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Maximal violation of Bell inequalities using continuous-variable measurements

Jérôme Wenger, Mohammad Hafezi, Fre´déric Grosshans, Rosa Tualle-Brouri, and Philippe Grangier*
Laboratoire Charles Fabry de l’Institut d’Optique, UMR 8501 du CNRS, F91403 Orsay, France

~Received 2 October 2002; published 17 January 2003!

We propose a whole family of physical states that yield a maximal violation of Bell inequalities, when using
quadrature-phase homodyne detection. This result is based on a binning process called root binning, that is
used to transform the continuous-variable measurements into binary results needed for the tests of quantum
mechanics versus local realistic theories. A physical process in order to produce such states is also suggested.
The use of high-efficiency spacelike separated homodyne detections with these states and this binning process
would result in a conclusive loophole-free test of quantum mechanics.
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I. INTRODUCTION

Nonseparability, or entanglement, has emerged as on
the most striking feature of quantum mechanics. In 1935
led Einstein, Podolsky, and Rosen to suggest@1# that quan-
tum mechanics is incomplete, on the premise that any ph
cal theory of nature must be both ‘‘local’’ and ‘‘realistic.’’ To
quantify the debate between quantum mechanics and l
realistic~classical! theories, Bell introduced a set of inequa
ties that must be obeyed by any local realistic theory wher
they are violated by quantum mechanics@2–4#. These results
shifted the debate from the realm of philosophy to expe
mental physics. The experiments done at the beginning o
1980s by Aspect and co-workers@5–7# convincingly sup-
ported the predictions of quantum mechanics, but admitte
left open two so-called ‘‘loopholes,’’ that have to be a
dressed for the evidence to be fully conclusive.

The first of these loopholes, called ‘‘locality’’ loophole
arises when the separation between the measured states
large enough to completely discard the exchange of sublu
nal signals during the measurements. The second looph
called detection-efficiency loophole, occurs when the part
detectors are inefficient enough so that the detected ev
may be unrepresentative of the whole ensemble. In 19
Weihs et al. @8# achieved communication-free condition b
using a type-II parametric down-conversion source and
random switching of the analyzers, that were separated
about 400 m. This closed the locality loophole, but th
detection efficiency was not sufficient to close the seco
loophole. In 2001, Roweet al. @9# measured quantum corre
lations between two entangled beryllium ions with up to 80
overall efficiency, closing the detection-efficiency loopho
but unfortunately the ions were too close~about 3mm) to
avoid the locality loophole. Hence a present challenge is
design and perform an experiment that closes both looph
to lead to a full logically consistent test of any local realis
theory.

Quantum optics suggests good candidates, as photon
be transported to sufficient long distances to avoid the lo
ity loophole. To close the detection-efficiency loophole,
alternative to photon-counting schemes consists
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quadrature-phase homodyne measurements, that use s
local oscillators detected by highly efficient photodiodes.
to date, a few theoretical proposals that use quadrature-p
homodyne detections have been made@10–13# but for these
setups the Bell inequality violation is a few percents on
that lies far away from the maximal violation attainable
2A2 ~compared to a classical maximum of 2! for the
Clauser-Horne-Shimony-Holt~CHSH! inequality @3#, and
(11A2)/2 ~compared to a classical maximum of 1! for the
Clauser-Horne~CH! inequality @4#. Gilchrist et al. @10,11#
use acircle or pair coherent state produced by nondegene
parametric oscillation with the pump adiabatically remove
This state leads to a theoretical violation of about 1.01
(.1) of the CH Bell inequality. Munro@13# considers cor-
related photon number states of the form

uC&5 (
n50

N

cnun&un&, ~1!

whereN is truncated atN510. He then performs a numer
cal optimization on eachcn coefficient to maximize the vio-
lation of the CHSH Bell inequality when an homodyne me
surement is performed. For this specific state, the CH
inequality is violated by 2.076 (.2) and the CH inequality
by 1.019 (.1). From a different phase-space approa
Aubersonet al. @14# derive phase space Bell inequalities a
propose a state that yields a maximal violation of up to 2A2
(.2). This state can be expressed in the position space

C6~q1,q2!5
1

2A2
@16ei (p/4)sgn~q1!sgn~q2!# f ~ uq1u! f ~ uq2u!,

~2!

where f (q) is a regularized form of (1/Aq), with
*2`

1`dq f(q)251. The main problem with this wave functio
lies in its singularities and phase switches. Therefore, it
quires nontrivial regularization procedures to be conside
as a suitable physical state. Following these various attem
we are thus looking for a ‘‘simple’’ physical state that wou
lead to a maximal violation of a Bell inequality.

