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Abstract

The rapidly growing hedge fund industry has provided individual
and institutional investors with new investment vehicles and styles of
management. It has also brought forward a new form of performance
contract: hedge fund managers receive incentive fees which are typi-
cally a fraction of the fund net asset value (NAV) above its starting
level - a rule known as high water mark.

Options on hedge funds are becoming increasingly popular, in par-
ticular because they allow investors with limited capital to get expo-
sure to this new asset class. The goal of the paper is to propose a
valuation of plain-vanilla options on hedge funds which accounts for
the high water market rule. Mathematically, this valuation leads to
an interesting use of local times of Brownian motion. Option prices
are numerically computed by inversion of their Laplace transforms.

Keywords: Options on hedge funds; High-water mark; Local time; Excur-
sion theory
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I Introduction

The term hedge fund is used to characterize a broad class of ”skill-based”
asset management firms that do not qualify as mutual funds regulated by
the Investment Company Act of 1940 in the United States. Hedge funds
are pooled investment vehicles that are privately organized, administered
by professional investment managers and not widely available to the general
public. Due to their private nature, they carry much fewer restrictions on the
use of leverage, short-selling and derivatives than more regulated vehicles.

Across the nineties, hedge funds have been embraced by investors world-
wide and are today recognized as an asset class in its own right. Originally,
they were operated by taking a ”hedged” position against a particular event,
effectively reducing the overall risk. Today, the hedge component has totally
disappeared and the term ”hedge fund” refers to any pooled investment vehi-
cle that is not a conventional fund using essentially long strategies in equity,
bonds and money market instruments.

Over the recent years, multi-strategy funds of funds have in turn flour-
ished, providing institutional investors with a whole spectrum of alternative
investments exhibiting low correlations with traditional asset classes. In a
parallel manner, options on hedge funds have been growing in numbers and
types, offering individual investors the possibility of acquiring exposure to
hedge funds through a relatively low amount of capital paid upfront at in-
ception of the strategy.

Hedge funds constitute in fact a very heterogeneous group with strategies
as diverse as convertible arbitrage, global macro or long short equity. In all
cases however, common characteristics may be identified such as long-term
commitment of investors, active management and broad discretion granted
to the fund manager over the investment style and asset classes selected.
Accordingly, incentive fees represent a significant percentage of the perfor-
mance - typically ranging from 5% to 20%. This performance is most gener-
ally measured according to the high-water mark rule, i.e., using as a reference
benchmark the Net Asset Value (NAV) of the fund at the time of purchase
of the shares or options written on the hedge fund.

So far, the academic literature on hedge funds has focused on such is-
sues as non-normality of returns, actual realized hedge fund performance
and persistence of that performance. Amin and Kat (2003) show that, as a
stand-alone investment, hedge funds do not offer a superior risk-return pro-
file. Geman and Kharoubi (2003) exhibit the clear deviations from normality
in hedge funds returns, hence the limits of the correlation coefficient as a
measure of diversification and propose instead the introduction of copulas
to better represent the dependence structure between hedge funds and other
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asset classes. Agarwal and Naik (2000) examine whether persistence is sen-
sitive to the length of the return measurement period and find maximum
persistence at a quarterly horizon.

Another stream of papers has analyzed performance incentives in the
hedge fund industry (see Fung and Hsieh (1999), Brown, Goetzmann and
Ibbotson (1999)). However, the high water mark rule specification has been
essentially studied by Goetzman, Ingersoll and Ross (2003).

High-water mark provisions condition the payment of the performance
fee upon the hedge fund Net Asset Value exceeding the entry point of the
investor. Goetzmann et al examine the costs and benefits to investors of this
form of managers’ compensation and the consequences of thess option-like
characteristics on the values of fees on one hand, investors’ claims on the other
hand. Our objective is to pursue this analysis one step further and examine
the valuation of options on hedge funds under the high-water mark rule. We
show that this particular compound option-like problem may be solved in
the Black-Scholes (1973) and Merton (1973) setting of geometric Brownian
motion for the hedge fund NAV by the use of Local times of Brownian motion.

The remainder of the paper is organized as follows: Section 2 contains
the description of the Net Asset Value dynamics, management and incentive
fees and the NAV option valuation. Section 3 extends the problem to a mov-
ing high water mark. Section 4 describes numerical examples obtained by
inverse Laplace transforms and Monte Carlo simulations. Section 5 contains
concluding comments.

II The High-Water Mark Rule and Local Times

A. Modeling the High-Water Mark

We work in a continuous-time framework and assume that the fund Net Asset
Value (NAV) follows a lognormal diffusion process. This diffusion process will
have a different starting point for each investor, depending on the time she
entered her position. This starting point will define the high water mark used
as the benchmark triggering the performance fees discussed throughout the
paper.

We follow Goetzmann, Ingersoll and Ross (2003) in representing the per-
formance fees in the following form

f (St) = µa 1{St>H} (1)

where St denotes the Net Asset Value at date t, µ is a mean NAV return
statistically observed, a is a percentage generally comprised between 5% and
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20% and H = S0 denotes the market value of the NAV as observed at incep-
tion of the option contract.

