Majorizing multiplicative cascades for directed polymers in random media
Francis Comets, Vincent Vargas

To cite this version:
Francis Comets, Vincent Vargas. Majorizing multiplicative cascades for directed polymers in random media. 2005. hal-00012577

HAL Id: hal-00012577
https://hal.science/hal-00012577
Preprint submitted on 25 Oct 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MAJORIZING MULTIPLICATIVE CASCADES FOR DIRECTED POLYMERS IN RANDOM MEDIA

FRANCIS COMETS, VINCENT VARGAS

Université Paris 7,
Mathématiques, case 7012,
2, place Jussieu, 75251 Paris, France
e-mail: comets@math.jussieu.fr, vargas@math.jussieu.fr

Abstract. In this note we give upper bounds for the free energy of discrete directed polymers in random media. The bounds are given by the so-called generalized multiplicative cascades from the statistical theory of turbulence. For the polymer model, we derive that the quenched free energy is different from the annealed one in dimension 1, for any finite temperature and general environment. This implies localization of the polymer.

Short Title. Majorizing cascades for directed polymers
Key words and phrases. Directed polymers, random environment, strong disorder, generalized multiplicative cascades.
MSC 2000 subject classifications. Primary 60K35; secondary 60J30, 82D30, 82A51

1. Introduction

Let $\omega = (\omega_n)_{n \in \mathbb{N}}$ be the simple random walk on the d-dimensional integer lattice \mathbb{Z}^d starting at 0, defined on a probability space (Ω, \mathcal{F}, P). We also consider a sequence $\eta = (\eta(n, x))_{(n, x) \in \mathbb{N} \times \mathbb{Z}^d}$ of real valued, non-constant and i.i.d. random variables defined on another probability space (H, \mathcal{G}, Q) with finite exponential moments. The path ω represents the directed polymer and η the random environment.

For any $n > 0$, we define the (random) polymer measure μ_n on the path space (Ω, \mathcal{F}) by:

$$
\mu_n(d\omega) = \frac{1}{Z_n} \exp(\beta H_n(\omega)) P(d\omega)
$$

where $\beta \in \mathbb{R}^+$ is the inverse temperature, where

$$
H_n(\omega) \overset{\text{def}}{=} \sum_{j=1}^{n} \eta(j, \omega_j)
$$

and where

$$
Z_n = P[\exp(\beta H_n(\omega))]
$$

Draft October 25, 2005.
Partially supported by CNRS (UMR 7599 “Probabilités et Modèles Aléatoires”).
is the partition function. We use the notation $P[X]$ for the expectation of a random variable X. By symmetry, we can – and we will – restrict to $\beta \geq 0$.

The free energy of the polymer is defined as the limit

$$p(\beta) = \lim_{n \to \infty} \frac{1}{n} \ln(Z_n(\beta)/Q[Z_n(\beta)])$$

(1.1)

where the limit exists Q-a.s. and in L^p for all $p \geq 1$ and is constant (cf. [4]). An application of Jensen’s inequality to the concave function $\ln(\cdot)$ yields $p(\beta) \leq 0$. As shown in theorem 3.2 (b) in [5], there exists a $\beta_c \in [0, \infty]$ such that

$$p(\beta) \begin{cases} = 0 & \text{if } \beta \in [0, \beta_c], \\ < 0 & \text{if } \beta > \beta_c. \end{cases}$$

An important question in the study of directed polymers is to find the β such that $p(\beta) < 0$. Indeed, one can show that the negativity of $p(\beta)$ is equivalent to a localization property for $(\omega_n)_{n \in \mathbb{N}}, (\tilde{\omega}_n)_{n \in \mathbb{N}}$ two independent random walks under the polymer measure μ_n (cf Corollary 2.2 in [4]):

$$p(\beta) < 0 \iff \exists c > 0 \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \mu_{k-1}^{\otimes 2}(\omega_k = \tilde{\omega}_k) \geq c \quad Q.a.s.$$

The statement in the right-hand side means that the polymer localizes in narrow corridors with positive probability. It is not known how to characterize directly these corridors, and therefore this criterion for the transition localization/delocalization is rather efficient since it does not require any knowledge on them. Hence, it is important to get good upper bounds on p in order to spot the transition. Our main result is the following.

