
HAL Id: hal-00012403
https://hal.science/hal-00012403

Submitted on 21 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-contact atomic force microscopy: Stability criterion
and dynamical responses of the shift of frequency and

damping signal
Gérard Couturier, Rodolphe Boisgard, Laurent Nony, Jean-Pierre Aimé

To cite this version:
Gérard Couturier, Rodolphe Boisgard, Laurent Nony, Jean-Pierre Aimé. Non-contact atomic force
microscopy: Stability criterion and dynamical responses of the shift of frequency and damping signal.
Review of Scientific Instruments, 2003, 74, pp.2726-2734. �10.1063/1.1564274�. �hal-00012403�

https://hal.science/hal-00012403
https://hal.archives-ouvertes.fr


Noncontact atomic force microscopy: Stability criterion and dynamical
responses of the shift of frequency and damping signal

G. Couturier,a) R. Boisgard, L. Nony,b) and J. P. Aimé
Centre de Physique Mole´culaire Optique et Hertzienne, Universite´ Bordeaux I, UMR5798 CNRS,
351 Cours de la Libe´ration, 33405 Talence Cedex, France

~!

The aim of this article is to provide a complete analysis of the behavior of a noncontact atomic force
microscope~NC-AFM!. We start with a review of the equations of motion of a tip interacting with
a surface in which the stability conditions are first revisited for tapping mode. Adding the equations
of automatic gain control~AGC!, which insures constant amplitude of the oscillations in the
NC-AFM, to the equations of motion of the tip, a new analytical stability criterion that involves
proportional and integral gains of AGC is deduced. Stationary solutions for the shift of frequency
and for the damping signal are obtained. Special attention is paid to the damping signal in order to
clarify its physical origin. The theoretical results are then compared to those given by a virtual
machine. The virtual machine is a set of equations solved numerically without any approximation.
The virtual machine is of great help in understanding the dynamical behavior of the NC-AFM as
images are recorded. Transient responses of the shift in frequency and of the damping signal are
discussed in relation to the values of proportional and integral gains of AGC.@#
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I. INTRODUCTION
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The noncontact atomic force microscope~NC-AFM! is a
powerful tool with which to investigate surface properties
the nanometer scale. Contrast at the atomic scale has
achieved for semiconductors and insulators.1–6 The NC-
AFM is also a powerful tool with which to investigate so
materials.7 Albretch et al. were the first to propose the con
cept of a NC-AFM.8 In the NC-AFM, the tip–cantilever is in
a closed loop and the frequency of the oscillations depe
on tip–surface interaction. The amplitude of the oscillatio
is kept constant by automatic gain control~AGC!. The damp-
ing signal, which is the signal of error of AGC, should no
mally be a good measure of the dissipative term involved
tip–surface interaction. The question of the physical ori
of the variation of the damping signal remains unresolv
and has been a matter of debate over the last few years9–13

This point is of great importance because the damping sig
should provide information on dynamical properties at
molecular scale. With the development of dynamic force m
croscopy~DFM!, in tapping or noncontact mode, numero
theoretical work14–19has been devoted to a description of t
dynamical behavior of an oscillating tip–cantilever syste
~OTCS! in proximity to a surface. Analytical solutions an
numerical results predict and show stable and unstable
mains of the resonance peak in tapping mode, i.e., when
OTCS is excited by a constant driving force. Theoreti
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predictions are widely confirmed by experimental results
However, it is not clear whether the NC-AFM can be und
stood by extrapolating theoretical results obtained by ass
ing a constant driving force like done in tapping mode. U
like tapping mode, NC-AFM mode looks very stable: th
phase of the OTCS may be adjusted at any value aro
2p/2 whereas theoretical results predict instability for pha
larger than2p/2 in tapping mode.