In this paper, we consider the CHSH Bell inequality@3#
~sometimes referred to as thespin inequality!. Figure 1 de-
picts an idealized setup for a general Bell inequality m
surement. Two entangled substates are viewed by two
©2003 The American Physical Society05-1
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JÉRÔME WENGERet al. PHYSICAL REVIEW A 67, 012105 ~2003!
lyzers and detectors at locationsA and B, where a and b
denote any adjustable parameter atA andB. In our particular
case, we will use quadrature-phase homodyne meas
ments, which could have an efficiency high enough to cl
the detection-efficiency loophole. Moreover, the apparatu
A andB can be in principle spacelike separated, thereby
cluding action at distance, and closing also the locality lo
hole. We point out that in the present approach all the
tected light has to be taken into account, i.e., the relev
signal is the photocurrent generated by the interferome
mixing and photodetection of the local oscillator and inp
quantum state. Therefore, no ‘‘supplementary assumpti
@3# will be needed to interpret the data. Under these con
tions, the CHSH Bell inequality can be written@3# as

S5uE~a8,b8!1E~a8,b!1E~a,b8!2E~a,b!u<2, ~3!

where the correlation functionE(a,b) is given by

E~a,b!5P11~a,b!1P22~a,b!2P12~a,b!2P21~a,b!
~4!

with P11(a,b) the probability that a ‘‘1’’ occurs at bothA
andB, givena andb.

In this paper, we propose explicitly a set of physical sta
that yield a violation of the CHSH inequality with a value
S arbitrarily close to 2A2, when measured by an ide
quadrature-phase homodyne detection. In Sec. II, we
scribe how we convert the continuous quadrature amplit
into a binary result ‘‘1 ’’ or ‘‘ 2 ’’ for each apparatusA,B
using a process calledRoot Binning. In Sec. III, a specific
state that yields a large violation of the CHSH inequality
presented. This state is generalized in Sec. IV to deriv
whole family of states that violate this Bell inequality. Th
issue of preparing such states is addressed in Sec. V,
various other theoretical and practical issues are briefly
cussed in the conclusion.

II. ROOT BINNING

To begin our study, we consider a state of the form o
superposition of two two-particles wave functions with
relative phase.

uC&5
1

A2
~ u f f &1eiuugg&) 0<u<2p, ~5!

FIG. 1. Schematic of a generalized Bell experiment. The sou
generates correlated states that are directed to theA andB devices
used to perform the measurements, with adjustable parametea
and b. Each measurement provides a binary result ‘‘1 ’’ or ‘‘ 2 ’’
individually.
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with f real, even, and normalized to unity whileg is assumed
real, odd, and normalized to unity. This kind of state loo
similar to the one that used by Aubersonet al. @14#, but thef
andg functions will be quite different as well as the binnin
of the continuous variables being measured.

The quadrature-phase homodyne measurement outp
continuous variable, but using the CHSH inequality for te
ing local realism versus quantum mechanics require a bin
result. Hence for a given quadrature measurementqi ( i
51,2) at either locationA or B, we need to classify the resu
as either ‘‘1 ’’ or ‘‘ 2. ’’ In Refs. @11,13,14#, the ‘‘positive-
negative’’ binning is used, that is the result is classified a
1 ’’ if qi>0 and ‘‘2 ’’ if qi,0.

The choice of binning is quite arbitrary. For state~5! we
can consider another type of binning, we callroot binning,
that depends on the roots of the functionsf and g ~that are
known in advance to the experimenters!. We assign ‘‘1 ’’
when the resultqi lies in an interval wheref (q) and g(q)
have the same sign, and ‘‘2 ’’ if qi is in an interval wheref
andg have opposite signs. We defineD1 as the union of the
intervals in whichf (q) andg(q) have the same sign andD2

as the union of the intervals in whichf (q) and g(q) have
opposite signs. We have thus

D15$;qe R u f ~q!g~q!>0%, ~6!

D25$;qe R u f ~q!g~q!,0%. ~7!

Let us first consider the case when quadrature meas
ments in position space have been performed on both si
So the binary probabilities we need for the CHSH type
Bell inequality will be

P115E
D1
E

D1
dq1dq2P~q1 ,q2!, ~8!

P125E
D1
E

D2
dq1dq2P~q1 ,q2!, ~9!