Theorem 1.1. In dimension $d = 1$, $\beta_c = 0$.

There is a clear consensus on this fact in the physics literature, but no proof for it, except via the replica method or in the (different) case of a space-periodic environment where much more computations can be performed [3].

This result follows from a family of upper bounds, given by the free energies of models on trees depending on an integer parameter m ($m \geq 1$). These trees are deterministic and regular, with random weights, they fall in the scope of the generalized multiplicative cascades [15] or smoothing transformations [8] which are well known generalizations of the random cascades introduced in [16] for a statistical description of turbulence. When the environment variables have nice concentration properties – e.g., gaussian or bounded η’s –, we prove in theorem 3.3 that the polymer free energy is the infimum over m of the one of the m-tree model. For general environmental distribution we only have an upper bound from theorem 3.3, but it is enough to show the above theorem. This also explains the title of the present paper.

Recall at this point that directed polymers in a Bernoulli random environment are positive temperature versions of oriented percolation. Our bounds here have a flavor similar to the lower bounds for the critical threshold in 2-dimensional oriented percolation (i.e., $d = 1$ in our notations) in section 6 of Durrett [7]. In that paper,
percolation is compared to Galton-Watson processes obtained in running oriented percolation for \(m \) steps \(m \geq 1 \), and then using the distribution of wet sites as offspring distribution.

Next, \(\eta \) is Bernoulli distributed with parameter \(p > \tilde{p}_c(1) \). The infinite cluster is the set of points \((t, x) \) with \(t \in \mathbb{N}, x \in \mathbb{Z} \), \(P(\omega_t = x) > 0 \), which are connected to \(\infty \) by an open oriented path – i.e., a path \(\omega \) with \(\eta(s, \omega_s) = 1 \) \(\forall s \geq t \). It is known that this cluster, at large scale, is approximatively a cone with vertex \((0, 0)\), direction \([0, x)\) and positive angle, and it has a positive density. In words, there is a huge number of oriented paths of length \(n \) with energy \(H_n = n - O(1) \). However, according to the theorem, the polymer measure has a strong localization property. This first seems paradoxical, since there are exponentially many suitable paths on the energetic level. Hence, this is essentially an entropic phenomenon, due to large fluctuations in the number of such paths.

For numerics, our upper bounds do not seem very efficient: on the basis of preliminary numerical simulations they converge quite slowly as \(m \to \infty \). Finally we mention that lower bounds for the polymer free energy can be obtained from a well-known super-additivity property, see formula (2.3).

2. Notations and preliminaries

We first introduce some further notations.

Let \(((\omega_n)_{n \in \mathbb{N}}, (P^x)_{x \in \mathbb{Z}^d}) \) denote the simple random walk on the \(d \)-dimensional integer lattice \(\mathbb{Z}^d \), defined on a probability space \((\Omega, \mathcal{F}) \): for \(x \) in \(\mathbb{Z}^d \), under the measure \(P^x \), \((\omega_n - \omega_{n-1})_{n \geq 1} \) are independent and

\[
P^x(\omega_0 = x) = 1, \quad P^x(\omega_n - \omega_{n-1} = \pm \delta_j) = \frac{1}{2d}, \quad j = 1, \ldots, d,
\]

where \((\delta_j)_{1 \leq j \leq d} \) is the \(j \)-th vector of the canonical basis of \(\mathbb{Z}^d \). Like in the introduction, we will use the notation \(P \) for \(P^0 \).

For the environment, we assume that for all \(\beta \in \mathbb{R} \),

\[
\lambda(\beta) \overset{\text{def}}{=} \ln Q(e^{\beta \eta(n,x)}) < \infty.
\]

It is convenient to consider the normalized partition function

\[
W_n = Z_n/Q[Z_n] = P[\exp(\beta H_n(\omega) - n \lambda(\beta))].
\]

We define for \(k < n, \ x, y \in \mathbb{Z}^d \),

\[
H_{k,n}(\omega) = \sum_{j=1}^{n-k} \eta(k + j, \omega_j)
\]

and

\[
W_{k,n}^x(y) = P^x(e^{\beta H_{k,n}(\omega) - (n-k)\lambda(\beta)} 1_{\omega_{n-k} = y}). \tag{2.1}
\]

