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EVALUATING CONVOLUTION SUMS OF THE DIVISOR FUNCTION BY
QUASIMODULAR FORMS

EMMANUEL ROYER

AsstrACT. We provide a systematic method to compute arithmetic sums including
some previously computed by Alaca, Alaca, Besge, Cheng, Glaisher, Huard, Lahiri,
Lemire, Melfi, Ou, Ramanujan, Spearman and Williams. Our method is based on
quasimodular forms. This extension of modular forms has been constructed by
Kaneko & Zagier.
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1. INTRODUCTION

1.1. Results. Let IN denote the set of natural numbers and IN* = IN'\ {0}. For n and

jin IN* we set
oj(n) = Z dl
din
where d runs through the positive divisors of n. If n ¢ IN* we set gj(n) = 0.
Following [Wil05], for N € IN* we define

Wa(n) = ) o1(m)ai(n — Nm)
m<n/N

where m runs through the positive integers < n/N. We call Wy the convolution
of level N (of the divisor function). We present a method (introduced in [[LR05])
to compute these sums using quasimodular forms. The comparison between the
results we obtain and the ones already obtained may lead to interesting modular
identites (see, for example, remark [[). We insist on the fact that the only goal
of this paper is to present a method and we recapitulate, in table [Tl some of
the known results. We hope however that some of our results are new (see, for
example, theorems P} Bl Bl and proposition @). Whereas the evaluations of Wy ()
for N € {1,2,3,4} given in [HOSWO02] are elementary and the ones of Wy(n) for
N € {5,...,9} are analytic in nature and use ideas of Ramanujan, our evaluations
are on algebraic nature.

For N € {5,...,10}, we denote by A4y the unique cuspidal form spanning
the cuspidal subspace of the modular forms of weight 4 on I'o(N) with Fourier

expansion' Ay n(z) = 2™ + O (e4“iz). We define

+00

Agn(z) = Z Ty N ()

n=1
We also write
+00 +00
A(z) = ™= H [1 - ezmz]M = Z 7(n)e?™
n=1 n=1

for the unique primitive form of weight 12 on SL(2, Z).

U this paper, “Fourier expansion” always means “Fourier expansion at the cusp oo”.
1
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Level N Who Where
1 Besge (Liouville), Glaisher, Ramanujan | [Bes62], [Gla85], [Ram16]
2,3,4 Huard, Ou, Spearman & Williams [HOSWO2]

5,7 Lemire & Williams [LWO5]

6 Alaca & Williams [AW]

8 Williams [Will]

9 Williams [Wil05]
12 Alaca, Alaca & Williams [AAW(]
16 Alaca, Alaca & Williams [AAWal|
18 Alaca, Alaca & Williams [AAW]
24 Alaca, Alaca & Williams [AAWD]

TaBLE 1. Some previous computations of Wy

Theorem 1. Let n € IN*, then

Wi () = %03(;1) - gal(n) + %al(n),

1 1 n 1 n 1 1 n
Walm) = 7g0a(m) + E‘”(E) *30 (z) ~ 1" - g (z)

+ la (n) + lcr (E)
24! 24°"\q)’

Ws(n) = i‘73(”) + &03 (E) - lnal(n) - 1;101 (E) + lo‘l(n) + lal (E)

312 3127°\5) " 20 2"U\5) " 24°1\5
L
130 L

We() = ——os(n) + Lo (E) . %03(E) 3, (E) = Loin) - Lnoy (E)

120 3072\2 3)710%\6) 1"\
+ lo (n) + lo (E)— ——T46(1)
24V T 5491 6) T 120 A0V

1 49 n 1 1 n 1 1 n
Wr(n) = 7559301 + 15093 (?) g1 - g (?) o1+ 5o (?)

- 7_0 74,7(71)/

1 1 n 1 n 1 n 1 1 n
Ws(n) = 19503(0) + 5193 (z) * E“(Z) T30 (g) ~ 3" - g (g)

PRI I (E)—l (n)
2491V T 5491 \g) T g T4
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1 1 n 3 n 1 1 n
W) = 37603(m + 5703 (5) 3o (5) ~ 3" - 7 (5)

+io (n)+ic7 (E)—l (n)
241V T 5491 g ) T 5y TV

Wig(n) = Lc73(n) + lc73 (E) + §03 (E) + §a3 (i) - inal(n) - lnal (i)
312 78 2 312 7\5 78 10/ 40 4 10
+ l(71(7’1) + i(il (i) - LT4 10(71) - i’L’45(Tl) - iT45 (E)
24 24 10 120 ~ 260 65 \2

For dimensional reasons, the forms A4y are primitive forms for N € {5, ...,10},
meaning that they are eigenvalues of all the Hecke operators and that their Fourier
expansion begins with 2™ + O(e*™). Tt follows that the arithmetic functions 74y
are multiplicative and satisfy the relation (@) (see below). Following [K0i84], one
obtains

Ays5(2) = [A(2)AG)]®,

As6(2) = [A(2)AQR2)A(B2)A(62)]'/12,
Ass(z) = [AQ22)A@42)]°,

Aso(z) = [AGB2)]'7,

whereas Ay7 and Ay are not products of the n function.

However, using Macma[BCP97] (see [Ste04]] for the algorithms based on the
computation of the spectrum of Hecke operators on modular symbols), one can
compute their Fourier coefficients (see tables Pland ).

