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Abstract. Most on-line cursive handwriting recognition systems use a lexical 
constraint to help improve the recognition performance.  Traditionally, the vo-
cabulary lexicon is stored in a trie (automaton whose underlying graph is a 
tree).  In a previous paper, we showed that non-deterministic automata were 
computationally more efficient than tries.  In this paper, we propose a new 
method for constructing incrementally small non-deterministic automata from 
lexicons.  We present experimental results demonstrating a significant reduction 
in the number of labels in the automata.  This reduction yields a proportional 
speed-up in HMM based lexically constrained pattern recognition systems. 

1 Introduction 

Since the pioneering work of Vintsyuk [16] on automatic speech recognition systems, 
Hidden Markov Models (HMM) [12] and Dynamic Programming (DP) [3], [11], have 
provided a theoretical framework and practical algorithms for temporal pattern recog-
nition with lexical constraints (even for large vocabularies).  The techniques initially 
developed for speech recognition are also applicable to on-line handwriting recogni-
tion (especially if auto-segmentation from word to letter is used).  Most on-line cur-
sive handwriting recognition systems use a lexical constraint to help improve the rec-
ognition performance.  Traditionally, the vocabulary lexicon is stored in a trie 
(automaton whose underlying graph is a tree).  We have previously extended this idea 
with a solution based on a more compact data structure, the Directed Acyclic Word 
Graph (DAWG) [9].  In this paper, we propose a new construction algorithm that al-
lows an incremental building of small non-deterministic automaton. Moreover, this 
new automaton is more compact than previously proposed automata.  After recalling 
briefly the basics of lexically constrained pattern recognition problems in Section 2, 
we will describe taxonomy of automata in Section 3.  In Sections 4 and 5, we review 
standard reduction techniques for automata.  In Section 6, we propose new heuristics 
to reduce node-automata.  Experimental results demonstrating significant improve-
ments are presented in Section 7.  Our notation is standard and follows [12]. 
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2 Lexically Constrained Pattern Recognition 

A number of pattern recognition problems like hand gesture recognition, on-line hand 
writing recognition and speech recognition can be solved by performing an elastic 
matching between an input pattern and a set of prototype patterns.  In all these appli-
cations, an a posteriori probability of a word given a sequence of frames (feature vec-
tors) is computed using a HMM. 

2.1 Word-HMM, Letter-HMM and Viterbi Algorithm 

A word-HMM is made of the concatenation of the letter-HMM’s corresponding to 
each letter of the word.  We can abstract each word-HMM as an automaton whose 
underlying graph is a chain.  Each transition of the automaton is labelled with a letter 
(or variant, namely allograph) of the word.  That is each transition corresponds to a 
letter-HMM.  At the letter scale, HMM states correspond to feature stationarity of 
frames (subunits of letter, namely graphemes).  The objective of the lexically con-
strained pattern recognition problem is, given a sequence of frames and a lexicon, find 
the word with the largest a posteriori probability in this lexicon.  The computation of 
this a posteriori probability of a word reduces to a matching of elastic patterns.  In the 
framework of the so-called maximum approximation, an efficient DP algorithm, 
namely Viterbi Algorithm [17], [4], is used.  A lexical constraint significantly helps to 
obtain better performance; practical experiments on a neuro-Markovian pattern rec-
ognition software called REMUS [6], [18], [19], shows that the recognition of words 
increases from 20% to 90%-98%, depending on the size of the vocabulary, when a 
lexical constraint is applied.  Practical applications use lexicons with sizes ranging 
from 10 (digits recognition) to some 106 words (e.g. postcode dictionary, vocal dicta-
tion) [7].  Exhaustive application of Viterbi Algorithm to each word of the lexicon is 
only tractable for small and medium size lexicon, as the computational cost grows 
approximately linearly with the number of letters in lexicon. 

2.2 Factorization of HMMs into Non-Deterministic Automata 

If two words have a common prefix then the DP computations of the a posteriori 
probabilities can be factorized.  Hence, a speed-up and reduction in storage can be 
obtained simply by using a trie (a well known tree-like data structure) [5]. Each 
edge/node in the trie corresponds to a letter.  Thanks to the sharing of intermediate 
results, the running time has to improve dramatically compared to the trivial approach 
consisting in running Viterbi Algorithm independently on each word-HMM. 
 