In the sequel, \(W_n(x) \) will stand for \(W_{0,n}^x(0) \). The Markov property of the simple random walk yields

\[
W_n = \sum_{x, y \in \mathbb{Z}^d} W_k(x)W_{k,n}^x(y). \tag{2.2}
\]
This identity will be extensively used in the sequel. Finally, we recall (4) that with \(p \) defined by (1.1) it holds
\[
p(\beta) = \lim_{n \to \infty} \frac{1}{n} Q(\ln(W_n(\beta))) = \sup_{n \geq 1} \frac{1}{n} Q(\ln(W_n(\beta)))
\]
where the last equality is a consequence of super-additivity arguments.

2.1. Definition and well known facts on generalized multiplicative cascades. In this section, we introduce a model of generalized multiplicative cascades on a tree. For an overview of results, we refer to [15]. Let \(N \geq 2 \) be a fixed integer and
\[
U = \bigcup_{k \in \mathbb{N}} [\lfloor 1, N \rfloor]^k
\]
be the set of all finite sequences \(u = u_1 \ldots u_k \) of elements in \([\lfloor 1, N \rfloor] \). With the previous notation, we write \(|u| = k \) for its length. For \(u = u_1 \ldots u_k, v = v_1 \ldots v_k \) two finite sequences, let \(uv \) denote the sequence \(u_1 \ldots u_kv_1 \ldots v_k \). Let \(q \) be a non degenerate probability distribution on \((\mathbb{R}^+)^N \). It is known (cf. [15]) that there exist a probability space with probability measure denoted by \(\mathbb{P} \) (and expectation \(\mathbb{E} \)), and random variables \((A_u)_{u \in U} \) defined on this space, such that the random vectors \((A_{u_1}, \ldots, A_{u_N})_{u \in U} \) form an i.i.d. sequence with common distribution \(q \). We assume that the \((A_i)_{1 \leq i \leq N} \) are normalized:
\[
\mathbb{E}(\sum_{i=1}^{N} A_i) = 1
\]
and that they have moments of all order: \(\mathbb{E}[\sum_{i=1}^{N} A_i^p] < \infty \quad \forall p \in \mathbb{R} \). Consider the process \((W_n^{\text{casc}})_{n \in \mathbb{N}} \) defined by
\[
W_n^{\text{casc}} = \sum_{u_1, \ldots, u_n \in [\lfloor 1, N \rfloor]} A_{u_1} A_{u_1u_2} \ldots A_{u_1 \ldots u_n}
\]
and the filtration
\[
\mathcal{G}_n := \sigma\{A_u; \ | \ u \ | \leq n\}, \quad n \geq 1.
\]
Then \((W_n^{\text{casc}}, \mathcal{G}_n)_{n \geq 1} \) is a non negative martingale so the limit \(W_{\infty}^{\text{casc}} = \lim_{n \to \infty} W_n^{\text{casc}} \) exists. We are interested in the behavior of the associated free energy:
\[
p_n = \frac{1}{n} \ln W_n^{\text{casc}}.
\]
In the case where the \((A_i)_{1 \leq i \leq N} \) are i.i.d, the exact limit of \(p_n \) as \(n \) goes to infinity was derived in [3]. In the general case, the proofs in [3] can easily be adapted to show the following summary result.

Theorem 2.1. The following convergence holds \(\mathbb{P}-\text{a.s. and in } L^p \) for all \(p \geq 1 \):
\[
p_n \longrightarrow \inf_{\theta \in [0,1]} \frac{1}{\theta} \ln(\mathbb{E} \sum_{i=1}^{N} A_i^\theta) \leq 0,
\]
where the inequality is a consequence of the normalization. Finding the limit of p_n as n tends to infinity amounts to studying the function v defined by

$$\forall \theta \in [0, 1], \quad v(\theta) = \frac{1}{\theta} \ln(\mathbb{E} \sum_{i=1}^{N} A_i^\theta),$$

which has derivative

$$v'(1) = \mathbb{E} \sum_{i=1}^{N} A_i \ln(A_i).$$

Lemma 2.2. If $\mathbb{E} \sum_{i=1}^{N} A_i \ln(A_i) \leq 0$, the function v is strictly decreasing on $[0, 1]$ and thus

