
HAL Id: hal-00012656
https://hal.science/hal-00012656

Submitted on 26 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vectorial Languages and Linear Temporal Logic
Olivier Serre

To cite this version:
Olivier Serre. Vectorial Languages and Linear Temporal Logic. 2nd IFIP International Conference
Theoretical Computer Science (TCS@2002), 2002, Montreal, Canada. pp.576-587. �hal-00012656�

https://hal.science/hal-00012656
https://hal.archives-ouvertes.fr

VECTORIAL LANGUAGES AND LINEAR

TEMPORAL LOGIC

Olivier Serre

LIAFA, Université Paris VII

2, place Jussieu, case 7014

F-75251 Paris Cedex 05

serre@liafa.jussieu.fr

Abstract

Determining for a given deterministic complete automaton the se-
quence of visited states while reading a given word is the core of im-
portant problems with automata-based solutions, such as approximate
string matching. The main difficulty is to do this computation effi-
ciently, especially when dealing with very large texts. Considering words
as vectors and working on them using vectorial (parallel) operations al-
lows to solve the problem faster than in linear time using sequential
computations.

In this paper, we show first that the set of vectorial operations needed
by an algorithm representing a given automaton depends only on the
language accepted by the automaton. We give precise characterizations
of vectorial algorithms for star-free, solvable and regular languages in
terms of the vectorial operations allowed. We also consider classes of
languages associated with restricted sets of vectorial operations and re-
late them with languages defined by fragments of linear temporal logic.

Finally, we consider the converse problem of constructing an automa-
ton from a given vectorial algorithm. As a byproduct, we show that the
satisfiability problem for some extensions of linear-time temporal logic
characterizing solvable and regular languages is PSPACE-complete.

Keywords: Parallel automata simulation, linear temporal logic and extensions

Introduction

Given a deterministic complete automaton and an input word, a classical
question is to decide whether or not the automaton accepts the word. A more
detailed information is the sequence of visited states while processing the word.
Computing this sequence is the core of important problems such as approximate
string matching [8]. An elegant way to solve this problem consists in simulating
a dynamic programming approach by a finite, deterministic automaton [2] on

1

2

the input sequence. However, approximate string matching is generally used on
very long sequences (as genomic ones) and the natural algorithm, which is linear
in the length of the input word, is not performing enough. A natural solution
to accelerate the computation is to consider words as vectors and therefore to
compute the sequence of visited states using vectorial operations, that can be
efficiently achieved using parallelism [8].

In this paper, we are interested in vectorial algorithms, that were introduced
and investigated by A. Bergeron and S. Hamel in [2, 3]. Such an algorithm
computes the sequence of visited states while reading a word using a constant

number (independent of the length of the word) of vectorial operations. The
existence of an algorithm for a given automaton depends on the automaton and
on the kind of vectorial operations we allow. The problem can also be studied
from the language point of view: can we find a deterministic complete automa-
ton recognizing a given language and an associated vectorial algorithm? We
first show that the existence of a vectorial algorithm depends on the languages
only. Then we exhibit a very tight connection between temporal logic opera-
tors and vectorial operations. This relation will motivate the notion of PTL-
vectorial algorithm, where PTL stands for Past Temporal Logic. Moreover, we
obtain an alternative proof of the equivalence between star-free languages and
vectorial algorithms (Note that the inclusion of star-free languages in the class
of PTL-vectorial languages was established in [3]. Hence, we show here that
the converse also holds). Then, we describe extensions of vectorial algorithms,
first to capture a larger subclass of regular languages, the solvable ones, and
finally for the whole class of regular languages.

Finally, we consider the converse problem, that is we want to check for a
given vectorial algorithm whether there exists an automaton associated with
it. To solve this problem, we show how to decide the satisfiability of formulas
belonging to extensions of linear temporal logic introduced in [1]. Our con-
structions are based on alternating automata. Proofs omitted in the paper can
be found in [13].

1. Notation and Definitions

1.1. Vectorial Algorithms

Throughout the paper, vectors are noted in bold

1

2

3

a

b

b

a

ba

characters (e.g. u) and are considered as words.
Conversely, vectorial operations can be applied to
words, considering them as vectors. Therefore, a
word u is associated with a canonical vectorial rep-
resentation u and a vector v is associated with a
canonical word representation v.