A trie eliminates the redundant computation/storage for common prefixes present in 
natural languages and is easy to implement.  The trie structure is a good trade-off be-
tween simplicity and efficiency, and is widely used in practice.  Unfortunately we 
were disappointed [9] by the poor compression ratio, from 1.5 to 4.2, dependent on 
languages (English/French) and vocabularies size (103 – 105 words), we got experi-
mentally.  Since practical applications, with large vocabulary, require very efficient 



processing, both in term of speed and storage, it is important to go further and extend 
the use of Viterbi Algorithm to more compact and complex lexicon structures, like 
DAWG.  That is, use both prefix and suffix commonality [2], [14].  Lacouture et al. 
[8], and more recently Mohri et al. [9], have worked on similar problems with Finite 
State Automata (FSA) for Automatic Speech Recognition. 
 
The automata that we build are not traditional deterministic automata.  This choice is 
motivated by the following observations; traditional automata are graphs whose arcs 
have labels.  Each arc is labelled with a letter.  The nodes/states of the automata are 
not labelled.  The nodes correspond to languages. It is natural to wonder whether put-
ting the labels in the nodes instead of in the arcs would improve the compactness of 
the automata.  The main computational cost of running Viterbi algorithm on a graph is 
a function of the number of labels in the graph.  Hence the importance of finding a 
representation that minimizes the number of labels.  Moreover, Viterbi algorithm does 
not require a deterministic automaton.  We call node-automaton a directed graph 
whose nodes can be labelled with letters.  The arcs of a node-automaton are transi-
tions with no label.  A transition of a node-automaton is just a routing device.  Node-
automata are better for HMM factorization because in a node-automaton the process-
ing is done in the node and the routing is done with the arcs.  Whereas with traditional 
automata (that we call edge-automata), these two tasks are not separated.  Experimen-
tal results demonstrate a clear superiority of node-automata over edge-automata with 
respect to the computational cost of running Viterbi Algorithm on a whole lexicon 
(see Section 7).  

3 Automata Taxonomy 

We have experimented with two types of acyclic automata.  They differ only in that 
the edge automata labels are stored in the edges, whereas in node-automata the labels 
are stored in the nodes.  In order to describe the reduction algorithms we recall here 
the standard definitions we need throughout the rest of the paper. 
 
A finite state automaton is a quintuple (  where Q  is a set of states 
(nodes),  is an alphabet (a set of symbols),  is a set of transitions (directed edges 
or arcs),  is a set of initial states and T  is a set of terminal (accepting) states.  The 
automata discussed in this paper will have a single initial state called the root node.  
For some of the algorithms presented here, there will be a single terminal node re-
ferred to as the sink node.  A quintuple  will denote an automaton 
with a single root r  and a single terminal node .  A path of length  is a sequence 
of nodes  where each successive pair of nodes in the sequence is con-

nected by a transition.  If 
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jn  is reachable from the node , if there exists a path from  to .  In this case, 

we also say that  is a descendant of . 
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Each ordered pair of nodes ( )ji nn ,  implicitly defines a language (a set of words) 

denoted by .  Each sequence of labels encountered along a path from  

to  makes up a word.  is the language generated by all possible paths 

between  to .  More generally,  will denote the language defined by 
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4 Automata Reduction 

A key concept for automata minimization is the contraction (or merging) of equiva-
lent nodes.  We will first characterize useful equivalence relations, and then explain 
how they allow the merging of nodes. 