Remark 1. The independant computation of W7 by Lemire & Williams [LW05]
implies that

Ay7(z) = [(A(Z)ZA(7Z))1/3 + 13 (A@AT2)> + 49 (A(Z)A(7z)2)1/3]1/3

This provide an alternative method to compute the function 747. It is likely that,
following [LW05] to evaluate Wiy we could get an expression of A4 0.

n 1123 4 |56 7 8 9 10 | 11
Ta7m) | 1 |-1|-2|-7|16|2|-7| 15 | =23 | -16| -8
n 12|13 (14| 15 |16 |17 |18 | 19 20 21 | 22
Tay(n) || 14 |28 | 7 | =32 41|54 |23 |-110|-112| 14 | 8
TasLE 2. First Fourier coefficients of A4y

n 112 [3]475]6 /7] 8 [9]10]11
a0 || 1 | 2 |-8| 4 |5 |-16]|-4] 8 [37]10]12

n 1213 [14] 15 [16] 17 [ 18] 19 [20]21] 22
Ta10(n) || =32 | =58 | —8 | —40 | 16 | 66 | 74 | —100 | 20 | 32 | 24

TasLE 3. First Fourier coefficients of A4 19

In each of our previous examples, we did not leave the field of rational numbers.
This might not happen, since the primitive forms do not necessarily have rational
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coefficients. However, every evaluation will make use of totally real algebraic
numbers for coefficients since the extension of Q by the Fourier coefficients of a
primitive form is finite and totally real [ShiZ2, Proposition 1.3]. To illustrate that
fact, we shall evaluate the convolution sum of level 11 and 13. The set of primitive
modular forms of weight 4 on I'7(11) has two elements. The coefficients of these
two primitive forms are in Q(t) where t is a root of X*> — 2X — 2 (see § I8 for the
use of a method founded in [[Zag92]). Each primitive form is determined by the
beginning of its Fourier expansion:

A4,11/1 (Z) — eZniz + (2 _ t)eélm'z + O(eém'Z)

A4]11,2(Z) — eZﬂiZ + te4niz + O(€6ni2)‘

We denote by 14,11, the multiplicative function given by the Fourier coefficients of
Ay 11, The two primitive forms, and hence their Fourier coefficients, are conjugate
by t - 2 —t (see, for example, [DI95] for the general result and § 8 for the special
case needed here). We give in § I8 a way to compute the functions 74,11, for
ie{1,2}.

n 1 2 3 4 5
T4,11,1(7’l) 1 —t+2 4t -5 —2t-2 —8t+9
n 6 7 8 9 10
T411,0(n) || St —18 | 4t+6 |10t—-16 | —-8t+30 | —-9t+ 34
n 11 12 13 14 15
T411,1(n) -11 | -14t-6 | 20t+20| —6t+4 | 12t -109

TasLE 4. First Fourier coefficients of Ay 111 where t> —2t —2 =0

Theorem 2. Let n € IN*. Then

W) = —0s(m) + o205 (1) = oo () = o (1)

1464 12647°\11) " 12 4 N\11
+ ia (n) + ia (ﬁ) _ MT (n) + i’[ (n)
241 24°"\11) " 4026 ! 4026 AMA

Remark 2. We have

_2t+43 () + t—47 (n) =t [_2t+43 (n)]EQ
1006 T4,11,1 4026 T411,2(n) = troe/Q 1006 T4,11,1 .

The set of primitive modular forms of weight 4 on I'y(13) has three elements.
One of them, we note A4131, has Fourier coefficients in Q. The two others, we note
Ay132 and Ag133, have Fourier coefficients in Q(u) where u is a root of X? — X — 4.
Each of these two primitive form is determined by the beginning of its Fourier
expansion:

Ag132(2) = 7 + (1 — u)e*™ + O(e5)

Asj33(z) = ATz 4 ATz O eém’z)'

We denote by 74,13, the multiplicative function given by the Fourier coefficients
of A413;. The two primitive forms A4132 and Ag133, and hence their Fourier
coefficients, are conjugate by u — 1 — u (see, for example, [DI95]). We compute
table Blby use of MaGmA.
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n 1 2 3 4 5
T4132(n) 1 —u+1 3u+1 -u-3 —u-1

n 6 7 8 9 10
T4132(n) -u-11 -11u+1 | 11lu—-7 | 15u + 10 u+3

n 11 12 13 14 15
T4132(n) | —12u+46 | —13u - 15 -13 -u+45 | -7u—13

TasLe 5. First Fourier coefficients of A413, where u? —u —4 =0

Theorem 3. Let n € IN*. Then

1 169 [ny 1 1 n
W
13(1) = 75g3(m + 40803(13) 5101 - 4”01(13)
Loy + (”)+”—_6 ) - 20 )
24D T 5101\ 13) T ey T2 44p 133U
Remark 3. We have
u— +5 -6
) T4132(1) — mu,mﬁ(ﬂ) trQuw) /Q[ 1 2(”)] €Q.

The set of primitive modular forms of weight 4 on I'y(14) has two elements.
Both have coefficients in Q and we can distinguish them by the beginning of their
Fourier expansion:

Ag141(z) = ¥ + 2647 + O(57)
A 142(2) = € — 2642 4 O(e57).

We denote by 14,14; the multiplicative function given by the Fourier coefficients of
A414,; and give in §2.T0a method to compute these coefficients and get tables@and

271iz

n 112|314 5 6 7 8 9 10 | 11
Taaa(n) || 1 | 2|24 |-12] -4 7 8 | —23 | —24 | 48
n 12 113 |14 | 15| 16 17 18 | 19| 20 | 21 |22
Ts1a1(n) || -8 |56 | 14 |24 | 16 | -114 | -46| 2 | —48 | -14 | 96
TasLE 6. First Fourier coefficients of Ay 14,1
n 11213 4 5 6 7 8 9 10 | 11
Ta1ap(n) || 1 | -2 8 4 -14|-16| -7 | -8 | 37 | 28 | -28
n 12113 |14 | 15 16 | 17 | 18 |19 ] 20 | 21 | 22
T41ap(n) || 32| 18 | 14| =112 | 16 | 74 | -74| 80 | =56 | =56 | 56
TasLE 7. First Fourier coefficients of Ay 142
Theorem 4. Let n € IN*. Then
Wautn) = s+ 15505 (5)+ 55505 (7)+ 155 ()~ 3gmon00 = 371 (1)
+ l01(”) ( “ ) > =~ Ta7(n) — 0 T47(n) ! < Ta141(n) — L =—T4,142(n).
24 24°"\12 350 175 7 \2 84 200



6 EMMANUEL ROYER

Remark 4. The factthatforeach N € {12, 16, 18, 20, 24} there exists only one primitive
form of weight 4 over I'((N) and at most one of weight 2 implies that the only
modular forms appearing in the evaluation of the corresponding Wy have rational
coefficients.

