
HAL Id: hal-00012623
https://hal.science/hal-00012623

Submitted on 25 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reduction of Non Deterministic Automata for Hidden
Markov Model Based Pattern Recognition Applications

Frederic Maire, Frank Wathne, Alain Lifchitz

To cite this version:
Frederic Maire, Frank Wathne, Alain Lifchitz. Reduction of Non Deterministic Automata for Hidden
Markov Model Based Pattern Recognition Applications. 16th Australian Joint Conference on Artificial
Intelligence (AI’03), Dec 2003, Perth, Australia. pp.466-476, �10.1007/978-3-540-24581-0_39�. �hal-
00012623�

https://hal.science/hal-00012623
https://hal.archives-ouvertes.fr

Reduction of Non Deterministic Automata for Hidden
Markov Model Based Pattern Recognition Applications

Frederic Maire1, Frank Wathne1 and Alain Lifchitz2

1 Smart Devices Laboratory, Faculty of Information Technology, Queensland University of
Technology,

2 George Street, GPO Box 2434, Brisbane Q4001 Australia
f.maire@qut.edu.au, frankwathne@hotmail.com

2 Laboratoire d'Informatique de Paris 6, Université P6 & CNRS (UMR 7606),
8, rue du Capitaine Scott, F-75015 Paris France

alain.lifchitz@lip6.fr

Abstract. Most on-line cursive handwriting recognition systems use a lexical
constraint to help improve the recognition performance. Traditionally, the vo-
cabulary lexicon is stored in a trie (automaton whose underlying graph is a
tree). In a previous paper, we showed that non-deterministic automata were
computationally more efficient than tries. In this paper, we propose a new
method for constructing incrementally small non-deterministic automata from
lexicons. We present experimental results demonstrating a significant reduction
in the number of labels in the automata. This reduction yields a proportional
speed-up in HMM based lexically constrained pattern recognition systems.

1 Introduction

Since the pioneering work of Vintsyuk [16] on automatic speech recognition systems,
Hidden Markov Models (HMM) [12] and Dynamic Programming (DP) [3], [11], have
provided a theoretical framework and practical algorithms for temporal pattern recog-
nition with lexical constraints (even for large vocabularies). The techniques initially
developed for speech recognition are also applicable to on-line handwriting recogni-
tion (especially if auto-segmentation from word to letter is used). Most on-line cur-
sive handwriting recognition systems use a lexical constraint to help improve the rec-
ognition performance. Traditionally, the vocabulary lexicon is stored in a trie
(automaton whose underlying graph is a tree). We have previously extended this idea
with a solution based on a more compact data structure, the Directed Acyclic Word
Graph (DAWG) [9]. In this paper, we propose a new construction algorithm that al-
lows an incremental building of small non-deterministic automaton. Moreover, this
new automaton is more compact than previously proposed automata. After recalling
briefly the basics of lexically constrained pattern recognition problems in Section 2,
we will describe taxonomy of automata in Section 3. In Sections 4 and 5, we review
standard reduction techniques for automata. In Section 6, we propose new heuristics
to reduce node-automata. Experimental results demonstrating significant improve-
ments are presented in Section 7. Our notation is standard and follows [12].

mailto:f.maire@qut.edu.au
mailto:frankwathne@hotmail.com

2 Lexically Constrained Pattern Recognition

A number of pattern recognition problems like hand gesture recognition, on-line hand
writing recognition and speech recognition can be solved by performing an elastic
matching between an input pattern and a set of prototype patterns. In all these appli-
cations, an a posteriori probability of a word given a sequence of frames (feature vec-
tors) is computed using a HMM.