4.1 Equivalence Relation and Node Contraction 

Many equivalence relations can be defined on .  Recall that an equivalence relation 
 on Q  can be viewed as a partition of Q .  Two nodes are equivalent with respect 

to  if and only if they belong to the same part of the partition of Q .  Obviously, to 
be of any interest, the reduction operation must preserve the language of the automa-
ton.  That is, the reduced automaton should generate the same language as the original 
automaton.  A sufficient condition for this to happen is that any two equivalent nodes 
with respect to  generate the same language.  If an equivalence relation  satisfies 
this sufficient condition, we will say that  is admissible. 
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Formally, the contraction of two equivalent nodes  and  with respect to  will 
preserve the language of the automaton provided that  

in jn R
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Whenever two nodes satisfy , we will use the standard ter-

minology, and say that the nodes  and  are indistinguishable.  Our NFA mini-
mization algorithm computes an equivalence relation between nodes that entails in-
distinguishability. 
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The contraction of a set of nodes  is a new node  obtained by merging all nodes 
of .  The new automaton (after contraction of the set of nodes ) is obtained by 
removing all nodes belonging to , then inserting a new node , and connecting 

 to all successors and predecessors of the nodes that were in .  Formally, 
 and .  The merging of two nodes 

 and  is just a special case of set of nodes contraction where 
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We can extend the equivalence relation to sets of nodes.  Two sets of nodes  and 

 are said to be equivalent if the two nodes  and  are equivalent. 
A

B 'a 'b

4.2 Other Relevant Relations defined on the Nodes 

The type of equivalence relations we have defined so far is also referred to as down-
equivalence because they only consider the descendants.  We may also define up-
equivalence and up-indistinguishability in a similar way by considering the reversed 
automaton.  The reversed automaton is obtained by first swapping the set of initial 
states and the set of terminal states, then reversing all the transitions.  That is, 
( )ji nn ,  is a transition in the reversed automaton if and only if ( )ij nn ,  is a transition 
in the original automaton.  The reversed automaton generates the mirror language of 
the original automaton. 

 
When two nodes have exactly the same successors (which implies that they are indis-
tinguishable), we say that these nodes are similar.  Subsumption is a relationship more 
general than similarity.  The node  subsumes the node  if and only if in jn

( ) ( )ji nn succsucc ⊇ .  That is, every successor of  is also a successor of .  

For node-automata we add the requirement that  and  have the same label.  Two 
nodes are said to be comparable if one subsumes the other. 
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Automata minimization algorithms need sometimes to consider the height and the 
depth of a node.  The height of a node is the length of the longest path from the node 
down to a leaf node.  The depth of a node is the length of the longest path from the 
root to the node.  A level is the set of all nodes of a given height.  Levels are impor-
tant because indistinguishable nodes must have the same height.  

4.3 Contraction and Split Operators 

In order to reduce the automata, we use mainly two node operators that work on pairs 
of nodes.  The contraction operator merges two nodes and was defined in Section 4.1.  



The split operator is used for splitting a node into two nodes to prepare the automaton 
for further reduction.  The new automaton obtained by splitting a node  is derived 
from the original automaton by replacing  with two nodes  and  such that 
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It is easy to see that  
• Split operations do not change the language of the automaton, 
• Contraction operations do not change the language of the automaton provided they 

are applied on equivalent nodes with respect to an admissible equivalence relation, 
• After a split operation the new automaton will always be non deterministic. 

5 Previous Works 

We review in this section the main algorithms to minimize deterministic and non-
deterministic automata. 

5.1 Minimal Deterministic Automata 

The classical algorithm for deterministic automata minimization [1] first computes the 
indistinguishable equivalence classes, and then contracts separately all these equiva-
lence classes.  In the special case of acyclic automata defined by a lexicon, a faster 
algorithm to build the minimal deterministic automaton was proposed by Revuz [13]. 
 
The algorithm of Revuz starts with the construction of the trie of the lexicon.  Then 
the trie is traversed either level-by-level, starting with the leaves, or in a post order 
fashion.  During the traversal the similarity classes are determined: the node currently 
considered is either equivalent to some other already visited node, or will become the 
representative of a new equivalence class.  In the former case the current node is 
merged with the representative of that class.  The bottom-up traversal ensures that all 
successor nodes of the current node have already been reduced.  Therefore during the 
execution of the algorithm, two nodes on a same level will be indistinguishable if and 
only if they are similar (that is have the successors in the current automaton). 
 
We have implemented and tested this algorithm for the classical edge-automata as 
well as for the node-automata. 

