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Noncontact atomic force microscopy: Stability criterion and dynamical
responses of the shift of frequency and damping signal

G. Couturier,” R. Boisgard, L. Nony,” and J. P. Aimé _
Centre de Physique Mdatalaire Optique et Hertzienne, UniversiBordeaux |, UMR5798 CNRS,
351 Cours de la Libetion, 33405 Talence Cedex, France

The aim of this article is to provide a complete analysis of the behavior of a noncontact atomic force
microscopeNC-AFM). We start with a review of the equations of motion of a tip interacting with

a surface in which the stability conditions are first revisited for tapping mode. Adding the equations
of automatic gain contro[AGC), which insures constant amplitude of the oscillations in the
NC-AFM, to the equations of motion of the tip, a new analytical stability criterion that involves
proportional and integral gains of AGC is deduced. Stationary solutions for the shift of frequency
and for the damping signal are obtained. Special attention is paid to the damping signal in order to
clarify its physical origin. The theoretical results are then compared to those given by a virtual
machine. The virtual machine is a set of equations solved numerically without any approximation.
The virtual machine is of great help in understanding the dynamical behavior of the NC-AFM as
images are recorded. Transient responses of the shift in frequency and of the damping signal are
discussed in relation to the values of proportional and integral gains of A .C.

Published in Rev. Sci. Instrum. 74 (5), 2726-2734 (2003)

I. INTRODUCTION predictions are widely confirmed by experimental restflts.
However, it is not clear whether the NC-AFM can be under-
The noncontact atomic force microscodC-AFM) isa  stood by extrapolating theoretical results obtained by assum-
powerful tool with which to investigate surface properties ating a constant driving force like done in tapping mode. Un-
the nanometer scale. Contrast at the atomic scale has begke tapping mode, NC-AFM mode looks very stable: the
achieved for semiconductors and insulatofsThe NC-  phase of the OTCS may be adjusted at any value around
AFM is also a powerful tool with which to investigate soft _ /2 \whereas theoretical results predict instability for phase
materials’ Albretch et al. were the first to propose the con- larger than— /2 in tapping mode.
cept of a NC-AFM8 In the NC-AFM, the tip—cantilever is in To understand a NC-AFM machine, we need to add the
a closed loop and the frequency of the oscillations dependgqyations that rule AGC to the equations of motion of the
on tip—surface interaction. The amplitude of the oscillationsyTcs This article is organized as follows. In Sec. I, the
is kept constant by automatic gain contf@GC). The damp- ¢ ations of motion of the OTCS without AGC and the sta-
ing signal, which is the signal of error of AGC, should nor- iy, criterion are reviewed. In Sec. Ill, the equations that

mally be a gpod measure of the di§sipative term ipvolveq Mule AGC are added to the equations of motion of the OTCS
tip—surface interaction. The question of the physical ON3IMy order to establish the domain of stability. We show that

of the variation of the damping signal remains ur‘resOI\’eclnoncontact mode is stable as long as proportional and inte-

fT_?ld ha? ?genfa mattt.er of f[jebatebover thethlasc; few.ﬁégf_s- a%ral gains of AGC satisfy three inequalities. The stationary
IS PoInt is ot great importance because Ihe damping SIONE,, s for the shift of frequency and for the damping sig-

should provide information on dynamical properties at the . . .
. . .nal versus the tip—surface distance are also established for
molecular scale. With the development of dynamic force mi-

croscopy(DFM), in tapping or noncontact mode numerousany value of the phase of the OTCS. Theoretical results are
theoretical WorP£4‘19has been devoted to adescription of theObtained with some minor approximations, and the predic-

