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Homogenization of the Schrödinger equation

with a time oscillating potential

Grégoire Allaire∗ M. Vanninathan†

October 25, 2005

Abstract

We study the homogenization of a Schrödinger equation in a pe-
riodic medium with a time dependent potential. This is a model
for semiconductors excited by an external electromagnetic wave. We
prove that, for a suitable choice of oscillating (both in time and space)
potential, one can partially transfer electrons from one Bloch band to
another. This justifies the famous ”Fermi golden rule” for the tran-
sition probability between two such states which is at the basis of
various optical properties of semiconductors. Our method is based on
a combination of classical homogenization techniques (two-scale con-
vergence and suitable oscillating test functions) and of Bloch waves
theory.

Dedicated to the memory of Frédéric Poupaud.

1 Introduction

This work is devoted to the mathematical justification of a problem of mean
field approximation in solid state physics. More precisely, we study the ho-
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mogenization of the following Schrödinger equation






i
∂uǫ

∂t
− ∆uǫ +

(

ǫ−2c
(x

ǫ

)

+ dǫ(t, x)
)

uǫ = 0 in R
N × (0, T )

uǫ(t = 0, x) = u0
ǫ(x) in R

N ,
(1)

where 0 < T < +∞ is a final time. The potential c(y) is a real, bounded
and periodic function defined for y ∈ T

N (the unit torus). Equation (1) is
the so-called one-electron model for describing the electrons in a crystal or
in a semiconductor, characterized by the periodic potential c(y) [7], [8], [25].
An exterior field is also applied to the sample: in first approximation it is
described by another real potential dǫ(t, x) which depends also on the time
variable in contrast to c (see Section 4 for the case of an electromagnetic
potential). In (1) the size of the background microscopic potential is of order
ǫ−2 while that of the exterior macroscopic potential is of order ǫ0, so dǫ is just
a small perturbation (the relative size of which is the square of the period).
It can also be seen as a control acting on the semiconductor and its specific
dependence on ǫ will vary with the initial condition and the desired final or
target state at time T (see (4) below). For example, the exterior potential
can be light illuminating the semiconductor: if its energy is high enough, it
can excite electrons from the valence band to conduction band. This effect
is called optical absorption. Its converse effect (light emitted by electrons
going from the conduction band to the valence band) is at the root of many
important devices such as lasers, light emitting diodes and photo-detectors
[8], [24], [25].

Remark that Planck’s constant has been normalized to unity in (1). We
emphasize that the ǫ-scaling in (1) is not the usual semi-classical scaling
for Schrödinger equation [6], [11], [12], [13], [14], [20] which would involve
a ǫ−1 coefficient in front of the time derivative. Instead, it is the scaling
of homogenization as in [2], [3], [4]. In physical terms it corresponds to an
asymptotic study for much longer times than in the semi-classical limit (we
refer to [3] for a more complete discussion of the scaling).

Let us describe a typical example of our results. We introduce the so-
called Bloch or shifted cell problem,

−(divy + 2iπθ)
(

(∇y + 2iπθ)ψn

)

+ c(y)ψn = λn(θ)ψn in T
N ,

where θ ∈ T
N is a parameter and (λn(θ), ψn(y, θ)) is the n-th eigencouple. In

physical terms, the Bloch frequency θ is the quasi momentum and the range
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of λn(θ), as θ varies, is a Bloch or energy band. We consider an initial data
which is a wave packet of the type

u0
ǫ(x) = ψn

(x

ǫ
, θn
)

e2iπ θ
n
·x

ǫ v0(x), (2)

and we would like to attain a final state at a different momentum θm and
energy λm(θm)

uT
ǫ (x) = ψm

(x

ǫ
, θm

)

e2iπ θ
m

·x

ǫ vT (x). (3)

For achieving this goal we choose an oscillating potential

dǫ(t, x) = ℜ
(

ei
(λm(θm)−λn(θn))t

ǫ2 e2iπ
(θm

−θ
n)·x

ǫ

)

d
(

t, x,
x

ǫ

)

, (4)

where ℜ denotes the real part, and d(t, x, y) is a real potential defined on
[0, T ] × R

N × T
N . Formula (4) for the potential is quite natural: the oscil-

lating phase in time corresponds to the energy difference between the initial
and final state (2), (3), while the oscillating phase in space corresponds to
the momentum difference. In other words, the potential puts energy and mo-
mentum in the system so as to have global conservation of these quantities.

In truth we cannot reach (even approximately) the desired final state (3).
Instead we end up with a mixed state, combination of (2) and (3). Under
the assumption that θn and θm are critical points of their non-degenerate
energy levels (which implies that the group velocities of the wave packets (2)
and (3) vanish) and are non-resonant (which means that no other state are
excited by the external potential), see (7) and (8) below, we shall prove in
Theorem 3.2 that the solution of (1) satisfies

uǫ(t, x) ≈ ei
λn(θn)t

ǫ2 e2iπ θ
n
·x

ǫ ψn

(x

ǫ
, θn
)

vn(t, x)+ei
λm(θm)t

ǫ2 e2iπ θ
m

·x

ǫ ψm

(x

ǫ
, θm

)

vm(t, x),

where the macroscopic profile (vn, vm) is the unique solution of the following
Schrödinger homogenized coupled system



























i
∂vn

∂t
− div (A∗

n∇vn) + d∗nm(t, x) vm = 0 in R
N × (0, T )

i
∂vm

∂t
− div (A∗

m∇vm) + d∗mn(t, x) vn = 0 in R
N × (0, T )

vn(t = 0, x) = v0(x) in R
N

vm(t = 0, x) = 0 in R
N ,

(5)
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with homogenized coefficients A∗
n, A

∗
m and d∗nm = d

∗

mn. The tensors A∗
n and

A∗
m are the inverses of the effective masses of the particles corresponding

to the initial and desired final state. The coupling coefficient d∗nm is given
by a formula (see (20) and Remark 3.3) known as ”Fermi golden rule” [7],
[9], [24]. The homogenized system (5) is a model for light absorption in
semiconductors. When θn = θm one talks about ”direct” absorption, and
when θn 6= θm about ”indirect” absorption [7], [8], [24], [25]. In truth, one
does not find (5), as it stands, in the physical literature where instead a
simpler semi-classical picture is used. Specifically, physicists talk about the
transition probability between the two states (2) and (3), which is precisely
equal to the squared modulus of the coupling coefficient d∗nm.