5.2 Compact Non-Deterministic Automata 

The algorithm proposed by Sgarbas, Fakotakis and Kokkinakis [15] incrementally 
build a small non-deterministic automaton.  We will describe the main ideas of this 
algorithm.  The original algorithm was created for edge-automata, but we have 
adapted it to node-automata.  The automaton returned by the algorithm is called a 



compact NFA (CNFA).  The main feature of a CNFA is that it does not contain similar 
nodes. 
 
The algorithm expects as input a NFA with a single root and a single sink node.  
Words are inserted incrementally in the automaton.  A word insertion is made in two 
phases.  In the first phase, a chain of new nodes corresponding to the new word is 
added to the automaton.  The chain starts at the root node and finishes at the sink 
node.  All the intermediate nodes are new.  In the second phase, similar nodes are 
detected then merged in order to keep the automata compact.  This is done by first 
traversing the automaton starting from the sink node to identify nodes that are down-
similar with nodes of the newly inserted word.  When no more such nodes can be 
found the procedure is repeated from the root, this time looking for up-similar nodes.  
When no more up-similar nodes are found, we continue looking from the bottom 
again.  This procedure is repeated while we find either down-similar or up-similar 
nodes.  The resulting automaton does not contain any similar nodes. 
 
The CNFA algorithm provides good compression results, but further reduction can be 
obtained with the heuristics that we will describe in the next section. 

6 Compressed Non-Deterministic Automata 

We propose a new heuristic, generalization of the one of [9], relying on the split and 
contraction operators, to further reduce NFAs.  The equivalence relation  that we 
use for the contraction operator is original.  For deterministic automata, we have seen 
that we can determine easily whether two nodes are indistinguishable by comparing 
their successors.  For non-deterministic automata, the situation is more complicated.  
Let  denote the successors of node  with the label .   can 
be a large set whereas it contains at most one node for deterministic automata.  Next, 
we define an admissible equivalence relation with a given look-ahead depth.  Then, 
we will outline our NFA compression algorithm.  

kR

( xn,succ ) )n x ( xn,succ

6.1 The equivalence relation  kR

We define recursively the following equivalence relations : kR
•  is the similarity relation between nodes (their successors are required to be the 

same), 
0R

• Node  and node  are in relation with respect to  if and only if all the fol-
lowing conditions are satisfied 

in jn kR

− The nodes  and  have the same height, in jn
− The nodes  and  are both either terminal or non terminal. in jn



− The nodes  and  have the same set of labels for their outgoing transitions 
(but they are allowed to have a different number of transitions for a given label), 

in jn

− For each common transition label ,  is equivalent to x ( xni ,succ ) ( )xn j ,succ  

with respect to . 1−kR
 
The last condition concerns the equivalence between two sets of nodes.  This was 
defined in Section 4.1. 

6.2 The NFA compression heuristic 

Our heuristic shuttles through the graph level-by-level starting at the deepest one.  
The skeleton of the heuristic is; 

Loop until no change in the automaton 

   Compute the heights of all nodes 

   For each level 

      Contract all equivalent nodes 

      Separate all comparable nodes 

   End for 

End loop 

 
In the deterministic case, the above algorithm will produce the unique minimal DFA. 
For non-deterministic automata, we know that there may be several minimal auto-
mata.  Moreover the order in which we contract the nodes does matter.  Blindly re-
moving equivalent nodes in a NFA may lead to a sub-optimum automaton.  The more 
reduced is level , the more difficult it will be to reduce level .  To increase 
the likelihood of further contractions, we use the split operator to separate comparable 
nodes (see Section 4.2).  Although splitting nodes increases the number of nodes on 
the current level, it makes more likely the creation of equivalent nodes in the prede-
cessor level.  Overall, there is a significant reduction in the number of nodes as dem-
onstrated with the results of next section. 

)1( +k k

7 Experimental Results 

We have run the different reduction algorithms on two families of artificial lexicons 
that have a known minimal NFA and DFA.  Another purpose of these lexicons was to 
validate the implementation of the algorithms.  We have also tested the algorithms on 
edge and node automata with different size English and French lexicons.  Table 1 
gives some details on the lexicons used.  