. . N . . tions are compared to the results given by the virtual NC-
dynamical behavior of an oscillating tip—cantilever system ) . Y
. - : . AFM machine. The virtual machine is made of a set of non-
(OTCS)in proximity to a surface. Analytical solutions and . diff tial i ved icallv without
numerical results predict and show stable and unstable dél_near merentia’ equations solved humerically without any

mains of the resonance peak in tapping mode, i.e., when th%Dproximation; this machine. is a model of the mach.ine used
OTCS is excited by a constant driving force. Theoretical™ OUr laboratory and also in most other laboratories. The

virtual machine can calculate the transient response of the

shift in frequency and of the damping signal when nondissi-

a) . H il . . . . .. . .
Wcoumr ot oo e should be addressed; electronic mailative or/and dissipative force is introduced into tip—surface
PCurrent address: Zurich Research Labatory, IBM Research, 8833 Ru'meraCt'on' Transient responses are strongly related to pro-

chlikon, Switzerland. portional andintegral gains of AGC and may lead, in some
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cases, to misinterpretation of the NC-AFM images. Typicalwhere the underlined variablg(t) is calculated along the

artifacts are thus discussed at the end of the article. physical path, and thus is not varied in the calculations.
Due to the large value of the quality factQr we assume
Il. BEHAVIOR OF AN OSCILLATING TIP EXCITED BY a typical temporal solution of the form

CONSTANT DRIVING FORCE: TAPPING MODE

z(t)=Z(t)cod wt+ 6(1)], 3
Here in Sec. Il, we briefly recall the main results for an (D=Zn(t)cog e ] ®

oscillating tip close to a surface. In so-called tapping modewhere Z(t) and 6(t) are assumed to be functions that
oscillations of the tip are driven by an external force at aslowly vary over time compared to the peride- 27/ w.

given frequency. Applying the principle of least actio®S=0, with S
The differential equation that describes motizft) of =3 (UT/(3"YTL(z,2t)dt)T, we obtain the Euler—
the tip is given by Lagrange equations. Thus, the amplitude and phase equa-
42 " tions of motion of the OTCS coupled to the surface are
£ 4720 m”wo d2() - obtained*®
dtz + Q dt +kcz(t)_Fext(t)_vvint[z(t)]! '
1) Zm 2 Zn Fo
wherewy, m*, andk.=muw} are, respectively, the resonant w_g_ ut g 1 Zm KJF k—ccos( %)
frequency, the effective mass, and the cantilever stiffness of
the OTCS.Q=1/2y is the quality factor and is the damp- i Lk
ing coefficient. Fo,(t) =F, cost) is the external driving 3(D?-2z3)%%
force, andV,{ z(t)] is the interaction potential between the . . . (4)
tip and the surface. In this article, we assufhehat the tip 0 [ 2Zn 1 6\ Fgosin(o)
never touches the surface afie) van der Waals sphere— 02" Nwgzm QN wy) ke Tz

plane interactio? thus Vi, [z(t)]=—{HR/6[D—z(t)]}

whereH, R, andD are the Hamaker constant, the tip's apexWhereu=w/wg andk=HR/K..

radius, and the tip—surface distance, respectively. This par- The equations of motion of the stationary solutiahs;
ticular potential does not restrict the validity of the resultsand 6 are obtained by setting,,= 6=Z,,= 6=0 in Eq.(4):

discussed in this article.
stK FO

To solve the nonlinear differential, E¢l), we used the Znd1l—U%)— —— = 2 cog 6y,
principle of least action, so we start by building the Lagrang- " 3(D2—Zﬁ15)3’2 Ke °
ianL(z,z,t)=T—U+W: (5

u Fo .
. 1 C N 1 2 staz_k_sm(es)-
L(z,z,t)zim*z(t) - zkcz(t) —2z(t)Fycoq wt) c
. From Egs.(5), we derived the equations that give the
_ Mg . shape of the resonance peak and the phase as a function of
FVind 2(V)] Q 202(V), @ the distanced and the forceF:

QFy\2 1 1
w-=wg | 22 i 15 \/1-4Q?