Let A = (Q, A, ·, q0, F) be a deterministic com-
plete automaton, where A is a finite alphabet, Q
the finite set of states of A, q0 the initial state,

F the set of finite states and · the transition function Q × A → Q of A.

Vectorial Languages and Linear Temporal Logic 3

With each input vector u = a1a2 · · · am ∈ A∗ we associate the output vector
r = r1r2 · · · rm ∈ Q∗ representing the sequence of states reached reading u
(we omit the leading initial state). Therefore, u and r have the same length.
For instance, consider the automaton given in figure below. With the input
vector u = bbaabbbababab we associate the output vector r = 2311233121212.
A vectorial algorithm for A consists of a sequence of vectorial operations of
constant length (i.e., a straight-line expression of length which is independent
on u) computing r from u.

Given a word u = a1a2 · · ·am, we consider for every letter a ∈ A, the
boolean vector (u = a) = b1 · · · bm where, for each i, bi = 1 if ai = a an bi = 0
otherwise. Hence, (u = a) is the characteristic boolean vector of the letter a
in the word u. Just as for words, for any state q ∈ Q, with an output vector
r = r1r2 · · · rm we associate the boolean vector (r = q) = (r1 = q) · · · (rm = q)
that is, the characteristic vector of state q. For example, (bbaabbbababab =
a) = 0011000101010 and (2311233121212 = 1) = 0011000101010.

The sequence (u = a)a∈A (respectively, the sequence (r = q)q∈Q) is an equiv-
alent boolean representation for the input word u (respectively for the output
vector r). In order to work only with boolean vectors, the vectorial algo-
rithms presented in this paper compute the sequence of characteristic vectors
(r = q)q∈Q from the sequence of characteristic vectors (u = a)a∈A.

Let Ω be a class of vectorial operations. Vector algorithms based on op-
erations from Ω and on the bit-wise logical operations (combinations of ∨, ∧
and ¬) are called Ω-vectorial algorithms. A deterministic complete automaton
is called Ω-vectorial if there is an Ω-vectorial algorithm computing for every
u ∈ A∗ the sequence (r = q)q∈Q from the sequence (u = a)a∈A. Finally, a lan-
guage is Ω-vectorial if it is recognized by a deterministic complete Ω-vectorial
automaton.

Given a class Ω of vectorial operations, we write VA[Ω] for the set of Ω-
vectorial algorithms and VL[Ω] for the set of Ω-vectorial languages.

Proposition 1 below shows that minimization preserves the property of being
an Ω-vectorial automaton. Therefore a language is Ω-vectorial if and only if its
minimal automaton is Ω-vectorial (by minimal automaton we always mean the
minimal complete automaton). This property is very useful, because to decide
whether or not a language is Ω-vectorial, it suffices to know how to decide
whether or not a given automaton (the minimal one) is Ω-vectorial.

Proposition 1 The property of being Ω-vectorial is preserve by automaton

homomorphisms. Therefore if a deterministic complete automaton A is Ω-

vectorial, then its minimal automaton Amin is also Ω-vectorial.

1.2. Past Temporal Logic

Given a class Ω of vectorial operators our aim is to give a characterization of
Ω-vectorial languages that allows us to decide whether or not a given language
is Ω-vectorial. For this, we use characterizations in terms of past temporal logic
PTL [6]. We first recall the syntax of PTL:

4

PTL-formulas are constructed inductively according to the following rules:

(1) For every a ∈ A, pa is a PTL-formula.

(2) If ϕ1 and ϕ2 are PTL-formulas, so are ϕ1 ∨ ϕ2, ¬ϕ1, Yϕ1 and ϕ1 Sϕ2.

Semantics is defined by induction on the rules. Given a word w ∈ A+ and an
integer n ∈ {1, 2, . . . , |w|}, we define that “w satisfies ϕ at position n”, denoted
(w, n) |= ϕ, as follows:

(1) (w, n) |= pa if the nth letter of w is a.

(2) (w, n) |= ϕ1 ∨ ϕ2 if (w, n) |= ϕ1 or (w, n) |= ϕ2.