To understand a NC-AFM machine, we need to add
equations that rule AGC to the equations of motion of t
OTCS. This article is organized as follows. In Sec. II, t
equations of motion of the OTCS without AGC and the s
bility criterion are reviewed. In Sec. III, the equations th
rule AGC are added to the equations of motion of the OT
in order to establish the domain of stability. We show th
noncontact mode is stable as long as proportional and i
gral gains of AGC satisfy three inequalities. The stationa
solutions for the shift of frequency and for the damping s
nal versus the tip–surface distance are also established
any value of the phase of the OTCS. Theoretical results
obtained with some minor approximations, and the pred
tions are compared to the results given by the virtual N
AFM machine. The virtual machine is made of a set of no
linear differential equations solved numerically without a
approximation; this machine is a model of the machine u
in our laboratory and also in most other laboratories. T
virtual machine can calculate the transient response of
shift in frequency and of the damping signal when nondis
pative or/and dissipative force is introduced into tip–surfa
interaction. Transient responses are strongly related to
portional andintegral gains of AGC and may lead, in som

il:
6 © 2003 American Institute of Physics174. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/rsio/rsicr.jsp
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cases, to misinterpretation of the NC-AFM images. Typi
artifacts are thus discussed at the end of the article.

II. BEHAVIOR OF AN OSCILLATING TIP EXCITED BY
CONSTANT DRIVING FORCE: TAPPING MODE

Here in Sec. II, we briefly recall the main results for
oscillating tip close to a surface. In so-called tapping mo
oscillations of the tip are driven by an external force a
given frequency.

The differential equation that describes motionz(t) of
the tip is given by

m*
d2z~ t !

dt2
1

m* v0

Q

dz~ t !

dt
1kcz~ t !5Fext~ t !2¹Vint@z~ t !#,

~1!

wherev0 , m* , andkc5mv0
2 are, respectively, the resona

frequency, the effective mass, and the cantilever stiffnes
the OTCS.Q51/2g is the quality factor andg is the damp-
ing coefficient.Fext(t)5F0 cos(vt) is the external driving
force, andVint@z(t)# is the interaction potential between th
tip and the surface. In this article, we assume~i! that the tip
never touches the surface and~ii ! van der Waals sphere–
plane interaction,21 thus Vint@z(t)#52$HR/6@D2z(t)#%
whereH, R, andD are the Hamaker constant, the tip’s ap
radius, and the tip–surface distance, respectively. This
ticular potential does not restrict the validity of the resu
discussed in this article.

To solve the nonlinear differential, Eq.~1!, we used the
principle of least action, so we start by building the Lagran
ian L(z,ż,t)5T2U1W:

L~z,ż,t !5
1

2
m* ż~ t !22F1

2
kcz~ t !22z~ t !F0 cos~vt !

1Vint@z~ t !#G2
m* v0

Q
z~ t !ż~ t !, ~2!
y
q
d

fre
l

,

of

r-

-

where the underlined variableż(t) is calculated along the
physical path, and thus is not varied in the calculations.22

Due to the large value of the quality factorQ, we assume
a typical temporal solution of the form

z~ t !5Zm~ t !cos@vt1u~ t !#, ~3!

where Zm(t) and u(t) are assumed to be functions th
slowly vary over time compared to the periodT52p/v.

Applying the principle of least actiondS50, with S
5(n(1/T*nT

(n11)TL(z,ż,t)dt)T, we obtain the Euler–
Lagrange equations. Thus, the amplitude and phase e
tions of motion of the OTCS coupled to the surface a
obtained:19

Z̈m

v0
2 5F S u1

u̇

v0
D 2

21GZm2
Żm

v0Q
1

F0

kc
cos~u!

1
Zmk

3~D22Zm
2 !3/2,

~4!
ü

v0
2 52S 2Żm

v0Zm
1

1

QD S u1
u̇

v0
D 2

F0

kc

sin~u!

Zm
,

whereu5v/v0 andk5HR/kc .
The equations of motion of the stationary solutionsZms

andus are obtained by settingZ̈m5 ü5Żm5 u̇50 in Eq.~4!:

Zms~12u2!2
Zmsk

3~D22Zms
2 !3/25

F0

kc
cos~us!,

~5!

Zms

u

Q
52

F0

kc
sin~us!.

From Eqs.~5!, we derived the equations that give th
shape of the resonance peak and the phase as a functi
the distanceD and the forceF0 :
v65v0AS QF0

kc
D 2 1

Zms
2 2

1

4Q2 H 17A124Q2F12S QF0

kc
D 2 1

Zms
2 2

k

3~D22Zms
2 !3/2G J 2

,

ity
us65arctanS u6

Q~u221!1
Qk

3~D22Zms
2 !3/2

D . ~6!

