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We describe the observation of a ‘‘degaussification’’ protocol that maps individual pulses of squeezed
light onto non-Gaussian states. This effect is obtained by sending a small fraction of the squeezed
vacuum beam onto an avalanche photodiode, and by conditioning the single-shot homodyne detection
of the remaining state upon the photon-counting events. The experimental data provide clear evidence
of phase-dependent non-Gaussian statistics. This protocol is closely related to the first step of an
entanglement distillation procedure for continuous variables.
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protocol is based upon a postselection triggered by a
photon-counting event and uses only simple linear optical FIG. 1. Simplified experimental setup.
Research on novel schemes to perform quantum key
distribution (QKD) is presently very active. In that field,
lots of interest has arisen recently on the use of quantum
continuous variables (QCV). For instance, novel QKD
schemes using the quadrature components of amplitude
and phase modulated coherent states have been recently
proposed [1] and experimentally demonstrated [2]. It has
been shown that such coherent state protocols are secure
against individual Gaussian attacks for any value of the
line transmission [2,3], and actually more general proofs
are presently under study [4,5].

An important practical advantage of coherent states
QKD is that it can in principle reach very high secret
bit rates [2]. However, even in the best possible case,
coherent states QKD will not do much better than
photon-counting QKD [6] in terms of absolute distance,
because of the exponential attenuation in optical fibers: at
some point which is now somewhere between 10 and
100 km, one hits a limit where the transmitted secret
data gets buried into errors of various origins, that range
from detectors dark counts to imperfect data processing.

In order to qualitatively improve the situation, i.e., to
go much beyond the attenuation length of a strand of fiber,
a major challenge is to implement quantum repeaters [7],
based upon entanglement distillation and (most likely)
quantum memories. Ultimately, the secret qubits would
be simply teleported to a remote place, with which shared
entanglement has been established [8]. Looking now at
entanglement distillation for QCV, a difficulty appears
quickly: most (if not all) QCV transmissions so far are
using light beams with Gaussian statistics. However, it
has been shown that it is not possible to distillate entan-
glement from a Gaussian input to a Gaussian output by
Gaussian means [9,10]. One has to jump ‘‘outside’’ the
Gaussian domain, though it is possible to reach it back at
the end, at least in an approximate way [11].

In this Letter, we experimentally implement a proce-
dure which we call ‘‘degaussification,’’ that maps short
pulses of squeezed light onto non-Gaussian states. This
0031-9007=04=92(15)=153601(4)$22.50 
elements. Extending this procedure to entangled EPR
beams—which is fairly simple in principle —provides
the first step of an entanglement distillation procedure
as proposed in Ref. [11].

The experimental scheme is presented on Fig. 1. The
initial pulses are obtained from a titanium-sapphire laser
(Tiger-CD, Time-Bandwidth Products), delivering nearly
Fourier-transform limited pulses at 850 nm, with a dura-
tion of 150 fs, an energy of 40 nJ, and a repetition rate of
790 kHz. These pulses are frequency doubled in a single
pass through a thin (100 �m) crystal of potassium nio-
bate (KNbO3), cut and temperature tuned for noncritical
type-I phase matching. The second harmonic power is
large enough to obtain a significant single-pass paramet-
ric gain ( � 3 dB) in a similar KNbO3 crystal used in a
type-I spatially degenerate configuration.

Given this relatively high gain, ‘‘real’’ squeezed states
are actually produced, not only parametric pairs.
Therefore, higher order terms (beyond pair production)
have explicitly to be included in the analysis as they play
an essential role in the understanding of the phase depen-
dence of the data. The detection scheme follows the basic
idea of a pulsed squeezed light experiment [12], with two
important differences:

(i) All processing is done in the time domain, not in the
frequency domain. For each incoming pulse, the balanced
homodyne detection samples one value of the signal
2004 The American Physical Society 153601-1
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quadrature in phase with the local oscillator beam [2]. It
is then possible to reconstruct the full statistics of the
signal pulses. The histograms presented below are ob-
tained from these individual pulse data.