To obtain the homogenized limit (5) we follow the method introduced
in [2], [3]. The main idea is to use Bloch wave theory to build adequate
oscillating test functions and pass to the limit using two-scale convergence
[1], [19].

The content of this paper is as follows. Section 2 is devoted to recalling
basic facts about Bloch waves and two-scale convergence as well as stating
our main assumption. Section 3 gives our main result of homogenization.
Section 4 focuses on a generalization of the Schrödinger equation (1) which
takes into account an electromagnetic field. Finally Section 5 is concerned
with a resonant case where more than two states are coupled.

2 Bloch spectrum and two-scale convergence

In this section we recall some results on Bloch waves and two-scale con-
vergence, and we introduce our main assumptions on the initial and target
states.

We assume that the potential c(y) is a real measurable bounded periodic
function, i.e. belongs to L∞(TN ), while the potential d(t, x, y), appearing
in (4), is real, measurable, uniformly bounded, periodic in y and smooth in
(t, x). We recall that, for given θ, the Bloch (or shifted) spectral cell equation

− (divy + 2iπθ)
(

(∇y + 2iπθ)ψn

)

+ c(y)ψn = λn(θ)ψn in T
N , (6)

admits a countable sequence of real increasing eigenvalues (λn)n≥1 (repeated
with their multiplicity) and normalized eigenfunctions (ψn)n≥1, with ‖ψn‖L2(TN ) =
1, since its Green operator is a compact self-adjoint complex-valued operator
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on L2(TN ). The dual parameter θ is called the Bloch frequency or quasi
momentum and it runs in the dual cell of T

N , which, by our choice of nor-
malization factor 2π in the phase factor, is again the unit torus T

N . In other
words, by periodicity it is enough to consider θ ∈ T

N . For more details on
Bloch waves, see e.g. [10], [17], [23].

In the sequel, we shall consider two energy levels n,m ≥ 1 and Bloch
parameters θn, θm ∈ T

N such that the eigenvalues λn(θn) and λm(θm) satisfy
the following assumption

for p = n,m

{

(i) λp(θ
p) is a simple eigenvalue,

(ii) θp is a critical point of λp(θ) i.e., ∇θλp(θ
p) = 0.

(7)

Of course, we assume that, either n 6= m, or n = m and θn 6= θm (if n = m
and θn = θm, then dǫ = d(t, x, x/ǫ) and this case was already treated in
[3]). The simplicity assumption, i.e. part (i) of (7), is generic and simplifies
considerably the analysis. In particular, it implies that λp(θ) is infinitely
differentiable in a vicinity of θp, and one can introduce the group velocity
∇θλp(θ). The criticality assumption, i.e. part (ii) of (7), is physically relevant
when states at the bottom or top of Bloch bands are considered. For a
discussion of this type of assumptions, as well as possible weaker ones, we
refer to [3].

We also add a non-resonant assumption

(iii) for any p ≥ 1, λp(2θ
n − θm) 6= 2λn(θ

n) − λm(θm). (8)

The interpretation of assumption (8) is the following. The oscillating poten-
tial dǫ, defined by (4), has been designed to transfer the initial state with
(quasi) momentum θn and energy λn(θn) to the target state θm, λm(θm).
The only requirement is that momentum and energy are conserved during
this process. Actually there is another possible state that can be reached un-
der the conservative action of dǫ, namely the state with momentum 2θn −θm

and energy 2λn(θn) − λm(θm). In order to simplify the analysis, assumption
(8) forbids this additional state as a standing wave solution of (1) without
exterior potential. Section 5 explores the resonant case where (8) is not
satisfied.

Under assumption (7) it is well-known [15] that one can make a choice
of an eigenvector such that the n-th eigencouple of (6) is smooth in a neigh-
borhood of θn. Introducing the operator An(θ) defined on L2(TN ) by

An(θ)ψ = −(divy + 2iπθ)
(

(∇y + 2iπθ)ψ
)

+ c(y)ψ − λn(θ)ψ, (9)
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we differentiate (6) with respect to θ. Denoting by (ek)1≤k≤N the canonical
basis of R

N and by (θk)1≤k≤N the components of θ, the first derivative satisfies

An(θ)
∂ψn

∂θk

= 2iπek·(∇y+2iπθ)ψn+(divy+2iπθ) (2iπekψn)+
∂λn

∂θk

(θ)ψn, (10)

and the second derivative is

An(θ)
∂2ψn

∂θk∂θl

= 2iπek · (∇y + 2iπθ)
∂ψn

∂θl

+ (divy + 2iπθ)

(

2iπek

∂ψn

∂θl

)

+2iπel · (∇y + 2iπθ)
∂ψn

∂θk

+ (divy + 2iπθ)

(

2iπel

∂ψn

∂θk

)

+
∂λn

∂θk

(θ)
∂ψn

∂θl

+
∂λn

∂θl

(θ)
∂ψn

∂θk

−8π2ek · elψn +
∂2λn

∂θl∂θk

(θ)ψn

(11)
Under assumption (7) we have ∇θλn(θn) = 0, thus equations (10) and (11)
simplify for θ = θn and we find

∂ψn

∂θk

(θn) = 2iπζk
n,

∂2ψn

∂θk∂θl

(θn) = −4π2χkl
n , (12)

where ζk
n satisfies

An(θn)ζk
n = ek · (∇y + 2iπθn)ψn + (divy + 2iπθn) (ekψn) in T

N , (13)

and χkl
n satisfies

An(θ
n)χkl

n = ek · (∇y + 2iπθn)ζ l
n + (divy + 2iπθn)

(

ekζ
l
n

)

+el · (∇y + 2iπθn)ζk
n + (divy + 2iπθn)

(

elζ
k
n

)

+2ek · elψn −
1

4π2

∂2λn

∂θl∂θk

(θn)ψn in T
N .