Typical plots ofZms and us versus the frequencyf 5v/2p
are shown in Figs. 1~a! and 1~b!. As already discussed in
various papers,18,19 the nonlinearity of the interaction greatl
distorts the resonance peak, and two branches appear. E
tion ~1! is similar to the Duffing equation that has been stu
ied extensively.23–25 It is well known that, by sweeping the
frequency, the amplitude and phase exhibit jumps at
quency where the derivative ofZms diverges. From Eq.~1!,
the stability is deduced by substitutingZm andu in Eqs.~4!
by (Zms1m) and (us1p), wherem andp are infinitesimal.
ua-
-

-

A second order differential equation of the variablem is then
obtained. Using, for instance, the Rooth–Hurwitz stabil
criterion,26 the stability is given by

g~Zms,u,Q,k,D,F0 ,kc!.0,

where

g5
Zmsu

2

Q2 1FZms~12u2!2S Zmsk

3~D22Zms
2 !3/2D G

3F ~12u2!2
QF0

kc

d

dZm
S Zmk

3~D22Zm
2 !3/2D

Zm5Zms

G .

~7!
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We have to point out that the termsZ̈m /v0
2, Żm /v0Q,

Zmu̇2/v0
2, andü/v0

2, 2Żmu̇/Zmv0
2, u̇/Qv0 were neglected in

Eqs.~4!; this approximation is supported by the fact that~i!
Zm(t) andu(t) are assumed to be slowly varying functio
over time and~ii ! the quality factorQ is high. Numerical
resolution of Eqs.~4! shows that the approximation is com
pletely reasonable.

The plot of g(Zms,u,Q,k,D,F0 ,kc)50 is shown by
dashed lines in Fig. 1~a! and plot g50 crosses plotZms

versus frequency at pointsA and B where @dZms/dv#21

50. Thus, when the frequency is swept from high to lo
values, the amplitudeZms and phaseus jump from A to C;
conversely, sweeping from low to high values gives jumps
Zms and us from B to D. These jumps have been alrea
observed in tapping mode by various authors.15,20,27

FIG. 1. Distortion of the resonance peak~a! and phase@curve a in~b!# vs
the frequency for an OTCS without CAG (F051.38310210 N, Q54750,
D517 nm, f 05147 305 Hz, andk55310229 m3). Curves b and c are the
phase curves@Eq. ~14!# of the OTCS with CAG forZms516.35 and 16 nm,
respectively, andD517 nm; curve d is the phase forD→`, it does not
depend onZms.
f

III. BEHAVIOR OF AN OSCILLATING TIP KEPT AT
CONSTANT AMPLITUDE: NONCONTACT MODE

A. Equations of motion

First, we will briefly recall the principle of the NC-AFM
A simplified schematic diagram of the microscope is given
Fig. 2~a!. The OTCS is in a closed loop and the amplitude
the oscillations is adjusted byA0 and is kept at a constan
level by AGC. The so-called damping signalDamp is the
signal of error of AGC.k1 (in N V21) andk2 (in V m21) are
the apparatus’ functions of cantilever piezo and of opti
detection, respectively. The frequency of oscillations of
loop is measured by a quadrature frequency demodula
The phase shift network~f! and the gainG are adjusted to
satisfy the Barkhausen criterion28 at the oscillation frequency
selected, in other words, the gain in open loop is equa
unity at the frequency of the oscillations. Thus, one way
understand the stability in noncontact mode is to study
OCTS feedback through AGC as shown in Fig. 2~b!. The
equations that rule the OCTS are identical to Eqs.~4!, except
that the excitationF0 is now replaced by the produc
F0Damp:

Z̈m

v0
2 5F S u1

u̇

v0
D 2

21GZm2
Żm

v0Q
1

F0Damp

kc
cos~u!

1
Zmk

3~D22Zm
2 !3/2,

~8!
ü

v0
2 52S 2Żm

v0Zm
1

1

QD S u1
u̇

v0
D 2

F0Damp

kc

sin~u!

Zm
.