(3) (w, n) |= ¬ϕ1 if (w, n) 6|= ϕ1.

(4) (w, n) |= Yϕ1 if n > 1 and (w, n − 1) |= ϕ1.

(5) (w, n) |= ϕ1 Sϕ2 if there exists m ≤ n such that (w, m) |= ϕ2 and, for
every k such that m < k ≤ n, (w, k) |= ϕ1.

With each PTL-formula ϕ, we associate the language Lϕ of finite words
satisfying ϕ as Lϕ = {u ∈ A+ | (u, |u|) |= ϕ}. Given a class Λ of logical
operators we write TL[Λ] for the set of temporal formulas in which modalities
other than ones from Λ do not occur. A language L ⊆ A∗ is Λ-definable if there
exists a formula ϕ ∈ TL[Λ] such that L = Lϕ. The set of Λ-definable languages
will be denoted by L[Λ].

1.3. Vectorial Languages and Temporal Logic

We will show that there exists a tight link between languages defined by
logical conditions and languages defined by “equivalent” vectorial conditions.
But, whereas logical satisfiability depends exclusively on the language, vectorial
characterizations seem to be closely related with a specific automaton. Vec-
torial characterizations are stronger than logical characterizations because in
order to have a vectorial algorithm for a given automaton one must be able to
characterize any state, hence any language recognized by the automaton ob-
tained by setting a given state as unique final state. For a logical formula one
just needs to exhibit the set of final states needed for the given language.

But under some assumptions, logical fragments and vectorial fragments de-
fine the same class of languages. Let us be more explicit. Given a set Ω of
vectorial operations and a set Λ of logical operators, we will say that Ω and Λ
are equivalent if they verify the following conditions:

(1) To any vectorial algorithm Φ using only operations in Ω one can associate
a formula ϕ using only operators in Λ such that for any word u and any
positive integer i smaller than |u|, the i-th entry of the vector obtained
by applying Φ to u is 1 if and only if (u, i) |= ϕ.

(2) To any formula ϕ using only operators in Λ, one can associate a vec-
torial algorithm Φ using only operators in Ω such that for any word
u = u1 · · ·um, the computation of the binary vector vϕ = v1 · · · vm,
where vi = 1 ⇔ (u1 · · ·ui, i) |= ϕ, is performed by the algorithm Φ.

Vectorial Languages and Linear Temporal Logic 5

Several fragments [4, 19, 20] and extensions [1] of temporal logic have been
studied. Therefore, in order to characterize for a given class Ω of vectorial
operations the class of Ω-vectorial languages, a solution consists in finding an
equivalent fragment in temporal logic. We have to find a condition on two
equivalent sets Ω and Λ to have VL[Ω] = L[Λ].

A class Λ of logical operators will be called finally stable if for every language
L that belongs to L(Λ), any language recognized by an automaton obtained
from the minimal automaton of L by letting some arbitrary state to be the
unique final state, belongs to L(Λ).

For example, any set Λ such that L(Λ) is a variety of languages (see [9, 10]
for the definition of variety) of languages is finally stable. Formally, if L is a
language in L(Λ) and A its minimal automaton, any automaton A′ obtained
by modifying the final states of A recognizes a language L′ of L(Λ) because the
syntactic monoid of A′ divides the syntactic monoid of A.

The notion of final stability gives us the following lemma:

Lemma 1 Let Ω be a class of vectorial operations and let Λ be an equivalent

class of logical operators. Then Λ is finally stable if and only if VL(Ω) = L(Λ).

2. A Vectorial Characterization of Star-Free
Languages

To make our algorithms precise we have to state which vectorial operations
are allowed. As in [3], we first consider a basic class of vectorial operations:

• Bit-wise logical operations such as ∨, ∧, ¬ and the atomic formulas
(u = a) = (u1 = a) · · · (um = a) for each a ∈ A.

• Right shift: ↑i u1 · · ·um = iu1 · · ·um−1, i ∈ {0, 1}.

• Binary addition between two vectors of same length: we perform the
usual binary addition from left to right but we do not keep the highest
bit (carry) if the length of the result exceeds the initial vectors’ ones. For
example ↑0 110101 + 101011 = 110100.