(14)

We know that ζk
n and χkl

n exist since they are defined by (12) as multiple
of the derivatives of ψn with respect to θ (and assumption (7) ensures that
ψn is indeed differentiable). However, if we forget for a moment definition
(12), the existence and uniqueness of the solutions to (13) and (14) is not
at all obvious. Since the operator An(θn) has a non empty kernel spanned

6



by ψn, one should apply the Fredholm alternative: equations (13) and (14)
admit a unique solution (up to the addition of a multiple of ψn) if and
only if their right hand side are orthogonal to ψn (i.e. satisfy the Fredholm
compatibility condition). This compatibility condition is not immediately
satisfied. Actually, it gives new informations which are a consequence of the
previously established existence of ζk

n and χkl
n . In particular, the compatibility

condition of (14) yields a formula for the Hessian matrix ∇θ∇θλn(θ
n) in terms

of ψn and ζk
n that we shall use later (see (31)).

Remark 2.1 All our results can be generalized if we replace the Laplacian
in (1) by the more general operator div(A(y)∇·) where A(y) is a symmetric,
bounded, periodic and uniformly coercive matrix. In this case, the Bloch
spectral cell problem (6) becomes

−(divy + 2iπθ)
(

A(y)(∇y + 2iπθ)ψn

)

+ c(y)ψn = λn(θ)ψn in T
N .

A tensor A(y) 6= Id may be interpreted as a periodic metric. It makes sense
for the study of wave propagation in a periodic media (see e.g. [2]).

Finally we recall the notion of two-scale convergence introduced in [1],
[19].

Proposition 2.2 Let uǫ be a sequence uniformly bounded in L2(RN). There
exists a subsequence, still denoted by uǫ, and a limit u0(x, y) ∈ L2(RN ×T

N )
such that uǫ two-scale converges (weakly) to u0 in the sense that

lim
ǫ→0

∫

RN

uǫ(x)φ(x,
x

ǫ
) dx =

∫

RN

∫

TN

u0(x, y)φ(x, y) dx dy

for all functions φ(x, y) ∈ L2
(

R
N ;C#(TN)

)

.

Notation: for any function φ(x, y) defined on R
N × T

N , we denote by φǫ

the function φ(x, x
ǫ
).

3 Main result

Due to our assumptions on the coefficients, if the initial data u0
ǫ belongs to

H1(RN), there exists a unique solution of the Schrödinger equation (1) in
C
(

[0, T ];H1(RN)
)

which satisfies the following a priori estimate.
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Lemma 3.1 There exists a constant C > 0, which depends on T but not on
ǫ, such that the solution of (1) satisfies

‖uǫ‖L∞((0,T );L2(RN )) = ‖u0
ǫ‖L2(RN ),

ǫ‖∇uǫ‖L∞((0,T );L2(RN )N ) ≤ C
(

‖u0
ǫ‖L2(RN ) + ǫ‖∇u0

ǫ‖L2(RN )N

)

.
(15)

Proof of Lemma 3.1. We multiply equation (1) by uǫ and we integrate by
parts. Since all coefficients are real, taking the imaginary part yields

d

dt

∫

RN

|uǫ(t, x)|
2dx = 0.

Next we multiply (1) by ǫ2 ∂uǫ

∂t
and we take the real part to get

d

dt

∫

RN

(

ǫ2|∇uǫ|
2 +

(

c
(x

ǫ

)

+ ǫ2dǫ(t, x)
)

|uǫ|
2
)

dx = −2ǫ2
∫

RN

∂dǫ

∂t
(t, x)|uǫ|

2 dx,

which yields (15) since ǫ2 ∂dǫ

∂t
is bounded in view of (4). 2

Our main result is the following homogenization theorem.

Theorem 3.2 Assume (7) and (8) and that the initial data u0
ǫ ∈ H1(RN) is

u0
ǫ(x) = ψn

(x

ǫ
, θn
)

e2iπ θ
n
·x

ǫ v0(x), (16)

with v0 ∈ H1(RN ). Then the solution of (1) can be written as

uǫ(t, x) = ei
λn(θn)t

ǫ2 e2iπ θ
n
·x

ǫ ψn

(x

ǫ
, θn
)

vn(t, x)

+ ei
λm(θm)t

ǫ2 e2iπ θ
m

·x

ǫ ψm

(x

ǫ
, θm

)

vm(t, x) + rǫ(t, x),
(17)

with

lim
ǫ→0

∫ T

0

∫

RN

|rǫ(t, x)|
2 dx = 0, (18)

and (vn, vm) ∈ C
(

[0, T ];L2(RN)
)2

is the unique solution of the homogenized
Schrödinger system































i
∂vn

∂t
− div (A∗

n∇vn) + d∗nm(t, x) vm = 0 in R
N × (0, T )

i
∂vm

∂t
− div (A∗

m∇vm) + d∗mn(t, x) vn = 0 in R
N × (0, T )

vn(t = 0, x) = v0(x) in R
N

vm(t = 0, x) = 0 in R
N ,

(19)
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with A∗
p = 1

8π2∇θ∇θλp(θ
p), for p = n,m, and

d∗nm(t, x) = d
∗

mn(t, x) =
1

2

∫

TN

d(t, x, y)ψn(y, θn)ψm(y, θm) dy. (20)