2.1 Word-HMM, Letter-HMM and Viterbi Algorithm

A word-HMM is made of the concatenation of the letter-HMM’s corresponding to
each letter of the word. We can abstract each word-HMM as an automaton whose
underlying graph is a chain. Each transition of the automaton is labelled with a letter
(or variant, namely allograph) of the word. That is each transition corresponds to a
letter-HMM. At the letter scale, HMM states correspond to feature stationarity of
frames (subunits of letter, namely graphemes). The objective of the lexically con-
strained pattern recognition problem is, given a sequence of frames and a lexicon, find
the word with the largest a posteriori probability in this lexicon. The computation of
this a posteriori probability of a word reduces to a matching of elastic patterns. In the
framework of the so-called maximum approximation, an efficient DP algorithm,
namely Viterbi Algorithm [17], [4], is used. A lexical constraint significantly helps to
obtain better performance; practical experiments on a neuro-Markovian pattern rec-
ognition software called REMUS [6], [18], [19], shows that the recognition of words
increases from 20% to 90%-98%, depending on the size of the vocabulary, when a
lexical constraint is applied. Practical applications use lexicons with sizes ranging
from 10 (digits recognition) to some 106 words (e.g. postcode dictionary, vocal dicta-
tion) [7]. Exhaustive application of Viterbi Algorithm to each word of the lexicon is
only tractable for small and medium size lexicon, as the computational cost grows
approximately linearly with the number of letters in lexicon.

2.2 Factorization of HMMs into Non-Deterministic Automata

If two words have a common prefix then the DP computations of the a posteriori
probabilities can be factorized. Hence, a speed-up and reduction in storage can be
obtained simply by using a trie (a well known tree-like data structure) [5]. Each
edge/node in the trie corresponds to a letter. Thanks to the sharing of intermediate
results, the running time has to improve dramatically compared to the trivial approach
consisting in running Viterbi Algorithm independently on each word-HMM.

A trie eliminates the redundant computation/storage for common prefixes present in
natural languages and is easy to implement. The trie structure is a good trade-off be-
tween simplicity and efficiency, and is widely used in practice. Unfortunately we
were disappointed [9] by the poor compression ratio, from 1.5 to 4.2, dependent on
languages (English/French) and vocabularies size (103 – 105 words), we got experi-
mentally. Since practical applications, with large vocabulary, require very efficient

processing, both in term of speed and storage, it is important to go further and extend
the use of Viterbi Algorithm to more compact and complex lexicon structures, like
DAWG. That is, use both prefix and suffix commonality [2], [14]. Lacouture et al.
[8], and more recently Mohri et al. [9], have worked on similar problems with Finite
State Automata (FSA) for Automatic Speech Recognition.

The automata that we build are not traditional deterministic automata. This choice is
motivated by the following observations; traditional automata are graphs whose arcs
have labels. Each arc is labelled with a letter. The nodes/states of the automata are
not labelled. The nodes correspond to languages. It is natural to wonder whether put-
ting the labels in the nodes instead of in the arcs would improve the compactness of
the automata. The main computational cost of running Viterbi algorithm on a graph is
a function of the number of labels in the graph. Hence the importance of finding a
representation that minimizes the number of labels. Moreover, Viterbi algorithm does
not require a deterministic automaton. We call node-automaton a directed graph
whose nodes can be labelled with letters. The arcs of a node-automaton are transi-
tions with no label. A transition of a node-automaton is just a routing device. Node-
automata are better for HMM factorization because in a node-automaton the process-
ing is done in the node and the routing is done with the arcs. Whereas with traditional
automata (that we call edge-automata), these two tasks are not separated. Experimen-
tal results demonstrate a clear superiority of node-automata over edge-automata with
respect to the computational cost of running Viterbi Algorithm on a whole lexicon
(see Section 7).

3 Automata Taxonomy

We have experimented with two types of acyclic automata. They differ only in that
the edge automata labels are stored in the edges, whereas in node-automata the labels
are stored in the nodes. In order to describe the reduction algorithms we recall here
the standard definitions we need throughout the rest of the paper.

A finite state automaton is a quintuple (where Q is a set of states
(nodes), is an alphabet (a set of symbols), is a set of transitions (directed edges
or arcs), is a set of initial states and T is a set of terminal (accepting) states. The
automata discussed in this paper will have a single initial state called the root node.
For some of the algorithms presented here, there will be a single terminal node re-
ferred to as the sink node. A quintuple will denote an automaton
with a single root r and a single terminal node . A path of length is a sequence
of nodes where each successive pair of nodes in the sequence is con-

nected by a transition. If

)

srE ,,,, Σ

),, 10

TIEQ ,,,, Σ
Σ E
I

{ } { }()Q
s k

(knnn ,K

()ji nn , is a transition, then we say that is a predecessor

of , and a successor of . We will denote the set of successors of by

. Similarly, will denote the set of predecessors of . The node

in

jn jn in in
()insucc ()inpred in

jn is reachable from the node , if there exists a path from to . In this case,

we also say that is a descendant of .
in in jn

jn in

Each ordered pair of nodes ()ji nn , implicitly defines a language (a set of words)

denoted by . Each sequence of labels encountered along a path from

to makes up a word. is the language generated by all possible paths

between to . More generally, will denote the language defined by

. The language recognized by the automaton is

.