Vectorial algorithms using only these operations are called in this paper
PTL-vectorial algorithms. Recall that PTL stands for Past Temporal Logic, as
we show that PTL-vectorial operations and PTL operators are equivalent:

Theorem 1 The class {↑0, +} of vectorial operation is equivalent to the class

{Y,S} of logical operators.

The main point of the proof is to use the operator S in order to express the
carry bit, and thus addition of vectors.

Corollary 1 A regular language is PTL-vectorial if and only if it is star-free.

6

3. Beyond Star-Freeness

3.1. Solvable Languages

An alternative proof for PTL-vectorial languages being star-free, is based on
the following result:

Proposition 2 Let u be a vector and let Φ be a PTL-vectorial algorithm. If

u has period p ∈ N then the result Φ(u) of Φ applied on u has period p.

Hence, to provide characterizations for families of regular languages that
strictly contain the star-free languages we need to introduce vectorial opera-
tions, that do not preserve the period. For any integers k, l such that 0 ≤ l < k,
we define the modular operation Sl,k by

Sl,k(x1x2 · · ·xm) = (s1 · · · sm) where si =

1 if

i
∑

j=1

xj = l (mod k),

0 otherwise.

Vectorial algorithms using only the PTL-vectorial operations plus the mod-
ular operations Sl,k will be called MTL-vectorial algorithms. A language is an
MTL-vectorial language if there is an MTL-vectorial algorithm for its minimal
automaton.

Consider now the following extension of temporal logic, called modular tem-
poral logic (MTL) [1]: by modular temporal logic we mean past temporal logic
augmented with the unary operators Modl,k for integers 0 ≤ l < k. The new
modular operators have the following natural semantics: given an MTL for-
mula ϕ, we have (u, i) |= Modl,kϕ if, there are l positions j, 1 ≤ j ≤ i (modulo
k) such that (u, j) |= ϕ.

It was shown in [1], that MTL characterizes the variety of solvable languages.
A regular language is called solvable if its syntactic monoid contains no non
solvable group [15].

Theorem 2 ([1]) A regular language is MTL-definable if and only if it is solv-

able.

Therefore we have the following result:

Theorem 3 The class {↑0, +}∪{Sl,k| 0 ≤ l ≤ k, k ∈ N} of vectorial operations

is equivalent to the finally stable class {Y,S} ∪ {Modl,k, 0 ≤ l ≤ k} of logical

operators.

We easily obtain now a vectorial characterization of solvable languages:

Corollary 2 A regular language is MTL-vectorial if and only if it is solvable.

Vectorial Languages and Linear Temporal Logic 7

3.2. Regular Languages

MTL-vectorial algorithms do not characterize all regular languages. There-
fore, we propose an extension to MTL-vectorial algorithms, which we denote
as GTL-vectorial algorithms, which captures all regular languages.

For this we consider an extension of modular temporal logic introduced in
[1] and construct an equivalent class of vectorial operations. This extension of
temporal logic is obtained by augmenting modular temporal logic with group
temporal operators Γg,G for any finite group G and any element g ∈ G. The
operator Γg,G always binds |G| − 1 formulas.

Let us now explain the semantics of Γg,G for a given finite group G and an
element g ∈ G. We first have to order the elements of the group G (this order
will not be modified afterwards), say as g1, g2, . . . , gq = id. Let u be an element
of A+ and let ϕ1, ϕ2, . . . , ϕq−1 be GTL-formulas. With each j, 1 ≤ j ≤ |u| we
associate an element of G, denoted 〈ϕ1, ϕ2 . . . ϕq−1〉〈u, j〉, defined by:

〈ϕ1, ϕ2, . . . , ϕq−1〉〈u, j〉 = gk

where k = min{l | (u, j) |= ϕl} with the convention that min ∅ = q.
Finally, we define (u, i) |= Γg,G〈ϕ1, ϕ2, . . . , ϕq−1〉 to mean that:

i
∏

j=1

〈ϕ1, ϕ2, . . . , ϕq−1〉〈u, j〉 = g

It was shown in [1] that a language is expressible in group temporal logic if and
only if it is regular:

Theorem 4 ([1]) A language is GTL-definable if and only if it is regular.