Remark 3.3 Formula (20), giving the coupling coefficient d∗nm, is a ver-
sion of the famous ”Fermi golden rule” in quantum mechanics or solid state
physics [7], [9], [24]. More precisely, the squared modulus of d∗nm is called
the transition probability per unit time from state n to m and its formula is
Fermi golden rule (see e.g. Chapter 6 in [24]). The inverse tensor (A∗

n)−1

is called the effective mass of the particle corresponding to the wave function
vn [9], [16], [18]. These effective coefficients not only depend on the chosen
periodic crystal (characterized by the potential c(y)) but also on the energy
level or Bloch band n,m of the particle, and on the quasi momentum θn,m.
Effective mass theorems were already obtained in [3], chapter 4 of [4], [21],
[22]. However, the derivation of the coupled system (19) and the justification
of the Fermi golden rule is new to the best of our knowledge.

Since θn and θm are not necessarily minimum points, the tensors A∗
n

and A∗
m can be neither definite nor positive. Nevertheless, the homogenized

problem (19) is still well posed in C([0, T ];L2(RN))2 (by using semi-group
theory [5]), although its solution may not belong to L2((0, T );H1(RN))2.

In general d∗nm does not vanish, so that there is indeed a coupling between
the two modes n and m. Nevertheless, if d(t, x, y) ≡ d(t, x) in (4) and
θn = θm, then, by orthogonality of the modes, we have d∗nm = 0.

Remark 3.4 As already noticed in [3], the scaling of (1) is not the usual
semi-classical scaling for Schrödinger equation [6], [11], [12], [13], [14]. The
actual scaling of (1) means that we are interested in much longer times than
in the semi-classical limit.

Remark 3.5 As already said in Remark 2.1 all our results, including The-
orem 3.2 can be generalized if we replace the Laplacian by the more general
operator div(A(y)∇·) with a real symmetric, bounded, periodic and uniformly
coercive matrix A(y).

Remark 3.6 Theorem 3.2 still holds true if the initial data is given by a
combination of the two states

u0
ǫ(x) = ψn

(x

ǫ
, θn
)

e2iπ θ
n
·x

ǫ v0
n(x) + ψm

(x

ǫ
, θm

)

e2iπ θ
m

·x

ǫ v0
m(x)

instead of (16). Of course, it yields a non-zero initial data for vm in (19).
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Proof of Theorem 3.2. This proof is in the spirit of our previous works
[2], [3]. Define two sequences

vn
ǫ (t, x) = uǫ(t, x)e

−i
λn(θn)t

ǫ2 e−2iπ θ
n
·x

ǫ ,

vm
ǫ (t, x) = uǫ(t, x)e

−i
λm(θm)t

ǫ2 e−2iπ θ
m

·x

ǫ .
(21)

Since |vn
ǫ | = |vm

ǫ | = |uǫ|, by the a priori estimates of Lemma 3.1 we have, for
p = n,m,

‖vp
ǫ‖L∞((0,T );L2(RN )) + ǫ‖∇vp

ǫ ‖L2((0,T )×RN ) ≤ C,

and applying the compactness of two-scale convergence (see Proposition
2.2), up to a subsequence, for p = n,m, there exists a limit wp(t, x, y) ∈
L2
(

(0, T ) × R
N ;H1(TN)

)

such that vp
ǫ and ǫ∇vp

ǫ two-scale converge to wp

and ∇ywp, respectively. Similarly, by definition of the initial data, vn
ǫ (0, x)

two-scale converges to ψn (y, θn) v0(x) and vm
ǫ (0, x) two-scale converges to 0

if θm 6= θn and to ψn (y, θn) v0(x) if θm = θn.
First step. We multiply (1) by the complex conjugate of

ǫ2φ(t, x,
x

ǫ
)ei

λn(θn)t

ǫ2 e2iπ θ
n
·x

ǫ

where φ(t, x, y) is a smooth test function defined on [0, T ) × R
N × T

N , with
compact support in (t, x) for fixed y. Integrating by parts this yields

−iǫ2
∫

RN

u0
ǫφ

ǫ
e−2iπ θ

n
·x

ǫ dx− iǫ2
∫ T

0

∫

RN

vn
ǫ

∂φ
ǫ

∂t
dt dx

+

∫ T

0

∫

RN

(ǫ∇ + 2iπθn)vn
ǫ · (ǫ∇− 2iπθn)φ

ǫ
dt dx

+

∫ T

0

∫

RN

(cǫ − λn(θn) + ǫ2dǫ)vn
ǫ φ

ǫ
dt dx = 0.

Passing to the two-scale limit yields the variational formulation of

−(divy + 2iπθn)
(

(∇y + 2iπθn)wn

)

+ c(y)wn = λn(θn)wn in T
N .