(QFO)2 1 K HZ
1- ||
ke | Zhs 3(D?-Z59%?

u. A second order differential equation of the variabiés then
05 =arcta Ox : (6)  obtained. Using, for instance, the Rooth—Hurwitz stability
QU1+ ——5—5 criterion?® the stability is given by
3(D2_ Zﬁqs) 3/2

g(zms7u1Q1KlDlF01kC)>01
Typical plots ofZ,,s and 65 versus the frequency= w/2m

are shown in Figs. (B and 1b). As already discussed in where
various papert®1°the nonlinearity of the interaction greatly

distorts the resonance peak, and two branches appear. Equa- Zmu?
tion (1) is similar to the Duffing equation that has been stud- 97 Q?
ied extensivelf?>~?°1t is well known that, by sweeping the
frequency, the amplitude and phase exhibit jumps at fre- ,. QFp d Zmk

quency where the derivative &, diverges. From Eq(1), (1=u%) - ke dz,|3(D2-Z2)% :
the stability is deduced by substitutizg, and 6 in Egs. (4) Zm=Zms

by (Z,,s+m) and 65+ p), wherem andp are infinitesimal. (7)

+

5 ZnsK
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FIG. 1. Distortion of the resonance pe& and phasécurve a in(b)] vs
the frequency for an OTCS without CAG-§=1.38<1071°N, Q=4750,
D=17 nm, fo=147 305 Hz, andc=5%x10"2°m?®). Curves b and c are the
phase curvegEq. (14)] of the OTCS with CAG foiZ,s=16.35 and 16 nm,
respectively, and =17 nm; curve d is the phase f@—», it does not
depend or¥ .

“We have to point out that the terrﬁsnlw%, Zmnl 00Q,
Zmb0? }, and 0l wl, 22,01 Zmw?, 61Qw, were neglected in
Egs.(4); this approximation is supported by the fact tiiat
Zn(t) and 6(t) are assumed to be slowly varying functions
over time and(ii) the quality factorQ is high. Numerical
resolution of Eqs(4) shows that the approximation is com-
pletely reasonable.

The plot of g(Zys,u,Q,«,D,Fq,k;)=0 is shown by
dashed lines in Fig. (& and plotg=0 crosses ploZ,,
versus frequency at pointd and B where [dZ,s/dw] *
=0. Thus, when the frequency is swept from high to low
values, the amplitud&,,,s and phasels jump from A to C;

conversely, sweeping from low to high values gives jumps of

Zns and 65 from B to D. These jumps have been already
observed in tapping mode by various authtoré?’
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FIG. 2. Schematic diagram of a NC-AF). (b) Schematic diagram of the
OTCS with CAG used to establish the domain of stability in the NC-AFM.

lll. BEHAVIOR OF AN OSCILLATING TIP KEPT AT
CONSTANT AMPLITUDE: NONCONTACT MODE

A. Equations of motion

First, we will briefly recall the principle of the NC-AFM.
A simplified schematic diagram of the microscope is given in
Fig. 2(@). The OTCS is in a closed loop and the amplitude of
the oscillations is adjusted b, and is kept at a constant
level by AGC. The so-called damping sign@lyy, is the
signal of error of AGCk, (inNV 1) andk, (inVm™1) are
the apparatus’ functions of cantilever piezo and of optical
detection, respectively. The frequency of oscillations of the
loop is measured by a quadrature frequency demodulator.
The phase shift networkp) and the gainG are adjusted to
satisfy the Barkhausen criterihat the oscillation frequency
selected, in other words, the gain in open loop is equal to
unity at the frequency of the oscillations. Thus, one way to
understand the stability in noncontact mode is to study the
OCTS feedback through AGC as shown in Figh)2 The
equations that rule the OCTS are identical to E4s.except
that the excitationF, is now replaced by the product
FoDamp:

. Cy
Z, 0 } Zn  FoDamp
—=||lu+—| —-1|Z,,— —=+———co0g0
wé Wy ™ weQ K¢ €6)
ZnK
+
3(D2_Z?n)3/2’
. . ) . 8
6 ( 2Zm s 1 . 0\ FoDampsSin(6) ®
 — “MNu+r ==
w(z) woln Q o kc Zn