We consider (Ω,F , {Ft, t ≥ 0},P0) a filtered probability space where
(Bt)t≥0 is an {Ft, t ≥ 0} Brownian motion.

We now consider an equivalent measure Q under which the Net Asset
Value dynamics (St)t≥0 satisfy the stochastic differential equation:

dSt

St

= (r + α− c− f(St))dt+ σdWt (2)

and the instantaneously compounding interest rate r is supposed to be con-
stant. α denotes the excess return on the fund’s assets and is classically
defined by

α = µ− r − β (rm − r)

where rm is the expected return on the market portfolio. Hence, the ”risk-
neutral” return on the fund NAV is equal to (r + α)1; σ denotes the NAV
volatility.

The management fees paid regardless of the performance are represented
by a constant fraction c (comprised in practice between 0.5% and 2%) of the
Net Asset Value. We represent the incentive fees as a deterministic function
f of the current value St of the NAV, generally chosen according to the high
water mark rule defined in equation (1).

Because of their central role in what follows, we introduce the maximum
and the minimum processes of the Brownian motion B, namely

Mt = sup
s≤t

Bs, It = inf
s≤t
Bs

as well as its local time at the level a, a ∈ R

La
t = lim

ǫ→0

1

2ǫ

∫ t

0

1{|Bs−a|≤ǫ}ds

We also consider A
(a,+)
t =

∫ t

0
1{Bs≥a}ds and A

(a,−)
t =

∫ t

0
1{Bs≤a}ds, respec-

tively denoting the time spent in [a;∞[ and the time spent in ] − ∞; a] by
the Brownian motion up to time t.
For simplicity, we shall write Lt = L0

t , A
+
t = A

(0,+)
t and A−

t = A
(0,−)
t the

corresponding quantities for a = 0.

1 Our claim is that the measure Q incorporates the price of market risk as a whole
but not the excess performance - the fund ”alpha” - achieved by the manager through the
selection of specific securities at a given point in time. This view is in agreement with the
footnote 6 in Goetzmann, Ingersoll and Ross (2003)
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In order to extend our results to different types of incentive fees, we do not
specify the function f but only assume that it is a continuous, bounded,
increasing and positive function satisfying the following conditions:

f(0) = 0, lim
x→∞

f(x) < +∞

Proposition II.1 There exists a unique solution to the stochastic differen-
tial equation

dSt

St

= (r + α− c− f(St))dt+ σdWt

Proof Let us denote Yt = ln(St)
σ

. Applying Itô’s formula, we see that the
process Yt satisfies the equation

dYt = dWt + ψ(eσYt)dt

where ψ(x) = r − σ2

2
+ α− c− f(x).

f , hence ψ is a Borel bounded function; consequently, we may apply Zvonkin
(1974) theorem and obtain strong existence and pathwise uniqueness of the
solution of equation (2).
We recall that Zvonkin theorem establishes that for every bounded Borel
function ξ, the stochastic differential equation

dZt = dWt + ξ(Zt)dt

has a unique solution which is strong, i.e.: in this case, the filtration of Z
and W are equal.

Integrating equation (2), we observe that this unique solution can be written
as

St = S0 exp

((
r + α− c− σ2

2

)
t−

∫ t

0

f(Su)du+ σWt

)

We now seek to construct a new probability measure P under which the
expression of St reduces to

St = S0 exp(σW̃t) (3)

where W̃t is a P standard Brownian motion.

Proposition II.2 There exists an equivalent martingale measure P under
which the Net Asset Value dynamics satisfy the stochastic differential equa-
tion

dSt

St

=
σ2

2
dt+ σdW̃t (4)
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where
Q|Ft

= Zt · P|Ft
(5)

Zt = exp
( ∫ t

0

(
b− f(Su)

σ

)
dW̃u −

1

2

∫ t

0

(
b− f(Su)

σ

)2
du

)

and

b =
r + α− c− σ2

2

σ

Proof Thanks to Girsanov theorem (see for instance McKean (1969) and
Revuz and Yor (2005)) we find that under the probability measure P,

W̃t = Wt +
∫ t

0
du

(
b− f(eσYu )

σ

)
is a Brownian motion, which allows us to con-

clude.

B. Building the Pricing Framework

A European-style hedge fund derivative with maturity T > 0 is defined by its
payoff F : R+ −→ R+ and the valuation of the option reduces to computing
expectations of the following form:

VF (t, S, T ) = e−r(T−t)EQ
[
F (Su; u ≤ T )

∣∣Ft]

For the case where the valuation of the option takes place at a date t = 0,
we denote VF (S, T ) = VF (0, S, T ). We can observe that we are in a situation
of complete markets since the only source of randomness is the Brownian
motion driving the NAV dynamics.

Proposition II.3 For any payoff F that can be written as an increasing
function of the stock price process, the option price associated to the above
payoff is an increasing function of the high-water mark level.