By the simplicity of λn(θn), this implies that there exists a scalar function
vn(t, x) ∈ L2

(

(0, T ) × R
N
)

such that

wn(t, x, y) = vn(t, x)ψn(y, θn). (22)

10



Replacing n by m in the previous argument, a similar result holds true for
wm(t, x, y) = vm(t, x)ψm(y, θm).
Second step. We multiply (1) by the complex conjugate of

Ψǫ = ei
λn(θn)t

ǫ2 e2iπ θ
n
·x

ǫ

(

ψn(
x

ǫ
, θn)φ(t, x) + ǫ

N
∑

k=1

∂φ

∂xk

(t, x)ζk
n(
x

ǫ
)

)

(23)

where φ(t, x) is a smooth test function with compact support in [0, T ) ×
R

N , and ζk
n(y) is the solution of (13). Integrating by parts, the resulting

computation was already done in [3] in the absence of the oscillating potential
dǫ(t, x). We briefly recall it: after some algebra, and using the summation
convention for the repeated index k, we obtain
∫

RN

∇uǫ · ∇Ψǫdx =

∫

RN

(∇ + 2iπ
θn

ǫ
)(φvn

ǫ ) · (∇− 2iπ
θn

ǫ
)ψ

ǫ

n

+ǫ

∫

RN

(∇ + 2iπ
θn

ǫ
)(
∂φ

∂xk

vn
ǫ ) · (∇− 2iπ

θn

ǫ
)ζ

k,ǫ

n

−

∫

RN

ek

∂φ

∂xk

vn
ǫ · (∇− 2iπ

θn

ǫ
)ψ

ǫ

n

+

∫

RN

(∇ + 2iπ
θn

ǫ
)(
∂φ

∂xk

vn
ǫ ) · ekψ

ǫ

n

−

∫

RN

vn
ǫ ∇

∂φ

∂xk

· ekψ
ǫ

n

−

∫

RN

vn
ǫ ∇

∂φ

∂xk

· (ǫ∇− 2iπθn)ζ
k,ǫ

n

+

∫

RN

ζ
k,ǫ

n (ǫ∇ + 2iπθn)vn
ǫ · ∇

∂φ

∂xk

(24)

A first simplification arises from the definition of ψn which satisfies, for any
smooth compactly supported test function Φ,
∫

RN

(∇ + 2iπ
θn

ǫ
)ψǫ

n · (∇− 2iπ
θn

ǫ
)Φ +

1

ǫ2

∫

RN

(cǫ − λn(θn))ψǫ
nΦ = 0. (25)

A second simplification comes from the definition of ζk
n

∫

RN

(∇ + 2iπ
θn

ǫ
)ζk,ǫ

n · (∇− 2iπ
θn

ǫ
)Φ +

1

ǫ2

∫

RN

(cǫ − λn(θn))ζk,ǫ
n Φ =

ǫ−1

∫

RN

(∇ + 2iπ
θn

ǫ
)ψǫ

n · ekΦ − ǫ−1

∫

RN

ekψ
ǫ
n · (∇− 2iπ

θn

ǫ
)Φ.

(26)
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Combining (24) with the other terms of the variational formulation of (1),
we easily check that the first line of its right hand side cancels out because
of (25) with Φ = φvn

ǫ , and the next three lines cancel out because of (26)

with Φ = ∂φ

∂xk

vn
ǫ . We keep the three last terms of (24) which are bounded.

Finally, (1) multiplied by Ψǫ yields after simplification

−i

∫

RN

u0
ǫΨǫ(t = 0)dx− i

∫ T

0

∫

RN

vn
ǫ

(

ψ
ǫ

n

∂φ

∂t
+ ǫ

∂2φ

∂xk∂t
ζ

k,ǫ

n

)

dt dx

−

∫ T

0

∫

RN

vn
ǫ ∇

∂φ

∂xk

· ekψ
ǫ

ndt dx

−

∫ T

0

∫

RN

vn
ǫ ∇

∂φ

∂xk

· (ǫ∇− 2iπθn)ζ
k,ǫ

n dt dx

+

∫ T

0

∫

RN

ζ
k,ǫ

n (ǫ∇ + 2iπθn)vn
ǫ · ∇

∂φ

∂xk

dt dx

+

∫ T

0

∫

RN

dǫvn
ǫ Ψǫ dt dx = 0.

(27)
We can pass to the two-scale limit in each term of (27) as was done in [3],
except for the last one which is the only new and different term. The last
line of (27) is equal to

∫ T

0

∫

RN

d
(

t, x,
x

ǫ

) 1

2

(

ei
(λm(θm)−2λn(θn))t

ǫ2 e2iπ
(θm

−2θ
n)·x

ǫ + e−i
λm(θm)t

ǫ2 e−2iπ θ
m

·x

ǫ

)

uǫ

(

ψn(
x

ǫ
, θn)φ(t, x) + O(ǫ)

)

dt dx

=

∫ T

0

∫

RN

d
(

t, x,
x

ǫ

) 1

2

(

v2n−m
ǫ + vm

ǫ

)

(

ψn(
x

ǫ
, θn)φ(t, x) + O(ǫ)

)

dt dx

where we introduced a new sequence v2n−m
ǫ defined, similarly to (21), by

v2n−m
ǫ (t, x) = uǫ(t, x)e

−i
(2λn(θn)−λm(θm))t

ǫ2 e−2iπ
(2θ

n
−θ

m)·x
ǫ . (28)

Applying the same arguments as in the first step, this sequence v2n−m
ǫ is

easily shown to two-scale converge to w2n−m(t, x, y) which satisfies

−(divy + 2iπ(2θn − θm))
(

(∇y + 2iπ(2θn − θm))w2n−m

)

+c(y)w2n−m = (2λn(θ
n) − λm(θm))w2n−m in T

N .
(29)

12



Because of the non-resonance assumption (8), namely that 2λn(θn)−λm(θm)
is not equal to any eigenvalue λp(2θ

n−θm), the spectral problem (29) has no
solution other than 0, which implies that w2n−m(t, x, y) ≡ 0. The two-scale
limit of (27) is thus

−i

∫

RN

∫

TN

|ψn|
2v0φ(t = 0) dx dy − i

∫ T

0

∫

RN

∫

TN

|ψn|
2vn

∂φ

∂t
dt dx dy

−

∫ T

0

∫

RN

∫

TN

ψnvn∇
∂φ

∂xk

· ekψndt dx dy

−

∫ T

0

∫

RN

∫

TN

ψnvn∇
∂φ

∂xk

· (∇y − 2iπθn)ζ
k

ndt dx dy

+

∫ T

0

∫

RN

∫

TN

ζ
k

n(∇y + 2iπθn)ψnvn · ∇
∂φ

∂xk

dt dx dy

+
1

2

∫ T

0

∫

RN

∫

TN

d(t, x, y)ψmvmψnφdt dx dy = 0.

