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Abstract. We compute the velocity correlation function of electronic states
close to the Fermi energy, in approximants of quasicrystals. As we show
the long time value of this correlation function is small. This means a
small Fermi velocity, in agreement with previous band structure studies.
Furthermore the correlation function is negative on a large time interval
which means a phenomenon of backscattering. As shown in previous studies
the backscattering can explain unusual conduction properties, observed in
these alloys, such as for example the increase of conductivity with disorder.

1. Introduction

In 1984, Schechtman, Blech, Gratias, and Cahn [1] presented a new meta-
stable phase of an Al–Mn binary alloy. The diffraction pattern was formed
by intense Bragg peaks organized according to the icosahedral symmetry
strictly forbidden from conventional crystallography. The underlying order
was claimed to be described by the mathematical concept of quasiperiod-
icity [2, 3]. The confirmation of a new state of matter has been an intense
subject of controversy. In particular, Pauling proposed an alternative de-
scription of five-fold diffraction patterns based on icosahedral glasses formed
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by twins [4]. However, the situation changed after the discovery of stable
phases (icosahedral AlCuFe, AlPdMn, AlCuCo...) by Tsai et al. [5], and
the existence of quasiperiodic crystals (quasicrystals) is now well accepted.
Furthermore, these materials have revealed a lot of unexpected physical
properties [6].

Among many fascinating properties, quasicrystals with high structural
quality, such as the icosahedral AlCuFe and AlPdMn alloys, have uncon-
ventional conduction properties when compared with standard intermetallic
alloys. Their conductivities can be as low as 150–200 (Ω cm)−1 [7]. Further-
more the conductivity increases with disorder and with temperature, a be-
haviour just at the opposite of that of standard metal. In a sense the most
striking property is the so-called “inverse Mathiessen rule” [8] according
to which the increases of conductivity due to different sources of disorder
seems to be additive. This is just the opposite that happens with normal
metals where the increases of resistivity due to several sources of scattering
are additive. Finally the Drude peak which is a signature of a normal metal
is also absent in the optical conductivity of these quasicrystals.

An important result is also that many approximants of these quasicrys-
talline phases have similar conduction properties. For example the crys-
talline α-AlMnSi phase with a unit cell size of about 12 Å and 138 atoms
in the unit cell has a conductivity of about 300 (Ω cm)−1 at low tempera-
ture [7, 9]. The conductivity has the same defect and temperature depen-
dence as that of the AlCuFe and AlPdMn icosahedral phase. There is, to
our knowledge, no experimental result on the optical conductivity of this
α-AlMnSi phase, but it is very likely that it is similar to that of AlCuFe
and AlPdMn icosahedral phase.

The interpretation of these unconventional conduction properties is still
a challenge for condensed matter physicists. Several models have been pro-
posed including thermally activated hopping [10] band structure effects
due to small density of states and narrow pseudo-gap [11,12] or anomalous
quantum diffusion [13,14]. Yet all these models are difficult to compare in
a quantitative way with experiments.

In this paper we present preliminary results of an ab-initio study of
quantum diffusion in the crystalline α-AlMnSi phase. The number of atoms
in the unit cell (138) is sufficiently small to permit computation with the
ab-initio Linearized Muffin Tin Orbitals (LMTO) method and provides us a
good starting model. Within the Density Functional Theory (DFT) [15,16],
this approach has still limitations due to the Local Density Approximation
(LDA) for the exchange-correlation potential treatment of electron corre-
lations and due to the approximation in the solution of the Schrödinger
equation as explained in next section. However, we believe that this start-
ing point is much better than simplified parametrized tight-binding like
s-band models.
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The central quantities are the velocity correlation function of states of
energy E at time t: C(E, t), and the average square spreading of states of
energy E at time t along the x direction: ∆X2(E, t). The velocity correla-
tion function is defined by:

C(E, t) =
〈

Vx(t)Vx(0) + Vx(0)Vx(t)
〉

E
= 2Re

〈

Vx(t)Vx(0)
〉

E
, (1)

and the average square spreading:

∆X2(E, t) =
〈

[X(t) − X(0)]2
〉

E
(2)

where 〈A〉E is the average of the operator A on states of energy E of
Hamiltonian H, explicitly given by the traces fraction:

〈A〉E =
Tr[δ(E − H)A]

Tr[δ(E − H)]
(3)

In (1), ReB is the real part of B and Vx(t) is the Heisenberg representation
of the velocity operator along x direction at time t. C(E, t) is related to
quantum diffusion by:

d

dt

(

∆X2(E, t)
)

=

∫ t

0
C(E, t′)dt′. (4)

Once the bandstructure is computed in a self-consistent way the velocity
correlation function can be computed exactly in the basis of Bloch states.
Relation (4) shows that an anomalous behaviour of C(E, t) also implies
an anomalous behavior of the quantum diffusion which is the basis for the
model [13,14] of optical conductivity of quasicrystals. In the long time limit
one knows that the propagation is ballistic, this means that ∆X2(E, t) is
given by v2

Ft2 at large time. From (4) one deduces that C(E, t) is of the order
of 2v2

F at large time. But at intermediate times (see below) the behaviour
of C(E, t) is more specific of the crystal and we show that the α-AlMnSi
phase is different compared to other good metals such as Al (f.c.c.), cubic
Al12Mn . . .

In particular we find that there is on the average a phenomenon of
backscattering in α-AlMnSi phase. This means that the velocity correlation
function is often negative. This negative value has been shown previously
[14] a sufficient condition to explain the unusual conduction properties of
these alloys.

2. Ab-initio electronic structure

2.1. LMTO METHOD

Electronic structure determinations have been performed using the self-
consistent LMTO method in the Atomic Sphere Approximation (ASA).



4 J.-P. JULIEN ET AL.

The LMTO method is well described elsewhere [17, 18] and we would like
to remind here only the principal results which are usefull for this paper.
In the frame of DFT-LDA band structure calculations, the LMTO method
is based on some approximations. The space is divided in atomic spheres
where the potential is spherically symmetric and interstitial region where
it is flat (“Muffin Tin” potential). In the Atomic Sphere Approximation
(ASA), the spheres radii are chosen so that the total volume of the spheres
equals that of the solid. One makes a further approximation by supposing
that the kinetic energy in the interstitial region is zero (without this non-
essential assumption, Laplace equation, as used below, should be replaced
by Helmoltz equation). In this intersticial region, the Schrödinger equation
reduces to Laplace equation having regular and irregular solutions: YL(r̂)rℓ

and YL(r̂)r−ℓ−1 respectively. Here L = (ℓ,m) represents the angular mo-
mentum index and YL(r̂) the spherical harmonics in direction r̂ = (θ, φ). For
the sphere centered at site R and in the momentum index ℓ (ℓ = 0, 1, 2 . . .),
one finds the solution ϕRℓν of the radial Schrödinger equation for a given so-
called linearization energy Eν , usually taken at the center of gravity of the
occupied part of the ℓ-band and the energy derivative of ϕRℓν noted ϕ̇Rℓν

(Note that for the velocity correlation function, we need a great accuracy
close to the Fermi level. Consequently, after self-consistency, we perform
one iteration choosing Eν = EF). It can be shown that the corresponding
orbitals ϕRℓν and ϕ̇Rℓν are orthogonal to each other and nearly orthogonal
to the core levels. It is thus possible to build a basis set of orbitals χRL

centered at sphere of site R in the following way. Outside the sphere, in the
interstitial region χRL is proportional to the irregular solution YL(r̂)r−ℓ−1

of Laplace equation and it is augmented (i.e. substituted according to Slater
terminology) in its own sphere by a linear combination of ϕRℓν and ϕ̇Rℓν

having logarithmic derivative −ℓ− 1 at the radius sR of the sphere so that
the orbital is continuous and derivable at the sphere boundary. In any other
sphere R′, the irregular solution of Laplace equation can be expanded in
term of regular solutions in that sphere:

YL(r̂R)(
rR

a
)−ℓ−1 = −

∑

L′

1

2(2ℓ′ + 1)
S0

R′L′,RLYL′(r̂R′)(
rR′

a
)ℓ

′

(5)

and the orbital χRL should be augmented in sphere R′ with the same ex-
pansion of linear combination of ϕR′ℓ′ν and ϕ̇R′ℓ′ν having the logarithmic
derivative ℓ′ at the radius sR′ of sphere R′. In (5), a is a scale factor and
S0

R′L′,RL are the so-called “structure constants” which depend only on the
crystallographic structure of the material. In this basis set of the orbitals
χRL both Hamiltonian and Overlap matrices can be expressed in terms of
S0

R′L′,RL, and the potential parameters ϕRℓν(sR), ϕ̇Rℓν(sR) and the logarith-

mic derivative DRℓν and ḊRℓν of these functions at sphere boundary. Since
the structure constants S0

R′L′,RL, decreasing as r−ℓ−ℓ′−1 with distance, are
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very long ranged for s and p orbitals, it can be more convenient to change
the basis set so that the Hamiltonian can have the Tight-Binding (TB) form
or any desired properties (like the orthogonality i.e. overlap matrix equals
unit matrix). It can be achieved by adding to the regular solution of the
Laplace equation an amount of the irregular solution for a given angular
momentum. It is possible to choose this amount Q̄ℓ so that the transformed
structure constants S can be screened with a short-range dependence with
the distance or so that the orbitals of the transformed basis set are orthog-
onal (the so-called TB or most localized and orthogonal representations,
respectively). With appropriate choice for Q̄ℓ, the transformed structure
constant matrix obeys to the following equation:

S = S0(1 − Q̄ℓS
0)−1 (6)

The Hamiltonian can be written as:

HRL,R′L′ = CRLδRL,R′L′ + ∆
1/2
RLSRL,R′L′∆

1/2
R′L′ (7)

which is limited to first order in (E−Eν) in the TB representation, whereas
it is valid up to second order in the orthogonal representation. CRL deter-
mines the middle of the band “RL” and ∆RL its width and the strength
of hybridization. These parameters are expressed in terms of the 4 poten-
tial parameters:ϕRℓν(sR), ϕ̇Rℓν(sR), DRℓν and ḊRℓν . It should be stressed
that hybridization between bands of different angular moments is due to
the matrix elements SRL,R′L′ which couples RL-states to R′L′ ones. Due
to the periodicity of the approximant phases, one can apply Bloch theo-
rem. Thus, once the potential parameters are known for each site and each
ℓ-component, with an appropriate choice of screening constants, structure
constants (6) and Hamiltonian (7) are transformed to k-space. Diagonal-
ization provides energies with their respective eigenstates for each k-point−→
k of the first Brillouin zone. These eigenstates are expressed on the basis
of the

χ~tL(~k) =
1√
N

∑

~T

ei~k·~Tχ(~T+~t)L (8)

which are the Bloch states obtained from the real space orbital χ(~T+~t)L,

located at site ~t of the unit cell ~T : any general atomic site ~R can be de-
composed as ~R = ~T + ~t. (N is the total number of cells, introduced here
for normalization).

2.2. RESULTS: DENSITY OF STATES

For our practical applications, the LMTO basis includes all angular mo-
ments up to ℓ = 2 and the valence states are Al (3s, 3p, 3d), Mn (4s, 4p,
3d).
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Figure 1. LMTO DOS of cubic Al12Mn (13 atoms / unit cell) and cubic α-Al114Mn24

approximant (experimental atomic structure of α-AlMnSi [26] with Si = Al, 138 atoms
/ unit cell) [22].