Our method, with the introduction of Dirichlet characters, also allows to recover
another result of Williams [Wil05, Theorem 1.2] which extended a result of Melfi
[Mel98, Theorem 2, (7)]. This result is theoremBl Forb € N*and a € {0,...,b—1},

we define
n

S[a, b](n) := Z a1(m)o1(n — m).

m=0
m=a (mod b)

We compute S[i, 3] for i € {0,1,2}. Our result uses the primitive Dirichlet character
X3 defined by

0 ifn=0 (mod 3)
x3(n) =41 ifn=1 (mod 3)
-1 ifn=-1 (mod 3)
forall n € N".

Theorem 5. Let n € IN*, then

0310 B+ Zo(2)- 3 (3)- o - () o )

+ 21_4 [1+06(3 | m]oi(n) + %m(”)f

SI1,3101) = =2 03(m) + 3 X5(m03(n) — 225 (5] + =05 (5

- Snomorn o (2)+ s (2)- o (3

1 1
+ ﬂé(?» | n—1)o1(n) + Eu,g(rz)

and

512,3101) = =2 03(m) = 3 X5(003() — 22 (5] + =05 (5

-+ bt o [2)- s ()3 2

1 1
+ ﬂé(:‘} | n-— 2)0’1(71) - 5’[4,9(7’1).
where 6(3 | n) is 1 if 3 divides n and 0 otherwise.

We next consider convolutions of different divisor sums and recover results of
Melfi [Mel9§, Theorem 2, (9), (10)] completed by Huard, Ou, Spearman & Williams
[HOSWO02, Theorem 6] and Cheng & Williams [CW05]. We shall use the unique
cuspidal form Ag, spanning the cuspidal subspace of the modular forms of weight

8 on I'y(2) with Fourier expansion Ag»(z) = €™ + O (64"i2). Using [Koi84], we have

As2(2) = [n(2)n22)°.
We define

+00

Ag2(z) = Z Tg,0(n)e™ .

n=1
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This is again a primitive form, hence the arithmetic function g, is multiplicative
and satisfies the relation @) (see below).

Theorem 6. Let n € IN*. Then

n

Y 01005 — k) = a505(m) = 51030 + 52050 = 55010,

8 24 240
k=0

1 1 n 1 n 1 n 1
Z o1(n — 2k)os(k) = mﬁs(n) + EUS (E) - gn03 (E) + ﬂ% (E) - mﬂl(”)r
k<n/2

1 1 n 1 1 1 n
Z o1(k)os(n —2k) = 505(;1) + EGS (E) - En@(n) + ﬂ(n(rz) - mal (E)
k<n/2

Moreover,

n

5 1 1 1
kZ_O‘ 01(K)s(1n = k) = =07(n) = 5nos(n) + 5205(n) + 5201(n),

Y o1(K)os(n —2k) =

k<n/2
1 32 n 1 1 1 n 1
ﬁ(h(”) + ﬁ07(§) - EWUS(”) + EUS(”) + ﬁf’l (E) - ﬁTs,z(”)/
and
Y, o1 = 2K05(k) =
k<n/2

1 2 n 1 n 1 n 1 1
710700+ 5707 () = 3105 (3) + 505 (3) + 0100 - gogesate
In theorem @ the first and fourth identites are due to Ramanujan [RamT6]. The
second and third ones are due to Huard, Ou, Spearman & Williams [HOSWO02,
Theorem 6]. The fifth and sixth ones are due to Cheng & Williams [CW05]. Some
other identities of the same type may be found in [CW05] and [Ram16].
Our method also allows to evaluate sums of Lahiri type

(1) S[(ﬂl, v /af‘)/ (bll ey bV)/ (Nll v /Nf‘)](n) =

Y, o (5o ()
| -0y N, ...0p, N,

(m1,...,m,)EN'
my+..+m,=n

[Lah46], [Lah47], [HOSWO02, §3] where the a; are nonnegative integers, the N; are
positive integers and the b; are odd positive integers. To simplify the notations, we
introduce

S[(ﬂl, L] /af‘)/ (bl/ sy b}')](n) = S[(all .. '/a}')/ (bll ceey b?‘)/ (1/ ey 1)](”)
For example, we prove the following.
Theorem 7. Let n € IN*. Then

S10,1,1), (1,1, 1109 = o) = 5050 + 5 05(0)

L4 L 3
+ 96” o1(n) 288” o1(n).
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and if
An) = —45—811209(11)
B(n) = 128n%a7(n)
C(n) = —80n2a7(n) — 600nc5(n)
D(n) = 648n°0s5(n) + @rﬁ@(n)
E(n) = —144n%05(n) — gn‘*@m) - @n(’al(n)
F(n) = 5761n°05(n) + %n%l(n)
G(n) = —432n*01(n) — 48n%03(n)
H(n) = 48n%0(n)

8

I(n) = %n’c(n)
Jn) = ~ ()

then

—2455[(0,0,0,1,1),(1,1,1,1,1)](n) =
A(n) + B(n) + C(n) + D(n) + E(n) + F(n) + G(n) + H(n) + I(n) + J(n).

The first identity of theorem [is due to Lahiri [Lah46), (5.9)] and an elementary
proof had been given by Huard, Ou, Spearman & Williams [HOSW0Q2]. The second
identity is due to Lahiri [Lah47].

We continue our evaluations by the more complicated sum S[(0, 1), (1, 1), (2,5)].
The reason why it is more difficult is that the underlying space of new cuspidal
modular forms has dimension 3.

The space of newforms of weight 6 on I'((10) has dimension 3. Let {Ag10,i}1<i<3
be the unique basis of primitive forms with

A610,1(2) = ¥ + 4e*™= + 6™ + O(e),
Ae102(2) = €™ — 46" + 24657 + O(e%7),
A6,10,3(Z) = p2Miz _ gpAmiz _ 26667‘[1‘2 + O(E’sz).