FIG. 2. Schematic diagram of a NC-AFM~a!. ~b! Schematic diagram of the
OTCS with CAG used to establish the domain of stability in the NC-AF
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The damping signalDamp is given by

Damp5P~U02V!1E
0

t

I @U02V~u!#du ~9!

and its derivative by

Ḋamp52PV̇1I ~U02V!, ~10!

where P and I are proportional and integral gains, respe
tively, andU0 is a constant. From a practical point of view
the peak detector is realized by means of a rectifying dio
a R–C circuit, and a first-order low pass filter or a quadra
detector and a second-order low pass filter, soV(t) is ap-
proximately ruled by a second-order differential equation

1

vc
2 V̈1

1

Qcvc
V̇1V5k2A0Zm , ~11!

wheref c5vc/2p is the center frequency andQc is the qual-
ity factor (Qc5A2/2 for a Butterworth filter, 0.577 for a
Bessel, etc.!.

The equations of motion of the stationary solutionsZms

and us are obtained by settingZ̈m5 ü5Żm5 u̇5Ḋamp5V̈
5V̇50 in Eqs.~8!–~11!:

Zms~12u2!2
Zmsk

3~D22Zms
2 !3/25

F0Damp

kc
cos~us!,

~12!

Zms

u

Q
52

F0Damp

kc
sin~us!

with

Zms5
U0

k2A0
~13!

and

us52arcotF ~12u2!2@k/3~D22Zms
2 !3/2#

u

Q
G . ~14!

From Eq.~13!, it clearly appears that the amplitude of th
oscillations is adjusted byA0 .

Curves b and c in Fig. 1~b! are plots ofus versus fre-
quency for two different values of set pointZms; in both, the
phase varies continually and no jump is observed. Curv
corresponds to the case where the distanceD is infinite. As
shown below and in Sec. IV, curves b, c, and d are helpfu
understanding the behavior of the NC-AFM.

The values of theP and I gains that ensure the stabilit
of the system in Fig. 2~b! are obtained by substitutingZm , u,
Damp, andV in Eqs. ~8!, ~10!, and ~11! for (Zms1m), (us

1p), (Damp1q), and (Vs1v) where m, p, q, and v are
infinitesimal. A fifth-order differential equation of the var
able m is then obtained. Using the Rooth–Hurwitz stabili
criterion, the stability requires the following thre
conditions:

P,K1 ,

I ,P2K21PK31K4 , ~15!

I 2K51I ~P2K61PK71K8!1P3K91P2K101PK11.0,
-

e,

d

n

whereK1 , K2 ,..., K11 are functions of parametersu, v0 ,
kc , Q, U0 , k2A0 , vc , Qc , D, F0 , andk.

Curve a and thex axis in Fig. 3 delineate the stability
domain when distanceD is infinite andu51. The system
would be stable if theP and I gains are chosen inside th
hatched zone in Fig. 3. When adiabatic conditions are
filled, the stationary solutions of the shift in frequency and
the damping signal do not depend on the pair (P– I ); see, for
instance, Eqs.~17! and ~19! below. When the adiabatic con
ditions are not satisfied, the choice of pair (P– I ) is of great
importance because transient responses of the shift in
quency and of the damping signal depend on the gain iP
and I. Unfortunately, Eqs.~8!, ~10!, and~11! indicate that it
is not easy to obtain a criterion that could help the u
choose the gain inP and I. The virtual machine becomes o
some help in investigating this point as we will see in S
IV.

As shown in Fig. 3, the stability domain becom
smaller and smaller when the tip–surface distanceD de-
creases; curves b, c, and d are calculated for three diffe
values ofD andu, respectively@in the NC-AFM the quanti-
ties D andu are closely related, Eq.~17!#. Special attention
has to be paid to the NC-AFM whereP and I gains are
usually adjusted for an infinite tip–surface distanceD, since
approaching the surface may lead to instabilities~Sec. IV!.

B. Shift in frequency and damping signal in the
NC-AFM

Assuming there is a couple (P– I ) inside the stability
domain, it is now possible to write the shift in frequencyD f
and the damping signal, the two experimental quantities
corded in NC-AFM mode.

Under steady state conditions, the shift in frequen
D f 5v0/2p(u21)5 f 0(u21) is deduced from Eqs.~12!:

D f 5 f 0S 22@k/3~D22Zm
2 !3/2#

~22@cot~us!/Q# !
21D . ~16!