),(jiQ nnL in

jn),(jiQ nnL

in jn),(BALQ

U
BAnn

jiQQ
ji

nnLBAL
×∈

=
),(

),(),(

),(TILQ

4 Automata Reduction

A key concept for automata minimization is the contraction (or merging) of equiva-
lent nodes. We will first characterize useful equivalence relations, and then explain
how they allow the merging of nodes.

4.1 Equivalence Relation and Node Contraction

Many equivalence relations can be defined on . Recall that an equivalence relation
 on Q can be viewed as a partition of Q . Two nodes are equivalent with respect

to if and only if they belong to the same part of the partition of Q . Obviously, to
be of any interest, the reduction operation must preserve the language of the automa-
ton. That is, the reduced automaton should generate the same language as the original
automaton. A sufficient condition for this to happen is that any two equivalent nodes
with respect to generate the same language. If an equivalence relation satisfies
this sufficient condition, we will say that is admissible.

Q
R

R

R R
R

Formally, the contraction of two equivalent nodes and with respect to will
preserve the language of the automaton provided that

in jn R

),(),(TnLTnLnRn jQiQji =⇒ .

Whenever two nodes satisfy , we will use the standard ter-

minology, and say that the nodes and are indistinguishable. Our NFA mini-
mization algorithm computes an equivalence relation between nodes that entails in-
distinguishability.

),(),(TnLTnL jQiQ =

in jn

The contraction of a set of nodes is a new node obtained by merging all nodes
of . The new automaton (after contraction of the set of nodes) is obtained by
removing all nodes belonging to , then inserting a new node , and connecting

 to all successors and predecessors of the nodes that were in . Formally,
 and . The merging of two nodes

 and is just a special case of set of nodes contraction where

A 'a
A A

A 'a
'a A

() ()U
An

i
i

na
∈

= succ'succ () ()U
An

i
i

na
∈

= pred'pred

in jn { }ji nnA ,= .

We can extend the equivalence relation to sets of nodes. Two sets of nodes and

 are said to be equivalent if the two nodes and are equivalent.
A

B 'a 'b

4.2 Other Relevant Relations defined on the Nodes

The type of equivalence relations we have defined so far is also referred to as down-
equivalence because they only consider the descendants. We may also define up-
equivalence and up-indistinguishability in a similar way by considering the reversed
automaton. The reversed automaton is obtained by first swapping the set of initial
states and the set of terminal states, then reversing all the transitions. That is,
()ji nn , is a transition in the reversed automaton if and only if ()ij nn , is a transition
in the original automaton. The reversed automaton generates the mirror language of
the original automaton.

When two nodes have exactly the same successors (which implies that they are indis-
tinguishable), we say that these nodes are similar. Subsumption is a relationship more
general than similarity. The node subsumes the node if and only if in jn

() ()ji nn succsucc ⊇ . That is, every successor of is also a successor of .

For node-automata we add the requirement that and have the same label. Two
nodes are said to be comparable if one subsumes the other.

jn in

in jn

Automata minimization algorithms need sometimes to consider the height and the
depth of a node. The height of a node is the length of the longest path from the node
down to a leaf node. The depth of a node is the length of the longest path from the
root to the node. A level is the set of all nodes of a given height. Levels are impor-
tant because indistinguishable nodes must have the same height.

4.3 Contraction and Split Operators

In order to reduce the automata, we use mainly two node operators that work on pairs
of nodes. The contraction operator merges two nodes and was defined in Section 4.1.

The split operator is used for splitting a node into two nodes to prepare the automaton
for further reduction. The new automaton obtained by splitting a node is derived
from the original automaton by replacing with two nodes and such that

 and .

n
n 'n ''n

() () ()''pred'predpred nnn ∪= () () ()nnn succ''succ'succ ==

It is easy to see that
• Split operations do not change the language of the automaton,
• Contraction operations do not change the language of the automaton provided they

are applied on equivalent nodes with respect to an admissible equivalence relation,
• After a split operation the new automaton will always be non deterministic.

5 Previous Works

We review in this section the main algorithms to minimize deterministic and non-
deterministic automata.