(ii) A small fraction (R � 0:115) of the squeezed vac-
uum beam is taken out from the homodyne detection
channel. These trigger photons then pass through a spatial
filter (made of two Fourier-conjugated pinholes) and a
3 nm spectral filter centered at the laser wavelength,
before being detected by a silicon avalanche photodiode
(APD). The detection click is registered simultaneously
with the homodyne signal, and can be used to postselect
homodyne events. As we will show, this selection pro-
vides directly non-Gaussian statistics.

The unconditioned distributions corresponding to the
squeezed and antisqueezed quadratures, and to the vac-
uum noise are plotted on Fig. 2. More experimental de-
tails about the squeezed states generation can be found in
[13]. The measured squeezing variance (with no correc-
tion) is 1.75 dB below the shot noise level (SNL), in good
agreement with the measured deamplification of a probe
beam (0.50 or 3 dB) and our evaluation of the overall
detection efficiency �tot � � �1� R� � 0:66. Here 1�
R � 0:885 is the transmission of the conditioning beam
splitter, and � � 0:75 is the homodyne detection effi-
ciency (see details below). As seen in Fig. 2, the experi-
mental data for both quadratures are correctly fitted by
assuming a single-mode parametric gain exp��2s� with
s � 0:43, together with the above efficiency �tot. We note,
however, that the deamplification gain of the probe beam
does not correspond exactly to the inverse of the ampli-
fication, due to gain-induced-diffraction which distorts
the probe phase fronts [14]. Since such multimode effects
remain reasonably small in our experimental conditions,
we will use the single parameter s to describe parametric
amplification and deamplification.

Figure 3 displays the postselected output of the homo-
dyne detection resulting from the degaussification proto-
col, showing a clear dip in the center of the amplified
FIG. 2. Normalized probability distribution for the (uncon-
ditioned) squeezed vacuum state, obtained from the pulsed
homodyne detection. The squeezed quadrature variance is
1.75 dB below SNL, while the amplified quadrature variance
is 3.1 dB above. The SNL curve corresponds to the vacuum
state, where the shot noise variance is taken equal to 1=2.
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quadrature distribution. The theoretical curves repre-
sented on the same figure are obtained from a simple
single-mode model detailed below. This model takes into
account the measured parametric gain, together with
various experimental imperfections (losses, imperfect
mode matching, electronic noise, dark counts, and modal
purity, see below for details), and it is clearly in good
agreement with the experimental data.

The origin of the observed effect can be analyzed in
different ways. A first insight can be obtained by consid-
ering the homodyne detection of a conditional single
photon state, observed in [15]. In this experiment, the
authors separate the two photons from a parametric pair,
and one of them is used as a trigger on a photon counter,
while the other one is sent to an homodyne detection. In
the ideal case, such an experiment would measure the
probability density P�x� of the n � 1 Fock state, which is
non-Gaussian since P�0� � 0. Though this experiment
provides a first idea of the origin of the non-Gaussian
features, it is not enough to explain our observations.
Actually, we see phase-dependent effects (while a n � 1
Fock state is phase independent), and in our setup there is
no explicit separation of the photon pair.

We have carried out a calculation taking into account
the expansion of the squeezed state in a Fock state basis,
including terms up to n � 10, which is enough for our
degree of squeezing. The calculation is done for an arbi-
trary value of the conditioning beam splitter reflectivity,
and takes into account the various imperfections of the
FIG. 3. Experimental (dots) and theoretical (line) quadrature
distribution of the postselected homodyne measurements for
the amplified quadrature (a) and the squeezed one (b), normal-
ized as in Fig. 2. Parameters used in the calculation are s �
0:43, R � 0:115, � � 0:75, and 
 � 0:7.
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experiment. This calculation is straightforward but tedi-
ous, and one can actually get a good physical insight by
considering the restricted simple case of an expansion of
the squeezed vacuum up to n � 4, and a beam splitter
reflectivity r �

����

R
p

� 1. The squeezed vacuum j �si can
then be written as

j �si � � j 0i �  j 2i � � j 4i: (1)