Proof This result is quite satisfactory from a financial perspective. Mathe-
matically, it may be deduced from the following result :
Let us consider the solutions (S1, S2) of the pair of stochastic differential
equations :

dS1
t = b1(S1

t )dt+ σS1
t dWt

dS2
t = b2(S2

t )dt+ σS2
t dWt
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where

b1(x) = (r + α− c− µa 1{x>H})x

b2(x) = (r + α− c− µa 1{x>H′})x

with H > H ′ and S1
0 = S2

0 a.s.
We may apply a comparison theorem since b1 and b2 are bounded Borel
functions and b1 ≥ b2 everywhere, obtain that

P[S1
t ≥ S2

t ; ∀t ≥ 0] = 1

and then conclude.

If we consider a call option and a put option with strike K and maturity
T , we observe the following call-put parity relation:

C0(K, T ) − P0(K, T ) = EQ[e−rTST ] −Ke−rT (6)

We now wish to express the exponential (Ft,P)-martingale Zt featured in (5)
in terms of well-known processes in order to be able to obtain closed-form
pricing formulas.

Lemma II.4 Let us define dH , λ, α+, α− and φ as follows:

dH =
ln( H

S0
)

σ
, λ =

µa

2σ

α+ = 2λ2 +
b2

2
− 2λb, α− =

b2

2

φ(x) = ebx−2λ(x−dH )+

We then obtain:

Zt = e2λ(−dH )+φ(W̃t) exp(λLdH

t ) exp(−α+A
(dH ,+)
t − α−A

(dH ,−)
t ) (7)

Proof The proof of this proposition is based on the one hand on the Tanaka
formula which, for a Brownian motion B and any real number a, establishes
that

(Bt − a)+ = (−a)+ +

∫ t

0

dBs1{Bs>a} +
1

2
La

t

On the other hand, we can rewrite

f(St) = µa1{W̃t>dH}
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Observing that A
(dH ,+)
t + A

(dH ,−)
t = t leads to the result.

From the above lemma, we obtain that:

VF (S, T ) = e−rT EP
[
ZTF (Su; u ≤ T )

]

= e−rT+2λ(−dH )+EP
[
φ(WT ) exp(λLdH

T − α+A
(dH ,+)
T − α−A

(dH ,−)
T )F (S0e

σW̃u ; u ≤ T )
]

The price of a NAV call option is closely related to the law of the triple
(Wt, L

a
t , A

(a,+)
t ). Karatzas and Shreve (1991) have extensively studied this

joint density for a = 0 and obtained in particular the following remarkable
result

Proposition II.5 For any positive t and b, 0 < τ < t, we have

P[Wt ∈ dx;Lt ∈ db, A+
t ∈ dτ ] = f(x, b; t, τ) dx db dτ ; x > 0

= f(−x, b; t,−τ) dx db dτ ; x < 0

where

f(x, b; t, τ) =
b(2x+ b)

8πτ
3
2 (t− τ)

3
2

exp

(
− b2

8(t− τ)
− (2x+ b)2

8τ

)

This formula could lead to a computation of the option price based on
a multiple integration but it would be numerically intensive; moreover, ob-
taining an analytical formula for the triple integral involved in the option
price seems quite unlikely. We observe instead that in the above density f ,
a convolution product appears, which leads us to compute either Fourier or
Laplace transforms. We are in fact going to compute the Laplace transform
with respect to time to maturity of the option price. This way to proceed
is mathematically related to the Karatzas and Shreve result in Proposition
II.5. In the same way, we can notice that the Laplace transform exhibited by
Geman and Yor (1996) for the valuation of a Double Barrier option is related
to the distribution of the triple (Wt,Mt, It) Brownian motion, its maximum
and minimum used by Kunitomo and Ikeda (1992) for the same pricing prob-
lem. The formulas involved in the NAV call price rely on the following result
which may be obtained from Brownian excursion theory:

Proposition II.6 Let Wt be a standard Brownian motion, Lt its local time
at zero, A+

t and A−
t the times spent positively and negatively until time t.
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For any function h ∈ L1(R), the Laplace transform of the quantity g(t) =
E
[
h(Wt) exp(λLt) exp(−µA+

t −νA−
t )

]
has the following analytical expression

∫ ∞

0

dte−
θ
2
tg(t) = 2

(∫ ∞
0
dxe−x

√
θ+2µh(x) +

∫ ∞
0
dxe−x

√
θ+2νh(−x)

)

√
θ + 2µ+

√
θ + 2ν − 2λ

for θ large enough to ensure positivity of the denominator.

Proof See the Appendix for details. The result is rooted in the theory of
excursions of the Brownian motion.

C. Valuation of the Option at Inception of the Con-

tract

In this section, we turn to the computation of the price of a European call
option written on a Hedge Fund NAV under the high-water mark rule. Con-
sequently, the payoff considered is the following:

F (Su; u ≤ T ) = (ST −K)+ (8)

or, in a more convenient way for our purpose

F (W̃u; u ≤ T ) = (S0 exp(σW̃T ) −K)+

At inception of the contract, the high-water mark that is chosen is the spot
price, hence H = S0 and dH = 0. This specific framework allows us to use
fundamental results on the joint law of the triple (Bt, L

0
t , A

+
t ) presented in

Proposition II.6. We write the European call option price as follows

C(0, S0) = e−rT EP
[
h(W̃T ) exp(λLT − α+A

+
T − α−A

−
T )

]

where h(x) = (S0e
σx −K)+e

bx−2λ(x)+ .