Again, by [Koi84], we know that these functions are not products of the n function.
We denote by 74 10,i(11) the nth Fourier coefficient of Ag19;. The functions 710, are
multiplicative and we show in § 52 how to establish tables8 Bland [0

n 1 2 3 4 5 6 7 8 9 10 11

Te,101(n) || 1 4 6 16 |-25| 24 | -118| 64 —-207 | =100 | 192

n 12| 13 14 15 16 | 17 18 19 20 21 22

Te,10,1(1) || 96 | 1106 | —472 | =150 | 256 | 762 | —828 | —2740 | —400 | =708 | 768

TasLe 8. First Fourier coefficients of Ag 10,1

We also need the unique primitive form

+00

Ag5(z) = Z Te,5(n)e>™"™

n=1
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n 1 2 3 4 5 6 7 8 9 10 11
Te,102(n) || 1 -4 |24 |16 | 25 | =96 | =172 | —64 | 333 | —100 | 132

n 12 13 14 | 15 | 16 17 18 19 | 20 21 22
Te,102(n) || 384 | =946 | 688 | 600 | 256 | —222 | —1332 | 500 | 400 | —4128 | —528

TasLE 9. First Fourier coefficients of Ag 10,2

n 1 2 3 4 5 6 7 8 9 10 11
T6,10,3(1) 1 -4 | -26| 16 | -25|104 | -22 | —64 | 433 | 100 | -768

n 12 13 | 14 | 15| 16 | 17 18 19 20 21 22
Te103(n) || —416 | —46 | 88 | 650 | 256 | 378 | —1732 | 1100 | —400 | 572 | 3072

TasLE 10. First Fourier coefficients of Ag 10,3

of weight 6 on T'(5). It is not a product of the 7 function, and we show in § EZhow
to establish table [Tl

n 1 2 3 4 5 6 7 8 9 10 11

Te5(n) || 1 2 | -4 | -28 | 25 -8 192 | =120 | =227 | 50 | -148

n 12 | 13 | 14 15 16 17 18 19 20 21 22

Te5(n) || 112 | 286 | 384 | —100 | 656 | —1678 | —454 | 1060 | —700 | =768 | —296

TasLE 11. First Fourier coefficients of Ag 5

Proposition 8. Let n € IN*. Define

A(n) = En (n)+§n (n)_’_@ (E)+1200n (n)
13/ T 3793 (5 ) T 43935 ) T T3 "3\ 10

B(n) = —%n o1 (2) 48n 01(5)

C(n) = 24n0, (g)

12 216 864 n
D(n) = 5, 10(1n) = ——nT45(N) — ——NT45 ( )

65 65
E(n) = 058 Te,5(1) + 83654 T6,5 (Z) 254 T6,10,1(1) + %Te 10,2(1).
Then
5 x 24° Z bo1(a)o1(b) = A(n) + B(n) + C(n) + D(n) + E(n).
(a,b)eN"
2a+5b=n

We shall now evaluate S[(1, 1), (1, 1), (1, 5)] since it constitutes an exemple leaving
the rational field. Let v be one of the two roots of X% — 20X + 24. There exist three
primitive forms of weight 8 on I'y(5) determined by the beginning of their Fourier
expansion:

AS,S,l(Z) — eZniz _ 14e4niz + O(eéniZ)
AS,S,Z(Z) — eZ‘IIiZ + (20 _ Z])64711'2 + O(e6niZ)
A8,5,3(Z) — eZm’z + 064711'2 + O(e6ni2)'
The function Ags 3 is obtained from Ags, by the conjugation (v = 20 — v) of Q(v)

on the Fourier coefficients. We denote by 735, the multiplicative function given by
the Fourier coefficients of Ags; and show in § E3how to compute them.
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n 1 2 3 4 5 6 7 8 9
T85,1(1) 1 -14 | -48 68 125 672 -1644 840 117

n 10 11 12 13 14 15 16 17 18
1851(n) || =1750 | 172 | —3264 | 3862 | 23016 | —6000 | —20464 | —12254 | —1638

TasLE 12. First Fourier coefficients of Ags 1

n 1 2 3 4 5
T8,52(1) 1 -v+20 8v—-70 —20v + 248 -125
n 6 7 8 9 10

1852(n) || 700 — 1208 =560+ 510 | —120v + 1920 | 160v + 1177 1250 — 2500

n 11 12 13 14 15

T85.2(n) || —4000 + 6272 | 184v — 13520 | 608v — 4310 | —510v + 8856 | —1000v + 8750

TasLe 13. First Fourier coefficients of Ags, where v? — 200 + 24 = 0

Proposition 9. Let n € IN*. Define

24 600 n
A(n) = En203(n) + ﬁnzag, (g)

B(n) = —%n%l(rz) — 2410, (g)

792+ 120 1032 - 12v

D(n) = ———1g52(n) + 175 T8,5,3(1).

Then
5 x 242 Z abo1(a)o1(b) = A(n) + B(n) + C(n) + D(n).
(a,H)eN?
a+5b=n
Remark 5. The two terms in the right hand side of the definition of D(#) in propo-
sition @being conjugate, we have

792 + 120
TTS'S'Z(YI)] € Q

To stay in the field of rational numbers, we could have used the fundamental
fact that, for every even k > 0 and every integer N > 1, the space of cuspidal
forms of weight k on I'o(NN) has a basis whose elements have a Fourier expansion
with integer coefficients [Shi94, Theorem 3.52]. However, the coefficients of these
Fourier expansions are often not multiplicative: this is a good reason to leave Q.

