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POLYMERS IN RANDOM MEDIA

FRANCIS COMETS, VINCENT VARGAS

Université Paris 7,
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Abstract. In this note we give upper bounds for the free energy of discrete
directed polymers in random media. The bounds are given by the so-called gen-
eralized multiplicative cascades from the statistical theory of turbulence. For the
polymer model, we derive that the quenched free energy is different from the an-
nealed one in dimension 1, for any finite temperature and general environment.
This implies localization of the polymer.
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1. Introduction

Let ω = (ωn)n∈N be the simple random walk on the d-dimensional integer lattice Z
d

starting at 0, defined on a probability space (Ω,F , P ). We also consider a sequence
η = (η(n, x))(n,x)∈N×Zd of real valued, non-constant and i.i.d. random variables de-
fined on another probability space (H,G, Q) with finite exponential moments. The
path ω represents the directed polymer and η the random environment.

For any n > 0, we define the (random) polymer measure µn on the path space
(Ω,F) by:

µn(dω) =
1

Zn

exp(βHn(ω))P (dω)

where β ∈ R
+ is the inverse temperature, where

Hn(ω)
def.
=

n∑

j=1

η(j, ωj)

and where

Zn = P [exp(βHn(ω))]

Draft October 25, 2005.
Partially supported by CNRS (UMR 7599 “Probabilités et Modèles Aléatoires”).
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2 FRANCIS COMETS, VINCENT VARGAS

is the partition function. We use the notation P [X] for the expectation of a random
variable X. By symmetry, we can – and we will – restrict to β > 0.

The free energy of the polymer is defined as the limit

p(β) = lim
n→∞

1

n
ln(Zn(β)/Q[Zn(β)]) (1.1)

where the limit exists Q-a.s. and in Lp for all p > 1 and is constant (cf. [4]). An
application of Jensen’s inequality to the concave function ln(·) yields p(β) 6 0. As
shown in theorem 3.2 (b) in [5], there exists a βc ∈ [0,∞] such that

p(β)

{
= 0 if β ∈ [0, βc],

< 0 if β > βc.

An important question in the study of directed polymers is to find the β such
that p(β) < 0. Indeed, one can show that the negativity of p(β) is equivalent to a
localization property for (ωn)n∈N,(ω̃n)n∈N two independent random walks under the
polymer measure µn (cf Corollary 2.2 in [4]):

p(β) < 0 ⇐⇒ ∃c > 0 lim
n→∞

1

n

n∑

k=1

µ⊗2
k−1(ωk = ω̃k) > c Q.a.s.

The statement in the right-hand side means that the polymer localizes in narrow
corridors with positive probability. It is not known how to characterize directly these
corridors, and therefore this criterion for the transition localization/delocalization
is rather efficient since it does not require any knowledge on them. Hence, it is
important to get good upper bounds on p in order to spot the transition. Our main
result is the following.

Theorem 1.1. In dimension d = 1, βc = 0.

There is a clear consensus on this fact in the physics literature, but no proof
for it, except via the replica method or in the (different) case of a space-periodic
environment where much more computations can be performed [3].

This result follows from a family of upper bounds, given by the free energies
of models on trees depending on an integer parameter m (m > 1). These trees
are deterministic and regular, with random weights, they fall in the scope of the
generalized multiplicative cascades [15] or smoothing transformations [8] which are
well known generalizations of the random cascades introduced in [16] for a statistical
description of turbulence. When the environment variables have nice concentration
properties – e.g., gaussian or bounded η’s –, we prove in theorem 3.6 that the
polymer free energy is the infimum over m of the one of the m-tree model. For
general environmental distribution we only have an upper bound from theorem 3.3,
but it is enough to show the above theorem. This also explains the title of the present
paper.

Recall at this point that directed polymers in a Bernoulli random environment
are positive temperature versions of oriented percolation. Our bounds here have a
flavor similar to the lower bounds for the critical threshold in 2-dimensional oriented
percolation (i.e., d = 1 in our notations) in section 6 of Durrett [7]. In that paper,
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percolation is compared to Galton-Watson processes obtained in running oriented
percolation for m steps (m > 1), and then using the distribution of wet sites as
offspring distribution.