We now compute the Laplace transform in time to maturity of the Euro-
pean call option on the NAV of an Hedge Fund, that is to say the following
quantity:

∀θ ∈ R+ I(θ) =

∫ ∞

0

dte−
θ
2
te−rtEQ[(St −K)+]

=

∫ ∞

0

dte−( θ
2
+r)tEP[Zt(St −K)+]
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Lemma II.7 The Laplace transform with respect to time to maturity of a
call option price has the following analytical expression:

I(θ) = 2

(∫ ∞
0
dxe−x

√
θ+2(r+α+)h(x) +

∫ ∞
0
dxe−x

√
θ+2(r+α−)h(−x)

)

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

(9)

where h(x) = ebx−2λx+(S0e
σx −K)+

Proof We obtain from Lemma II.4 that:

EP[Zt(St −K)+] = E
[
h(W̃t) exp(λLt) exp(−α+A

+
t − α−A

−
t )

]

where:
h(x) = ebx−2λx+(S0e

σx −K)+

Then, using Proposition II.6, we are able to conclude.

This lemma leads us to compute explicit formulas for the Laplace trans-
form of a call option that is in-the-money (S0 ≥ K) at date 0 and out-of-
the-money (S0 < K) that we present in two consecutive propositions.

Proposition II.8 For an out-of-the-money call option (S0 ≤ K), the Laplace
transform of the price is given by the following formula:

I(θ) =
N(θ)

D(θ)

where
θ > (σ + b− 2λ)2 − 2(r + α+)

and

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N(θ) =
S0√

θ + 2(r + α+) + 2λ− σ − b

(
S0

K

)√
θ+2(r+α+)+2λ−σ−b

σ

− K√
θ + 2(r + α+) + 2λ− b

(
S0

K

)√
θ+2(r+α+)+2λ−b

σ

10



Proof Keeping the notation of Proposition II.6, we can write

∀x > 0, h(x) = (S0e
σx −K)1{x≥ 1

σ
ln( K

S0
)}e

(b−2λ)x and h(−x) = 0

and then by simple integration, obtain the stated formula.

Proposition II.9 For an in-the-money call option (S0 ≥ K), the Laplace
transform of the price is given by the following formula:

I(θ) =
N1(θ) +N2(θ)

D(θ)

where θ > (σ + b− 2λ)2 − 2(r + α+) and

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N1(θ) =
S0√

θ + 2(r + α+) + 2λ− σ − b
− K√

θ + 2(r + α+) + 2λ− b

N2(θ) =
S0√

θ + 2(r + α−) + σ + b

(
1 −

(K
S0

)√
θ+2(r+α−)+σ+b

σ

)

− K√
θ + 2(r + α−) + b

(
1 −

(K
S0

)√
θ+2(r+α−)+b

σ

)
,

α− and α+ being defined in Lemma II.4 .

Proof We have

∀x > 0, h(x) = (S0e
σx−K)e(b−2λ)x and h(−x) = (S0e

−σx−K)1{x≤ 1
σ

ln(
S0
K

)}e
−bx

and as in the previous proposition, the Laplace transform is derived.

As a side note, we observe that the case K = 0 provides the Laplace trans-
form of the t−maturity forward contract written on the NAV at date 0

∫ ∞

0

dte−
θ
2
tEP[e−rtSt] = 2

S0√
θ+2(r+α+)+2λ−σ−b

+ S0√
θ+2(r+α−)+σ+b√

θ + 2(r + α+) +
√
θ + 2(r + α−) − 2λ

where θ > (σ + b− 2λ)2 − 2(r + α+).
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It is satisfactory to check that by choosing a = 0, α = 0, we obtain the
Laplace transform of a European call option on a dividend-paying stock with
a continuous dividend yield c whose dynamics satisfy as in Merton (1973),
the equation

dSt

St

= (r − c) dt+ σ dWt

This Laplace transform is derived from Proposition II.8 for an in-the-money
call option and from Proposition II.9 for an out-of-the-money call option.

D. Valuation during the lifetime of the Option

Evaluating at a time t a call option on a hedge fund written at date 0 implies
that we are in the situation where dH = 1

σ
ln( H

St
) may be different from

0. Since the solution of the stochastic differential equation driving the Net
Asset Value is a Markov process, the evaluation of the option at time t only
depends on the value of the process at time t and on the time to maturity
T − t. Hence, we need to compute the following quantity

C(t, St) = EQ
[
e−r(T−t)(ST −K)+|Ft

]

Given the relationship between P and Q, we can write

C(t, St) = e−r(T−t)e2λ(−dH )+EP
[
h(W̃T−t) exp(λLdH

T−t−α+A
(dH ,+)
T−t −α−A

(dH ,−)
T−t )

]

where h(x) = ebx−2λ(x−dH)+(Ste
σx −K)+

Because of the importance of the level dH in the computations, we introduce
the stopping time τdH

= inf{t ≥ 0; W̃t = dH} and split the problem into the
computation of the two following quantities:

C1 = e−r(T−t)e2λ(−dH )+EP
[
1{τdH

>T−t}h(W̃T−t) exp(λLdH

T−t − α+A
(dH ,+)
T−t − α−A

(dH ,−)
T−t )

]

and

C2 = e−r(T−t)e2λ(−dH )+EP
[
1{τdH

<T−t}h(W̃T−t) exp(λLdH

T−t − α+A
(dH ,+)
T−t − α−A

(dH ,−)
T−t )

]

In order to compute C1, we introduce for simplicity s = T − t and obtain

EP
[
1{τdH

>s}h(W̃s)e
λL

dH
s −α+A

(dH,+)
s −α−A

(dH,−)
s

]
= e−sα−EP

[
1{Ms<dH}h(W̃s)

]
if dH > 0

= e−sα+EP
[
1{Is>dH}h(W̃s)

]
if dH < 0

We now need to recall some well-known results on Brownian motion first-
passage times that one may find for instance in Karatzas and Shreve (1991).
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Lemma II.10 The following equalities hold for u > 0 and a > 0

P[τa ≤ u] = P[Mu ≥ a] =
2√
2π

∫ ∞

a√
u

e−
x2

2 dx

Hence, for u > 0 and a ∈ R

P[τa ∈ du] =
|a|√
2πu3

e−
a2

2udu

and for λ > 0

E[e−λτa ] = e−|a|
√

2λ

where τa = inf{t ≥ 0;Wt = a}

Lemma II.11 For b ≥ 0 and a ≤ b, the joint density of (Wu,Mu) is given
by :

P[Wu ∈ da,Mu ∈ db] =
2(2b− a)√

2πu3
exp

{
− (2b− a)2

2u

}
da db

and likewise, for b ≤ 0 and a ≥ b the joint density of (Wu, Iu) is given by

P[Wu ∈ da, Iu ∈ db] =
2(a− 2b)√

2πu3
exp

{
− (2b− a)2

2u

}
dadb

These lemmas provide us with the following interesting property

Proposition II.12 Let us consider Wu a standard Brownian motion, Iu and
Mu respectively its minimum and maximum values up to time u.
For any function h ∈ L1(R), the quantity ka(u) = E

[
1{τa>u}h(Wu)

]
is given

by

∫ a√
u

−∞
dv
e−

v2

2

√
2π
h(v

√
u) −

∫ − a√
u

−∞
dv
e−

v2

2

√
2π
h(v

√
u+ 2a) if a > 0

∫ − a√
u

−∞
dv
e−

v2

2

√
2π
h(−v

√
u) −

∫ a√
u

−∞
dv
e−

v2

2

√
2π
h(−v

√
u+ 2a) if a < 0

Proof We first observe that

EP
[
1{τa>u}h(Wu)

]
= EP

[
1{Mu<a}h(Wu)

]
if a > 0

= EP
[
1{Iu>a}h(Wu)

]
if a < 0
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By symmetry, we only need to show the result in the case a > 0. From the
previous lemma, we can write

E
[
1{Mu<a}h(Wu)

]
=

∫ a

0

db

∫ b

−∞
dxh(x)

2(2b− x)√
2πu3

exp
{
− (2b− x)2

2u

}

Finally, we conclude by applying Fubini’s theorem.

As a consequence, we can now compute the quantity C1

Proposition II.13 For a call option such that dH > 0 or equivalently H >

St, the quantity C1 is equal to

e−(r+α−)sG(K,H, St, s)

where s = T − t and

G(K,H, St, s) = 0 if K ≥ H

G(K,H, St, s) = Ste
s

(b+σ)2

2 N1 −Kes b2

2 N2 if K < H

N1 = N(
dH√
s
−

√
s(b+ σ)) −N(

dK√
s
−

√
s(b+ σ))

−e2(b+σ)dH
(
N(−dH√

s
−

√
s(b+ σ)) −N(

dK − 2dH√
s

−
√
s(b+ σ))

)

N2 = N(
dH√
s
−

√
sb) −N(

dK√
s
−

√
sb)

−e2bdH
(
N(−dH√

s
−
√
sb) −N(

dK − 2dH√
s

−
√
sb)

)

where N(x) = 1√
2π

∫ x

−∞ dye−
y2

2

Proof We apply Proposition II.12 in the case a > 0 with h(x) = (S0e
σx −

K)+e
bx−2λ(x−dH )+ .

Proposition II.14 For a call option such that dH < 0 or equivalently H <

St, the quantity C1 is given by

e−(r+α+)sJ(K,H, St, s)

14



where s = T − t

J(K,H, St, s) = Ste
s

(b−2λ+σ)2

2 N1(d1, d2) −Kes
(b−2λ)2

2 N2(d1, d2)

N1(d1, d2) = N(− d1√
s

+
√
s(b+ σ − 2λ)) − e2(b+σ−2λ)dHN(

d2√
s

+
√
s(b+ σ − 2λ))

N2(d1, d2) = N(− d1√
s

+
√
s(b− 2λ)) − e2(b−2λ)dHN(

d2√
s

+
√
s(b− 2λ))

(d1, d2) = (dK , 2dH − dK) if K > H

(d1, d2) = (dH , dH) if K ≤ H

where N(x) = 1√
2π

∫ x

−∞ dye−
y2

2

Proof We apply Proposition II.12 in the case a < 0 with h(x) = (S0e
σx −

K)+e
bx−2λ(x−dH )+ .