The LMTO density of states (DOS) of an α-AlMn idealized approxi-
mant (structural model of Elser-Henley [19]) has been first calculated by
T. Fujiwara [12, 20]. This original work shows the presence of a Hume-
Rothery pseudo-gap near the Fermi energy, EF, in agreement with exper-
imental results [7, 11]. E.S. Zijlstra and S.K. Bose [24] gave a detailed ab

initio electronic structure study of the α-phase. They show the difference
between the DOS of the idealized 1/1 approximant and the experimental
atomic structure [26]. The pseudogap is present in both cases. But one
of the main difference is the spikiness of the DOS which is reduced for
the experimental structure with respect to the idealized structure. DOSs
of α-Al114Mn24 with experimental atomic positions [26] (Si atoms are re-
placed by Al atoms) is presented Fig. 1. The role of the transition metal
(TM) element in the pseudo-gap formation has also been shown from ab-

initio calculations [21, 22] and experiments. Indeed the formation of the
pseudo-gap results from a strong sp–d coupling associated to an ordered
sub-lattice of TM atoms. Just as for Hume-Rothery phases a description of
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the band energy can be made in terms of pair interactions. We have shown
that a medium-range Mn–Mn interaction mediated by the sp(Al)–d(Mn)
hybridization plays a determinant role in the occurrence of the pseudo-
gap [22,23]. It is thus essential to take into account the chemical nature of
the elements to analyze the electronic properties of approximants. It has
been shown [24] that Si atoms are in substitution with some Al atoms.
The main effect of Si is to shift EF in the pseudo-gap in agreement with
Hume-Rothery mechanism to minimize band energy.

The electronic structures of simpler crystals such as orthorhombic Al6Mn,
cubic Al12Mn, present also a pseudo-gap near EF but it is less pronounced
than for complex approximants phases [22].

3. Velocity correlation function

3.1. COMPUTATIONAL DETAILS

Starting from the self-consistent LMTO eigenstate Ψn with energy En, the
velocity correlation function is [13]:

C(E, t) = 2

〈

Re
{

eiEnt

h̄ 〈Ψn|Vx e−iHt

h̄ Vx|Ψn〉
}

〉

En=E

(9)

By using the closure properties of the eigenstates one obtains easily:

C(E, t) = 2

〈

∑

p

cos
(

(En − Ep)
t

h̄

) ∣

∣

∣〈Ψn|Vx|Ψp〉
∣

∣

∣

2
〉

En=E

. (10)

where the sum is over all the eigenstates Ψp with the same vector ~k than
Ψn. In (10) the terms n = p are the Boltzmann contribution to the velocity
correlation function:

CB(E, t) = 2

〈

∑

n

∣

∣

∣〈Ψn|Vx|Ψn〉
∣

∣

∣

2
〉

En=E

= 2v2
B (11)

which does not depend on the time t.
The products 〈Ψn|Vx|Ψp〉 are calculated from LMTO eigenstates by

using a numerical derivation of the hamiltonian in the reciprocal space:
as explained in last section, diagonalization provides the components of
eigentstates on the basis set χtL(

−→
k ). In this basis the velocity operator,

Vx = 1
ih̄ [X,H], has the following matrix elements:

〈χtL(
−→
k )|Vx|χt′L′(

−→
k )〉 =

1

h̄

∂

∂kx
〈χtL(

−→
k )|H|χt′L′(

−→
k )〉 (12)

kx is the component of k-point ~k in the x direction. Because of Bloch
theorem, different k-points are not coupled in the Hamiltonian nor in the
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Figure 2. Velocity correlation function C(EF, t) (m2 s−2) versus time t (s), for (a) Al
(f.c.c), (b) cubic Al12Mn, and (c) cubic approximant α-Al114Mn24. The dashed lines are
the Boltzmann velocity correlation function CB(EF, t) = 2v2

F. [27]

velocity operator. Having performed the numerical derivation of (12), it
is just a matrix multiplication to get expression (10). Formula (12) is an
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approximation as one can show that there are additional terms on its right
hand side. However these terms are of the order of (En − Eν)2 and thus
vanish for the energies of interest close to Eν chosen at EF. Finally equation
(10) is integrated according to equation (4), to obtain the average square
spreading ∆X2(E, t).

3.2. RESULTS: EVIDENCE OF BACKSCATTERING IN AN
APPROXIMANT OF QUASICRYSTALS

We compute C(E, t) for crystals (complex approximants and simple crys-
tals). In equations (10)–(11), the average on states of energy E is obtained

by taking the eigenstates of each ~k vector with an energy En such as:

E − 1

2
∆E < En < E +

1

2
∆E. (13)

∆E is a kind of energy resolution of the calculation. The calculated C(E, t)

is rather sensible to the small number Nk of ~k vectors in the first Brillouin
zone. Therefore Nk is increases until C(E, t) does not depend significantly
on Nk.