P215E
D2
E

D1
dq1dq2P~q1 ,q2!, ~10!

P225E
D2
E

D2
dq1dq2P~q1 ,q2!, ~11!

with

P~q1 ,q2!5u^q1u^q2uC&u2 ~12!

5
1

2
@ f ~q1!2f ~q2!21g~q1!2g~q2!2

12 cosu f ~q1!g~q1! f ~q2!g~q2!#. ~13!

The correlation fuction for the stateuC& is given by

Eq1 ,q2
5P111P222P122P21 ~14!

and as we have chosenf even andg odd, we get the remark
ably simple expression,

e
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MAXIMAL VIOLATION OF BELL INEQUALITIE S . . . PHYSICAL REVIEW A 67, 012105 ~2003!
Eq1 ,q2
5V2cosu, ~15!

where

V5E
D1

f ~q!g~q!dq2E
D2

f ~q!g~q!dq

5E
2`

1`

u f ~q!g~q!udq. ~16!

A similar binning will be applied for the momentum par
Since we suppose thatf (q) is a real and even function whil
g(q) is a real and odd,f (q) has a real even Fourier tran
form f̃ (p) while g(q) has an imaginary Fourier transform
i h̃(p), whereh̃(p) is a real and odd function. Using thes
properties, and taking care of the supplementaryi factor, the
same reasoning applies forf̃ and h̃ as for f, g. Denoting as
D81 and D82 the intervals associated withf̃ and h̃, we
obtain

Ep1 ,p2
52W2cosu, ~17!

where

W5E
D81

f̃ ~p!h̃~p!dp2E
D82

f̃ ~p!h̃~p!dp

5E
2`

1`

u f̃ ~p!h̃~p!udp, ~18!

and equivalently,

Eq1 ,p2
52V W sinu, ~19!

Ep1 ,q2
52V W sinu. ~20!

Hence by combining Eqs.~15!, ~17!, ~19!, and ~20! we can
write the CHSH inequality~3!

S5ucos~u!~V21W2!22 sin~u!VWu<2. ~21!

The maximum ofS with respect tou is obtained for tanum
522VW/(V21W2), and we haveum→2p/4 as V,W
→1. For this optimizedum we get the Bell inequality

S5uAW41V416V2W2u<2. ~22!

Using this really simple expression~22!, the debate betwee
quantum mechanics and local realistic theories boils dow
find functions f and g such that the integralsV, W violate
~22!. An interesting feature appears when the distributio
are eigenstates of the Fourier transform, so thatV5W and
Eq. ~22! becomes

S52A2 V2<2. ~23!

So if such functions have the right overlap needed to ob
V51, one will get the maximal violation of the above in
equality, which is obtained forS52A2.
01210
to

s
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When compared to the positive-negative binning, ro
binning has the advantage of having two parametersV andW
to play with while the positive-negative binning has only o
@14#. Moreover, as we will show now, the above Bell in
equality is violated by simple wave functions, that no long
have the singularities that appeared in Ref.@14#.

III. LINEAR SUPERPOSITION OF FOUR
COHERENT STATES

In order to propose an explicit expression of a state t
violates the Bell inequality~22!, let us first consider the cas
of a superposition of two coherent states of amplitudesa and
2a. This state, sometimes referred to as a Schro¨dinger cat,
involves intrinsic quantum features such as negative Wig
functions, which make it an interesting candidate for o
stateu f & or ug&. We must choose an even wave function f
f (q) and an odd forg(q),

f ~q!}e2(q1a)2/21e2(q2a)2/2, ~24!

g~q!}2e2(q1a)2/21e2(q2a)2/2, ~25!

unfortunately for this simple state we getV51 and W
.0.64 for a→`, so thatS.1.90,2. Therefore this state
cannot be used for violating Bell inequality~note that Gil-
christ et al. @10,11# also consider similar states, but witho
getting a violation of Bell inequalities!.

Instead of superpositions of two coherent states, we c
sider quantum superpositions that have four Gaussian c
ponents. Let us for instance consider

f ~q!}2e2(q13a)2/21e2(q1a)2/21e2(q2a)2/22e2(q23a)2/2,
~26!

g~q!}2e2(q13a)2/22e2(q1a)2/21e2(q2a)2/21e2(q23a)2/2.
~27!