The damping signaD ., is given by %10

t
Dy P(uo—V>+fol[uo—V<u>]du ©

and its derivative by

Damg=— PV+1(Up—V), (10)

where P and | are proportional and integral gains, respec-
tively, andUg is a constant. From a practical point of view,
the peak detector is realized by means of a rectifying diode,
aR-C circuit, and a first-order low pass filter or a quadratic
detector and a second-order low pass filter\Vgb) is ap- 1f
proximately ruled by a second-order differential equation:

Integral gain I
8]

1. 1 .
—V+ ——V+V=Kk,AxZ,,,
wi Qcwc Zromm

wheref .= w /27 is the center frequency arf@; is the qual-

(1D

ity factor (Q.=/2/2 for a Butterworth filter, 0.577 for a

Bessel, etg.

The equations of motion of the stationary solutidfyg
and 65 are obtained by setting,= 0=2,=0=D 3n,,=V
=V=0 in Egs.(8)—(11):

Z sk I:ODamp
st(l_uz)_ 3(D2_Z§13)3/2= K. cog 6s),
u FODamp ) (12
Zm56=— K sin( )
C
with
Uo
ms:szO (13
and
(1-u?)—[k/3(D?-Z5 )%
6= —arco [ ms "] : (14

u

Q

0 20 40 60 80 100 120 140
Proportional gain P

FIG. 3. Stability domain, i.e., integral galrvs proportional gaif® of CAG,

for four different values of the distand®. Curves a, b, ¢, and d are for

—o and 15.18, 15.167, and 15.16 nm, respectively. The parameters for the
calculations aref,=147 305 Hz, Q=4750, k,.=40Nm !, U,=0.638,
Zms=15.1nm, k=5X10"°m?, w.=3450rads’, Q,=0.45, andFq
=1.270x 10" 1°N.tability and dynamical response of AFM

whereK, Ks,..., K;; are functions of parameters wg,
ke, Q) Ug, kKAg, w¢, Q¢, D, Fg, and«k.

Curve a and thex axis in Fig. 3 delineate the stability
domain when distanc® is infinite andu=1. The system
would be stable if thé® and| gains are chosen inside the
hatched zone in Fig. 3. When adiabatic conditions are ful-
filled, the stationary solutions of the shift in frequency and of
the damping signal do not depend on the p&i-(); see, for
instance, Eqs(17) and(19) below. When the adiabatic con-
ditions are not satisfied, the choice of pait<l) is of great
importance because transient responses of the shift in fre-
quency and of the damping signal depend on the gaiR in
andl. Unfortunately, Eqs(8), (10), and(11) indicate that it
is not easy to obtain a criterion that could help the user
choose the gain i? andl. The virtual machine becomes of
some help in investigating this point as we will see in Sec.

From Eq.(13), it clearly appears that the amplitude of the IV.

oscillations is adjusted bg,.
Curves b and c in Fig. (b) are plots offs versus fre-
guency for two different values of set poifit,s; in both, the

As shown in Fig. 3, the stability domain becomes
smaller and smaller when the tip—surface distabcele-
creases; curves b, c, and d are calculated for three different

phase varies continually and no jump is observed. Curve yalues ofD andu, respectivelyin the NC-AFM the quanti-

corresponds to the case where the distdbde infinite. As

ties D andu are closely related, Eq17)]. Special attention

shown below and in Sec. IV, curves b, ¢, and d are helpful ihas to be paid to the NC-AFM where and | gains are

understanding the behavior of the NC-AFM.

usually adjusted for an infinite tip—surface distamxesince

The values of thé® and| gains that ensure the stability approaching the surface may lead to instabiliti®sc. V).

of the system in Fig. @) are obtained by substitutiry,,, 6,
Damp: @ndV in Egs. (8), (10), and (1) for (Znst+m), (65
+p), (Damptq), and Vs+v) wherem, p, g, andv are

infinitesimal. A fifth-order differential equation of the vari-

B. Shift in frequency and damping signal in the
NC-AFM

Assuming there is a couplePE1) inside the stability

able m is then obtained. Using the Rooth—Hurwitz stability domain, it is now possible to write the shift in frequenty

criterion, the stability requires the following
conditions:

P<Kj,

| <P2K,+PK3+Ky, (15)

1?Ks+ 1 (P?Kg+ PK;+Kg) + P3Kg+ P2K o+ PK >0,

three and the damping signal, the two experimental quantities re-

corded in NC-AFM mode.
Under steady state conditions, the shift in frequency

Af=wol2m(u—1)=fy(u—1) is deduced from Eqg12):

2—[«/3(D?—Z3)%?]