C(EF, t) for Al (f.c.c), cubic Al12Mn [25], and the cubic approximant
α-Al114Mn24 (with the experimental atomic structure [26]) are shown in
figure 2. EF is the Fermi energy calculated by the self-consistent L.M.T.O.
procedure. The energy resolution is ∆E = 1.36 eV. The number of ~k points
in the first Brillouin zone is Nk = 803, 403 and 103 for Al, Al12Mn, and
α-Al114Mn24, respectively.

For large t,

lim
t→+∞

C(EF, t) ≃ CB(EF, t) = 2v2
F , (14)

where vF is the Boltzmann velocity (intra-band velocity) at the Fermi
energy: vF = 9.6 107, 3.4 107, and 6.2 106 cm s−1, for Al, Al12Mn and α-
Al114Mn24, respectively. This last result is very similar to the original work
of T. Fujiwara et al. [12] for the α-Al114Mn24 (with the atomic structure
model of Elser-Henley). The strong reduction of vF in the approximant
phase with respect to simple crystal phases shows the importance of a
quasiperiodic medium-range order (up to distances equal to 12–20 Å). This
leads to a very small Boltzmann conductivity for the approximant [12].

When t is finite (figure 2), C(EF, t) and CB(EF, t) differ, and there
is a new difference between approximant and simple crystal. In the case
of Al (f.c.c.) phase, C(EF, t) is always positive, and the Boltzmann value
is reached rapidly when t increases. But for some t values the velocity
correlation function C(EF, t) is negative for Al12Mn and α-Al114Mn24. That
means that at these times the phenomenon of backscattering occurs.

Roughly speaking, the transports properties depends on the values of
C(EF, t) over all times t from 0 to the scattering time τ [13, 14] (see for
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Figure 3. Velocity correlation function C(EF, t) (m2 s−2) versus large time t (see fig-
ure 2). The dashed lines are the corresponding Boltzmann velocity correlation function
CB(EF, t) = 2v2

F.

instance equation (4)). A realistic value of τ has been estimated to about
10−14 s [8]. For the simple crystals Al12Mn, C(EF, t) is meanly positive
when t > 2 10−15 s. But for the complex approximant α-Al114Mn24, a lot of t

values correspond to C(EF, t) < 0, even when t is close to τ or larger (figure
3). Therefore, in the case of Al12Mn, the backscattering (negative range
of C(EF, t)) should have a negligible effect on the transport properties,
whereas this effect must be determinant for the approximant.

The phenomenon of backscattering leads to unusual quantum diffusion.
It is illustrated on the plot of the average spreading of states ∆X2 (equation
(2)) versus time t (figure 4). It shows that ∆X2 results in two term: a
Boltzmann term and a non-Boltzmann term. The Boltzmann term has the
usual t2 behavior: ∆X2

B = v2
Bt2. The new non-Boltzmann contribution,

which comes from the non-diagonal matrix element in (10), has an atypical
constant asymptotic behavior. In a normal crystal this last term is negligible
with respect to the Boltzmann term. On the contrary, in approximant both
terms have the same order of magnitude for realistic times, typically t less
than fews 10−14 s.

4. Conclusion

We present ab-initio calculations of the velocity correlation function of the
electronic states close to the Fermi energy, in a complex approximant and
simple crystals. These calculations are the first numerical proof of the exis-
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Figure 4. Average spreading of states ∆X2(E, t) for energy E = EF(LMTO), in
α-AlMnSi. ∆X2(E, t) can be decomposed in a Boltzmann term and a non-Boltzmann
term.

tence of the phenomenon of backscattering in an approximant of quasicrys-
tals. This shows that a Boltzmann approach is not enough to understand
the unusual transport properties of quasicrystals. It will be shown else-
where [28] that these results on the quantum diffusion explain fairly well
the experimental conduction properties of the α-AlMnSi phase and of the
related QC phases.