FIG. 3. Stability domain, i.e., integral gainI vs proportional gainP of CAG,
for four different values of the distanceD. Curves a, b, c, and d are forD
→` and 15.18, 15.167, and 15.16 nm, respectively. The parameters fo
calculations aref 05147 305 Hz, Q54750, kc540 N m21, U050.638,
Zms515.1 nm, k55310229 m3, vc53450 rad s21, Qc50.45, and Fext

51.270310210 N.tability and dynamical response of AFM
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Equation ~16! is obtained by assuming that (12u2)
'2(12u), i.e., u'1 in Eqs. ~12!. This approximation is
reasonable since in many casesD f / f 0 is much less than
1023. The magnitude of the shift in frequency depends
tip–surface interaction and it is weakly dependent on ph
us as long as cot(us)/Q!2.

In the NC-AFM, the Barkhausen criterion requires th
(us1f)52np, wheref is set with the phase shifter in Fig
2~a!. From a practical point of view, phasef exhibits a weak
frequency dependence~see a detailed analysis in Sec. IV!.
Thus, for the particular case ofus52p/2, i.e., D f 50 for
D→`, the shift in frequencyD f does not depend on th
quality factorQ, andD f is given by

D f 52 f 0

k

6~D22Zms
2 !3/2. ~17!

If usÞ2p/2, the shift in frequency depends on th
damping coefficientg51/2Q, and misinterpretation is the
possible becauseD f is not the sign of the nondissipativ
term of the interaction, so the case ofusÞ2p/2 has to be
avoided. On the other hand, oscillation atusÞ2p/2 would
require a high value ofG and/or damping signalDamp.

A typical plot of the shift in frequencyD f @Eq. ~17!#
versus the distanceD for us52p/2 is shown in Fig. 4~a!
~dashed curve a!.

From Eq.~17!, it appears that the high sensitivity of th
NC-AFM is not related to the high value ofQ as is some-
times mentioned in the literature. However, the phase n
density of the loop varies as 1/Q2,29 so a high value ofQ is
required to obtain good resolution in the NC-AFM. At th
stage, we have to point out that the sensitivity is also dep
dent on the bandwidthB of the frequency demodulator;
small value ofB reduces the noise but, as usual, slows do
the dynamical response of the frequency demodulator.

Under steady state conditions, the damping signalDamp

is deduced from Eqs.~12! as

Damp52
Zmsu

Q

kc

F0

1

sin~us!
. ~18!

The closed loop in Fig. 2~a! shows thatF05k1GA0k2Zms;
thus

Damp52
1

Q

ukc

k1k2GA0

1

sin~us!
. ~19!

For Q52g52(g01g int), with g0 the damping coeffi-
cient whenD→` andg int the damping coefficient related t
tip–surface interaction, respectively, it is clear that the dam
ing signal appears to be a good measure of the dissipa
term of tip–surface interaction. However, the damping sig
in Eq. ~19! is also frequency dependent through theu term.
Thus, a change in the nondissipative term of tip–surface
teraction leads also to a change in damping sign
DDamp/Damp5Du/u. In order to avoid any ambiguity abou
the dissipative term of tip–surface interaction, the damp
signal has to be treated simultaneously with the shift in f
quency signal.
n
e

t

e

n-

n

-
ve
l

-
l:

g
-

A typical plot of the damping signal@Eqs.~17! and~19!#
versus distanceD for us52p/2 is given in Fig. 4~b! ~dashed
curve a!.

IV. COMPARISON WITH THE NC-AFM VIRTUAL
MACHINE

Equations~17! and~19! are established by assuming th
steady state conditions are fully satisfied; these equat
give no information about dynamical solutions. From a pra
tical point of view, the steady state conditions require
infinitely slow sweep rate. If the steady state conditions
not fully satisfied, theD f and Damp signals depend on pro
portional P and integralI gains of AGC. The set of equa
tions, Eqs.~8!, ~10!, and~11!, has no analytical solution. As
an alternative to this problem, a virtual NC-AFM machin
helps to evaluate oscillation behavior that cannot be
counted for by the steady state approximation. Both virt
and hardware machines can be represented in block diag
form as shown in Fig. 2~a!. The hardware NC-AFM machine