With our degree of squeezing s � 0:43, one has � � 0:96,
 � 0:27, and � � 0:10 [16]. This state then gets mixed
with the vacuum at the beam splitter, resulting in a two-
mode entangled squeezed state. Denoting as r; t the re-
flectivity and transmittance of the beam splitter (r2 �
t2 � 1), the output state is

j �s;outi � �� j 0i1 � t2 j 2i1 � t4� j 4i1� j 0i2

� �
���

2
p

rt j 1i1 � 2rt3� j 3i1� j 1i2 �O�2�

(2)

where j :i1 denotes the state sent to the homodyne detec-
tion, while j :i2 stands for the state sent to the APD. The
term O�2� denotes Fock state terms higher than 1 on the
APD beam, which will be neglected in this simplified
calculation, given our assumption r � 1. Finally, post-
triggering on the APD photon-counting events reduces
the state detected by the homodyne detection to

j �condi /  j 1i �
���

2
p

� t2 j 3i: (3)

The prediction of this calculation is shown on Fig. 4. As
expected, we do obtain phase-dependent non-Gaussian
statistics. These features are related to high order terms
beyond pair production which play an essential role in our
analysis.

In this simplified calculation we have assumed r � 1,
and the predicted dip in the center of the probability
distribution goes down to zero. When the beam splitter
reflectivity is increased, Fock state terms with n > 1 may
no longer be neglected on the APD beam, and the central
dip has a nonzero value. Strictly speaking, this is not an
FIG. 4. Phase-dependent quadrature distributions of the con-
ditioned homodyne measurements, together with the vacuum
reference (line and dots). The thick solid line is obtained from
Eq. (3) with R � 0:01. The thin gray line is obtained from
the complete calculation and R � 0:115. (a) corresponds to the
amplified quadrature while (b) shows the squeezed one. The
squeezing parameter is s � 0:43, and perfect single mode
detection efficiency has been assumed.
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experimental imperfection, but an intrinsic feature of the
conditioned state for larger R, which clearly appears on
the result of the full calculation also displayed in Fig. 4.

In order to characterize experimental imperfections,
let us emphasize that the homodyne detection and the
photon-counting detection have quite different draw-
backs. The homodyne detection is not sensitive to real
photons that are in modes unmatched with the detected
(local oscillator) mode, but it is quite sensitive to vacuum
modes which couple into this detected mode. On the other
hand, the photon-counting detection is not sensitive to
vacuum noise, but it will detect photons in any modes.
Correspondingly, two experimental parameters must be
used: a homodyne efficiency parameter �, which mea-
sures the overlap between the desired signal mode and the
detected mode [17] ; and a modal purity parameter 
,
which characterizes which fraction of the detected pho-
tons is actually in the desired signal mode [18]. In the
simplest approach, the homodyne efficiency can be mod-
elized by a lossy beam splitter, taking out desired corre-
lated photons. On the other hand, the modal purity 
 in
our experiment cannot be modelized by another lossy
beam splitter, because a small value of 
 corresponds to
unwanted firings of the APD, for which a squeezed vac-
uum is still measured at the homodyne detection port.
More precisely, the measured probability distribution
for a quadrature x will be taken as P�x� � 
 Pcond�x� �
�1� 
� Puncond�x�, where Pcond�x� and Puncond�x� are, re-
spectively, the conditioned and unconditioned probability
distributions, which depend on the values of s, R, and �.

It is then easy to determine values of the parameters �
and 
 fitting the experimental data. The procedure to
measure � is well established from squeezing experi-
ments [12], and it can be cross checked by comparing
the classical parametric gain and the measured degree of
squeezing. The procedure to measure 
 is less usual, and
amounts to evaluate how many unwanted photons make
their way through the spatial and spectral filters which
are used on the photon-counting channel. Ultimately, this
estimated value of 
 must fit with the observed condi-
tional probability distribution, since � is independently
obtained from squeezing measurements.

