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Abstract :  Most on-line cursive handwriting recognition systems use a lexical constraint to 
help improve the recognition performance.  Traditionally, the vocabulary lexicon is stored in a 
trie (automaton whose underlying graph is a tree).  In this paper, we propose a solution based 
on a more compact data structure, the directed acyclic word graph (DAWG).  We show that 
our solution is equivalent to the traditional system.  Moreover, we propose a number of 
heuristics to reduce the size of the DAWG and present experimental results demonstrating a 
significant improvement. 

1 Introduction 

Since the pioneering work of Vintsyuk [17] on Automatic Speech Recognition 
(ASR) systems, it is well known that Hidden Markov Models (HMM) [13] and 
Dynamic Programming (DP) [3], [12], provide a theoretical framework and 
practical algorithms for temporal pattern recognition with lexical constraints (even 
for large vocabularies).  The techniques initially developed for ASR are also 
applicable to Handwriting Recognition (HWR), which shares many features with 
ASR especially if autosegmentation (from word to letter) is used.  Most on-line 
cursive handwriting recognition systems use a lexical constraint to help improve the 
recognition performance.  Traditionally, the vocabulary lexicon is stored in a trie 
(automaton whose underlying graph is a tree).  Here we extend this idea with a 
solution based on a more compact data structure, the Directed Acyclic Word Graph 
(DAWG).  After recalling some basics in the next section, we show that our solution 
is equivalent to the traditional systems in terms of the word recognized.  Then, we 
propose a number of heuristics to reduce the size of the DAWG and present 
experimental results demonstrating a significant improvement over the traditional 
architecture.  Our notation is standard and follows [13]. 
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2 Basic tools 

In the context of on-line HWR of isolated words, the input of the recognition 
system is a temporal sequence of feature vectors called frames.  The a posteriori 
probability of a word given a sequence of frames is computed using a HMM.  A 
word-HMM is made of the concatenation of the letter-HMM's corresponding to 
each letter of the word.  We can abstract each word-HMM as an automaton whose 
underlying graph is a chain.  Each transition of the automata is labeled with a letter 
(or variant, namely allograph) of the word.  That is each transition corresponds to a 
letter-HMM.  At the letter scale, HMM states correspond to feature stationarity of 
frames (subunits of letter, namely graphems).   

The objective is, given a sequence of frames and a lexicon, find the word with 
the largest a posteriori probability in this lexicon.  The computation of this a 
posteriori probability of a word reduces to a matching of elastic patterns : In the 
framework of the so-called maximum approximation, an efficient DP algorithm, 
namely Viterbi Algorithm (VA) [18], [4], is used.   

A lexical constraint significantly helps to obtain better performance : Practical 
experiments on HWR neuro-markovian software REMUS [6], [19], [21], shows that 
the recognition of words increases from 20% to 90%-98%, depending of vocabulary 
size, when a lexical constraint is applied in a two phases processing.   

Practical applications use lexicons with sizes ranging from 10 (digits 
recognition) to some 106 words (e.g. postcode dictionary, vocal dictation) [8]. 
Exhaustive application of VA to each word of the lexicon is only tractable for small 
and medium size lexicon, as the computational cost grows approximately linearly 
with the number of letters in lexicon.  This limitation of the traditional approach can 
be overcome in two different ways :   

Two-phase approach : Most conventional recognition systems use an 
unconstrained recognition in a first phase, then only in a second phase determine 
the word in the lexicon (with respect to an edition distance) closest to the string 
identified in the first phase.  The reduction in running time is at the cost of a 
certain decrease of recognition performances [20], [7]: A tradeoff has to be found.   
Factorization of the DP calculation : If two words have a common prefix then 
the DP computations of the a posteriori probabilities can be factorized.  Hence, a 
speed-up and reduction in storage can be obtained simply by using a trie (a tree-
like data structure known) [5].  Each node in the trie corresponds to a letter.  As 
an exhaustive DP calculation is performed for all the words of the lexicon (unlike 
in the two-phase approach), the results are more accurate, and thanks to the 
sharing of intermediate results, the running time is also improved compared to the 
traditional approach.  In HWR, this trick seems to have been used first by Manke 
et al. [10] for their Npen++ system. It is still the state-of-art in HWR and in ASR.   