Next, we comment on the case of supercritical 1-dimensional oriented percolation.
Then, η is Bernoulli distributed with parameter p > ~pc(1). The infinite cluster is the
set of points (t, x) with t ∈ N, x ∈ Z, P (ωt = x) > 0, which are connected to ∞ by
an open oriented path – i.e., a path ω with η(s, ωs) = 1 ∀s > t. It is known that this
cluster, at large scale, is approximatively a cone with vertex (0, 0), direction [0, x)
and positive angle, and it has a positive density. In words, there is a huge number
of oriented paths of length n with energy Hn = n−O(1). However, according to the
theorem, the polymer measure has a strong localization property. This first seems
paradoxical, since there are exponentially many suitable paths on the energetic level.
Hence, this is essentially an entropic phenomenon, due to large fluctuations in the
number of such paths.

For numerics, our upper bounds do not seem very efficient: on the basis of pre-
liminary numerical simulations they converge quite slowly as m → ∞. Finally we
mention that lower bounds for the polymer free energy can be obtained from a
well-known super-additivity property, see formula (2.3).

2. Notations and preliminaries

We first introduce some further notations.
Let ((ωn)n∈N, (P x)x∈Zd) denote the simple random walk on the d-dimensional inte-

ger lattice Z
d, defined on a probability space (Ω,F): for x in Z

d, under the measure
P x, (ωn − ωn−1)n > 1 are independent and

P x(ω0 = x) = 1, P x(ωn − ωn−1 = ±δj) =
1

2d
, j = 1, . . . , d,

where (δj)1 6 j 6 d is the j-th vector of the canonical basis of Z
d. Like in the intro-

duction, we will use the notation P for P 0.
For the environment, we assume that for all β ∈ R,

λ(β)
def.
= lnQ(eβη(n,x)) < ∞.

It is convenient to consider the normalized partition function

Wn = Zn/Q[Zn] = P [exp(βHn(ω) − nλ(β))].

We define for k < n, x, y ∈ Z
d,

Hk,n(ω) =
n−k∑

j=1

η(k + j, ωj)

and
W x

k,n(y) = P x(eβHk,n(ω)−(n−k)λ(β)1ωn−k=y). (2.1)

In the sequel, Wn(x) will stand for W x
0,n(0). The Markov property of the simple

random walk yields

Wn =
∑

x,y∈Zd

Wk(x)W x
k,n(y). (2.2)
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This identity will be extensively used in the sequel.
Finally, we recall ([4]) that with p defined by (1.1) it holds

p(β) = lim
n→∞

1

n
Q(ln(Wn(β))) = sup

n > 1

1

n
Q(ln(Wn(β))) (2.3)

where the last equality is a consequence of super-additivity arguments.

2.1. Definition and well known facts on generalized multiplicative cas-

cades. In this section, we introduce a model of generalized multiplicative cascades
on a tree. For an overview of results, we refer to [15]. Let N > 2 be a fixed integer
and

U =
⋃

k∈N

[| 1, N |]k

be the set of all finite sequences u = u1 . . . uk of elements in [| 1, N |]. With the
previous notation, we write | u |= k for its length. For u = u1 . . . uk,v = v1 . . . vk

two finite sequences, let uv denote the sequence u1 . . . ukv1 . . . vk. Let q be a non
degenerate probability distribution on (R∗

+)N . It is known (cf. [15]) that there exist
a probability space with probability measure denoted by P (and expectation E),
and random variables (Au)u∈U defined on this space, such that the random vectors
(Au1, . . . , AuN)u∈U form an i.i.d. sequence with common distribution q. We assume
that the (Ai)1 6 i 6 N are normalized:

E(

N∑

i=1

Ai) = 1

and that they have moments of all order: E[
∑N

i=1 Ap
i ] < ∞ ∀p ∈ R. Consider the

process (W casc
n )n∈N defined by

W casc
n =

∑

u1,...,un∈[|1,N |]

Au1Au1u2 . . . Au1...un
(2.4)

and the filtration

Gn := σ{Au; | u | 6 n}, n > 1.

Then (W casc
n ,Gn)n > 1 is a non negative martingale so the limit W casc

∞ = limn→∞ W casc
n

exists. We are interested in the behavior of the associated free energy:

pn =
1

n
lnW casc

n .

In the case where the (Ai)i 6 N are i.i.d, the exact limit of pn as n goes to infinty was
derived in [9]. In the general case, the proofs in [9] can easily be adapted to show
the following summary result.