In order to compute C2, it is useful to exhibit a result similar to the one
obtained in Proposition II.5 to obtain the Laplace transform of the joint den-
sity of (Bt, L

a
t , A

(a,+)
t , A

(a,−)
t ).

Proposition II.15 Let us consider Wt a standard Brownian motion, La
t its

local time at the level a, A
(a,+)
t and A

(a,−)
t respectively the time spent above

and below a by the Brownian motion W until time t.
For any function h ∈ L1(R), the Laplace Transform

∫ ∞
0
dte−

θ
2
tga(t) of the

quantity ga(t) = E
[
1{τa<t}h(Wt) exp(λLa

t ) exp(−µA(a,+)
t − νA

(a,−)
t )

]
is given

by

2e−a
√

θ+2ν

( ∫ ∞
0
dxe−x

√
θ+2µh(a+ x) +

∫ ∞
0
dxe−x

√
θ+2νh(a− x)

)

√
θ + 2µ+

√
θ + 2ν − 2λ

if a > 0

2ea
√

θ+2µ

( ∫ ∞
0
dxe−x

√
θ+2µh(a+ x) +

∫ ∞
0
dxe−x

√
θ+2νh(a− x)

)

√
θ + 2µ+

√
θ + 2ν − 2λ

if a < 0

for θ large enough, as seen before.

Proof Let us prove this result in the case a > 0; it easily yields to the case

15



a < 0.
We first write

ga(t) = e−νtE
[
1{τa<t}h(Wt) exp(λLa

t )e
−(µ−ν)A

(a,+)
t

]

Then

I(θ) =

∫ +∞

0

dt e−t θ+2ν
2 E

[
1{τa<t}h(Wt) exp(λLa

t )e
−(µ−ν)A

(a,+)
t

]

We now use the strong Markov property and observe thatBt = Wt+τa
−Wτa

=
Wt+τa

− a is a Brownian motion. Next, we compute the quantity

E
[
1{τa<t}h(Wt) exp(λLa

t )e
−(µ−ν)A

(a,+)
t

]
= E

[
1{τa<t}h(Bt−τa

+ a) exp(λLt−τa
)e−(µ−ν)A+

t−τa

]

=

∫ t

0

ds
ae−

a2

2s

√
2πs3

E
[
h(Bt−s + a) exp(λLt−s)e

−(µ−ν)A+
t−s

]

=

∫ t

0

ds
ae

− a2

2(t−s)

√
2π(t− s)3

E
[
h(Bs + a) exp(λLs)e

−(µ−ν)A+
s
]

since

La
t (a+B(·−τa)+) = L(t−τa)+

A
(a,+)
t =

∫ t

0

ds1{B(s−τa)+
>0} = A+

(t−τa)+

Hence, applying Fubini’s theorem and Proposition II.6 we obtain

I(θ) =

∫ ∞

0

dse−
θ
2
sE

[
h(a+Bs) exp(λLs) exp(−µA+

s − νA−
s )

] ∫ ∞

0

due−
θ+2ν

2
u |a|e−

a2

2u

√
2πu3

= 2e−a
√

θ+2ν

(∫ ∞
0
dxe−x

√
θ+2µh(a+ x) +

∫ ∞
0
dxe−x

√
θ+2νh(a− x)

)

√
θ + 2µ+

√
θ + 2ν − 2λ

Note that we used the simple and beautiful property that the Laplace trans-
form of the first passage-time of a Brownian motion at level a is given by
E[e−λτa ] = e−|a|

√
2λ

Proposition II.16 In the case H ≤ K, the Laplace transform with respect
to the variable T − t of the quantity C2 is given by the following formula:

I(θ) = M(θ)
N(θ)

D(θ)
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where
θ > (σ + b− 2λ)2 − 2(r + α+)

and

M(θ) =

(
H

St

) b−
√

θ+2(r+α−)

σ

if H > St

M(θ) =

(
St

H

) 2λ−b−
√

θ+2(r+α+)

σ

if H < St

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N(θ) =
H√

θ + 2(r + α+) + 2λ− σ − b

(
H

K

)√
θ+2(r+α+)+2λ−σ−b

σ

− K√
θ + 2(r + α+) + 2λ− b

(
H

K

)√
θ+2(r+α+)+2λ−b

σ

Proof We prove this result by applying Proposition II.8 and Proposition
II.15 and noticing that (S0e

σ(x+dH ) −K)+ = (Heσx −K)+

Proposition II.17 In the case H ≥ K, the Laplace transform with respect
to the variable T − t of the quantity C2 is given by the formula:

I(θ) = M(θ)
N1(θ) +N2(θ)

D(θ)

M(θ) =

(
H

St

) b−
√

θ+2(r+α−)

σ

if H > St

M(θ) =

(
St

H

) 2λ−b−
√

θ+2(r+α+)

σ

if H < St

D(θ) =

√
θ + 2(r + α+) +

√
θ + 2(r + α−) − 2λ

2

N1(θ) =
H√

θ + 2(r + α+) + 2λ− σ − b
− K√

θ + 2(r + α+) + 2λ− b

N2(θ) =
H√

θ + 2(r + α−) + σ + b

(
1 −

(K
H

)√
θ+2(r+α−)+σ+b

σ

)

− K√
θ + 2(r + α−) + b

(
1 −

(K
H

)√
θ+2(r+α−)+b

σ

)
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where θ > (σ + b− 2λ)2 − 2(r + α+)

Proof This result is immediately derived from Proposition II.9 and Propo-
sition II.15.