(30)
To simplify (30) we recall that

∫

TN |ψn|
2dy = 1, that d∗nm(t, x) is defined by

(20), and we introduce

2 (A∗
n)jk =

∫

TN

(

ψnej · ekψn + ψnek · ejψn

+ψnej · (∇y − 2iπθn)ζ
k

n + ψnek · (∇y − 2iπθn)ζ
j

n

−ζ
k

n(∇y + 2iπθn)ψn · ej − ζ
j

n(∇y + 2iπθn)ψn · ek

)

dy.

(31)

Because of the Fredholm compatibility condition of equation (14) for the
second derivative of ψn, the matrix A∗

n, defined by (31), is actually equal to
1

8π2∇θ∇θλn(θ
n). Finally (30) is equivalent to

−i

∫

RN

v0φ(t = 0) dx− i

∫ T

0

∫

RN

vn

∂φ

∂t
dt dx−

∫ T

0

∫

RN

A∗
nvn · ∇∇φdt dx

+

∫ T

0

∫

RN

d∗nm(t, x)vmφdt dx = 0.

(32)
A symmetric argument works for vm (changing n in m in the test function
Ψǫ). However, the initial condition is zero in the homogenized equation
for vm. Indeed, either θm 6= θn and we already know that vm

ǫ (0) two-scale

13



converges to 0, or θm = θn and the orthogonality property

∫

TN

ψnψm dy = 0 for m 6= n

implies that the coefficient in front of the test function φ(0) vanishes, which
in the variational formulation implies that vm(0) = 0. Therefore, (32) and
its counterpart for m instead of n yield a very weak form of the homogenized
system (19). Since A∗

n, A
∗
m are real symmetric matrices and d∗nm = d

∗

mn, (19)

admits a unique solution in C
(

[0, T ];L2(RN)
)2

. By uniqueness of this solu-
tion, the entire sequence vp

ǫ two-scale converges weakly to ψp (y, θp) vp(t, x)
for p = n,m.

It remains to prove the strong convergence (18). We compute

‖rǫ(t)‖
2
L2(RN ) = ‖uǫ(t)‖

2
L2(RN ) + ‖ψǫ

nvn(t)‖2
L2(RN ) + ‖ψǫ

mvm(t)‖2
L2(RN )

− 2R

∫

RN

vn
ǫ (t)ψ

ǫ

nvn(t) dx− 2R

∫

RN

vm
ǫ (t)ψ

ǫ

mvm(t) dx

+ 2R

∫

RN

ei
(λn(θn)−λm(θm))t

ǫ2 e2iπ
(θn

−θ
m)·x

ǫ ψǫ
nvn(t)ψ

ǫ

mvm(t) dx.

(33)
By the orthogonality property of the Bloch waves, the last integral in (33)
converges to 0. By applying two-scale convergence, we can pass to the limit
in the second line and in the last two terms of the first line of (33). For the
remaining term we use Lemma 3.1 which implies

‖uǫ(t)‖
2
L2(RN ) = ‖u0

ǫ‖
2
L2(RN ) → ‖ψnv

0‖2
L2(RN×TN ) = ‖v0‖2

L2(RN )

by the normalization condition of ψn. Thus we deduce

lim
ǫ→0

‖rǫ(t)‖
2
L2(RN ) = ‖v0‖2

L2(RN ) − ‖vn(t)‖2
L2(RN ) − ‖vm(t)‖2

L2(RN )

which is precisely 0 because of the conservation of energy of the homogenized
system (19), i.e.

‖vn(t)‖2
L2(RN ) + ‖vm(t)‖2

L2(RN ) = ‖v0‖2
L2(RN ).

Since limǫ→0 ‖rǫ(t)‖
2
L2(RN ) = 0, the Lebesgue dominated convergence theorem

yields (18). 2

14



Remark 3.7 Recall that the function ζk(y) is the solution of (13), unique
up to the addition of a multiple of ψn. This multiple may depend on (t, x)
and therefore the test function Ψǫ, as well as the homogenized system could
depend on the choice of this additive term. Actually the homogenized system
depends on ζk only through the homogenized tensor A∗

n, defined by (31). If we
replace ζk(y) by ζk(y)+ck(t, x)ψn(y), an easy calculation shows that all terms
ck cancel out because of the Fredholm alternative for ζk, i.e. the right-hand
side of (13) is orthogonal to ψn. Thus, the homogenized system is uniquely
defined whatever the choice of the additive constant in ζk(y).

Remark 3.8 A formal two-scale asymptotic expansion (in the spirit of [4])
of the solution uǫ of (1) would give

uǫ(t, x) ≈ ei
λn(θn)t

ǫ2 e2iπ θ
n
·x

ǫ

(

ψn

(x

ǫ
, θn
)

vn(t, x) + ǫ

N
∑

k=1

∂vn

∂xk

(t, x)ζk
n(
x

ǫ
)

)

+ ei
λm(θm)t

ǫ2 e2iπ θ
m

·x

ǫ

(

ψm

(x

ǫ
, θm

)

vm(t, x) + ǫ
N
∑

k=1

∂vm

∂xk

(t, x)ζk
m(
x

ǫ
)

)

.