$$\inf_{\theta \in [0, 1]} v(\theta) = v(1) = 0.$$

If $\mathbb{E} \sum_{i=1}^{N} A_i \ln(A_i) > 0$, there exists a unique $\theta^* \in [0, 1]$ such that

$$\inf_{\theta \in [0, 1]} v(\theta) = v(\theta^*) < 0.$$

Proof. For all $\theta \in [0, 1]$, we have the following expression for the derivative of v:

$$v'(\theta) = \frac{g(\theta)}{\theta^2},$$

where g is given by

$$g(\theta) = \theta \frac{\mathbb{E} \sum_{i=1}^{N} A_i^\theta \ln(A_i)}{\mathbb{E} \sum_{i=1}^{N} A_i^\theta} - \ln(\mathbb{E} \sum_{i=1}^{N} A_i^\theta).$$

In particular, we obtain the value of $v'(1)$ given above. By direct computation, one can obtain the following expression for g'

$$\forall \theta > 0 \quad g'(\theta) = \theta \frac{\mathbb{E} (\sum_{i=1}^{N} A_i^\theta (\ln(A_i) - \mathbb{E} (\ln(A) \mid A^\theta)))^2)}{\mathbb{E} (\sum_{i=1}^{N} A_i^\theta)},$$

where $\mathbb{E} (\ln(A) \mid A^\theta)$ is a notation for

$$\mathbb{E} (\ln(A) \mid A^\theta) = \frac{\mathbb{E} (\sum_{i=1}^{N} A_i^\theta \ln(A_i))}{\mathbb{E} (\sum_{i=1}^{N} A_i^\theta)}.$$

In particular, g is strictly increasing and we have

$$g(1) = \mathbb{E} \sum_{i=1}^{N} A_i \ln(A_i).$$

By considering the two cases $g(1) \leq 0$ and $g(1) > 0$, we can easily conclude. \qed
2.2. Concentration of measure in the gaussian and the bounded case. For a complete survey on the concentration of measure phenomenon, we refer to [14]. In the gaussian case, we have

Theorem 2.3. Let $M \geq 1$ be an integer. We consider \mathbb{R}^M equipped with the usual euclidian norm $\|\cdot\|$. If X_M is a standard gaussian vector on some probability space (with a probability measure P) and F is a C-lipschitzian function ($|F(x) - F(y)| \leq C\|x - y\|$) from \mathbb{R}^M to \mathbb{R} then

$$E(e^{\lambda(F(X_M) - E(F(X_M)))}) \leq e^{C^2 \lambda^2}. \quad (2.5)$$

Therefore, we have the following concentration result

$$P(|F(X_M) - E(F(X_M))| \geq r) \leq 2e^{-\frac{r^2}{2C^2}} \quad (2.6)$$

In the bounded case, we get a similar concentration result (cf. Corollary 3.3 in [14]).

Theorem 2.4. Let $M \geq 1$ be an integer and $a < b$ be two real numbers. If X_M is a random vector in $[a, b]^M$ with i.i.d. components on some probability space and F is a convex and C-lipschitzian function from $[a, b]^M$ to \mathbb{R} for the euclidian norm, then

$$E(e^{\lambda(F(X_M) - E(F(X_M)))}) \leq e^{C^2(b-a)C^2 \lambda^2}. \quad (2.7)$$

Therefore, we have the following concentration result

$$P(F(X_M) - E(F(X_M)) \geq r) \leq e^{-\frac{r^2}{4C^2(b-a)^2}} \quad (2.8)$$

We can derive from the above theorems a concentration result for the free energy at time n:

Corollary 2.5. If the environment η is standard gaussian then for all $\lambda \geq 0$,

$$Q(e^{\lambda(\ln(W_n) - Q(\ln(W_n)))}) \leq e^{\frac{a^2 \lambda^2 n}{2}}. \quad (2.9)$$

If the environment η belongs to $[a, b]$ for $a < b$ two real numbers, then for all $\lambda \geq 0$,

$$Q(e^{\lambda(\ln(W_n) - Q(\ln(W_n)))}) \leq e^{C^2(b-a)^2 \lambda^2 n}. \quad (2.10)$$