AT=Tol ~ 52 Teot007Q])

(16)



Equation (16) is obtained by assuming that €1u?) OF = w
~2(1—u), i.e.,,u~1 in Egs.(12). This approximation is
reasonable since in many cas&$/f, is much less than 00l 60
10 3. The magnitude of the shift in frequency depends on
tip—surface interaction and it is weakly dependent on phase F: [b] 120
fs as long as coifs)/Q<2. § -400r o (b
In the NC-AFM, the Barkhausen criterion requires that 2
(6s+ ¢)=2nm, whereg is set with the phase shifter in Fig. % 600+ 40
2(a). From a practical point of view, phagkeexhibits a weak §~ (a]
frequency dependendsee a detailed analysis in Sec.)IlV 3 0
Thus, for the particular case @f;=— /2, i.e., Af=0 for -800f 40
D—co, the shift in frequencyAf does not depend on the A o
quality factorQ, andAf is given by 1000 . . .
1.5 1.55 1.6 1.65 1.7
P Distance D[m] x10°
Af=—f06(DTZr2ns)3/2. (17) (a)
If 6,#— /2, the shift in frequency depends on the 1.403}
damping coefficienty=1/2Q, and misinterpretation is then [b]
possible becausAf is not the sign of the nondissipative —
term of the interaction, so the case @f# — /2 has to be 2 14
avoided. On the other hand, oscillation &t* — /2 would Té
require a high value o6 and/or damping signdD ;. = 1402
A typical plot of the shift in frequencyf [Eq. (17)] 01397r | 1399
versus the distancB for ;= — /2 is shown in Fig. 4a) 2 ‘
(dashed curve)a g L
From Eq.(17), it appears that the high sensitivity of the Q308 1393
NC-AFM is not related to the high value @ as is some- :'[a] 120
. . . . . ! .51 1515 1.52 1.525 1.53
times mentioned in the literature. However, the phase noise { x10°
density of the loop varies asQ?,%° so a high value of) is 13915 55 Lo 65 17
required to obtain good resolution in the NC-AFM. At this ' " Distance D [m] xlO_SI

stage, we have to point out that the sensitivity is also depen- (b)
dent on the bandwidtB of the frequency demodulator; a

small value ofB reduces the noise but, as usual, slows dowrFIG. 4. Shift in frequencyAf (a) and damping signalb) vs tip—surface
the dynamical response of the frequency demodulator. distanceD in the NC-AFM. Curves a ifa) and (b) are given by Eqs(17)

. - p : | and(19), and curves b are given by the virtual machine. The insefas) iand
Under Steady state conditions, the dampmg St P (b) are the magnifications around the beginning of the instability of the shift

is deduced from Eqs{lZ) as in frequency and the damping signal. It is important to note the correlation
between the two signals.
Znu ke 1

Dami™~~Q  Fy sin(69)°

18
(18 A typical plot of the damping signdEgs.(17) and(19)]

versus distancB for ;= — 7/2 is given in Fig. 4b) (dashed
The closed loop in Fig. (&) shows thatr,=k;GAK>Zs; curve a.
thus

1 uk, 1 IV. COMPARISON WITH THE NC-AFM VIRTUAL
Pam™ ™ Q koG A, SN0 (19 MACHIRE
Equationg17) and(19) are established by assuming that