As usual in periodic homogenization, this expansion suggests the choice of the
test function Ψǫ, in the proof of Theorem 3.2. Another possible interpretation
of Ψǫ is as follows. The large ǫ−2 terms in the variational formulation of
(1) cancel out because of the equation satisfied by ψn. However, new terms
of order ǫ−1 appear because of the first order derivatives of ψn. They are
compensated in turn by the second order derivatives of the corrector ζk

n.

Remark 3.9 Part (i) of assumption (7) states that the eigenvalues λn(θn)
and λm(θm) are simple. This hypothesis is crucial in order to be able to
differentiate the spectral cell problem with respect to θ. If one of these eigen-
values is not simple then, as is well known, it is not anymore differentiable,
but merely directionally differentiable (which is not enough for our purpose).
So, we do not know how to generalize Theorem 3.2 in the case of multiple
eigenvalues. There is one notable exception when one eigenvalue is of mul-
tiplicity, say p > 1, and there exists locally a labelling of the eigenvalues and
eigenvectors in p smooth branches. Note that it is a very strong assumption,
which is rarely meet in practice. Then, using an argument of [3], one can
generalize Theorem 3.2 and obtain a limit system similar to (19), with as
many equations as the repeated multiplicities of the eigenvalues λn(θn) and
λm(θm), and coupled only by zero-order terms.
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Remark 3.10 Part (ii) of assumption (7) states that the group velocities
vanish, ∇θλn(θn) = ∇θλm(θm) = 0. If it is not the case, then it induces
a large drift of order ǫ−1 and the homogenized system (19) can be obtained
only in a moving frame of reference, following this large drift (see [3] for
more details). Therefore, if ∇θλn(θn) 6= ∇θλm(θm), one can not generalize
Theorem 3.2 since both initial and target states move with large different
speeds, so no coupling is possible in the limit as ǫ goes to zero. In the case
∇θλn(θn) = ∇θλm(θm) 6= 0 it is technically possible to generalize Theorem
3.2, following the argument of [3], but this result would not make much sense
since it would assume that the exterior potential dǫ(t, x) move with the same
velocity, or at least is macroscopically constant, which is usually not the case
in physical applications.

4 Electromagnetic potential

Instead of (1) we now consider a Schrödinger equation with an exterior elec-
tromagnetic field






i
∂uǫ

∂t
− (div + iǫAǫ) (∇ + iǫAǫ) uǫ + ǫ−2c

(x

ǫ

)

uǫ = 0 in R
N × (0, T )

uǫ(t = 0, x) = u0
ǫ(x) in R

N ,
(34)

where Aǫ(t, x) is the electromagnetic vector potential, i.e. a function from
R

+ ×R
N into R

N [7], [9], [24]. The electric field E and magnetic field B are
recovered by

E(t, x) = −
∂Aǫ

∂t
(t, x) and B(t, x) = curlAǫ(t, x).

For an electromagnetic wave, the vector potential is assumed to be given by

Aǫ(t, x) = R
(

ei
(λm(θm)−λn(θn))t

ǫ2 e2iπ
(θm

−θ
n)·x

ǫ

)

a
(

t, x,
x

ǫ

)

, (35)

where R denotes the real part and a(t, x, y) is a bounded smooth function
from R

+×R
N ×T

N into R
N . As before, c(y) is a bounded function from T

N

into R, the initial data u0
ǫ belongs to H1(RN), and the conclusion of Lemma

3.1 still holds true: there exists a unique solution of (34) in C
(

[0, T ];H1(RN)
)

which is uniformly bounded in L2
(

(0, T ) × R
N
)

, independently of ǫ. Theo-
rem 3.2 can be generalized as follows.
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Theorem 4.1 Assume (7) and (8) and that the initial data u0
ǫ ∈ H1(RN) is

u0
ǫ(x) = ψn

(x

ǫ
, θn
)

e2iπ θ
n
·x

ǫ v0(x),

with v0 ∈ H1(RN ). The solution of (34) can be written as

uǫ(t, x) = ei
λn(θn)t

ǫ2 e2iπ θ
n
·x

ǫ ψn

(x

ǫ
, θn
)

vn(t, x)

+ ei
λm(θm)t

ǫ2 e2iπ θ
m

·x

ǫ ψm

(x

ǫ
, θm

)

vm(t, x) + rǫ(t, x),

with

lim
ǫ→0

∫ T

0

∫

RN

|rǫ(t, x)|
2 dx = 0,

and (vn, vm) ∈ C
(

[0, T ];L2(RN)
)2

is the unique solution of the homogenized
Schrödinger system































i
∂vn

∂t
− div (A∗

n∇vn) + d∗nm(t, x) vm = 0 in R
N × (0, T )

i
∂vm

∂t
− div (A∗

m∇vm) + d∗mn(t, x) vn = 0 in R
N × (0, T )

vn(t = 0, x) = v0(x) in R
N

vm(t = 0, x) = 0 in R
N ,

(36)

with A∗
p = 1

8π2∇θ∇θλp(θ
p), for p = n,m, and

d∗nm(t, x) = d
∗

mn(t, x) =
i

2

∫

TN

ψm(y, θm)a(t, x, y) · (∇− 2iπθn)ψn(y, θn) dy

−
i

2

∫

TN

ψn(y, θn)a(t, x, y) · (∇ + 2iπθm)ψm(y, θm) dy.

(37)

Remark 4.2 In general d∗nm does not vanish, even if a(t, x, y) is a constant
vector and θn = θm, so that there is indeed a coupling between the two modes
n and m.