Thus, to have a vectorial characterization of all regular languages it suffices
to find vectorial operations equivalent to Γg,G for all finite groups G. Let G =
{g1, g2, . . . , gq = id} be a finite group of cardinality q and let vg1

,vg2
, . . . ,vgq−1

be q−1 vectors of same length m. With each position j, 1 ≤ j ≤ m we associate
an element of G, denoted G(〈vg1

,vg2
, . . . ,vgq−1

〉, G, j) and defined by:

G(〈vg1
,vg2

, . . . ,vgq−1
〉, G, j) = gk

where k = min{l | vj
gl

= 1} (vj
gl

representing the j-th bit of vector vgl
) with

the convention that min ∅ = q.
Finally, we introduce the vectorial operator Pg,G defined by:

Pg,G(vg1
,vg2

, . . . ,vgq−1
) = (s1 . . . sm)

with si =

1 if

i
∏

j=1

G(〈vg1
,vg2

, . . . ,vgq−1
〉, G, j) = g,

0 otherwise.

8

Remark 1 One can note that the modular operations are special cases of
group operations that only use cyclic groups (Z/kZ, +), as we have Sl,k(x) =
Γl,(Z/kZ,+)(x,0, . . . ,0), where the elements of (Z/kZ, +) are ordered as (1, 2, . . . , k).

By construction we have the following result:

Theorem 5 The class {↑0, +} ∪ {Pg,G | g ∈ G} of vectorial operations is

equivalent to the finally stable class {Y,S}∪{Γg,G | g ∈ G} of logical operators.

Therefore, we obtain a vectorial characterization for regular languages:

Corollary 3 A language is GTL-vectorial if and only if it is regular.

4. Reconstructing an Automaton From a
Vectorial Algorithm

In the preceding sections we determined a vectorial algorithm from a given
automaton. We now consider the converse problem, that is we want to check
for a given vectorial algorithm whether there exists a deterministic complete
automaton associated with it (and determine an automaton, if this is the case).
This question becomes interesting for instance when we modify a given vectorial
algorithm (associated with a deterministic automaton) and we want to check
afterwards that the new algorithm is equivalent to the old one. We will show
that the complexity of this test is actually the same as testing the satisfiability
of a GTL-formula i.e. PSPACE-complete.

Vectorial algorithms are associated with deterministic complete automata
and therefore depend on the initial state, and not only on the underlying labeled
graph structure of the given automaton. We will thus suppose that the initial
state is part of the input.

To begin with, let us call a valid vectorial algorithm an algorithm for which
there exists a corresponding deterministic complete automaton. Let us explain
how to construct such an associated automaton. Let A = {a1, . . . , ak} be the
alphabet of the automaton and let n be the number of states. We will identify
the states with the integers 1 . . . n. To compute an associated automaton AΦ

from a given vectorial algorithm Φ we perform a depth-first search of AΦ, that
is we start from the initial state q0 and compute the states that can be reached
by reading a letter from q0 and then we repeat this step with the new states
found so far. We are done when we have explored all reachable states. With this
method we explore all the transitions of the accessible part of the automaton.
We just have to explain how to compute the reachable states from a given
state. In our algorithm we maintain a vector, state direction, giving for any
encountered state q a word u leading from the initial state to q. Therefore, when
considering a state q, and a letter a to compute the transition from q reading
a we have to apply Φ to the word ua and consider the |u|+1 component of the
result, denoted Φ|u|+1(ua).

The algorithm for constructing AΦ is the following one:

Vectorial Languages and Linear Temporal Logic 9

Variables and initialization:
δ: (n × k)-vector.
new states = [1] : last-in-first-out structure.
known states = {1} : Set structure.
state direction = [ε, ε, . . . , ε]: n-vector.

Main loop:
While new states 6= ∅ Do
Let q =Delete element from new states.
Let u = state direction.(q).
Let h = |u|.
For i = 1 to k Do
Let q′ = Φh+1(uai).
Let δ(q, i) = q′.
If q′ /∈ known states Then
Add q′ to new states and to known states.
Set state direction.(q′) = ua.