E. Extension to a Moving High-Water Mark

We now wish to take into account the fact that the threshold triggering the
performance fees may accrue at the risk-free rate. As a consequence, we
define f̃ as

f̃(t, St) = µa1{St>Hert}

Proposition II.18 There exists a unique solution to the stochastic differen-
tial equation

dSt

St

= (r + α− c− f̃(t, St))dt+ σdWt (10)

Proof Let us denote Yt = ln(Ste
−rt)

σ
. Applying Itô’s formula, we can see that

Yt satisfies the following equation

dYt = dWt + ψ(eσYt)dt

where ψ(x) = −σ2

2
+α−c−f(x) and f denotes the performance fees function

defined in equation (1).
ψ is Borel locally bounded, consequently we may again apply Zvonkin the-
orem that ensures strong existence and pathwise uniqueness of the solution
of (10).

Let us denote S̃t = Ste
−rt; we seek to construct a probability measure Q̂

under which
S̃t = S0 exp(σŴt)

where Ŵt is a Q̂ standard Brownian motion. We briefly extend the results
of the previous section to the case of a moving high-water mark.

Proposition II.19 There exists an equivalent martingale measure Q̂ under
which the Net Asset Value dynamics satisfy the stochastic differential equa-
tion

dSt

St

= (r +
σ2

2
)dt+ σdŴt (11)
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Moreover,
Q|Ft

= Zt · Q̂|Ft
(12)

where

Zt = exp
( ∫ t

0

(
b− f(S̃u)

σ

)
dŴu −

1

2

∫ t

0

(
b− f(S̃u)

σ

)2
du

)

and

b =
α− c− σ2

2

σ

Lemma II.20 Let us define dH , λ, α+, α− and φ as follows:

dH =
ln( H

S0
)

σ
, λ =

µa

2σ

α+ = 2λ2 +
b2

2
− 2λb, α− =

b2

2

φ(x) = ebx−2λ(x−dH )+

We then obtain:

Z ′
t = e2λ(−dH )+φ(Ŵt) exp(λLdH

t ) exp(−α+A
(dH ,+)
t − α−A

(dH ,−)
t ) (13)

For the sake of simplicity, we write in this paragraph the strike as KerT

and need to compute

C(t, St) = e−r(T−t)EQ
[
(ST −KerT )+|Ft

]
(14)

The pricing formulas2 are derived in a remarkably simple manner by setting
r = 0 in the results obtained in II.C and II.D.

III Numerical Approaches to the NAV op-

tion prices

At this point, we are now able to compute option prices thanks to Laplace
Transforms techniques (see Abate and Whitt (1995)) or Fast Fourier Trans-
forms techniques (see Walker (1996)) . We can observe that if Monte Carlo
simulations were performed in order to obtain the NAV option price, the
number of such simulations should be fairly large because of the presence of

2All full proofs may be obtained from the authors.
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an indicator variable in the Net Asset Value dynamics. The computing time
involved in the inversion of Laplace transforms is remarkably lower compared
to the one attached to Monte Carlo simulations.
Tables 1 to 4 show that the call price is an increasing function of the excess
performance α, and in turn drift µ, a result to be expected.

The call price is also increasing with the high water mark level H as in-
centive fees get triggered less often.

Table 5 was just meant to check the exactitude of our coding program :
by choosing a = 0 and α = 0, the NAV call option pricing problem is re-
duced to the Merton (1973) formula. Table 5 shows that the prices obtained
by inversion of the Laplace transform are remarkably close to those provided
by the Merton analytical formula.

Table 1
Call Option Prices at a volatility level σ = 20%

H = $85, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%
Strike / Maturity 6 Months 1 Year

90% $14.5740 $18.9619
100% $7.6175 $12.1470
110% $3.3054 $7.2058

H = S0 = $100, α = 10%, r = 2%, c = 2%, a = 20% and µ = 15%
Strike / Maturity 6 Months 1 Year

90% $15.0209 $19.6866
100% $7.8346 $12.5922
110% $3.3837 $7.4427

H = $115, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%
Strike / Maturity 6 Months 1 Year

90% $15.7095 $20.8464
100% $8.4147 $13.5815
110% $3.7084 $8.1198
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Table 2
Call Option Prices at a volatility level σ = 20%

H = $85, S0 = $100, α = 15%, r = 2%, c = 2%, a = 20%, µ = 20%
Strike / Maturity 6 Months 1 Year