D(n) = trou)q [

Remark 6. If 7. is one of our T functions, its values are the Fourier coefficients of
a primitive form (of weight k on I'o(N) say). It therefore satisfies the following
multiplicativity relation

(2) T.(mn) = Z y(d)dk’lfc*(%)’c*(g).
)

d|(m,n

@N)=1
Remark 7. When we found some, we give some expression to compute the various
Fourier coefficients that we need. This is however somewhat ad hoc and never
needed since we only need to compute a finite number of coefficients and can then
use the algorithms provided by algorithmic number theory [BCP97], [Ste(4].
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Thanks — While a preliminary version of this paper was in circulation, K.S. Williams
kindly informed me of the papers [AW], [LWO05], [Will], [AAWd], [AAWa], [AAWd],
[AAWD] and [CWO5]. I respectfully thank him for having made these papers
available to me. The final version of this paper was written during my stay at the
Centre de Recherches Mathématiques de Montréal which provided me with very
good working conditions. I thank Andrew Granville and Chantal David for their
invitation.

1.2. Method. Since our method is based on quasimodular forms (anticipated by

Rankin [[Ran56] and formally introduced by Kaneko & Zagier in [KZ93]), we briefly

recall the basics on these functions, referring to [MR05] and [LR05] for the details.
Define

To(N) = {(‘Cz Z) (a,b,c,d)eZ4 ad—bc=1,N| c}

for all integers N > 1. In particular, I'o(1) is SL(2, Z). Denote by .# the Poincaré
upper half plane:

H ={zeC: Inz >0}
Definition 10. Let N € N, k € IN* and s € IN*. A holomorphic function
f:# —-C

is a quasimodular form of weight k, depth s on To(N) if there exist holomorphic functions
fo, fi, ..., fs on A such that

) (cz+d)"f(az+b)=zs:ﬁ(z)( ¢ )z'
=0

cz+d cz+d

for all (g fj,) € I'o(N) and such that f; is holomorphic at the cusps and not identically

vanishing. By convention, the O function is a quasimodular form of depth O for each
weight.

Here is what is meant by the requirement for f; to be holomorphic at the cusps.
One can show [MR05, Lemme 119] that if f satisfies the quasimodularity condition
@), then f; satisfies the modularity condition

“(k—25) o [AZ+ D
(cz+d) 2, (m) = @)
for all (g Z) € I'g(N). Asking f; to be holomorphic at the cusps is asking that, for all
M= (;)f g) € I'o(1), the function

7 (7/Z + 5)*(1<<7-S)fS (ﬂ)

yz+6

has a Fourier expansion of the form
+00 e nz
X Fooe ()
n=0 M

uy = inf{u € N*: T € M™'To(N)M).
In other words, f; is automatically a modular function and is required to be more
than that, a modular form of weight k — 2s on I'o(N). It follows that if f is a
quasimodular form of weight k and depth s, non identically vanishing, then k is
evenand s < k/2.

where
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A fundamental quasimodular form is the Eisenstein series of weight 2 defined
by

+00
Ex(z) =124 Z o1 ()X,
n=1

It is a quasimodular form of weight 2, depth 1 on I'y(1) (see, for example, [Ser77,
Chapter 7]).

We shall denote by M*[To(N)] the space of quasimodular forms of weight k,
depth < s on I'h(N) and Mi[I'o(N)] = ]\7Ilfo[l" 0(N)] the space of modular forms of
weight k on I'o(N). The space Mfk/ 2[[o(N)] is graded by the depth.

Our method for theorem[lis to remark that the function

Hn(z) = E2(z)E2(Nz)
—1-24 Z [al(n) +op ( )] A | 576 Z W (n)e2rne

is a quasimodular form of weight 4, depth 2 on I'y(N) that we linearise using the
following lemma.

Lemma 11. Let k > 2 even. Then
k/2-1
MEP[Lo(N)] = ) D'Mi_alTo(N)] @ €D E,.
i=0
We have set
_1.d
=5
Let {BxJrenw be the sequence of rational numbers defined by its exponential
generating function

+00 k

t ¢
=Y B—.

et —1 kz_; hl

We shall use the Eisenstein series to express the basis we need:
2k
Ein(z) =12 Z 011 (™™ € My[To(N)]

forall k € 2IN*+2, N € N*. If N = 1 we simplify by writing Ej := En. For weight
2 forms, we shall need

Dup(z) = g—— [DE2(bz) — aEx(az)] € Ma[To(D)]

forallb>1anda|b.
Let x be a Dirichlet character. If f satisfies all of what is needed to be a quasi-
modular form except @) being replaced by
i)

N e RO W
=0

then one says that f is a quasimodular form of weight k, depth s and character y
on I'h(N). (In particular, we require f; to be a modular form of character y). We

denote by M:*[To(N), x] the vector space of quasimodular forms of weight k, depth
<sand character xonTo(N). If x = xo is a principal character of modulus dividing

N, thenM<S[F0(N) xl= M<S[T0(N)]
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If f e ]\7155 [To(N)], then f has a Fourier expansion with coefficients {ﬁn)}nE]N. We
define the twist of f by the Dirichlet character x as

foxE =Y xmfme =
n=0

In [LRO5, Proposition 9], we proved the following proposition.

Proposition 12. Let x be a primitive Dirichlet character of conductor m. Let f be a
quasimodular form of weight k and depth s on I'o(N). Then f ® x is a quasimodular form
of weight k, depth less than or equal to s and character x* on T (lcm(N, mz)).

Remark 8. The condition of primitivity of the character may be replaced by the
condition of non vanishing of its Gauss sum.