Experimentally, this procedure turns out to be quite
successful, and for instance we have plotted on Fig. 3
the amplified and deamplified conditional probability
distributions, using as parameters the parametric gain
exp�2s� � 2:36, the homodyne efficiency � � 0:75, and
the modal purity parameter 
 � 0:7. We note that the
value of s is evaluated from the measured squeezing
(see Fig. 2), while � is obtained as � � �T�

2
H�D, where

the overall transmission �T � 0:94, the mode-matching
visibility �H � 0:92, and the detectors efficiency �D �
0:945 are independently measured. Finally, the modal
purity 
 is fitted to the data, and cross checked as
the ratio between the expected and actual APD counting
rates.
153601-3



FIG. 5. (a) Theoretical Wigner function W of the output state
of the ‘‘degaussification’’ protocol, assuming s � 0:43, R �
0:115, and perfect detection (� � 
 � 1). (b) Reconstructed
Wigner function from the experimental data (� � 0:75, 
 �
0:7). The values of W at the origin of phase space are,
respectively, Wth�0; 0� � �0:26 and Wexp�0; 0� � 0:067.
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In a last step, we have analyzed our data using the
standard techniques of quantum tomography. We have
recorded a histogram with 40 bins for six different quad-
rature phase values �, and about 5000 points for each
histogram were acquired in a 3 h experimental run. The
Wigner function displayed on Fig. 5 was then recon-
structed using the Radon transform [16], applied to the
symmetrized experimental data P�x�� � P��x���=2,
without any correction for measurement efficiency. It
shows a clear dip at the origin, with a central value of
0.067 while the maximum is at 0.12.

As usual, the conditions to get negative values of the
measured Wigner function are rather stringent, and re-
quire the presence of a dip into the distribution probability
associated to the squeezed quadrature. Given our experi-
mental parameters, this requires a modal purity 
 better
than 0:85, which was not experimentally attainable while
keeping the APD count rate above a few tens per second.
Nevertheless, we point out that by including the homo-
dyne efficiency, the evaluated Wigner function of the
prepared state (just before homodyne detection) does
assume a negative value at the origin, Wcor�0; 0� �
�0:06. Another interesting feature is that the non-
Gaussian dip on the amplified quadrature is quite robust
to losses and therefore can be easily observed with our
153601-4
experimental parameters. This is associated with a simi-
larly robust ‘‘squeezed volcano shape’’ of the Wigner
function.

We have described the first experimental observation of
a degaussification protocol, mapping individual femto-
second pulses of squeezed light onto non-Gaussian states,
by using only linear optical elements and an avalanche
photodiode. The observed effect is closely related to the
first step of an entanglement distillation procedure for
Gaussian quantum continuous variables [11]. This work
should contribute to the future development of quantum
repeaters and long-range quantum cryptography using
continuous variables entanglement.
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Photonique and ASTRE.
*Email address: jerome.wenger@iota.u-psud.fr
[1] F. Grosshans and Ph. Grangier, Phys. Rev. Lett. 88,

057902 (2002).
[2] F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J.

Cerf, and Ph. Grangier, Nature (London) 421, 238
(2003).

[3] F. Grosshans, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and
Ph. Grangier, Quantum Inf. Comput. 3, 535 (2003).

[4] F. Grosshans and N. J. Cerf, Phys. Rev. Lett. 92, 047905
(2004).

[5] S. Iblisdir, G. Van Assche, and N. J. Cerf, quant-ph/
0312018.

[6] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev.
Mod. Phys. 74, 145 (2002).

[7] H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 81, 5932 (1998).

[8] C. H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).
[9] J. Eisert, S. Scheel, and M. B. Plenio, Phys. Rev. Lett. 89,

137903 (2002).
[10] G. Giedke and J. I. Cirac, Phys. Rev. A 66, 032316 (2002).
[11] D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, Phys.

Rev. A 67, 062320 (2003); see also quant-ph/0307106.
[12] R. E. Slusher, P. Grangier, A. LaPorta, B. Yurke and M. J.

Potasek, Phys. Rev. Lett. 59, 2566 (1987).
[13] J. Wenger, R. Tualle-Brouri, and P. Grangier, quant-ph/

0402193 [Opt. Lett. (to be published)].
[14] A. LaPorta and R. E. Slusher, Phys. Rev. A 44, 2013

(1991).
[15] A. I. Lvovsky et al., Phys. Rev. Lett. 87, 050402 (2001).
[16] U. Leonhardt, Measuring the Quantum State of Light

(Cambridge University Press, Cambridge, 1997).
[17] F. Grosshans and P. Grangier, Eur. Phys. J. D 14, 119

(2001).
[18] T. Aichele, A. I. Lvovsky, and S. Schiller, Eur. Phys. J. D

18, 237 (2002).
153601-4