The functionsf (q) andg(q) are depicted in Fig. 2 togethe
with their Fourier transform. We note that the distance b
tween each peak and its neighbors isa52a. This disposition
yields an optimal overlap off̃ andg̃ and thus a high value o
S. The best violation appears when the peaks move of

FIG. 2. f andg for a four-peaks state described by Eqs.~26! and
~27! in position space~left! and momentum space~right!, with a
57.5 (a515). Left axes are in arbitrary units and normalized
unity.
5-3
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JÉRÔME WENGERet al. PHYSICAL REVIEW A 67, 012105 ~2003!
a→`. In that case,V51, W58/(3p) and thus we get the
significant violation ofS22.0.417 ~in facts, the condition
a→` appeared to be not so strict numerically, as an am
tude a55 is enough to obtainS.2.417). Such a violation
represents a large improvement compared to Munro’s
violation of 0.076@13#, for a state with no singularity and a
least as easy to produce as Munro’scn optimized state~1!.
However, we are still away from the maximal value 2A2 of
the CHSH Bell inequality@15#. In the following section, we
will propose a set of states to get closer to the maxim
violation.

IV. LINEAR SUPERPOSITION OF N COHERENT STATES

The result obtained with the four Gaussian compon
states suggests that a way to get a stronger violation i
increase the total numberN of peaks of the statesu f N& and
ugN&, with the proper sign between the peaks. We thus
fine, for a given amplitudea

f N;a~q!} (
j 52N/2

(N/2)21

cosS p

4
@2 j 11# Dexp$2~q2@ j 1 1

2 #a!2/2%,

~28!

gN;a~q!} (
j 52(N/2)

(N/2)21

sinS p

4
@2 j 11# Dexp$2~q2@ j 1 1

2 #a!2/2%.

~29!

Table I presents the results of the calculation ofSaccord-
ing to formula~22! for the state defined by Eqs.~5!, ~28!, and
~29!. As expected, the quantityS increases with the numbe
of peaks and tends to 2A2. To prove this point, let us con
sider the two following distributions that have an infini
number of peaks. These distributions are depicted with t
Fourier transform in Fig. 3.

f `;a~q!} (
j 52`

1`

d„q2a~ j 11/2!…cosS pq

2a D , ~30!

g`;a~q!} (
j 52`

1`

d„q2a~ j 11/2!…sinS pq

2a D . ~31!

Up to scaling factors, these distributions appear to be
most identical to their Fourier transform, while for the sp
cific amplitudea5Ap they are exact eigenstates of the Fo
rier transform. Moreover, asf ` and g` overlap perfectly,
these distributions would yield the maximal violation of th
CHSH inequality, asS52A2 from Eq.~23!. Of course, they
are unphysical~non-normalizable! states, but the wave func
tions f N andgN in Eqs. ~28! and ~29! can be considered a
regularized forms off ` and g` , widening the Dirac delta

TABLE I. S for N-peaks states defined by Eqs.~28! and~29! and
a515, each peak having the same height.

N 2 4 6 8 10 12

S 1.895 2.417 2.529 2.611 2.649 2.681
01210
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functions to Gaussians and taking a finite number of e
ments. Thus one can understand thatS→2A2 asN→`.

Another regularization of wave functions~30! and ~31!
consists in a widening of the Dirac functions to Gaussians
width s associated with a Gaussian envelope of width 1/s:

f `;a,s~q!}G1/s~q!@ f `;a* Gs~q!#, ~32!

g`;a,s~q!}G1/s~q!@g`;a* Gs~q!#, ~33!

where Gs(q)5exp(2q2/2s2), * denotes the convolution
product, ands is a squeezing parameter. Whens!1, one
indeed has

f̃ `;a,s~p!}Gs* @ f `;p/aG1/s#~p!' f `;p/a,s~p!, ~34!

g̃`;a,s~p!}Gs* @g`;p/aG1/s#~p!'g`;p/a,s~p!. ~35!

The value ofS exhibits a symmetryS(a)5S(p/a), with a
maximum reached fora5Ap, where f and g are approxi-
mately eigenstates of the Fourier transform.