Using a trie has many advantages : a) Elimination of redundant 
computation/storage for common prefixes present in natural languages, b) easy 
implementation, c) it has also the nice property that the words of the lexicon and the 



 

paths from the root to a terminal node are in bijection.  The trie structure is a good 
tradeoff between simplicity and efficiency, and is widely used in practice. 

Unfortunately we were disappointed by the poor compression ratio, from 1.5 to 
4.2, dependent on languages (English/French) and vocabularies size (103 - 105 
words), we got experimentally (second column of Table 3).  Since practical 
applications, with large vocabulary, require very efficient processing, both in term 
of speed and storage, it is important to go further and extend the use of VA to more 
compact and complex lexicon structures, like DAWG.  That is, use both prefix and 
suffix commonality [2], [15].  Lacouture et al. [9] and more recently Mohri et al.  
[11] have worked on similar problems with Finite State Automata (FSA) for ASR.   

The Fast Lexically Constrained Viterbi Algorithm (FLCVA) is our answer to 
this challenge.  Next we show how to construct a lexicon-HMM equivalent to a set 
of word-HMM's.   

3 Conditions for equivalence of lexicon-HMM structures with respect to 
Viterbi Algorithm  

To determine the word with the highest a posteriori probability among all the words 
belonging to a lexicon, we can organize the word-HMM's of the lexicon in different 
manners.  We can either keep the word-HMM's separated (flat lexicon), or we can 
try to factorize all the common bits of the different word-HMM's 

3.1 Parallel-HMM approach 

In this first approach, we apply VA in parallel on each word-HMM of the lexicon, 
to compute  

where  T  is the number of frames and  e
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f  is the final state of the ith word-HMM  

iwordλ .  The recognition system returns the word  wordi  for which ),(
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maximum. 

3.2 Lexicon-HMM approach 

In this second approach, we use only one big HMM.  This lexicon-HMM is obtained 
from a FSA recognizing the lexicon, by replacing each transition arc of the 
automaton with the corresponding letter-HMM. When VA terminates, we obtain an 
optimal assignment of frames to states in the lexicon-HMM.  This assignment is 
optimal in the sense that it maximizes the joint probability 

 where e)...,...( 21121 TfTT ,O,,OOe,q,q,,qqP =− f  is  the terminal state of the 

lexicon-HMM.  The sequence  of states induces a path in the 
associated automaton.  This path defines the word the recognition system returns. 
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3.3 Equivalence of the two approaches 

3.3.1 Conditions for equivalence 

These two approaches will recognized the same word provided the two following 
conditions are satisfied : The first condition is that the letter-HMM's used for the 
same letter at different positions, in different words, are identical.  In fact, we can 
consider a more general hypothesis, where instead of using the same single letter-
HMM per letter, a same set of parallel letter-HMM's is used, to accommodate all the 
allographs that a writer can use for a same letter1.  The second condition is that the 
transition probability from the final state of a letter-HMM to the start state of the 
following letter-HMM is the same for each letter-HMM and each word-HMM 
(recall that a word-HMM is simply the concatenation of letter-HMM's).  Let  pu  
denote this universal transition probability.  With these two simplifying 
assumptions, we can state that  

 
Theorem  
The lexicon-HMM approach and the parallel-HMM approach return the same word. 
 
Sketch of Proof  Recall that to build a lexicon-HMM, we begin with a finite 
automaton whose language is the lexicon.  Then we substitute to each transition 
labeled with a letter  x,  a letter-HMM for the letter  x.  For each arc labeled  y  
incident to the arc labeled  x  in the automaton, we insert a transition of probability 
pu  from the terminal state of the letter HMM for the letter  x  to the start state of the 
letter-HMM  y  in the lexicon-HMM.   

The terminology “lexicon-HMM” is abusive as the probabilities of the 
transition leaving a terminal state of a letter HMM do not necessarily add up to one 
anymore in the new construct.  But this does not pose any problem with respect to 
the determination of the optimal sequence of states by VA.  First note, that if a 
sequence of states is present in the parallel-HMM, then an equivalent sequence is 
also present in the lexicon-HMM by construction.  Reciprocally, each sequence of 
states in the lexicon-HMM can be viewed as the concatenation of sequences of 
states of the letter-HMM's (to which we can associate a sequence of states of a 
word-HMM of the parallel-HMM).   