For Q=2y=2(yo+ 7int), With yo the damping coeffi- steady state conditions are fully satisfied; these equations
cient whenD — < andv;,; the damping coefficient related to give no information about dynamical solutions. From a prac-
tip—surface interaction, respectively, it is clear that the damptical point of view, the steady state conditions require an
ing signal appears to be a good measure of the dissipativiafinitely slow sweep rate. If the steady state conditions are
term of tip—surface interaction. However, the damping signahot fully satisfied, theAf and D, signals depend on pro-
in Eq. (19) is also frequency dependent through theerm.  portional P and integrall gains of AGC. The set of equa-
Thus, a change in the nondissipative term of tip—surface intions, Eqs.(8), (10), and(11), has no analytical solution. As
teraction leads also to a change in damping signalan alternative to this problem, a virtual NC-AFM machine
AD gmp/Damp=Au/u. In order to avoid any ambiguity about helps to evaluate oscillation behavior that cannot be ac-
the dissipative term of tip—surface interaction, the dampingounted for by the steady state approximation. Both virtual
signal has to be treated simultaneously with the shift in fre-and hardware machines can be represented in block diagram
guency signal. form as shown in Fig. @). The hardware NC-AFM machine



is a hybrid machine made of a Digital Instruments head and  F_ (t)=Kk;y(t). (23
a controller (Nanoscope E° and Omicron electronics
(AFMCU).3! The commercial Digital Instruments machine The set of equations, Egd), (9), (20), (21), and(23), is
was modified for use in noncontact mode. For more detail$iumerically solved using the Simulink tool box in Matlab
concerning the virtual machine, see Ref. 13. and a Runge—Kutta method, the fixed step fizeused for
The virtual machine is in fact a set of differential equa-the calculations being aboutr2(70w,). To start the oscil-
tions that describe each block in FigaR The set of equa- lation in the closed loop, a very short pulse is applied at the
tions is numerically solved without any approximation. input of the OTCYnot shown in Fig. &)].
.The QTCS is still de;scr!bed by EL). The.pe'ak dgtec- A. Shift in frequency and damping signal with the
tor in Omicron electronics is made of a rectifying diode, anc_aAFM virtual machine
R—C circuit, and a first-order low pass filter. For simplicity a o o
quadratic detector and a second-order low pass filter are used Curves b in Figs. @) and 4b) are the shift in frequency
in the virtual machine. The outp¥(t) of the peak detector and the damping signal versus distaiizerespectively. The

is given by approach rate is slow, about 1.2 nitsin order to keep the
system under adiabatic conditions. These curves have to be
V(t)=V2[W(1)]*2, compared to the theoretical curvés obtained from Egs.
with (17) and (19). The damping signal becomes unstable when

distanceD is less thar=15.2 nm[see the inset in Fig.(®)].
ParameteA, was adjusted to obtaif,,;= 15.1 nm and th@&
andl gains were set to 60 and 35 000, respectively. The limit
of stability calculated with the virtual machine is in good
agreement with the theoretical results in Sec. Ill. From the

1 .
W+W=[kyApz(t)]?, 20
O [kaAoz(1)] (20)
wheref.=w /27 and Q. are the center frequency and the
quality coefficient of the low pass filter. curves in Fig. 3, the limit of stability is found at about 15.17

Assuming a steady state solutiaft) =Z,scoset); the
output of the peak detector can be written approximately as:

V(1) ~koA¢Zns If . satisfies the inequality.< w/27. The given by the virtual machine and by E6L7) are in good

role of the filter is to partially eliminate the component at 2 agreement as long as the shift in frequency is less than about

However a compromise has to be found b'etwe'en the magnbog 7. For shifts in frequency larger than 200 Hz, i.e., for

tude of the component ate2and the settling time of the  istanced very close to the amplitudg,, of the oscillation,

outpth(t). . the difference between the theoretical predictiénisrve a
Virtual and hardware AGC are described by E@.and 5 the virtual machinécurve b becomes more and more

(10). The phase shiftef¢) is a_secon(_j-order a@ll-pass filter pronounced. Two reasons can explain the difference between
and the outpuy(t) obeys the differential equation, curves b and a.