End If.
End For

End While

Return δ

To test the validity of a given algorithm Φ we will first use the preceding
algorithm to compute the automaton AΦ associated with Φ, if it is valid. If the
algorithm does not work (that is if Φh+1(uai) is not defined for a given step of
the algorithm) this implies that Φ is not valid. Otherwise we test the validity
as stated in the theorem below. For any state q, let L(q) denote the regular
language defined by the logical formula obtained by translating the algorithm
computing (r = q).

Theorem 6 Let Φ be a PTL-vectorial algorithm and let AΦ be the determin-

istic complete automaton constructed by the algorithm above. Then Φ is a valid

algorithm associated with AΦ if and only if:

(1) For any non reachable state q of AΦ, we have L(q) = ∅.

(2) For any reachable state q, we have that L(q) 6= ∅. In addition, the fol-

lowing assertions are equivalent:

(i) L(q) = L(q1)a1∪· · ·∪L(qi)ai∪Eq, where Eq = {ε} if q is the initial

state and Eq = ∅ otherwise. Moreover, aj is a letter and each qj is

a reachable state.

(ii) {(q1, a1), . . . , (qi, ai)} is exactly the set of the pairs (qj , aj) such that

qj .aj = q in AΦ.

We can now give a method to test the validity of a vectorial algorithm Φ:

10

(1) We apply the depth-first search algorithm described above to Φ. If the
algorithm does not yield a deterministic automaton AΦ, then Φ is not a
valid algorithm and we can stop. Otherwise we go to the next step.

(2) We determine the reachable states and the non reachable states of the
automaton AΦ constructed in the preceding step.

(3) For every non reachable state q we translate the associated component
in Φ into a formula ϕq and test whether or not it can be satisfied. If ϕq

is satisfiable for a non reachable-state q then Φ is not valid and we stop.
Otherwise we go to the next step.

(4) For every reachable state q we determine the set {(q1, a1), . . . , (qi, ai)} of
the pairs (qj , aj) such that qj · aj = q in AΦ and we verify that L(q) =
L(q1)a1 ∪ · · · ∪L(qi)ai ∪Eq. To achieve this efficiently we can determine
for every j a formula associated with L(qj)aj . It suffices to consider
the formula paj

∧ Yϕqj
where ϕqj

is the translation of the component
of Φ associated with qj . Then, we can construct a PTL-formula for
the language L(q)∆[L(q1)a1 ∪ · · · ∪ L(qi)ai ∪ Eq], where ∆ holds for
the symmetric difference, and verify that it cannot be satisfied, what is
equivalent to the equality L(q) = L(q1)a1 ∪ · · · ∪L(qi)ai ∪Eq. If the test
does not fail, then Φ is valid and associated with AΦ, otherwise Φ is not
valid.

Let us now give the complexity of this algorithm. The most costly part of the
algorithm is the satisfiability problems for GTL-formulas that appear in step
(3) and (4) of the algorithm. This problem is known to be PSPACE-complete
[18] for PTL-formulas. In fact this result can be extended to GTL:

Theorem 7 Deciding whether an GTL-formula is satisfiable is a PSPACE-

complete problem.

Using this result we conclude that our algorithm works in polynomial space.
In fact we can give a more precise result:

Theorem 8 Deciding whether or not a GTL-vectorial algorithm is valid is a

PSPACE-complete problem.

Note that the same problem applied to some fragments of PTL-vectorial
algorithms become simpler. For instance we have the following result for algo-
rithms in VA(↑0):

Theorem 9 Deciding whether or not an algorithm in VA(↑0) is valid is an

NP-complete problem.

Vectorial Languages and Linear Temporal Logic 11

5. Conclusion

Using vectorial algorithms we have given new characterizations of star-free
languages (as the class of PTL-vectorial languages), of solvable languages (as
the class of MTL-vectorial languages) and of regular languages (as the class of
GTL-vectorial languages). However, even in the easiest case, that is for star-
free languages, there is no general efficient method to compute an algorithm
associated with a given language. Nevertheless, since vectorial languages are
closely related with temporal logic this is not that surprising at all, as the
computation of an algorithm associated with an automaton is at least as difficult
as finding a temporal logic formula associated with a given language, which
might be of exponential size with regard to the automaton.