FIG. 4. Shift in frequencyD f ~a! and damping signal~b! vs tip–surface
distanceD in the NC-AFM. Curves a in~a! and ~b! are given by Eqs.~17!
and~19!, and curves b are given by the virtual machine. The insets in~a! and
~b! are the magnifications around the beginning of the instability of the s
in frequency and the damping signal. It is important to note the correla
between the two signals.
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is a hybrid machine made of a Digital Instruments head
a controller ~Nanoscope E!30 and Omicron electronics
~AFMCU!.31 The commercial Digital Instruments machin
was modified for use in noncontact mode. For more det
concerning the virtual machine, see Ref. 13.

The virtual machine is in fact a set of differential equ
tions that describe each block in Fig. 2~a!. The set of equa-
tions is numerically solved without any approximation.

The OTCS is still described by Eq.~1!. The peak detec-
tor in Omicron electronics is made of a rectifying diode,
R–C circuit, and a first-order low pass filter. For simplicity
quadratic detector and a second-order low pass filter are
in the virtual machine. The outputV(t) of the peak detecto
is given by

V~ t !5A2@W~ t !#1/2,

with

1

vc
2 Ẅ1

1

Qcvc
Ẇ1W5@k2A0z~ t !#2, ~20!

where f c5vc/2p and Qc are the center frequency and th
quality coefficient of the low pass filter.

Assuming a steady state solution,z(t)5Zmscos(vt); the
output of the peak detector can be written approximately
V(t)'k2A0Zms if f c satisfies the inequalityf c!v/2p. The
role of the filter is to partially eliminate the component at 2v.
However a compromise has to be found between the ma
tude of the component at 2v and the settling time of the
outputV(t).

Virtual and hardware AGC are described by Eqs.~9! and
~10!. The phase shifter~f! is a second-order all-pass filte
and the outputy(t) obeys the differential equation,

td

d2y~ t !

dt2
12

dy~ t !

dt
1

1

td
y~ t !

5Gk2A0Ftd

d2@z~ t !Damp~ t !#

dt2
22

d@z~ t !Damp~ t !#

dt

1
1

td
z~ t !Damp~ t !G . ~21!

Assuming a steady state solution,z(t)5Zmscos(vt), and
thus a constant damping signalDamp, the general expressio
for y(t) is

y~ t !5Ymscos~vt2f!, ~22!

whereYms5Gk2A0DampZms andf54 arctg(tdv).
Rapid calculation shows that variation of the phaseDf

of the phase shifter is related to the variation in frequencyD f
according toDf'28ptd/11(v0td)2D f . Assuming, for
instance,D f 51000 Hz, which is a very large value, the
Df'29.431023 rad for v059.2553105 rad s21 and td

52.60831026 s ~the values used for the calculations here
Sec. IV!. Thus, when the loop is closed like in Fig. 2~a!, we
consider that phaseu of the OCTS is kept at an approx
mately constant value because the Barkhausen criterion
quires that (u1f)52np.

Finally, the feedback driving forceFexc(t), in Fig. 2~a!,
is given by
d

ls

ed

s:

i-

re-

Fexc~ t !5k1y~ t !. ~23!

The set of equations, Eqs.~1!, ~9!, ~20!, ~21!, and~23!, is
numerically solved using the Simulink tool box in Matla
and a Runge–Kutta method, the fixed step sizeDt used for
the calculations being about 2p/(70v0). To start the oscil-
lation in the closed loop, a very short pulse is applied at
input of the OTCS@not shown in Fig. 2~a!#.

A. Shift in frequency and damping signal with the
NC-AFM virtual machine

Curves b in Figs. 4~a! and 4~b! are the shift in frequency
and the damping signal versus distanceD, respectively. The
approach rate is slow, about 1.2 nm s21, in order to keep the
system under adiabatic conditions. These curves have t
compared to the theoretical curves~a! obtained from Eqs.
~17! and ~19!. The damping signal becomes unstable wh
distanceD is less than'15.2 nm@see the inset in Fig. 4~b!#.
ParameterA0 was adjusted to obtainZms515.1 nm and theP
andI gains were set to 60 and 35 000, respectively. The li
of stability calculated with the virtual machine is in goo
agreement with the theoretical results in Sec. III. From
curves in Fig. 3, the limit of stability is found at about 15.1
nm.