90% $16.3804 $22.6562
100% $8.9668 $15.1925
110% $4.1091 $9.4795

H = S0 = $100, α = 15%, r = 2%, c = 2%, a = 20% and µ = 20%
Strike / Maturity 6 Months 1 Year

90% $16.9611 $23.6036
100% $9.2703 $15.8190
110% $4.2276 $9.8398

H = $115, S0 = $100, α = 15%, r = 2%, c = 2%, a = 20%, µ = 20%
Strike / Maturity 6 Months 1 Year

90% $17.9362 $25.2503
100% $10.1156 $17.2719
110% $4.7300 $10.8943

Table 3
Call Option Prices at a volatility level σ = 40%

H = $85, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%
Strike / Maturity 6 Months 1 Year

90% $18.8245 $25.3576
100% $13.2042 $19.9957
110% $8.9804 $15.6276

H = S0 = $100, α = 10%, r = 2%, c = 2%, a = 20% and µ = 15%
Strike / Maturity 6 Months 1 Year

90% $19.1239 $25.8231
100% $13.3979 $20.3534
110% $9.1012 $15.8949

H = $115, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%
Strike / Maturity 6 Months 1 Year

90% $19.5128 $26.4273
100% $13.7277 $20.8726
110% $9.3409 $16.3134
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Table 4
Call Option Prices at a volatility level σ = 40%

H = $85, S0 = $100, α = 15%, r = 2%, c = 2%, a = 20%, µ = 20%
Strike / Maturity 6 Months 1 Year

90% $20.3926 $28.6499
100% $14.4928 $22.8861
110% $9.9903 $18.1179

H = S0 = $100, α = 10%, r = 2%, c = 2%, a = 20% and µ = 15%
Strike / Maturity 6 Months 1 Year

90% $20.7978 $29.2995
100% $14.7618 $23.3938
110% $10.1615 $18.5044

H = $115, S0 = $100, α = 10%, r = 2%, c = 2%, a = 20%, µ = 15%
Strike / Maturity 6 Months 1 Year

90% $21.3417 $30.1555
100% $15.2260 $24.1402
110% $10.5042 $19.1158

Table 5
NAV Call Option Prices when µ = 0 at a volatility level σ = 40%

S0 = $100, r = 2%, c = 0.3%
Maturity 6 months 1 year

Strike Laplace Transform Merton formula Laplace Transform Merton formula
90% $12.3324 $12.3324 $14.577 $14.577
100% $6.0375 $6.0375 $8.7434 $8.7434
110% $2.4287 $2.4287 $4.8276 $4.8276
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IV Conclusion

In this paper, we proposed a pricing formula for options on hedge funds that
accounts for the high-water mark rule defining the performance fees paid to
the fund managers. The geometric Brownian motion dynamics chosen for
the hedge fund Net Asset Value allowed us to exhibit an explicit expression
of the Laplace transform in maturity of the option price through the use
of Brownian local times. Numerical results obtained by inversion of these
Laplace transforms display the influence of key parameters such as volatility
or moneyness on the NAV call price.
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Appendix : Excursion Theory

Proof of Proposition II.5: We use the Master formula exhibited in Brow-
nian excursion theory; for more details see Chapter XII in Revuz and Yor
(2005) the notation of which we borrow:
n denotes the Itô characteristic measure of excursions and n+ is the restric-
tion of n to positive excursions;
V (ǫ) = inf{t > 0; ǫ(t) = 0} for ǫ ∈ Wexc the space of excursions,
(τl)l≥0 is the inverse local time of the Brownian motion.

We can write

E

[ ∫ ∞

0

dte−
θ
2
th(Wt) exp(λLt) exp(−µA+

t − νA−
t )

]
= I · J

where

I = E
[ ∫ ∞

0

dle−
θ
2
τleλl exp(−µA+

τl
− νA−

τl
)
]

=

∫ ∞

0

dl exp

(
l
(
λ−

∫
n(dǫ)(1 − e−

θ
2
V −µA+

V
−νA−

V )
))

=
1

∫
n(dǫ)

(
1 − e−

θ
2
V −µA+

V
−νA−

V

)
− λ

=
1

√
θ+2µ+

√
θ+2ν

2
− λ

and

J =

∫ ∞

0

dse−
θ
2
s

{
e−µsn+

(
h(ǫs)1{s<V }

)
+ e−νsn+

(
h(−ǫs)1{s<V }

)}

Next, we use the result

n+

(
ǫs ∈ dy; s < V

)
=

y√
2πs3

e−
y2

2s dy (y > 0) (15)

and obtain

J =

∫ ∞

0

dxe−x
√

θ+2µh(x) +

∫ ∞

0

dxe−x
√

θ+2νh(−x) (16)

where the proof of equation (16) comes from the fact that in (15) the density
of n+ as a function of s, is precisely the density of Ty = inf{t : Bt = y}, and
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E[e−λTy ] = e−y
√

2λ.

This example of application of excursion theory is one of the simplest il-
lustrations of Feynman-Kac type computations which may be obtained with
excursion theory arguments. For a more complete story, see Jeanblanc, Pit-
man and Yor (1997).
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