We have characterized subsets of vectorial operations by equivalent sets of
temporal logic operators.

It is interesting to note that vectorial algorithms provide a more detailed
information about an automaton than logical formulas without any loss in
computational complexity and in the complexity of the operators used in both
models.

Finally, we have shown that deciding the validity of a GTL-vectorial algo-
rithm is PSPACE-complete. As a byproduct we have obtained that the ex-
tension of LTL with group operators does not change the complexity of the
satisfiability problem, which is still PSPACE-complete, and we have given an
effective algorithm deciding this question.

Another interesting investigation is to study fragments of algorithms based
on the set of PTL-vectorial operations. Here, we want to know which subset of
star-free languages can be characterized by forbidding certain vector operations.
One can show that these fragments are closely related with the fragments of
past temporal logic as defined and characterized in [4, 19, 20].

Acknowledgments

I gratefully acknowledge the many helpful suggestions of Anca Muscholl
during the preparation of the paper. I also wish to express my thanks to Jean-
Eric Pin for suggesting many stimulating ideas, and to the anonymous referees
for their remarks.

References

[1] A. Baziramwabo, P. McKenzie, and D. Therien. Modular temporal logic. In
14th Symposium on Logic in Computer Science (LICS’99), pages 344–351. IEEE,
1999.

[2] A. Bergeron and S. Hamel. Cascade decomposition are bit-vector algorithms.
In Proceedings of the Conference CIAA’01, Lecture Notes in Computer Science.
Springer Verlag, 2001, to appear. http://www.lacim.uqam.ca/~anne.

[3] A. Bergeron and S. Hamel. Vector algorithms for approximate string matching.
International Journal of Foundations of Computer Science, 13(1):53–66, 2002.

12

[4] J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal logic
for finite words. Journal of Computer and System Sciences, 46:271–294, 1993.

[5] J.A. Kamp. Tense Logic and the Theory of Linear Order. Ph.d. thesis, University
of California, Los Angeles, 1968.

[6] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Proceedings of
the Conference on Logics of Programs (LICS’85), volume 193 of Lecture Notes
in Computer Science, pages 196–218. Springer Verlag, 1985.

[7] R. McNaughton and S. Papert. Counter-free Automata. MIT Press, 1971.

[8] G. Myers. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. Journal of the Association of Computing Machinery,
46-3:395–415, 1999.

[9] J.-E. Pin. Varieties of formal languages. North Oxford, LondonPlenum, New-
York, 1986. (Translation of Variétés de langages formels).

[10] J.-E. Pin. Syntactic semigroups. In G. Rozenberg and A. Salomaa, editors,
Handbook of formal languages, volume 1, chapter 10, pages 679–746. Springer
Verlag, 1997.

[11] A. Pnueli. The temporal logic of programs. In 18th IEEE Symposium Founda-
tions of Computer Science (FOCS 1977), pages 46–57, 1977.

[12] M.P. Schützenberger and D. Perrin. On finite monoids having only trivial sub-
groups. Information and Control, 8:190–194, 1965.

[13] O. Serre. Vectorial languages an linear temporal logic: Version with proofs.
http://www.liafa.jussieu.fr/~serre.

[14] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the Association for Computing Machinery, 32(3):733–749, July
1985.

[15] H. Straubing. Families or recognizable sets corresponding to certain varieties of
finite monoids. Journal of Pure and Applied Algebra, 15:305–318, 1979.

[16] H. Straubing. Finite automata, formal logic, and circuit complexity. Birkhäuser,
1994.

[17] D. Thérien. Classification of finite monoids: the language approach. Theoretical
Computer Science, 14:195–208, 1981.

[18] M. Y. Vardi. An automata-theoretic approach to linear-temporal logic. In
F. Moller and G. Birtwistle, editors, Logics for concurrency, number 1043 in
Lecture Notes in Computer Science, pages 238–266. Springer, 1996.

[19] Th. Wilke. Classifying discrete temporal properties. Habilitation thesis, Kiel,
Germany, 1998.

[20] Th. Wilke. Classifying discrete temporal properties. In STACS 99, number 1563
in Lecture Notes in Computer Science, pages 32–46, Berlin, 1999. Springer.