The inset in Fig. 4~a! shows that the shifts in frequenc
given by the virtual machine and by Eq.~17! are in good
agreement as long as the shift in frequency is less than a
200 Hz. For shifts in frequency larger than 200 Hz, i.e.,
distanceD very close to the amplitudeZms of the oscillation,
the difference between the theoretical predictions~curve a!
and the virtual machine~curve b! becomes more and mor
pronounced. Two reasons can explain the difference betw
curves b and a.

~1! The smaller the (D2Zms) distance, the larger the shift in
frequency, and approaching the surface makes the ra
change of instantaneous frequency of the loop v
large. The virtual machine uses a quadrature freque
demodulator with 455 kHz intermediary frequency, t
same as that is used by Omicron.31 Thus the output sig-
nal of the frequency demodulator has a rise time,t r , that
is directly related to the bandwidthB of measurement,
t r51/2pB'1 ms. Consequently, the frequency d
modulator cannot follow an instantaneous change
frequency.

~2! The damping instability leads to an abrupt change
frequency. This can be understood with the help
curves b, c, and d and the horizontal lineD in Fig. 1~b!.
If the damping signal becomes unstable, the amplitude
the oscillations is no longer constant and, because ph
u is kept constant, the frequency changes, in agreem
with Fig. 1~b!, where the horizontal lineD is the locus of
the quiescent point for the OTCS. Qualitatively, one c
interpret the concomitant change in frequency as f
lows: while the phase remains constant, as indicated
theD line, the AGC loop is unable to keep the oscillatio
amplitude constant. Because of this, the oscillat
reaches another state that corresponds to a tran
value of the oscillation amplitude and, consequently,
other value of the shift in resonance frequency. The f
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quency instabilities are unambiguously observed clos
15.2 nm@inset in Fig. 4~a!#. There is a strong correlatio
between the instabilities of the damping signal and th
of the frequency. In conclusion, without fully rejectin
point ~1!, we suggest that the main reason for the diff
ence between curves a and b is the decrease in ampl
of the oscillations which is related to instability of th
system. The correlation between the damping and
frequency shift instabilities has already been observe
NC-AFM experiments.32

The virtual machine is now used to investigate the c
where the adiabatic conditions are not satisfied. As m
tioned in Sec. III, the shift in frequency and the dampi
signal now become dependent on theP and I gain. Two
stimuli are successively applied to the cantilever:~i! a non-
dissipative force step and~ii ! a dissipative force step. Fo
each step, two pairs ofP andI gains are chosen, denotedP1

and P2 in Fig. 3. These two points are inside the stabil
domain. We want to learn more about the behavior of
machine when small, but fast, perturbation is applied. T
distance and the set point amplitude areD515.4 nm and
Zms515.1 nm, respectively, thus the stability domain is s
very close to the hatched zone in Fig. 3.

B. Transient responses to a nondissipative force step

A Heaviside function that describes a variation in t
step of the Hamaker constantH is applied, with the step
magnitudeDH 1% of the initial value ofH. For such a step
the frequency of the loop instantaneously changes. Curv
and b in Fig. 5~a! are the shifts in frequency for two pairs o
values (P– I ), respectively. As expected the gains inP andI
have no effect on the variation of the shift in frequency. T
output of the demodulator is only determined by its ban
width, thus it exhibits a delay response for timet r'1 ms.
Curve c gives the instantaneous response@Eq. ~17!# that cor-
responds to an ‘‘ideal’’ machine witht r50.

Curves a and b in Fig. 5~b! are the damping signal fo
the pairsP1 and P2 , respectively; curve c is again the re
sponse of an ideal machine@Eq. ~19!#. A high value ofP and
of I, like in curve b, leads to weakly damped oscillato
behavior of the damping signal whereas a single oversho
observed for small values ofP and I, so P1 is more suitable
in the case of a nondissipative force step. However, i
worth noting that the overshoot, although being spread o
quite a large time scale~a few ms!, remains negligible, abou
1024 of the initial damping value, which corresponds to a
ditional dissipated energy of 1.9310222J (1024 kcZms

2 /Q
with kc540 N m21, Zms515.1 nm, andQ54750). Such
variation cannot be observed except if the experiment is
formed at temperature lower than about 10 K (kT51.38
310222J at 10 K!.