5.1 Minimal Deterministic Automata

The classical algorithm for deterministic automata minimization [1] first computes the
indistinguishable equivalence classes, and then contracts separately all these equiva-
lence classes. In the special case of acyclic automata defined by a lexicon, a faster
algorithm to build the minimal deterministic automaton was proposed by Revuz [13].

The algorithm of Revuz starts with the construction of the trie of the lexicon. Then
the trie is traversed either level-by-level, starting with the leaves, or in a post order
fashion. During the traversal the similarity classes are determined: the node currently
considered is either equivalent to some other already visited node, or will become the
representative of a new equivalence class. In the former case the current node is
merged with the representative of that class. The bottom-up traversal ensures that all
successor nodes of the current node have already been reduced. Therefore during the
execution of the algorithm, two nodes on a same level will be indistinguishable if and
only if they are similar (that is have the successors in the current automaton).

We have implemented and tested this algorithm for the classical edge-automata as
well as for the node-automata.

5.2 Compact Non-Deterministic Automata

The algorithm proposed by Sgarbas, Fakotakis and Kokkinakis [15] incrementally
build a small non-deterministic automaton. We will describe the main ideas of this
algorithm. The original algorithm was created for edge-automata, but we have
adapted it to node-automata. The automaton returned by the algorithm is called a

compact NFA (CNFA). The main feature of a CNFA is that it does not contain similar
nodes.

The algorithm expects as input a NFA with a single root and a single sink node.
Words are inserted incrementally in the automaton. A word insertion is made in two
phases. In the first phase, a chain of new nodes corresponding to the new word is
added to the automaton. The chain starts at the root node and finishes at the sink
node. All the intermediate nodes are new. In the second phase, similar nodes are
detected then merged in order to keep the automata compact. This is done by first
traversing the automaton starting from the sink node to identify nodes that are down-
similar with nodes of the newly inserted word. When no more such nodes can be
found the procedure is repeated from the root, this time looking for up-similar nodes.
When no more up-similar nodes are found, we continue looking from the bottom
again. This procedure is repeated while we find either down-similar or up-similar
nodes. The resulting automaton does not contain any similar nodes.

The CNFA algorithm provides good compression results, but further reduction can be
obtained with the heuristics that we will describe in the next section.

6 Compressed Non-Deterministic Automata

We propose a new heuristic, generalization of the one of [9], relying on the split and
contraction operators, to further reduce NFAs. The equivalence relation that we
use for the contraction operator is original. For deterministic automata, we have seen
that we can determine easily whether two nodes are indistinguishable by comparing
their successors. For non-deterministic automata, the situation is more complicated.
Let denote the successors of node with the label . can
be a large set whereas it contains at most one node for deterministic automata. Next,
we define an admissible equivalence relation with a given look-ahead depth. Then,
we will outline our NFA compression algorithm.

kR

(xn,succ))n x (xn,succ

6.1 The equivalence relation kR

We define recursively the following equivalence relations : kR
• is the similarity relation between nodes (their successors are required to be the

same),
0R

• Node and node are in relation with respect to if and only if all the fol-
lowing conditions are satisfied

in jn kR

− The nodes and have the same height, in jn
− The nodes and are both either terminal or non terminal. in jn

− The nodes and have the same set of labels for their outgoing transitions
(but they are allowed to have a different number of transitions for a given label),

in jn

− For each common transition label , is equivalent to x (xni ,succ) ()xn j ,succ

with respect to . 1−kR

The last condition concerns the equivalence between two sets of nodes. This was
defined in Section 4.1.

6.2 The NFA compression heuristic

Our heuristic shuttles through the graph level-by-level starting at the deepest one.
The skeleton of the heuristic is;

Loop until no change in the automaton

 Compute the heights of all nodes

 For each level

 Contract all equivalent nodes

 Separate all comparable nodes

 End for

End loop

In the deterministic case, the above algorithm will produce the unique minimal DFA.
For non-deterministic automata, we know that there may be several minimal auto-
mata. Moreover the order in which we contract the nodes does matter. Blindly re-
moving equivalent nodes in a NFA may lead to a sub-optimum automaton. The more
reduced is level , the more difficult it will be to reduce level . To increase
the likelihood of further contractions, we use the split operator to separate comparable
nodes (see Section 4.2). Although splitting nodes increases the number of nodes on
the current level, it makes more likely the creation of equivalent nodes in the prede-
cessor level. Overall, there is a significant reduction in the number of nodes as dem-
onstrated with the results of next section.