1 .
—2W+
We

The inset in Fig. 4a) shows that the shifts in frequency

Ty d?y(t) T MJF iy(t) (1) The smaller the—Z,,9 (_jistance, the larger the shift in
dt dt Td frequency, and approaching the surface makes the rate of
2 change of instantaneous frequency of the loop very
=GkyA, Tdd [Z(t;?zamp(t)]_zd[z(t)tham'{t)] large. The virtual machine uses a quadrature frequency
demodulator with 455 kHz intermediary frequency, the
1 same as that is used by OmicrdriThus the output sig-
+ T_Z(t)Dam[(t)}- (21 nal of the frequency demodulator has a rise time,that
d is directly related to the bandwidtB® of measurement,
Assuming a steady state soluti@ft) = Z,,scost), and 7,=1/2mB~1 ms. Consequently, the frequency de-
thus a constant damping sigra},,,,, the general expression modulator cannot follow an instantaneous change of
for y(t) is frequency.
_ (2) The damping instability leads to an abrupt change in
y(=Ymscodwt = ¢), (22) frequency. This can be understood with the help of
whereY ,s= GKAoD amZms @and =4 arctg(7qw). curves b, ¢, and d and the horizontal liaen Fig. 1(b).
Rapid calculation shows that variation of the phasg If the damping signal becomes unstable, the amplitude of
of the phase shifter is related to the variation in frequehty the oscillations is no longer constant and, because phase
according toA ¢~ —8mry/l+ (worg)?Af. Assuming, for 0 is kept constant, the frequency changes, in agreement
instance,Af=1000Hz, which is a very large value, then with Fig. 1(b), where the horizontal lin4 is the locus of
Ap~—9.4x103rad for wy=9.255<x10°rads ! and 4 the quiescent point for the OTCS. Qualitatively, one can
=2.608< 10 ® s (the values used for the calculations here in  interpret the concomitant change in frequency as fol-
Sec. IV). Thus, when the loop is closed like in Figia2 we lows: while the phase remains constant, as indicated by
consider that phasé of the OCTS is kept at an approxi- the A line, the AGC loop is unable to keep the oscillation
mately constant value because the Barkhausen criterion re- amplitude constant. Because of this, the oscillation
quires that ¢+ ¢)=2n. reaches another state that corresponds to a transient
Finally, the feedback driving forcE,{t), in Fig. 2a), value of the oscillation amplitude and, consequently, an-

is given by other value of the shift in resonance frequency. The fre-



guency instabilities are unambiguously observed close to
15.2 nm[inset in Fig. 4a)]. There is a strong correlation
between the instabilities of the damping signal and those
of the frequency. In conclusion, without fully rejecting
point (1), we suggest that the main reason for the differ-
ence between curves a and b is the decrease in amplitude
of the oscillations which is related to instability of the
system. The correlation between the damping and the
frequency shift instabilities has already been observed in
NC-AFM experiments?
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The virtual machine is now used to investigate the case
where the adiabatic conditions are not satisfied. As men- , , ,
tioned in Sec. lll, the shift in frequency and the damping ~0.01 0 001 0.02 0.03
signal now become dependent on tReand | gain. Two Time [s]
stimuli are successively applied to the cantilev@r:a non-
dissipative force step angi) a dissipative force step. For
each step, two pairs &f andl gains are chosen, denotéd
and P, in Fig. 3. These two points are inside the stability
domain. We want to learn more about the behavior of the
machine when small, but fast, perturbation is applied. The
distance and the set point amplitude d@e-15.4nm and
Zms=15.1 nm, respectively, thus the stability domain is still
very close to the hatched zone in Fig. 3.
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Damping signal

B. Transient responses to a nondissipative force step ~— b}

A Heaviside function that describes a variation in the U
step of the Hamaker constaht is applied, with the step
magnitudeAH 1% of the initial value oM. For such a step, 01 0 001 0.02 0.03
the frequency of the loop instantaneously changes. Curves a Time [s]
and b in Fig. %a) are the shifts in frequency for two pairs of FiG. 5. Transient responses of the shift in frequency and damping signal for
values P-1), respectively. As expected the gainsHrand| a nondissipative force step. Curves a and b are obtainedPfoR0, |
have no effect on the variation of the shift in frequency. The=1000 andP=60,1=35000, respectively; curves c are given by Egs)
output of the demodulator is only determined by its band-2"d @9
width, thus it exhibits a delay response for time~1 ms.