Lexicons 
Name # words # letters Alphabet  

size 
Mean  
length 

Max  
length Type 

DNA_4_8_1.txt 87380 669924 4 7.5 8 Artificial 
HWR_4_8_1.txt 13120 98416 4 7.7 8 Artificial 
Lex1000.txt 1000 6966 26 7 13 English 
Lex10645.txt 10645 78197 26 7.3 21 English 
Lex20233.txt 20233 149129 26 7.4 22 English 
Lex65536f.txt 65536 631422 26 9.6 25 French 
Lex130499.txt 130499 1256938 28 9.6 25 French 

Table 1 Features of the lexicons 

DNA_4_8_1 is the language of all words from 1 to 8 letters, on a alphabet of 4 letters, 
consecutive letters being required to be distinct.  The HWR language differs from the 
DNA language by relaxing the constraint on consecutive letters. 

 
 Edge Automata 

 
Compact NFA 

(Edge Automata) 
Compressed NFA 
(Edge Automata) 

Minimal DFA 
(Edge Automata) 

Lexicon Nodes Transitions Nodes Transitions Nodes Transitions 
DNA_4_8_1.txt 30 128 30 128 30 88 
HWR_4_8_1.txt 9 60 9 60 9 32 
lex1000.txt 1433 2433 1427 2424 1462 2459 
lex10645.txt 7220 17864 7675 17119 9076 18294 
lex20233.txt 9463 29523 10460 26867 13685 28741 
lex65536f.txt 14102 68740 17157 60479 20949 44980 
lex130499.txt 15331 99808 17237 68783 20928 47732 

Table 2 Comparison of edge-automata 

Table 2 shows that for edge-automata, compressed NFA have fewer labels (transi-
tions) than compact NFA.  But for large lexicons minimal DFA contains fewer labels. 

 
 Node Automata 

 
Compact NFA 

(Node Automata) 
Compressed NFA 
(Node Automata) 

Minimal DFA 
(Node Automata) 

Lexicon Nodes Transitions Nodes Transitions Nodes Transitions 
DNA_4_8_1.txt 33 127 33 127 33 88 
HWR_4_8_1.txt 33 162 33 162 33 116 
lex1000.txt 2100 3077 2099 3076 2105 3081 
lex10645.txt 10693 21309 10569 21174 11974 21248 
lex20233.txt 14142 34229 13781 33825 17282 32579 
lex65536f.txt 20559 72733 18251 65605 25075 50439 
lex130499.txt 21932 102276 17476 81304 24968 53255 

Table 3 Comparison of node-automata 



Table 3 shows that for node-automata, compressed NFA have significantly fewer la-
bels (nodes) than the other types of automata.  With respect to the complexity of the 
compression algorithm, it is clear that the process of finding all indistinguishable 
states may sound computationally costly as the algorithm recursively checks nodes 
down the automaton.  However, we discovered that if you are scanning an automaton 
with few indistinguishable states, the recursion rarely goes deeper than 2 or 3 levels.  
In fact, a practical solution consists in first building a compact NFA, then further re-
ducing the NFA with our compression algorithm. 

8 Conclusions 

Figure 1 (below) illustrates clearly the benefit of using node-automata instead of 
edge-automata; the number of labels of the node-automata is a fraction of the number 
of labels of the edge-automata.  Although our minimization method does not claim to 
return the optimal non-deterministic automaton, the heuristics proposed in this paper 
leads to a significant improvement for real-world vocabularies.  Personal Digital As-
sistants (PDA) and other smart handheld devices have too modest resources (a rela-
tively small storage capacity and slow CPU) to allow features like advanced user in-
terfaces (natural interactivity).  Nevertheless efficient use of these limited resources 
will permit sophisticated speech or hand writing recognition.  Some recognition sys-
tems, especially for mobile computers, need the functionality of incremental updating 
of vocabulary (add/remove words).  Our NFA construction allows such adaptive up-
date, avoiding the recomputation from scratch of the minimized NFA of the slightly 
modified lexicon (so far, we have only implemented the addition of new words). 
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