References

1. D. Shechtman, I. Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett. 51, 1951
(1984).

2. H. Bohr and H. Cohn, Almost Periodic Functions (Chelsea, New York, 1947).
3. Quasicrystals, The State of the Art, edited by D. P. DiVicenzo and P. J. Steinhardt

(World Scientific, Singapore, 1991), Vol. 11.
4. L. Pauling, Phys. Rev. Lett. 58, 365 (1987).
5. A. P. Tsai, A. Inoue and T. Masumoto, Jpn. J. Appl. Phys. 26, L1505 (1987); A.

P. Tsai, A. Inoue and T. Masumoto, Mat. Trans. JIM 31, 98 (1990).
6. Proceedings of the 5th International Conference on Quasicrystals, edited by C. Janot

and R. Mosseri (World Scientific, Singapore, 1995).
7. C. Berger, Lectures on Quasicrystals, edited by F. Hippert and D. Gratias (Les Ulis:

Les Editions de Physique, 1994), p. 463-504.
8. D. Mayou, C. Berger, F. Cyrot–Lackmann, T. Klein and P. Lanco, Phys. Rev. Lett.

70, 3915 (1993).
9. C. Berger, C. Gignoux, O Tjernberg, P. Lindqvist, F. Cyrot-Lackmann and Y.

Calvayrac, Physica B 204, 44 (1995).
10. C. Janot, J. Phys. Condens. Mat., 9, 1493 (1997).
11. S.J. Poon, Adv. Phys., 41, 303 (1992); S.E. Burkov, T. Timusk and N.W. Ashcroft,

J. Phys.: Condens. Matter 4, 9447 (1992).
12. T. Fujiwara, S. Yamamoto and G. Trambly de Laissardière, Phys. Rev. Lett. 71,



12 J.-P. JULIEN ET AL.

4166 (1993).
13. D. Mayou, Phys. Rev. Lett. 85, 1290 (2000).
14. F. Triozon and D. Mayou, J. Non. Cryst. Solids 334-335, 376 (2004).
15. P. Hohenberg and W. Kohn, Phys. Rev. 136, 864, (1964).
16. W. Kohn and L. J. Sham, Phys. Rev. 140, 1133 (1965).
17. O.K. Andersen, Phys. Rev. B 12, 3060 (1975); L.H. Skriver, The LMTO Method

(Springer, New-York, 1984).
18. O. K. Andersen, O. Jepsen and D. Gloetzel, Highlights of Condensed Matter Theory

- Varenna notes - Proceedings of The International School of Physics Enrico Fermi,
(North Holland, New York, 1985).

19. V. Elser, C. Henley, Phys. Rev. Lett. 55,2883 (1985).
20. T. Fujiwara, Phys. Rev. B 40, 942 (1989).
21. G. Trambly de Laissardière, D. Mayou and D. Nguyen Manh, Europhys. Lett. 21,

25-30 (1993); G. Trambly de Laissardière, D. Nguyen Manh, L. Magaud, J.P. Julien,
F. Cyrot–Lackmann and D. Mayou Phys. Rev. B, 52, 7920-7933 (1995).

22. G. Trambly de Laissardière, D. Nguyen Manh and D. Mayou, Prog. Mater. Sci. 50,
679 (2005).

23. G. Trambly de Laissardière, D. Nguyen Manh and D. Mayou, J. Non-Cryst. Solids
334-335, 347 (2004).

24. E.S. Zijlstra and S.K. Bose, Phys. Rev. B 67,224204 (2003).
25. W.P. Pearson, Handbook of Lattice Spacing and Structure of Metals (Pergamon,

New York, 1967), Vol. 2.
26. K. Sugiyama, N. Kaji and K. Hiraga, Acta Cryst. C 54, 445 (1998).
27. G. Trambly de Laissardière, J.P. Julien and D. Mayou, Proceedings of the 9th Inter-

national Conference on Quasicrystals (Ames, May, 2005), to be published in Phil.
Mag.

28. G. Trambly de Laissardière, J.P. Julien and D. Mayou, in preparation (2005).