The proof of theorem B follows from the linearisation of E - E; ® x3.
Theorems @l and [ follow from the linearisation of derivatives of forms of type
E;Exn-

1.3. Generalisation of the results. For N > 1and k > 2, let Ay be the set of triples

(1, ¢, t) such that 1 is a primitive Dirichlet character of modulus L, ¢ is a primitive
Dirichlet character of modulus M and t is an integer such that tLM | N (and tLM # 1
if k = 2) with the extra condition

) Poo(n) = {1 N =1 Ny,

0 otherwise

We write 1 for the primitive character of modulus 1 (the constant function n + 1).
We extend the definition of oy: for k and n in IN* we set

(CED) v (5 s

where d runs through the positive divisors of n. If n ¢ IN* we set a;/}’(f)(n) =0.IfM

is the modulus of the primitive character ¢, we define the sequence {BZ)} keN by its
exponential generating function
+00
¢ tk
Z PO B
k=0

For any (¢, ¢, t) € A}, ,, define

Nk’

E(2) =0y =1)- ?Z  m)e
k

n=1
and
Ero = (5 ) if (k,,9) # (2,1,1)
E;l(z) - tE;’l(tz) otherwise

where 6(i = 1) is 1 if ¢ = 1 and 0 otherwise.
For N > 1 and k > 2 even, the set

P *
(B0 @) € Ay
is a basis for the orthogonal subspace (called Eisenstein subspace, the scalar product

being the Petersson one) of the cuspidal subspace Si[I'o(N)] of Mi[I'o(N)] [DSO5}
Chapter 4].
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Moreover, by Atkin-Lehner-Li theory [DS05, Chapter 5], a basis for Sg[I'o(N)] is
L) au(HiImom))

d,M)eN*
AMIN

where a4 is
ag o M[To(M)] —  M[To(M)]
f = [z f(d2)]
and H;[T'o(M)] is the set of primitive forms of weight k on I',(M).
A corollary is the following generalisation of theorems[land@ If f is a modular
form, we denote by {ﬂn)}neN the sequence of its Fourier coefficients.

Proposition 13. Let N > 1. There exist scalars ay,¢,+, amq,f and a such that, foralln > 1,
we have

Wn(n) = Z a¢¢t0‘p‘(t)+ Z a¢¢tn0¢‘(t)+an01(n)

(. DH)EAY Wp.heAy,
+ Z ClMdff( ) aMdle]?\( )
(d,M)eN* feH [To(M)] dM)e]N feH;[To(M)]
dM|N dMIN
+ io (n) + (—)
24T NN

More generally, for any N > 1 and any even £ > 4, the arithmetic functions

1 n
ne X oo - o1 - o0 (%)

and 5 .
¢ n
ne Z 01(k)oe-1(n —kN) — ﬁol (ﬁ) - ﬂag_l(n)
k<n/N
are linear combinations of the sets of functions

U )

W, t)eAL

N,(+2

o, {n — nafﬂ) (?)} ,
e 7))

(dM)eN" feH;, Z[Fo (M)]
dMIN

U U {renf3)

(d,M)eN" feH;[To(M)]
dMIN

The same allows to generalise theorem Bl If b > 1 is an integer, denote by X(b)
the set of Dirichlet characters of modulus b. By orthogonality, we have

n—1
Sla, 109 = s Y 3@ Y, xtm)emor(n ~ m).
m=1

X€X(b)

It follows that the function to be considered is now

1 -
w X;}J)X(ﬂ)Ez -Ex® x.
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We restrict to b squarefree so that the Gauss sum associates to any character of

modulus b is non vanishing. For N > 1, let )(N) be the principal character of
modulus N. For y € X(b), we define A* L as Aj, except we replace condition @

by
v = X\x

Then, similarly to the proposition[3 we have the following proposition.

Proposition 14. Let b > 1 squarefree and a € [0, b — 1] be integers. Then the function
1
n = Sla,bl(n) — 2 [0(b [a) + 6(b | n —a)]or ()

is a linear combination of the set of functions

U U e (3]

XEX() WP Ay, |

{MM%)},
e 712)

xeX(b) (d M EN feH, [ro(M) Ox
o)

xeX(b) (d, M)EN feH; [FO(M) Oy
{n — noi(n)}

XEX(D) (P DAy,

where N is the least common multiple of 2 and b* and 5(b | n —a) is 1if n = a (mod b)
and 0 otherwise.

2. CONVOLUTIONS OF THE DIVISOR SUM

2.1. Level 3. By lemmalld] we have
M;2[To(3)] = Mu[To(3)] & DM;[To(3)] @ CDE».

The vector space My[I'y(3)] has dimension 2 and is spanned by the two linearly
independent forms E4 and E43. The vector space M;[I'9(3)] has dimension 1 and is
spanned by ®; 3. Computing the first Fourier coefficients, we therefore find that

1 9
(5) H3 = EE4 + EE4]3 + 4Dq)1,3 + 4DE,.

Comparing with the Fourier expansion in () leads to the corresponding result
in theorem Il

2.2. Level 5. By lemmal[T] we have

M;2[To(5)] = Mu[To(5)] & DMs[To(5)] @ CDE».

The vector space M4[I'o(5)] has dimension 3 and is spanned by the linearly inde-
pendent forms Ey4, E45 and Ay 5. The vector space M;[I'g(5)] has dimension 1 and is
spanned by ®; 5. Computing the first Fourier coefficients, we therefore find that

1 25 288 24 12
(6) Hs = %EA} 6E45 - EA quh 5+ ?DEZ

Comparing with the Fourier expansion in (@) leads to the corresponding result
in theorem Il
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2.3. Level 6. By lemmallT] we have
M:2[T(6)] = Mu[To(6)] & DM;[T(6)] & CDE,.

The vector space M4[I'9(6)] has dimension 5 and is spanned by the five linearly
independent forms E4, E4» ,Es3 Eg6 and Asg. The vector space M[I'o(6)] has
dimension 3 and is spanned by the three linearly independent forms ®; », ®; 3 and
@3 6. Computing the first Fourier coefficients, we therefore find that

18 24

1 2 9
7 H¢ = —E —FE —E —E46— —A 2DD 3D, 2DE>.
(7) 6= ggba+ SpEan+ opEas+ 5oEae — —Aus + 13+ 36+ 2

Comparing with the Fourier expansion in (@) leads to the corresponding result
in theorem [

24. Level 7. By lemmallT] we have
M [To(7)] = MalTo(7)] ® DM2[To(7)] & CDE,.

The vector space My[I's(7)] has dimension 3 and is spanned by the three linearly
independent forms Ej, E47 and Ay7. The vector space M,[I'9(7)] has dimension
1 and is spanned by the form ®;;. Computing the first Fourier coefficients, we

therefore find that
1 49 288 36 12
(8) H; = %E;} + %E4,7 - ¥A4,7 + 7DCD1,7 + 7DE2

