Doppler cooling to the recoil limit by means of sharp atomic transitions with controlled quenching - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of the Optical Society of America B Année : 2003

Doppler cooling to the recoil limit by means of sharp atomic transitions with controlled quenching

Résumé

In this paper, we develop an analytical approach to Doppler cooling of atoms by one- or two-photon transitions when the natural width of the excited level is so small that the process leads to a Doppler temperature comparable to the recoil temperature. A ``quenching" of the sharp line is introduced in order to allow control of the time scale of the problem. In such limit, the usual Fokker-Planck equation does not correctly describe the cooling process. We propose a generalization of the Fokker-Planck equation and derive a new model which is able to reproduce correctly the numerical results, up to the recoil limit. Two cases of practical interest, one-photon Doppler cooling of strontium and two-photon Doppler cooling of hydrogen are considered.

Dates et versions

hal-00012601 , version 1 (25-10-2005)

Identifiants

Citer

Véronique Zehnlé, Jean Claude Garreau. Doppler cooling to the recoil limit by means of sharp atomic transitions with controlled quenching. Journal of the Optical Society of America B, 2003, 20, pp.931. ⟨hal-00012601⟩
32 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More