Theorem 2.1. The following convergence holds P-a.s. and in Lp for all p > 1:

pn −→
n→∞

inf
θ∈]0,1]

1

θ
ln(E

N∑

i=1

Aθ
i ) 6 0,
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where the inequality is a consequence of the normalization. Finding the limit of
pn as n tends to infinity amounts to studying the function v defined by

∀θ ∈]0, 1], v(θ) =
1

θ
ln(E

N∑

i=1

Aθ
i ) ,

which has derivative

v′(1) = E

N∑

i=1

Ai ln(Ai) .

Lemma 2.2. If E
∑N

i=1 Ai ln(Ai) 6 0, the function v is strictly decreasing on ]0, 1]
and thus

inf
θ∈]0,1]

v(θ) = v(1) = 0.

If E
∑N

i=1 Ai ln(Ai) > 0, there exists a unique θ∗ ∈]0, 1[ such that

inf
θ∈]0,1]

v(θ) = v(θ∗) < 0.

Proof. For all θ ∈]0, 1], we have the following expression for the derivative of v:

v′(θ) =
g(θ)

θ2

where g is given by

g(θ) = θ
E
∑N

i=1 Aθ
i ln(Ai)

E
∑N

i=1 Aθ
i

− ln(E
N∑

i=1

Aθ
i ).

In particular, we obtain the value of v′(1) given above. By direct computation, one
can obtain the following expression for g′

∀θ > 0 g′(θ) = θ
E(
∑N

i=1 Aθ
i (ln(Ai) − E(ln(A) | Aθ))2)

E(
∑N

i=1 Aθ
i )

where E(ln(A) | Aθ) is a notation for

E(ln(A) | Aθ) =
E(
∑N

i=1 Aθ
i ln(Ai))

E(
∑N

i=1 Aθ
i )

.

In particular, g is strictly increasing and we have

g(1) = E(
N∑

i=1

Ai ln(Ai)).

By considering the two cases g(1) 6 0 and g(1) > 0, we can easily conclude. �
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2.2. Concentration of measure in the gaussian and the bounded case. For
a complete survey on the concentration of measure phenomenon, we refer to [14]. In
the gaussian case, we have

Theorem 2.3. Let M > 1 be an integer. We consider R
M equiped with the usual eu-

clidian norm ‖·‖. If XM is a standard gaussian vector on some probability space (with
a probability measure P) and F is a C-lipschitzian function (|F (x)−F (y)| 6 C‖x−
y‖) from R

M to R then

E(eλ(F (XM )−E(F (XM )))) 6 e
C2λ2

2 . (2.5)

Therefore, we have the following concentration result

P(| F (XM) − E(F (XM)) | > r) 6 2e−
r2

2C2 (2.6)

In the bounded case, we get a similar concentration result (cf. Corollary 3.3 in
[14]) .

Theorem 2.4. Let M > 1 be an integer and a < b be two real numbers. If XM is a
random vector in [a, b]M with i.i.d. components on some probability space and F is
a convex and C-lipschitzian function from [a, b]M to R for the euclidian norm, then

E(eλ(F (XM )−E(F (XM )))) 6 eC2(b−a)2λ2

. (2.7)

Therefore, we have the following concentration result

P(F (XM) − E(F (XM)) > r) 6 e
− r2

4C2(b−a)2 (2.8)

We can derive from the above theorems a concentration result for the free energy
at time n:

Corollary 2.5. If the environment η is standard gaussian then for all λ > 0,

Q(eλ(ln(Wn)−Q(ln(Wn)))) 6 e
β2λ2n

2 . (2.9)

If the environment η belongs to [a, b] for a < b two real numbers, then for all λ > 0,

Q(eλ(ln(Wn)−Q(ln(Wn)))) 6 eβ2(b−a)2λ2n. (2.10)

Proof. As a function of the environment, ln(Wn) is convex and β
√

n-lipschitzian (cf.
the proof of proposition 1.4 in [6]). Therefore, in the gaussian case, the result is a
direct application of (2.5) and, in the bounded case, simply (2.7). �

3. Majorizing polymers with cascades

Let us fix an integer m > 1 and define Lm to be set of points visited by the simple
random walk at time m:

Lm
def
= {x ∈ Z

d; P (wm = x) > 0}.
We introduce (W tree

m,n)n > 1 ≡ (W casc
n )n > 1 the martingale of the multiplicative cascade

associated to the random vector (Wm(x))x∈Lm
, i.e., defined by (2.4) when N = |Lm|
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and q is the law of (Wm(x))x∈Lm
with Wm(x) from (2.1). Let ptree

m (β) denote the
associated free energy. In view of (2.1), ptree

m (β) is given by

ptree
m (β) = inf

θ∈]0,1]
vm(θ) (3.1)

where vm is given by the expression

∀θ ∈]0, 1] vm(θ) =
1

θ
ln(Q

∑

x∈Lm

Wm(x)θ). (3.2)

We will first need the following monotonicity lemma.