Ec:al;rp\)lgnzg It\ge2r:hﬁdlgjénmtzgﬁﬁlisv\rﬁ;?g? (7] that cor transient response of th_e damping signal has the same fea-

Curves a and b in Fig.(B) are the damping signal for tures as tho_se above; hlg_h valuesPoaind | lead t_o weakly
the pairsP, and P,, respectively; curve c is again the re- dampgd oscillatory behavidcurve ) whereas a single over-
sponse of an ideal machifigq. (19)]. A high value ofP and ~ Snoot is observed for small values Bfand!| (curve 3.
of I, like in curve b, leads to weakly damped oscillatory ~ Under steady state conditions, the shift in frequency can-
behavior of the damping signal whereas a single overshoot {80t P€ related to the dissipation tefeurve c in Fig. €a)].
observed for small values & andI, so P, is more suitable | "€ Shift in frequency remains constdgi. (17)]. Curves a
in the case of a nondissipative force step. However, it j@nd b are the shifts in frequency given by the virtual ma-
worth noting that the overshoot, although being spread ovefhine. Small values oP andl, like in curve a, lead to large
quite a large time scal@ few ms, remains negligible, about vgrlatlon of the frequency. Th|§ b_ehawor is still consistent
104 of the initial damping value, which corresponds to ad-With the explanations provided i) in Sec. IV A, where the
ditional dissipated energy of G107 22J (10 4k.Z24Q c_han_ge in frequ_ency is induced by the amphtud_e of the os-
with k.=40Nm %, Z,.=15.1nm, andQ=4750). Such cillations not_bemg kept c_onstant_ because AGC is not able to
variation cannot be observed except if the experiment is pef€Orrect amplitude fluctuations quickly enough. Therefore, the
formed at temperature lower than about 10 KTE 1.38 P, would be more appropriate in the case of a dissipative

1.3993
-0.

x10-22J at 10 K. force step to avoid misinterpretation about the shift in fre-
quency of the signal.
. o These two examples show that it is not very easy to
C. Transient responses to a dissipative force step

separate contributions of dissipative and nondissipative force
The dissipative force step is obtained by using a Heaviif adiabatic conditions are not satisfied; there is no ideal
side function for they coefficient. Curves aand b in Figi@  value for the gains i® andl. However, these two examples
are the damping signals for the pairB<l), respectively. can be used as a guide to avoid misinterpretation when using
Curve c is for an ideal machine, given by E4Q9). The the NC-AFM.
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FIG. 6. Transient responses of the shift in frequency and damping signal
a dissipative force step. Curves a and b are obtaineB fo20, | = 1000 and
P=60, 1 =35 000, respectively; curves c are given by Ed¥) and(19).

V. DISCUSSION

By solving the equations of motion of the OTCS an

The stability domain given by the virtual machine and theo-
retical results are in good agreement. We have also explained
the correlation between the oscillations of the damping sig-
nal and those of the shift in frequency.

In scanning or approach—retract mode, on which adia-
batic conditions are seldom satisfied, it is of primary impor-
tance to characterize the dynamical behavior of the NC-
AFM, which depends on proportionBland integral gains.
Starting from the equations of motion of the OTCS and the
equations of CAG, it is rather difficult to obtain information
about the dynamical behavior. An alternative to this problem
is use of the virtual machine which is a very powerful tool
with which to study, for instance, transient responses of the
shift in frequency and the damping signal. We have shown
that a step of nondissipative force gives an unexpected
change in the damping signal; conversely, a step of dissipa-
tive force gives an unexpected change in frequency. In both
cases, the transient responses are completely influenced by
the choice of proportionalP and integrall gains of CAG.
There is no ideal value for the paiP{1), so care has to be
taken in interpreting transient responses of the shift in fre-
quency and damping signal.
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