Proof. As a function of the environment, $\ln(W_n)$ is convex and $\beta \sqrt{n}$-lipschitzian (cf. the proof of proposition 1.4 in [1]). Therefore, in the gaussian case, the result is a direct application of (2.5) and, in the bounded case, simply (2.7). \hfill \Box

3. Majorizing polymers with cascades

Let us fix an integer $m \geq 1$ and define L_m to be set of points visited by the simple random walk at time m:

$$L_m \overset{def}{=} \{ x \in \mathbb{Z}^d; P(w_m = x) > 0 \}.$$

We introduce $(W_{\text{tree}}^{\text{free}})_{n \geq 1} \equiv (W_{\text{casc}}^{\text{tree}})_{n \geq 1}$ the martingale of the multiplicative cascade associated to the random vector $(W_m(x))_{x \in L_m}$, i.e., defined by (2.4) when $N = |L_m|$.
and q is the law of $(W_m(x))_{x \in L_m}$ with $W_m(x)$ from (2.1). Let $p^{\text{tree}}_m(\beta)$ denote the associated free energy. In view of (2.1), $p^{\text{tree}}_m(\beta)$ is given by

$$p^{\text{tree}}_m(\beta) = \inf_{\theta \in [0,1]} v_m(\theta) \quad (3.1)$$

where v_m is given by the expression

$$\forall \theta \in [0,1] \quad v_m(\theta) = \frac{1}{\theta} \ln \left(Q \sum_{x \in L_m} W_m(x)^\theta \right). \quad (3.2)$$

We will first need the following monotonicity lemma.

Lemma 3.1. Assume that $\phi :]0, \infty[\to \mathbb{R}$ is C^1 and that there are constants $C, p \in [1, \infty[$ such that

$$\forall u > 0 \quad |\phi'(u)| \le C u^p + C u^{-p}.$$

Then for all $x \in L_m$ $\phi(W_m(x)), \frac{\partial \phi(W_m(x))}{\partial \beta} \in L^1(Q)$, $Q\phi(W_m(x))$ is C^1 in $\beta \in \mathbb{R}$ and

$$\frac{\partial}{\partial \beta} Q\phi(W_m(x)) = Q \frac{\partial}{\partial \beta} \phi(W_m(x)).$$

Suppose in addition that ϕ is concave. Then,

$$\forall \beta \ge 0 \quad Q \frac{\partial}{\partial \beta} \phi(W_m(x)) \le 0.$$

Proof. The proof is an immediate adaptation of the proof of lemma 3.3 in [5]. □

As a consequence we can define the following

Proposition 3.2. The function p^{tree}_m is non-increasing in β. There exists a critical value $\beta^m_c \in (0, \infty]$ such that

$$p^{\text{tree}}_m(\beta) = \begin{cases} 0 & \text{if } \beta \in [0, \beta^m_c], \\ <0 & \text{if } \beta > \beta^m_c. \end{cases}$$

Proof. For all $\theta \in [0,1]$, the function $x \to x^\theta$ is concave so by lemma 3.1, we see from expression (3.2) that $v_m(\theta)$ is non-increasing as a function of β. Therefore, we see from (3.1) that p^{tree}_m is itself non-increasing in β and we obtain the existence of β^m_c ($\beta^m_c \in [0, \infty]$). Since

$$v'_m(1) = Q \sum_{x \in L_m} W_m(x) \ln W_m(x) \longrightarrow \sum_{x \in L_m} P(\omega_n = x) \ln P(\omega_n = x) < 0,$$

as $\beta \searrow 0$, we conclude that β^m_c is strictly positive by continuity of $\partial_\theta v_m(\theta, \beta)|_{\theta=1}$ in β and by lemma 3.1. □