Thanks to the Gaussian envelope, the above functions
be truncated to a finite total number of peaksN without
affecting numerically thef andg functions, provided

N.
2A2u ln «u

as
, ~36!

where « is an arbitrary small tolerance parameter. For«
50.01, a5Ap, and s50.3, the condition yieldsN>12.
Given these parameters andN512, we getS'2A2 with a
relative error of 0.01%. Regardless to this condition, o
may also arbitrarily choose to limit the above functions toN
peaks for given parameterss and a, but as suchf and g
cannot directly be considered as truncatedf `;a,s andg`;a,s ,
the best amplitude will differ fromAp and S will slightly
move away from 2A2. Some results obtained fors50.3 are
presented on Table II forN running from 4 to 12. The value
of a used in this table is numerically calculated in order
maximize S. Here the violation is considerably improve

FIG. 3. Infinite-peaks state, represented in the position and
mentum phase space. Thick segments denote Dirac delta funct
5-4
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MAXIMAL VIOLATION OF BELL INEQUALITIE S . . . PHYSICAL REVIEW A 67, 012105 ~2003!
compared to Table I, with for instanceS52.764 with N
54, andS52.828 with N510. In Fig. 4 we displayf (q)
andg(q) for the caseN512 showing that these functions a
nearby self Fourier transform.

In Appendix A, we rewrite these states on the Fock-sta
basis and express thef and g functions as combinations o
Hermite polynomials.

V. CONDITIONAL PREPARATION OF ENTANGLED
SUPERPOSITIONS OFN COHERENT STATES

Preparing an entangled superposition ofN coherent or
squeezed states is a challenging task, we begin by focu
our attention on how one singleN Gaussian component
state as defined by Eq.~29! could be generated. This sta
has strong similarities with theencoded statesintroduced by
Gottesman and co-workers@16# to perform quantum error
correction codes. Recently, Travaglione and Milburn@17#
presented a proposal to generate nondeterministically s
encoded states. Following this study, we will first show how
to generate the stateug& by applying a specific sequence
operations similar to Ref.@17# and then derive a setup t
produce the whole state~5!.

The preparation procedure begins with the quantum s
tem in the vacuum stateu0& and an ancilla qubit in the
ground stateu0&a ~if some squeezing parameter is need
one may take a squeezed vacuum as quantum system
follow the procedure we describe here. For simplicity re
sons, we sets51). Let us first apply

He2 iapsz H, ~37!

with p is the momentum operator applied to the continuo
variable state,H is the Hadamard gate, andsz is the Pauli
matrix applied to the qubit:

TABLE II. S as a function of the number of peaksN for a
squeezing parameters50.3 and a Gaussian envelope of width 1/s,
for an optimized amplitudeaopt .

N 4 6 8 10 12

aopt 2.6 2.3 2 1.8 1.8
S 2.764 2.823 2.826 2.828 2.828

FIG. 4. N512 states described by Eqs.~32! and~33! presented
in position space~left! and in momentum space~right! for param-
etersa51.8 ands50.3. Left axes are in arbitrary units and no
malized to unity.
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H5
1

A2
S 1 1

1 21D , sz5S 1 0

0 21D . ~38!

We then have a probability 1/2 of measuring the qubit eit
in the excited or in the ground state. If it is found in th
u1&a state, the continuous variable is left in the stateuY1&
}2u2a&1ua&, otherwise the procedure is stopped and
try again. The qubit is then bit flipped tou0&a and we go on
by applying the sequence

He2 i2apsz H. ~39!

Measuring the qubit in theu0&a results in the continuous
variable left in the stateuY2&}2u23a&1u2a&2ua&
1u3a&. To increase the number of peaks, we iterate the
lowing procedure givenuYn21& and the qubit inu0&a :

~1! Apply the operators

He2 i2n21apsz H. ~40!

~2! Measure the qubit.
~3! If the qubit was in the stateu0&a , we have created

uYn&.
~4! If the qubit was in the stateu1&a , discard and try

again.
Once the number of peaks is considered satisfactory,

stop the previous iteration. The last point to generateug& is to
apply the following sequence:

He2 i (a/2)psz H. ~41!

If the qubit is found in the stateu0&a , we have created the
stateug& as defined in Eq.~29!. If the protocol was stopped
after n iterations ~corresponding touYn&), the stateug& is
created with probability 1/2n11 and showsN52n11 peaks.
In the last section of Ref.@17#, Travaglione and Milburn
briefly consider the question of the physical implementat
of this iteration process using a radio-frequency ion trap.
refer the reader to this paper for further details.