Lemma 3.1. Assume that φ :]0,∞[−→ R is C1 and that there are constants C, p ∈
[1,∞[ such that

∀u > 0 | φ′(u) | 6 Cup + Cu−p.

Then for all x ∈ Lm φ(Wm(x)), ∂φ(Wm(x))
∂β

∈ L1(Q), Qφ(Wm(x)) is C1 in β ∈ R and

∂

∂β
Qφ(Wm(x)) = Q

∂

∂β
φ(Wm(x)).

Suppose in addition that φ is concave. Then ,

∀β > 0 Q
∂

∂β
φ(Wm(x)) 6 0.

Proof. The proof is an immediate adaptation of the proof of lemma 3.3 in [5]. �

As a consequence we can define the following

Proposition 3.2. The function ptree
m is non-increasing in β. There exists a critical

value βm
c ∈ (0,∞] such that

ptree
m (β) =

{
0 if β ∈ [0, βm

c ],

< 0 if β > βm
c .

Proof. For all θ ∈]0, 1], the function x → xθ is concave so by lemma 3.1, we see from
expression (3.2) that vm(θ) is non-increasing as a function of β. Therefore, we see
from (3.1) that ptree

m is itself non-increasing in β and we obtain the existence of βm
c

(βm
c ∈ [0,∞]). Since

v′
m(1) = Q

∑

x∈Lm

Wm(x) ln Wm(x) −→
∑

x∈Lm

P (ωn = x) ln P (ωn = x) < 0 ,

as β ց 0, we conclude that βm
c is strictly positive by continuity of ∂θvm(θ, β)|θ=1 in

β and by lemma 3.1.
�

Theorem 3.3. We have the following inequality

p(β) 6 inf
m > 1

1

m
ptree

m (β). (3.3)
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Proof. Let θ ∈ (0, 1) and m be a positive integer. By using the subadditive estimate

∀u, v > 0, (u + v)θ < uθ + vθ, (3.4)

we have for all n > 1

Q
1

n
ln Wnm = Q

1

θn
ln W θ

nm

(2.2)
= Q

1

θn
ln

(
∑

x1,...,xn

Wm(x1) . . .W
xn−1

(n−1)m,nm
(xn)

)θ

(3.4)

6 Q
1

θn
ln
∑

x1,...,xn

Wm(x1)
θ . . . W

xn−1

(n−1)m,nm
(xn)θ

(Jensen)

6
1

θn
ln Q

∑

x1,...,xn

Wm(x1)
θ . . .W

xn−1

(n−1)m,nm
(xn)θ

=
1

θn
ln

(
Q
∑

x

Wm(x)θ

)n

=
1

θ
lnQ

∑

x

Wm(x)θ

The proof is complete by taking the limit as n → ∞ and then by taking the infimum
over all θ ∈]0, 1] and m > 1. �

In particular, to prove p(β) < 0 it suffices to find m > 1 (in fact, m > 2) and
θ ∈ (0, 1) such that Q

∑
x Wm(x)θ < 1. The theorem is a handy way to obtain upper

bounds on the critical β.

Remark 3.4. Let θ ∈]0, 1[ and m > 1. Using (3.4), we find by a similar computation
that for all k > 2

Q
∑

y

Wkm(y)θ = Q
∑

y

( ∑

x1,...,xk−1

Wm(x1) . . .W
xk−1

(k−1)m,km
(y)
)θ

< Q
∑

y

∑

x1,...,xk−1

Wm(x1)
θ . . .W

xk−1

(k−1)m,km
(y)θ

=
(
Q
∑

x

Wm(x)θ
)k

. (3.5)

In view of (3.1) and of the smoothness of vm(·), we conclude that

1

km
ptree

km (β) 6
1

m
ptree

m (β).