Theorem 3.3. We have the following inequality

$$p(\beta) \le \inf_{m \ge 1} \frac{1}{m} p^{\text{tree}}_m(\beta). \quad (3.3)$$
Proof. Let $\theta \in (0, 1)$ and m be a positive integer. By using the subadditive estimate
\[\forall u, v > 0, \quad (u + v)^\theta < u^\theta + v^\theta, \quad (3.4) \]
we have for all $n \geq 1$
\[
Q \frac{1}{n} \ln W_{nm} = Q \frac{1}{\theta n} \ln W_{nm}^\theta \\
\leq Q \frac{1}{\theta n} \ln \left(\sum_{x_1, \ldots, x_n} W_m(x_1) \cdots W_{(n-1)m,nm}^x (x_n) \right)^\theta \\
\leq Q \frac{1}{\theta n} \ln \sum_{x_1, \ldots, x_n} W_m(x_1)^\theta \cdots W_{(n-1)m,nm}^x (x_n)^\theta \\
\leq Q \frac{1}{\theta n} \ln Q \sum_{x_1, \ldots, x_n} W_m(x)^\theta \cdots W_{(n-1)m,nm}^x (x)^\theta \\
= Q \frac{1}{\theta n} \ln Q \sum_{x} W_m(x)^\theta \\
= \frac{1}{\theta} \ln Q \sum_{x} W_m(x)^\theta \\
\text{(Jensen)}
\]
The proof is complete by taking the limit as $n \to \infty$ and then by taking the infimum over all $\theta \in [0, 1]$ and $m \geq 1$.

In particular, to prove $p(\beta) < 0$ it suffices to find $m \geq 1$ (in fact, $m \geq 2$) and $\theta \in (0, 1)$ such that $Q \sum_x W_m(x)^\theta < 1$. The theorem is a handy way to obtain upper bounds on the critical β.

Remark 3.4. Let $\theta \in [0, 1]$ and $m \geq 1$. Using (3.4), we find by a similar computation that for all $k \geq 2$
\[
Q \sum_y W_{km}(y)^\theta = Q \sum_y \left(\sum_{x_1, \ldots, x_{k-1}} W_m(x_1) \cdots W_{(k-1)m,km}^x (y) \right)^\theta \\
< Q \sum_y \sum_{x_1, \ldots, x_{k-1}} W_m(x_1)^\theta \cdots W_{(k-1)m,km}^x (y)^\theta \\
= \left(Q \sum_x W_m(x)^\theta \right)^k. \quad (3.5)
\]

In view of (3.1) and of the smoothness of $v_m(\cdot)$, we conclude that
\[
\frac{1}{km} p_{km}(\beta) \leq \frac{1}{m} p_{m}(\beta).
\]
Observe that when $p_{m}(\beta) < 0$, the infimum in (3.4) is achieved for some $\theta \in (0, 1)$, and therefore the above inequality is strict. In particular,
\[
\inf_{m \geq 1} \frac{1}{m} p_{m}(\beta) = \lim_{m \to \infty} \frac{1}{m} p_{m}(\beta). \quad (3.6)
\]
The authors do not know if the sequence \((p^\text{tree}_m(\beta))_{m \geq 1} \) is subadditive. However a simple argument yields the stronger result

\[
\inf_{m \geq 1} \frac{1}{m} p^\text{tree}_m(\beta) = \lim_{m \to \infty} \frac{1}{m} p^\text{tree}_m(\beta). \tag{3.7}
\]

Indeed, by repeating the steps in (3.5), we see that, for \(0 \leq \ell < m, k \geq 1 \) and \(\theta \in (0, 1] \),

\[
v_{km+\ell}(\theta) \leq kv_m(\theta) + v_\ell(\theta),
\]

whereas, by concavity,

\[
v_\ell(\theta) \leq \frac{1}{\theta} \sum_x (QW_\ell(\theta))^{\theta} = v_\ell(\theta, 0)
\]

where \(v_\ell(\theta, 0) = v_\ell(\theta, \beta)|_{\beta=0} \in (0, \infty) \). Therefore,

\[
\max_{km \leq n < (k+1)m} v_n(\theta) \leq \frac{k}{(k+\varepsilon)m} v_m(\theta) + \frac{1}{km} v_\ell(\theta, 0),
\]

where \(\varepsilon = 0 \) or \(1 \) according to the sign of \(v_m(\theta) \). Now, recalling that \(v_m(\theta) \geq p^\text{tree}_m(\beta) \) and taking the limit \(k \to \infty \), leads to

\[
\limsup_n \frac{p^\text{tree}_n(\beta)}{n} \leq \frac{v_m(\theta)}{m}, \quad m \geq 1, \theta \in (0, 1].
\]

Combined with (3.6), this implies (3.7).