The equivalence of the two approaches results from the fact that DP, like VA, 
always computes the optimal assignment of frames to states that maximizes the 
overall score of a sequence of states.  By construction of the lexicon-HMM from the 
parallel-HMM, the set of sequences of states of the lexicon-HMM and the set of 

                                                           
1 Due to the reduction of the lexicon-HMM it is equivalent to label each allograph 
with different letter names.  The same procedure can be used to cope with different 
context of the same allograph. This means that in fact the alphabet (set of unique 
letters) size increases. 



 

sequences of states of the parallel-HMM are isomorphic.  In the sense, that given a 
sequence of states in one HMM (and the unique word associated to this sequence), 
we can find a corresponding sequence of states in the other HMM such that this 
sequence has the same score and is associated to the same word.  Thanks to this 
property, the maximum score for a sequence of states is the same in the two 
different HMM's (the lexicon-HMM and the parallel-HMM).  m 

 
Note that we have not made any hypothesis on the topology of the HMM.  VA 

will compute the most likely sequence of states to yield a given sequence of 
observations whatever the probability matrices.  In particular, VA will work with a 
word-HMM.   

4 Lexicon word-graph reduction for the FLCVA 

4.1 Goal of the heuristic 

The goal differs from the classical problem of automata minimization [1], whose 
solution was improved by Revuz [14] for the special case of tries : the unique 
Minimal Deterministic Finite Automaton (MDFA) minimizes the number of states.   

For our application the most interesting automaton is not this MDFA, but an 
automaton, not necessarily deterministic and unique, that has a minimal number of 
transition arcs : Here we want to minimize the DP computation of letter-HMMs, i.e 
their numbers, and we do not care about the number of states of the automaton 
(although the numbers of transitions and states are related).  Moreover, the 
deterministic constraint is completely relaxed.  It is why we have to design an adhoc 
reduction heuristic keeping of course invariant the recognized language (FSA 
terminology) or generated vocabulary.  We use the term reduction to avoid 
confusion with minimization.   

This reduction process will be applied directly on a different representation of 
the lexicon automaton, the DAWG.  Each node is a letter.  Edges are left-right 
admissible transitions between letter nodes.   

4.2 The reduction heuristic 

The reduction heuristic is based on an iterative use of two fusion modes of nodes, 
applied from right (the higher level) to left (the lower level) :  grouping-fusion 
(Figure 1) and fission-fusion (Figure 2). 
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Figure 1.  The grouping-fusion mode : a) most 

        frequent case, b) general case. 
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Figure 2.  The fission-fusion mode : a) initial  
                 lattice, b) fission, c) first fusion,    
                  d) second fusion with one node less. 

4.2.1 Grouping-fusion mode 

This mode happens to be very similar to the one used in Revuz algorithm [14].  
After a complete scanning of the current level the total number of nodes/edges is 
guaranteed to be less (if reduction occurs) or equal than before, leading to a stable 
convergent process.  The algorithm begin by the highest level, scanning every node, 
like the current node "n" Figure 1a.  Predecessors of the current node are sorted by 
label.  Merging of predecessors is done if it does not change the local vocabulary 
(here only the two central nodes labeled "o").  Global link update is done before 
change of current node. Figure 1b exhibit a less frequent, more general and 
complex case :  it illustrates how intra-level node coupling has to be managed. 

4.2.2 Fission-fusion mode 

This fusion mode, illustrated in Figure 2, is more complex than the previous one.  It 
transforms the lattice in an equivalent lattice, trying in fact to prepare a favorable 
situation for the grouping-fusion mode.  From the initial sub-lattice a) it produces a 
new virtual equivalent sub-lattice b), by fission of central node "r", predecessor of 
current node "o".  Then compulsory merging of one new "r" nodes occurs leading to 
the actual sub-lattice c), with a constant net number of nodes.  The only benefit is a 
much 'simpler' sub-lattice : reduction of the number of predecessors for the current 
node "o", reduction of the total numbers of successors links for the above level.  It 
is, in general, a better context for a reduction by the grouping-fusion mode :  This 
reduction effectively occurs in d), although it is not guarantee in general.  For this 
mode, nothing can be said, in general, about the net total number of edges.   