)1(+k k

7 Experimental Results

We have run the different reduction algorithms on two families of artificial lexicons
that have a known minimal NFA and DFA. Another purpose of these lexicons was to
validate the implementation of the algorithms. We have also tested the algorithms on
edge and node automata with different size English and French lexicons. Table 1
gives some details on the lexicons used.

Lexicons
Name # words # letters Alphabet

size
Mean
length

Max
length Type

DNA_4_8_1.txt 87380 669924 4 7.5 8 Artificial
HWR_4_8_1.txt 13120 98416 4 7.7 8 Artificial
Lex1000.txt 1000 6966 26 7 13 English
Lex10645.txt 10645 78197 26 7.3 21 English
Lex20233.txt 20233 149129 26 7.4 22 English
Lex65536f.txt 65536 631422 26 9.6 25 French
Lex130499.txt 130499 1256938 28 9.6 25 French

Table 1 Features of the lexicons

DNA_4_8_1 is the language of all words from 1 to 8 letters, on a alphabet of 4 letters,
consecutive letters being required to be distinct. The HWR language differs from the
DNA language by relaxing the constraint on consecutive letters.

 Edge Automata

Compact NFA

(Edge Automata)
Compressed NFA
(Edge Automata)

Minimal DFA
(Edge Automata)

Lexicon Nodes Transitions Nodes Transitions Nodes Transitions
DNA_4_8_1.txt 30 128 30 128 30 88
HWR_4_8_1.txt 9 60 9 60 9 32
lex1000.txt 1433 2433 1427 2424 1462 2459
lex10645.txt 7220 17864 7675 17119 9076 18294
lex20233.txt 9463 29523 10460 26867 13685 28741
lex65536f.txt 14102 68740 17157 60479 20949 44980
lex130499.txt 15331 99808 17237 68783 20928 47732

Table 2 Comparison of edge-automata

Table 2 shows that for edge-automata, compressed NFA have fewer labels (transi-
tions) than compact NFA. But for large lexicons minimal DFA contains fewer labels.

 Node Automata

Compact NFA

(Node Automata)
Compressed NFA
(Node Automata)

Minimal DFA
(Node Automata)

Lexicon Nodes Transitions Nodes Transitions Nodes Transitions
DNA_4_8_1.txt 33 127 33 127 33 88
HWR_4_8_1.txt 33 162 33 162 33 116
lex1000.txt 2100 3077 2099 3076 2105 3081
lex10645.txt 10693 21309 10569 21174 11974 21248
lex20233.txt 14142 34229 13781 33825 17282 32579
lex65536f.txt 20559 72733 18251 65605 25075 50439
lex130499.txt 21932 102276 17476 81304 24968 53255

Table 3 Comparison of node-automata

Table 3 shows that for node-automata, compressed NFA have significantly fewer la-
bels (nodes) than the other types of automata. With respect to the complexity of the
compression algorithm, it is clear that the process of finding all indistinguishable
states may sound computationally costly as the algorithm recursively checks nodes
down the automaton. However, we discovered that if you are scanning an automaton
with few indistinguishable states, the recursion rarely goes deeper than 2 or 3 levels.
In fact, a practical solution consists in first building a compact NFA, then further re-
ducing the NFA with our compression algorithm.

8 Conclusions

Figure 1 (below) illustrates clearly the benefit of using node-automata instead of
edge-automata; the number of labels of the node-automata is a fraction of the number
of labels of the edge-automata. Although our minimization method does not claim to
return the optimal non-deterministic automaton, the heuristics proposed in this paper
leads to a significant improvement for real-world vocabularies. Personal Digital As-
sistants (PDA) and other smart handheld devices have too modest resources (a rela-
tively small storage capacity and slow CPU) to allow features like advanced user in-
terfaces (natural interactivity). Nevertheless efficient use of these limited resources
will permit sophisticated speech or hand writing recognition. Some recognition sys-
tems, especially for mobile computers, need the functionality of incremental updating
of vocabulary (add/remove words). Our NFA construction allows such adaptive up-
date, avoiding the recomputation from scratch of the minimized NFA of the slightly
modified lexicon (so far, we have only implemented the addition of new words).