We add another

Remark 3.5. Suppose that there exists \(m \geq 1 \) such that

\[
Q \sum_x W_m(x) \ln W_m(x) = 0.
\]

We have

\[
Q \sum_y W_{2m}(y) \ln W_{2m}(y) = Q \sum_{x,y} W_m(x) W_{m,2m}^x(y) \ln W_{2m}(y)
\]

\[
> \sum_{x,y} Q W_m(x) W_{m,2m}^x(y) \ln \left(W_m(x) W_{m,2m}^x(y) \right)
\]

\[
= \sum_x (Q W_m(x) \ln W_m(x)) \sum_y Q W_{m,2m}^x(y)
\]

\[
+ \sum_x (Q W_m(x)) \sum_y Q W_{m,2m}^x(y) \ln W_{m,2m}^x(y)
\]

\[
= 2 \sum_x Q W_m(x) \ln W_m(x)
\]

\[
= 0
\]

Hence, by lemma 2.2, \(p^\text{tree}_{2m}(\beta) < 0 \) and finally \(p(\beta) < 0 \).
As a consequence of theorem 3.3, we get our main result

Proof of theorem 1.1. Let $\theta \in [0, 1]$ and $\beta > 0$. By using lemma 4.1 in [4], there exists a $c(\theta) > 0$ such that

$$
\forall m \geq 1 \quad Q(W_m^\theta) \leq e^{-c(\theta)m^{\frac{1}{2}}}.
$$

Therefore

$$
Q(\sum_{x \in L_m} (W_m(x))^\theta) \leq |L_m| Q(W_m^\theta)
\leq |L_m| e^{-c(\theta)m^{\frac{1}{2}}} \rightarrow 0,
$$

where we have used the fact that $|L_m| = O(m)$. In particular, there exists $m \geq 1$ such that

$$
Q(\sum_{x \in L_m} (W_m(x))^\theta) < 1.
$$

We have $p_{m}^{\text{tree}}(\beta) < 0$ and so by theorem 3.3 $p(\beta) < 0$.

Theorem 3.6. Suppose the environment η is bounded or gaussian. Then the inequality (3.3) is in fact an equality

$$
p(\beta) = \inf_{m \geq 1} p_{m}^{\text{tree}}(\beta).
$$

Proof. The inequality $p(\beta) \leq \inf_{m \geq 1} p_{m}^{\text{tree}}(\beta)$ is in fact the conclusion of theorem 3.3 and thus is true for all environments.

We must show that $\inf_{m \geq 1} p_{m}^{\text{tree}}(\beta) \leq p(\beta)$. We treat the gaussian case, the bounded case being similar. If $\beta \leq \beta_c$, we have by definition $p(\beta) = 0$ and since for all $m \geq 1$, $p_{m}^{\text{tree}}(\beta) \leq 0$, the result is obvious. Suppose that β is such that $\beta > \beta_c$.

By definition of β_c, $p(\beta) < 0$. Let $\theta \in [0, 1]$. We have by the concentration result (2.9)

$$
Q(W_m^\theta) = e^{\theta Q(\ln(W_m))} Q(e^{\theta \ln W_m - Q(\ln(W_m))})
\leq e^{\theta p(\beta) m + \frac{\beta^2 \theta^2 m}{2}}.
$$

For all $m \geq 1$,

$$
\frac{1}{m} p_{m}^{\text{tree}}(\beta) \leq \frac{1}{\theta m} \ln(Q(\sum_{x \in L_m} (W_m(x))^\theta))
\leq \frac{1}{\theta m} \ln(|L_m|) + \frac{1}{\theta m} \ln(Q(W_m^\theta))
\leq \frac{1}{\theta m} \ln(|L_m|) + p(\beta) + \frac{\beta^2 \theta}{2}
\rightarrow_{m \rightarrow \infty} p(\beta) + \frac{\beta^2 \theta}{2}
$$

where we have used the fact that $|L_m| = O(m^\delta)$. Thus, by remark 3.4

$$
\inf_{m \geq 1} \frac{1}{m} p_{m}^{\text{tree}}(\beta) = \lim_{m \rightarrow \infty} \frac{1}{m} p_{m}^{\text{tree}}(\beta) \leq p(\beta) + \frac{\beta^2 \theta}{2}.
$$

The proof is complete by letting $\theta \downarrow 0$. □
References