C. Transient responses to a dissipative force step

The dissipative force step is obtained by using a Hea
side function for theg coefficient. Curves a and b in Fig. 6~a!
are the damping signals for the pairs (P– I ), respectively.
Curve c is for an ideal machine, given by Eq.~19!. The
to
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transient response of the damping signal has the same
tures as those above; high values ofP and I lead to weakly
damped oscillatory behavior~curve b! whereas a single over
shoot is observed for small values ofP and I ~curve a!.

Under steady state conditions, the shift in frequency c
not be related to the dissipation term@curve c in Fig. 6~a!#.
The shift in frequency remains constant@Eq. ~17!#. Curves a
and b are the shifts in frequency given by the virtual m
chine. Small values ofP and I, like in curve a, lead to large
variation of the frequency. This behavior is still consiste
with the explanations provided in~2! in Sec. IV A, where the
change in frequency is induced by the amplitude of the
cillations not being kept constant because AGC is not abl
correct amplitude fluctuations quickly enough. Therefore,
P2 would be more appropriate in the case of a dissipat
force step to avoid misinterpretation about the shift in f
quency of the signal.

These two examples show that it is not very easy
separate contributions of dissipative and nondissipative fo
if adiabatic conditions are not satisfied; there is no id
value for the gains inP andI. However, these two example
can be used as a guide to avoid misinterpretation when u
the NC-AFM.

FIG. 5. Transient responses of the shift in frequency and damping signa
a nondissipative force step. Curves a and b are obtained forP520, I
51000 andP560, I 535 000, respectively; curves c are given by Eqs.~17!
and ~19!.
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V. DISCUSSION

By solving the equations of motion of the OTCS a
those of CAG and using the Routh–Hurwitz criterion, w
showed that the NC-AFM is stable if proportionalP and
integral I gains are inside the stability domain. The stabil
domain is strongly dependent on tip–surface interacti
Only pure van der Waals attractive interaction was cons
ered here, but the method is valid for any kind of interacti

Also deduced from the equations of motion of the OTC
were the shift in frequency and the so-called damping sig
under steady state conditions. It was shown that the shi
frequency is related only to nondissipative force if the ph
of the OTCS is2p/2. The damping signal depends on loss
of the cantilever but it is also dependent on the frequency
the loop, so special attention has to be paid to interpre
this signal to avoid misinterpretation.

To validate theoretical results, which were obtained
ing some minor approximations, a virtual NC-AFM machi
was built. The virtual machine, which is identical to a har
ware machine, is in fact a set of differential equations solv
numerically without any approximating. The shift in fre
quency and damping signal given by the virtual machine
approach–retract mode are in good agreement with the
oretical results as long as conditions of stability are satisfi

FIG. 6. Transient responses of the shift in frequency and damping signa
a dissipative force step. Curves a and b are obtained forP520, I 51000 and
P560, I 535 000, respectively; curves c are given by Eqs.~17! and ~19!.
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The stability domain given by the virtual machine and the
retical results are in good agreement. We have also expla
the correlation between the oscillations of the damping s
nal and those of the shift in frequency.

In scanning or approach–retract mode, on which ad
batic conditions are seldom satisfied, it is of primary imp
tance to characterize the dynamical behavior of the N
AFM, which depends on proportionalP and integralI gains.
Starting from the equations of motion of the OTCS and
equations of CAG, it is rather difficult to obtain informatio
about the dynamical behavior. An alternative to this probl
is use of the virtual machine which is a very powerful to
with which to study, for instance, transient responses of
shift in frequency and the damping signal. We have sho
that a step of nondissipative force gives an unexpec
change in the damping signal; conversely, a step of diss
tive force gives an unexpected change in frequency. In b
cases, the transient responses are completely influence
the choice of proportionalP and integralI gains of CAG.
There is no ideal value for the pair (P– I ), so care has to be
taken in interpreting transient responses of the shift in f
quency and damping signal.
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