Observe that when ptree
m (β) < 0, the infimum in (3.1) is achieved for some θ ∈ (0, 1),

and therefore the above inequality is strict. In particular,

inf
m > 1

1

m
ptree

m (β) = lim
m→∞

1

m
ptree

m (β). (3.6)
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The authors do not know if the sequence (ptree
m (β))m > 1 is subadditive. However a

simple argument yields the stronger result

inf
m > 1

1

m
ptree

m (β) = lim
m→∞

1

m
ptree

m (β). (3.7)

Indeed, by repeating the steps in (3.5), we we see that, for 0 6 ℓ < m, k > 1 and
θ ∈ (0, 1],

vkm+ℓ(θ) 6 kvm(θ) + vℓ(θ) ,

whereas, by concavity,

vℓ(θ) 6
1

θ

∑

x

(
QWℓ(θ)

)θ
= vℓ(θ, 0)

where vℓ(θ, 0) = vℓ(θ, β)|β=0 ∈ (0,∞). Therefore,

max
km 6 n<(k+1)m

vn(θ)

n
6

k

(k + ε)m
vm(θ) +

1

km
vℓ(θ, 0) ,

where ε = 0 or 1 according to the sign of vm(θ). Now, recalling that vm(θ) > ptree
m (β)

and taking the limit k → ∞, leads to

lim sup
n

ptree
n (β)

n
6

vm(θ)

m
, m > 1, θ ∈ (0, 1].

Combined with (3.6), this implies (3.7).

We add another

Remark 3.5. Suppose that there exists m > 1 such that

Q
∑

x

Wm(x) ln Wm(x) = 0.

We have

Q
∑

y

W2m(y) lnW2m(y) = Q
∑

x,y

Wm(x)W x
m,2m(y) lnW2m(y)

>
∑

x,y

QWm(x)W x
m,2m(y) ln

(
Wm(x)W x

m,2m(y)
)

=
∑

x

(
QWm(x) lnWm(x)

)∑

y

QW x
m,2m(y)

+
∑

x

(
QWm(x)

)∑

y

QW x
m,2m(y) lnW x

m,2m(y)

= 2
∑

x

QWm(x) ln Wm(x)

= 0

Hence, by lemma 2.2, ptree
2m (β) < 0 and finally p(β) < 0.
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As a consequence of theorem 3.3, we get our main result

Proof of theorem 1.1: Let θ ∈]0, 1] and β > 0. By using lemma 4.1 in [4], there exists
a c(θ) > 0 such that

∀m > 1 Q(W θ
m) 6 e−c(θ)m

1
3 .

Therefore

Q(
∑

x∈Lm

(Wm(x))θ) 6 | Lm | Q(W θ
m)

6 | Lm | e−c(θ)m
1
3 −→

m→∞
0,

where we have used the fact that | Lm |= O(m). In particular, there exists m > 1
such that

Q(
∑

x∈Lm

(Wm(x))θ) < 1.

We have ptree
m (β) < 0 and so by theorem 3.3 p(β) < 0. �

Theorem 3.6. Suppose the environment η is bounded or gaussian. Then the in-
equality (3.3) is in fact an equality

p(β) = inf
m > 1

ptree
m (β).

Proof. The inequality p(β) 6 infm > 1 ptree
m (β) is in fact the conclusion of theorem

3.3 and thus is true for all environments.
We must show that infm > 1 ptree

m (β) 6 p(β). We treat the gaussian case, the
bounded case being similar. If β 6 βc, we have by definition p(β) = 0 and since
for all m > 1, ptree

m (β) 6 0, the result is obvious. Suppose that β is such that β > βc.
By definition of βc, p(β) < 0. Let θ ∈]0, 1]. We have by the concentration result (2.9)

Q(W θ
m) = eθQ(ln(Wm))Q(eθ(ln Wm−Q(ln(Wm)))

6 eθp(β)m+ β2θ2m

2 .

For all m > 1,

1

m
ptree

m (β) 6
1

θm
ln(Q(

∑

x∈Lm

(Wm(x))θ))

6
1

θm
ln(| Lm |) +

1

θm
ln(Q(W θ

m))

6
1

θm
ln(| Lm |) + p(β) +

β2θ

2

−→
m→∞

p(β) +
β2θ

2

where we have used the fact that | Lm |= O(md). Thus, by remark 3.4

inf
m > 1

1

m
ptree

m (β) = lim
m→∞

1

m
ptree

m (β) 6 p(β) +
β2θ

2
.

The proof is complete by letting θ ↓ 0. �
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