Proof of Theorem 4.1. The proof is very similar to that of Theorem
3.2. The first step is identical, and in the second step we choose the same
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test function Ψǫ, defined by (23). The higher order term in the variational
formulation is
∫

RN

(∇ + iǫAǫ) uǫ · (∇− iǫAǫ) Ψǫdx =

∫

RN

∇uǫ · ∇Ψǫ

+iǫ

∫

RN

(

uǫAǫ · ∇Ψǫ − ΨǫAǫ · ∇uǫ

)

dx

+ǫ2
∫

RN

|Aǫ|
2uǫΨǫ dx.

(38)
The first term in the right hand side of (38) is exactly the previous term (24).
The last one goes to zero, while the second one is the only new term which
yields a non-zero limit. Indeed, integrating by parts in this term gives

iǫ

∫

RN

(

uǫAǫ · ∇Ψǫ − ΨǫAǫ · ∇uǫ

)

dx = iǫ

∫

RN

uǫ

(

2Aǫ · ∇Ψǫ + ΨǫdivAǫ

)

dx

= i/2

∫

RN

(v2n−m
ǫ + vm

ǫ )φ
(

2aǫ · (∇y − 2iπθn)ψ
ǫ

n + ψ
ǫ

ndivya
ǫ
)

dx

+i/2

∫

RN

2iπ
(

v2n−m
ǫ (θm − θn) · aǫ + vm

ǫ (θn − θm) · aǫ
)

φψ
ǫ

ndx+ O(ǫ).

(39)
Recalling that the two-scale limit of v2n−m

ǫ is 0, the limit of (39) is

i/2

∫

RN

∫

TN

vmφψm

(

2a · (∇y − 2iπθn)ψn + ψndivya + 2iπψn(θn − θm) · a
)

dx dy

which yields formula (37) for the coupling coefficient d∗nm. The rest of the
proof is identical to that of Theorem 3.2. 2

5 The resonant case

In this section we come back to the original Schrödinger equation (1) but we
change assumption (8) by assuming that there is a single resonance between
the initial data and the target state, namely

{

(iii) there exists l ≥ 1 such that λl(2θ
n − θm) = 2λn(θn) − λm(θm),

(iv) for any p ≥ 1, λp(3θ
n − 2θm) 6= 3λn(θn) − 2λm(θm).

(40)
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We keep assumption (7) that we extend to the new eigenvalue λl for the
Bloch parameter θl = 2θn − θm, i.e.

for p = n,m, l

{

(i) λp(θ
p) is a simple eigenvalue,

(ii) θp is a critical point of λp(θ) i.e., ∇θλp(θ
p) = 0.

(41)
With these new assumptions we generalize Theorem 3.2 by obtaining a limit
system coupling three possible states instead of just two.

Theorem 5.1 Assume (41) and (40) and that the initial data u0
ǫ ∈ H1(RN)

is
u0

ǫ(x) = ψn

(x

ǫ
, θn
)

e2iπ θ
n
·x

ǫ v0(x),

with v0 ∈ H1(RN ). The solution of (1) can be written as

uǫ(t, x) = ei
λn(θn)t

ǫ2 e2iπ θ
n
·x

ǫ ψn

(x

ǫ
, θn
)

vn(t, x)

+ ei
λm(θm)t

ǫ2 e2iπ θ
m

·x

ǫ ψm

(x

ǫ
, θm

)

vm(t, x)

+ ei
λl(θ

l)t

ǫ2 e2iπ θ
l
·x

ǫ ψl

(x

ǫ
, θl
)

vl(t, x) + rǫ(t, x),

with

lim
ǫ→0

∫ T

0

∫

RN

|rǫ(t, x)|
2 dx = 0,

and (vn, vm, vl) ∈ C
(

[0, T ];L2(RN)
)3

is the unique solution of the homoge-
nized Schrödinger system


























































i
∂vn

∂t
− div (A∗

n∇vn) + d∗nm(t, x) vm + d∗nl(t, x) vl = 0 in R
N × (0, T )

i
∂vm

∂t
− div (A∗

m∇vm) + d∗mn(t, x) vn = 0 in R
N × (0, T )

i
∂vl

∂t
− div (A∗

l ∇vl) + d∗ln(t, x) vn = 0 in R
N × (0, T )

vn(t = 0, x) = v0(x) in R
N

vm(t = 0, x) = 0 in R
N

vl(t = 0, x) = 0 in R
N ,

with A∗
p = 1

8π2∇θ∇θλp(θ
p), for p = n,m, l, and

d∗np(t, x) = d
∗

pn(t, x) =
1

2

∫

TN

d(t, x, y)ψn(y, θn)ψp(y, θ
p) dy (42)
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for p = m, l.

Remark 5.2 More generally, there could be multiple resonances between the
initial and target state. Let k0 ≥ 1 be the order of the resonance. Under
a suitable generalization of assumption (40), all modes of momentum (k +
1)θn − kθm and energy (k + 1)λn(θn) − kλm(θm) are coupled for −1 ≤ k ≤
k0. Theorem 5.1 can be generalized to obtain an homogenized system for
(vm, vn, v2n−m, ..., v(k0+1)n−k0m) in which the coupling matrix d∗ is hermitian
of size k0 + 2 with the following sparse structure

d∗ =























0 × 0
× 0 × 0
0 × 0 × 0

. . .
. . .

. . .
. . .

. . .

0 × 0 × 0
0 × 0 ×

0 × 0























Proof of Theorem 5.1. The only modification with respect to the proof
of Theorem 3.2 is the fact that the sequence v2n−m

ǫ , defined by (28), now
admits a non-zero two-scale limit ψl(y, θ

l)vl(t, x) because the spectral cell
problem (29) has a non-trivial solution ψl, as a consequence of part (iii) of
assumption (40). No other states appear because of part (iv) in (40). The
rest of the proof is similar to that of Theorem 3.2 and we safely leave it to
the reader. 2
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