) Y1
o = Modg3(Xp, V pp) (Pa N p2) V (0p A 90) P
@ [Pa A po A (Pa Ups)] V [ps Aor Apa Upn)l || 0

The alternating automaton A, is represented in Figure 1. In fact, we represent
only the reachable part and represent in dash a copy of p, and a copy of p, to
improve readability.

8.5 FEmptiness problem for alternating automata and its consequences

In Sections 8.3 and 8.4 we have shown how to associate with a GLTL-formula
¢ an alternating automaton A, recognizing exactly the models of ¢. Therefore
to decide satisfiability for GLTL-formulas (or for GTL-formulas) it suffices to
know how to decide emptiness for alternating automata. We have the following
result:

Theorem 16 Let A be an alternating automaton, then testing whether L(A) =
0 can be realized in polynomial space.

Proof:

As non-deterministic polynomial space is equal to deterministic polynomial
space, we give a non-deterministic algorithm. To prove the non-emptiness of
the language recognized by A we only have to construct an accepting run of
A,. The algorithm starts with the initial state ¢ and guesses a letter a; and
a minimal model for 6(y,a;) (seen as a boolean positive formula). Then, it
guesses the next letter a; and for any state appearing in the minimal model, it
guesses a minimal model for its image by 0 reading as and therefore computes

39

Fig. 1. A, for ¢ = [Mod, 3(Xpy V pp)] A [pa U py)

a set of states modeling all the preceding formulas (the algorithm works with
a set of states and therefore it only needs a linear space to recall it) and so on.
Finally, it decides to stop and accepts if all the actual states are final states.

To guess a minimal model of a boolean positive formula it suffices to explore
all the possible valuations what gives the size of a minimal model and then
to guess one of the minimal models. This can be made in polynomial space

40

and therefore the entire algorithm only needs polynomial space. In fact, the
algorithm could just guess a model without verifying it is a minimal one, as by
non determinism there exists a run of the algorithm where all guessed models
are minimal.

We therefore have the following corollary:

Corollary 2 Deciding whether an GLTL-formula (or a GTL-formula) is sat-
isfiable is a PSPACE-complete problem.

Proof:

The PSPACE membership is a consequence of Theorem 15 and Theorem 16.
The PSPACE-hardness is a consequence of the PSPACE-hardness for the same
problem restricted to PTL-formulas [12].

9 Conclusion

Using vectorial algorithms we have given new characterizations of star-free
languages (as the class of PTL-vectorial languages), of solvable languages (as
the class of MTL-vectorial languages) and of regular languages (as the class of
GTL-vectorial languages). However, even in the easiest case, that is for star-
free languages, there is no general efficient method to compute an algorithm
associated with a given language. Nevertheless, since vectorial languages are
closely related with temporal logic this is not that surprising at all, as the
computation of an algorithm associated with an automaton is at least as dif-
ficult as finding a temporal logic formula associated with a given language,
which is exponential with regard to the automaton.

We have characterized subsets of vectorial operations by equivalent sets of
temporal logic operators.

It is interesting to note that vectorial algorithms provide a more detailed
information about an automaton than logical formulas without any loss in
computational complexity and in the complexity of the operators used in both
models.

Finally, we have shown that deciding the validity of a GTL-vectorial algorithm
is PSPACE-complete. As a byproduct we have obtained that the extension of
LTL with group operators does not change the complexity of the satisfiabil-
ity problem, which is still PSPACE-complete, and we have given an effective
algorithm deciding this question.

41

10 Appendix: proof of Theorem 14

The aim is to prove that if ¢ is a positive LTL-formula, then we have that
L, = L(A,), where A, is the automaton associated with .

For this we reason by induction on the formula ¢:

(1) If ¢ = p, then A, is the following alternating automaton:

and therefore it easily seen that A, recognizes the language: L(A,) =
{ow | w e A*} = L,.
(2) If ¢ = ¢1 V o then any run of A, has the following form:

2
aq

where a; is the first letter of the word and where one of the following
runs is a run of A, for the first one and of A, for the second one:

©1 P2
ai ai

Therefore, we have that L(A,) = L(A,,) U L(A,,). By induction hy-
pothesis we thus have that L, = L(A,).

(3) If ¢ = ¢1 A o then any run of A, has the following form:

42

¥1
a a

T 15

where a; is the first letter of the word and where the following runs are
runs of A, for the first one and of A, for the second one:

¥1 Y2
a a

Therefore, we have that L(A,) = L(A,,) N L(A,,). By induction hy-
pothesis we thus have that L, = L(A,).

(4) If ¢ = Xy then A, has the following form:

ae A /
—~(o)4,

where A/ is equal to A,, except that ¢, is not an initial state. The
outgoing transitions from ¢ to Afm go to the state ;.

Therefore, we have that L(A,) = |J aL(A,,), and the induction hy-

acA
pothesis concludes this case: L, = L(A,).