Comparing with the Fourier expansion in () leads to the corresponding result in
theorem [l

2.5. Level 8. By lemmalld] we have
MZ?[T0(8)] = Ma[To(8)] © DM:[To(8)] © CDEy.

The vector space My[I'9(8)] has dimension 5 and is spanned by the five linearly
independent forms Es, Esp, Es4, Ess and Agg. The vector space M,[I'o(8)] has
dimension 3 and is spanned by the forms ®; 4, ®1 5 and

@1/4/2 =Zk @1/4(22).
Computing the first Fourier coefficients, we therefore find that

1 3 3 4 21 3
(9) Hg = %E;} + %E4,2 + %E4,4 + §E4,g - 9A4]g + ZDCDLS + EDEZ
Comparing with the Fourier expansion in (@) leads to the corresponding result in

theorem [l

2.6. Level 9. By lemmal[T] we have
M:2[T(9)] = Mu[To(9)] & DM[T(9)] @ CDE».

The vector space M4[I'9(9)] has dimension 5 and is spanned by the five linearly
independent forms E4, E4 ® x3, E43, E49 and Ayg. The vector space M,[I'o(9)] has
dimension 3 and is spanned by the forms @3, ®;3 ® x3 and P 6.
Computing the first Fourier coefficients, we therefore find that
1 4 9 32 16 4
10 Hy= —E4+ —E —E4 90— —A —D® —DE,.
(10) 9= 90 4+45 4,3+10 497 3 4,9+3 1,9+3 2
Comparing with the Fourier expansion in ([[{) leads to the corresponding result in
theorem[l
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2.7. Level 10. By lemma[[1l we have
M;2[T(10)] = Ma[T(10)] & DM;[T(10)] @ CDE.

The vector space My[I'9(10)] has dimension 7 and is spanned by the seven linearly
independent forms E4, E4,2, E4,5, E4,10, A4,10, A4,5 and

F4/5/2 =z A4,5(ZZ).

The vector space M>[I'0(10)] has dimension 3 and is spanned by the forms @ jo,
c131,5 and
@1/5/2 =Zk @1/5(22).

Computing the first Fourier coefficients, we therefore find that

1 5 10 24 432 1728
11) Hip= —Es+ —Egp+ —~Egs+ —=Eg10 — —Ag10 — ——Ag5 -~ F
(11) Hyo 13054+ geban + oEas + B4 — T Auw0 — A5 — ——Faso
27 6
—Do =DE,.
+ 5 1,10+5 2

Comparison with the Fourier expansion in (1)) leads to the corresponding result
in theorem [

2.8. Level 11. By lemma[lI] we have

M;2[To(11)] = Ma[To(11)] & DMa[To(11)] @ CDE.

The vector space My[I'9(11)] has dimension 4 and is spanned by the four linearly
independent forms Ei, E411, As11,1 and Agq15. Let Fi be the parabolic form of
weight 4 and level 11 given by

Fl(Z) = [A(Z)A(].].Z)]l/6 - 64711'2 _ 466711'2 + Zesﬂiz + 8610niz + O(elzniz)‘

Let T, be the Hecke operator of level 11 given by

meZ meZ | delN
d|(m,2
@,11)=1

T : Z ﬂm)emez — Z Z dk—l;\(zd_nz/l) eZnimz‘
)

It sends a parabolic form of weight 4 and level 11 to another one. Let
Fy = ToF; = eZniz + 26471[2 _ 56671[2 _ 268711'2 + 9610niz + 0(612711'2)‘
There exists A1 and A, such that
A4/11,1 = Fz + A1F1 and A4/11,2 = Fz + A2F1.
For j € {1, 2}, it follows that
T4,11,j(2) =2+ /\]' and "C4,11,]'(4) =-2+ ZA]‘.
Since Ay 11,; is primitive, it satisfies @) hence /\? —2A; =2 = 0. In other words
X?-2X-2=(X-A)X-A).

This provides a way to compute the Fourier coefficients of Ag11,1 and Ay 112 from
the ones of A and proves that these coefficients live in Q(f) where ¢ is a root of
X2 -2X-2.

The vector space M;[I'0(11)] has dimension 2 and is spanned by the form @1 1;
and its unique primitive form

M1 = [Az)A(112)]12,
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n 112 (3|4 |5|6|7|8|9]10]|11
oumn) || 1 |-2|-1] 2| 1|2 |-2]0]|-2-2]|1
n 12 113|114 15|16 |17 |18 19|20 | 21 | 22
o) || 24| 4 |-1|-4|-2(4]|0]|2]2/|=2
TasLE 14. First Fourier coefficients of Ap 11

Computing the first Fourier coefficients, we therefore find that

1 121 192t + 4128 192t — 4512
12) H;; = —E —E -— A — A
(12) Hn Topba+ T ban 1 4111 + 1 4112
60 12
—Do —DE,.
HE TR Tt

Comparison with the Fourier expansion in (IZ) leads to theorem 21

2.9. Level 13. By lemmal[ldl we have
Mfz[ro(13)] = My[T'o(13)] ® DM, [I'o(13)] ® CDE,.

The vector space My[I'9(13)] has dimension 5 and is spanned by the five linearly
independent forms E4, E413, Ag13,1, As132 and Ay 133. The vector space M, [I'o(13)]
has dimension 1 and is spanned by the form @ ;3.

n 1 [2[3[4]5]6] 7 8 9 [10] 11
Tasa(n) || 1 | —5|—7]17]|—-7|35] —13 | —45 | 22 | 35| —26
n 12 [13]14]15]16[17] 18 | 19 | 20 21| 22
Ta13a(n) || =119 | 13 | 65 |49 | 89 | 77 | —110 | =126 | —119 | 91 | 130