Number of labels in Automata

0

10000

20000

30000

40000

50000

60000

70000

80000

Node Automata 2099 10569 13781 18251 17476

Edge Automata 2424 17119 26867 60479 68783

1 2 3 4 5

Figure 1 Comparison of the numbers of labels for

compressed real world lexicons

9 References

1. Aho A. V., Hopcroft J. E. and Ullman J. D., "The Design and Analysis of Computer Algo-
rithms", Addison-Wesley, Reading M.A., 1974.

2. Appel A. W. and Jacobson G. J., "The world’s fastest scrabble program", Communications
of the ACM, Vol. 31, No. 5, pp. 572-578 & 585, May 1988.

3. Bellman R., "Dynamic Programming", Princeton University Press, 1957.
4. Forney Jr D. G., "The Viterbi Algorithm", Proceedings of the IEEE, Vol. 61, No 3, pp. 268-

278, March 1973.
5. Fredkin E., "Trie Memory", Communications of the ACM, Vol. 3, No 9, pp. 490-499, Sep-

tember 1960.
6. Garcia-Salicetti S., "Une approche neuronale prédictive pour la reconnaissance en-ligne de

l'écriture cursive", Thèse de Doctorat Paris 6, Spécialité: Informatique, 17 décembre 1996.
7. Kosmala A., Willett D. and Rigoll G., "Advanced State Clustering for Very Large Vocabu-

lary HMM-based On-Line Handwriting Recognition", ICDAR’99, Bangalore (India), pp.
442-445, 20-22 September 1999.

8. Lacouture R. and De Mori R., "Lexical Tree Compression", Eurospeech’91, Genova (Italy),
pp. 581-584, September 1991.

9. Lifchitz, A. and Maire F., “A Fast Lexically Constrained Viterbi Algorithm For Online
Handwriting Recognition”, In: L.R.B. Schomaker and L.G. Vuurpijl (Eds.), Proceedings of
the Seventh International Workshop on Frontiers in Handwriting Recognition, Amsterdam,
ISBN 90-76942-01-3, Nijmegen: International Unipen Foundation, pp 313-322, September
11-13 2000.

10. Mohri M. and Riley M., "Network optimizations for large-vocabulary speech recognition",
Speech Communication, Vol. 28, pp. 1-12, 1999.

11. Ney H., "Dynamic programming as a technique for pattern recognition", ICPR’82, Munich
(Germany), pp. 1119-1125, October 1982.

12. Rabiner L. R. and Juang B.-H., "Fundamentals of Speech Recognition", Ed.Prentice Halls,
pp. 321-389, 1993.

13. Revuz D., "Minimization of acyclic deterministic automata in linear time"., Theoretical
Computer Science, Vol 92, pp. 181-189, 1992.

14. Ristov S. and Laporte E., "Ziv Lempel Compression of Huge Natural Language Data Tries
Using Suffix Arrays", Proceedings of Combinatorial Pattern Matching, 10th Annual Sym-
posium, Warwick University, UK, M.Crochemore and M.Paterson (editors), Berlin:
Springer, pp. 196-211, July 1999.

15. Sgarbas K. N., Fakotakis N. D. and Kokkinakis G. K., “Incremental Construction of Com-
pact Acyclic NFAs”. Proceedings ACL-2001, 39th Annual Meeting of the Association for
Computational Linguistics, Toulouse (France), pp. 474-481, July 6-11 2001.

16. Vintsyuk T. K., "Recognition of words in spoken speech by dynamicprogramming meth-
ods", Kibernetika, Vol. 4, No 1, pp. 81-88, January 1968.

17. Viterbi A. J., "Error bounds for convolutional codes and an asymptotically optimum decod-
ing algorithm", IEEE Transactions on Information Theory, IT-13, pp. 260-269, April 1967.

18. Wimmer Z., "Contribution à la lecture de documents papiers manuscrits: reconnaissance
des champs numériques et cursifs par méthodes neuronales markoviennes", Thèse de Doc-
teur-Ingénieur ENST de Paris, Spécialité: Informatique, 28 septembre 1998.

19. Wimmer Z., Garcia-Salicetti S., Lifchitz A., Dorizzi B., Gallinari P., Artières T.,"REMUS",
January 1999a
http://www-poleia.lip6.fr/~lifchitz/HWR/

http://www-poleia.lip6.fr/~lifchitz/HWR/