(5) If o = 1 Ugyy. A run for A, on a non empty word u whose first letter
is a; can have two different forms:

451 451
aq

T T3

where Tj is a run of A, and where the following runs are respectively a
run of A, for the first one and a run of A,, for the second one:

43

¥1 P2
ai ai

By induction hypothesis, the first run is an accepting run for « if and only
if (u,1) = 9 and the second one is accepting if and only if (u,1) | ¢
and T3 is an accepting run of A,. As the root of T3 is ¢ = ¢1 U ¢y and as
@ is not a final state this implies that T3 cannot be reduced to its root.
Therefore, by an easy induction on the length of wu, it follows that w is
recognized by A, if and only if there exists i, 1 < ¢ < |u| such that for
all j, 1 < j < i we have (u,j) = 1 and (u,i) = @2 (This means that we
cannot have always the second kind of run). Therefore, u is recognized
by A, if and only if (u, 1) |= ¢. This implies that L, = L(A,).

(6) If ¢ = ¢1 Rs. A run for A, on a non empty word u whose first letter
is a; can have two different forms:

¥ ¥
a1 a1 a1 a

TQ T] T2 T3

where Ty is a run of A, and where the following runs are respectively a
run of A, for the first one and a run of 4,, for the second one:

¥1 P2
ai ai

By induction hypothesis, the first run is an accepting run for u if and
only if (u,1) = ¢y and (u, 1) = ¢1. The second one is accepting if and
only if (u,1) = @9 and Tj is an accepting run of A,. As the root of Ty is
@ and as ¢ = 1 R, is a final state this implies that T3 can be reduced
to its root. Therefore, by an easy induction on the length of u, it follows
that u is recognized by A, if and only if one of the following cases is
true

(i) For all i, 1 <i < |ul, (u,i) = pa.
(ii) There exists i, 1 < ¢ < |u| such that for all j, 1 < j < i we have

44

(u,j) = @2 and (u,i) | @1 (The condition on ¢y to be satisfied is
released at position i as ¢, is satisfied).

This exactly means that u is recognized by A, if and only if (u,1) = .
This implies that L, = L(A,).

This induction proves that for any LTL-formula ¢ we have that L, = L(A,).

Acknowledgments

I gratefully acknowledge the many helpful suggestions of Anca Muscholl during
the preparation of the paper. I also wish to express my thanks to Jean-Eric
Pin for suggesting many stimulating ideas.

References

1]

2]

M Arfi. Opérations polynomiales et hiérarchie de concaténation. Theoretical
Computer Science, 91:71-84, 1991.

A. Baziramwabo, P. McKenzie, and D. Therien. Modular temporal logic. In 1/th
Symposium on Logic in Computer Science (LICS’99), pages 344 351. IEEE,
1999.

A. Bergeron and S. Hamel. Cascade decomposition are bit-vector algorithms.
In Implementation and Application of Automata, 6th International Conference,
CIAA 2001, Pretoria, South Africa, July 23-25, 2001, Revised Papers, volume
2494 of Lecture Notes in Computer Science, pages 13 26. Springer, 2002.

A. Bergeron and S. Hamel. Vector algorithms for approximate string matching.
International Journal of Foundations of Computer Science, 13(1):53-66, 2002.

J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal logic
for finite words. Journal of Computer and System Sciences, 46:271 294, 1993.

J.A. Kamp. Tense Logic and the Theory of Linear Order. Ph.d. thesis,
University of California, Los Angeles, 1968.

R. McNaughton and S. Papert. Counter-free Automata. MIT Press, 1971.

J.-E. Pin. Varieties of formal languages. North Oxford, LondonPlenum, New-
York, 1986. (Translation of Variétés de langages formels).

J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors,
Handbook of formal languages, volume 1, chapter 10, pages 679-746. Springer
Verlag, 1997.

45

[10] Jean-Eric Pin and Pascal Weil. Polynomial closure and unambiguous product.
Theory Comput. Systems, 30:1 39, 1997. version complete de [10].

[11] M.P. Schiitzenberger. On finite monoids having only trivial subgroups.
Information and Control, 8:190-194, 1965.

[12] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733-749,
July 1985.

[13] H. Straubing. Families or recognizable sets corresponding to certain varieties
of finite monoids. Journal of Pure and Applied Algebra, 15:305-318, 1979.

[14] H. Straubing. Finite automata, formal logic, and circuit complezity. Birkhiuser,
1994.

[15] M. Y. Vardi. An automata-theoretic approach to linear-temporal logic. In
F. Moller and G. Birtwistle, editors, Logics for concurrency, number 1043 in
Lecture Notes in Computer Science, pages 238 266. Springer, 1996.

[16] Th. Wilke. Classifying discrete temporal properties. Habilitation thesis, Kiel,
Germany, 1998.

[17] Th. Wilke. Classifying discrete temporal properties. In STACS 99, number 1563
in Lecture Notes in Computer Science, pages 32-46, Berlin, 1999. Springer.

46