For the creation process of the stateuC&5(1/A2)(u f f &
1eiuugg&), we present in Fig. 5 a global view of our
scheme. TheG-labeled box corresponds to the generation
ug& we just saw. Our process is based on a controlled-NOT

gate that entangles two qubits and thus produces the
uc&a51/A2(u11&a1eiuu00&a). Each qubit is then associate
with a stateug& through the following operator

FIG. 5. Schematic of the setup used to generate the stateuC&
5(1/A2)(u f f &1eiuugg&) with f and g defined by Eqs.~28! and
~29!. See text for the notations.
5-5
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JÉRÔME WENGERet al. PHYSICAL REVIEW A 67, 012105 ~2003!
L5expF ip

4 S q

a/2
21D ~12sz!G , ~42!

whereq is the position operator of theug& state andsz is the
Pauli matrix applied to the qubit. If the qubit is at zero, t
ug& state will be left unchanged. If the qubit is at one, fors
!a the sign of each two peak is changed so that theug& state
is changed into theu f & state. After this operatorL has been
applied, the whole state is left in

eiuugg00&1u f f 11&. ~43!

In order to disentangle the two qubits from the continuo
part, one has to make the qubits pass through an Hadam
plus a controlled-NOT gate. Finally measuring one qubit i
the zero state will project the continuous variable syst
onto the awaited state

uC&5
1

A2
~ u f f &1eiuugg&). ~44!

Such a process generates the linear superpositon ofN co-
herent states as defined in Eqs.~28! and ~29!, where each
component has the same height. The case~32! and~33! with
a Gaussian envelope is more complicated to produce bec
each peak must be separately weighted, but as seen in T
I, the violation for a state~28!, ~29! with equal heights is
already quite strong (S.2.41 forN54).

VI. CONCLUSION

Considering the quadrature-phase homodyne detec
we have derived a different binning process calledroot bin-
ning to transform the continuous variables measured into
nary results to be used in the test of quantum mecha
versus local realistic theories. For this process, we propo
whole family of physical states that yield a violation arb
trarily close to the maximal violation in quantum mechan
and much stronger than previous works in the dom
@10–13#.

We have also tested root binning on other interest
forms of Bell inequality that are the information-theore
inequalities developed by Braunstein and Caves@18# and
generalized by Cerf and Adami@19#. Using quadrature mea
surements, root binning and our state defined by Eqs.~5!,
~32!, and ~33!, we unfortunately could find no violation fo
neither Braunstein’s nor Cerf’s form of information-theore
Bell inequality. Our state in fact tends to the minimum lim
for violation of these information inequalities whenV→1
andW→1. As a matter of fact, the binning process disca
a lot of information that lies within each interval of the bin
ning. This information loss may prevent any violation
information-theoretic inequalities.

As a conclusion, let us point out that though the pres
idea sounds quite attractive, its practical implementation
01210
s
ard

se
ble

n,

i-
cs

a

n

g

s

t
is

very far fetched. Though we do propose a theoretical sche
to prepare the required states, it relies on various featu
~coupling Hamiltonian, controlled-NOT gates! that are not
presently available with the required degree of efficien
For going in more details into the implementation of t
present scheme, inefficiencies and associated decoher
effects should be examined in detail for each required s
i.e., preparation, propagation, and detection. Also, vari
possible implementations of the proposed scheme shoul
considered@9,17,20,21#. Such a study is out of the scope o
the present paper, that has mostly the goal to show that a
trarily high violations of Bell inequalities are in principl
possible, by using continuous-variable measurements
physically meaningful—though hardly feasible—quantu
states.
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APPENDIX: EXPRESSION IN THE FOCK BASIS

An interesting point is to study the decomposition
statesu f & and ug& on the Fock basisun&, which are experi-
mentally accessible. Starting from states~32!, ~33! with a
5Ap, s50.4, and withN satisfying condition~36!, we ob-
tained after truncating at the 14th order and normalizing
states:

u f &5A0.459u0&2A0.491u4&2A0.008u8&2A0.042u12&,
~A1!

ug&5A0.729u1&1A0.155u5&2A0.107u9&2A0.009u13&.
~A2!

These states allow to reach a violationS2250.81. The state
u f & only involves ordersn[0 (mod4), as we haven
[1 (mod4) forug&. This directly comes from the fact tha
^pun&5(2 i )n^qun&q5p and (2 i )451, so that states of the
form (n[a (mod4)cnun& are eigenvectors of the Fourier tran
form. From these considerations we have obtainedS52.68
for

u f &5A0.585u0&2A0.415u4&, ~A3!

ug&5A0.848u1&1A0.152u5&. ~A4!

andS52.3 for

u f &5A0.67u0&2A0.33u4&, ug&5u1&. ~A5!

These states are quite simple, and it is expected that a
cific simplified procedure to produce them might be d
signed.
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