 

4.2.3 Reduction of the lexicon lattice 

The consecutive six reduction steps of the lexicon lattice are : Flat, Trie, Leaves, 
Nodes, Inter-Level Leaves, Inter-Level Nodes. The Table 1 summarizes the actual 
reduction algorithm, based on iterative application of both previous fusion modes 
for  "Nodes" and "Inter-Level Nodes" (ILN) steps.  Notice the mention "until no 
change" of the loops in the "Nodes" and "ILN" steps : It means that saturation in 
reduction is achieved during each subpart of the algorithm.  "Nodes" and " ILN" 
steps are very similar, except that for the former some caution must be taken in the 
selection of node n, to avoid multiprocessing of the same nodes. 

Figure 4 exemplifies the result of the algorithm at the maximum reduction on a 
toy flat lexicon of 7 words given in Figure 3.  There is a reduction both in the 
number of nodes (from 57 to 36) and in the number of edges (from 50 to 38). 

 
Flat Initial flat lexicon 
Trie Make a trie from the flat lexicon 
Leaves For each level L do 
  Merge leaves, with identical labels, of the current level. 
 Loop until no change 
  For each level L do (beginning with the highest) 
Nodes   For each node n do (beginning with the leaves) 
    Loop until no change 
     Grouping-fusion; Fission-fusion 
Inter-Level Leaves Merge leaves, with identical labels, of all levels. 
 Loop until no change 
  For each level L do (beginning with the highest) 
Inter-Level Nodes   For each node n do (beginning with the leaves) 
    Loop until no change 
     Grouping-fusion; Fission-fusion 

Table 1.  The six reduction steps of the lexicon lattice. 
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Figure 3.  A flat toy lexicon of seven words. 
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Figure 4.  The most reduced (ILN) lexicon. 

4.2.4 Experimental results and conclusion 

For the testing of reduction heuristic, we have used five lexicons that can be 
downloaded from http://www-poleia.lip6.fr/~lifchitz/HWR/flcva/lexs/. The three first 
lexicons are lists of English words found in /usr/dict/words on Unix systems (older 
release) and the remaining two are lists of French words extracted from the French 
lexicon coming with Unix spellchecker ispell.  Table 2 gives more details.   

Lexicon Nb of words Nb of letters Alphabet lengthmin lengthave lengthma

x
1 

English 
  1000    6966 26 3 7.0 13 

2 
English 

 10645   78197 26 1 7.3 21 

3 
English 

 20233  149129 26 1 7.4 22 

4 
French 

 65536  631422 26 2 9.6 25 

5 
French 

130499 1256938 28 2 9.6 25 

Table 2.  Brief descriptions of the five lexicons used for experiments. 

The reduction times were measured on 233 MHz P. / 64 Mo PC under Windows 95. 
Lexicon Nb of nodes (trie) 

Nb of letters/* 
Nb of nodes (ILN) 

Nb of letters/* 
Nb of edges (ILN) 

Reduction time (seconds) 
1   4753 

  1.47 
 2097 
 3.32 

 3050 
  1.3 

2  40683 
  1.92 

10567 
 7.40 

21151 
  5.9 

3  66308 
  2.25 

13773 
10.83 

33847 
 11.1 

4 193582 
  3.26 

18147 
34.79 

70290 
124.4 

5 297701 
  4.22 

17908 
70.19 

93574 
564.1 

Table 3.  Experimental reduction results for the five lexicons (Table 2). The number of edges of the trie 
structure is equal of its number of nodes. 



 

Although the complexity of the minimization of the number of transitions of a 
non deterministic automaton is still an open problem, the heuristic proposed leads to 
a significant improvement for real-world vocabularies.  Personal Digital Assistants 
(PDA) and other smart handheld devices have too modest resources (a relatively 
small storage capacity and slow CPU) to allow features like advanced user 
interfaces (natural interactivity) : Nevertheless efficient use of these limited 
resources will permit sophisticated HWR.  A much more interesting reduction ratio 
occurs for ILN (70.19) than for the trie (4.22) in case of 130K words French 
vocabulary.  Interestingly, the reduction ratio seems to increase with the lexicon 
size.  Some recognition systems, especially for mobile computers, need the 
functionality of incremental updating of vocabulary (add/remove words).  Our 
DAWG structure allows such adaptive update avoiding the computation from 
scratch of the reduction of the slightly modified lexicon. 

The implementation of VA with DAWG requires special attention, but lack of 
space prevents us to discuss this issue here (how backtracking and path history 
management are performed will be explained in a forthcoming paper). 
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