TasLE 15. First Fourier coefficients of A4 131

Computing the first Fourier coefficients, we therefore find that

1 169 288u — 1728 288u + 1440
13) Hiz= —=Fy+ —DFy 5+ U720, |, 2oou+ 48
(13) His Tobs + TpEens + 1 4132 7 4133
72 12
+ EDCDLL’) + EDEZ

Comparison with the Fourier expansion in [[3) leads to the theorem Bl

2.10. Level 14. By lemma[]] we have
MZ2[To(14)] = My[T(14)] ® DM, [To(14)] ® CDE,.

The vector space M4[I'o(14)] has dimension 8 and is spanned by the eight linearly
independent forms Ey, Esp, E47, E414, Asy,

Fi7p:z 0 Ayy(22),

Ayg141 and Ayg14. Another basis of the subspace of parabolic forms is Ayy, Fi7o,

A%,m and Ay 14P1,14 where

A2 14(2) = [A(R)AQR2)A(72)A(14z)]/*
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is the unique primitive form of weight 2 on I'y(14). We echelonise this second basis
by defining

11 22 11 39 ; ;
= T D7 — 7 — Faz2+ 7A§,14 + 2—8A2,14(D1,14 ="+ 0 (610”’2)
13 1 3 13 . )
Jo=—gehag+ SFaza+ 7A2 14+ 5021414 =e' 1+ 0 (em”’z)
- E 19 13 2 13 _ ,bmiz 107iz
Js= 56A47+ Tafv2 - 14A214 56A214‘1)114 =e +O(6 )
13 6 3 13 ) )
Jo= _%A47 - §F472 + 7A214 + 56A214CD1 14 =87 4 O(Emmz) .
We then have

Agr4j=J1+bjJa+ci]3+dj]s
From 7414,/(4) = 74,14,j(2)* we deduce d; = b%. Then, from 74,14j(6) = T4,14,j(2)74,14,/(3)
and 7414,j(8) = 74,14,j(2)T4,14,j(4) we respectively deduce

2b]‘ + b]'C]' + 2C]‘ =-4
b} — b7 +6b; +4c; =8
that is
_1s 1, 3
cj = —Zbl + Zb] - Eb] +2
and
(b;—2)(b; + 2)(b]2? +bj+8)=0

Since the coefficients of A4 14, are all totally real, we must have

Ag1g1=J1+2]2-2]3+4]4
Ag142 = J1 = 2]2 +8J3 +4]4.

Finally,

9 ’ 13
(14) L Ag7 —9Fy7, + 677, + 7 D214P14
(15) Ag1a2 = N4z +4Fs75 — 5A§,14'

Equations (@) and ([3) allow to compute the first terms of the sequences 74141 and
T4,42. The vector space M>[I'9(14)] has dimension 4 and is spanned by the forms
D7, 1,14, D214 and its unique primitive form A 14.

n 112 (3|4|5|6|7|8]9]10]|11

Tum || 1 |{-1(-2{1}(0(2|1|-1|1|]01|0

n 12113 |14 (15|16 |17 |18 | 19 20| 21 | 22

Toumn) || -2|-4(-1|{0|1|6|-1]2|0|-2|0
TasLE 16. First Fourier coefficients of A 14

Computing the first Fourier coefficients, we therefore find that

1 2 49 98 864 3456
(16) Hius= ﬁEx} + EEM + ﬁE‘” + EEALM - ﬁA‘” 75 —=Fu7p
48 72 39 6
- 7A4 141 — £A4 142+ 7D(D1 14+ 7DE2

Comparison with the Fourier expansion in ({[f) leads to theorem £l
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2.11. Convolutions of level 1, 2, 4. The convolutions of level dividing 4 were
evaluated in [[LR05, Proposition 7]. We obtained

! —o1(n)

n
~o1(n) + 5

5
Waln) = 505 — 5
from the equality

E5 =E4 +12DE,
in M:2[To(1)];
1 1 n 1 1 n 1 1 n
Waln) = () + 303(2) S0 - Znal(z) 701+ ﬂal(z)

from the equahty

1 4
H, = 5E4 + 5E4,2 + 3D(D1,2 + 6DE,

in M;2[T(2)]; and

1 1 n 1 n 1 1 n
Wa(n) = 7gos(m) + E‘”(E) *39 (z) 1670100 = 3o (z)
+ia (n)+ia (n)
241 24°'\4

from the equality
1

3 4 9
H4 = %E;} + %Eﬁllz + 5E4,4 + EDCDlA + 3DE2

in M2 [To(4)].
3. TWISTED CONVOLUTION SUMS

Let )((30) be the principal character of modulus 3. Remarking that
S[0,31 = Y, o1@ar®) = Y kY @ar (@i b),

a+b=n a+b=n
we consider E3 — Ex(Ex ® )((3 ). Since E; ® )((0) € A7I§1[F0(9),)(é0)] = Z\7I§1 [To(9)], we
have —~
E5 ~ ExE2® x3)) € MP[To(9)]-
We use the same method and notations as in §.8 We compute

11 1 27

E - Ez(Ez ®)(3 ) = —E4 + 30E 43 — EE4'9 + 32A4]9 + 16Dq)1,3 - 16Dq)1,9 + 12DE,.
The evaluation of S [1, 3] given in theorem Bl follows by comparison of the Fourier
expansions.

We compute S[1, 3] after having remarked that

X)) + xs(n) _ {1 ifn=1 (mod 3)

2 0 otherwise.

Hence, the function to be linearised here is
1
FEalE2® A+ Ex @ xs]
whose nth Fourier coefficient (n € IN*) is
—246(3 | n — 1)o1(n) + 576S5[1, 3](n).
This is again a quasimodular form in Mfz[l"o@)], and as in §8 we linearise it as

19 1 5 27
-~ E E —E —E 2A49 — 8DDq 3 — 6D(D Do
cobs t opEe®xs — 3Eas+ 55 49 +32A49 = 8D®1 3 — 6D(P13 ® x3) + 8D Dy 5.
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The evaluation of S[1, 3] given in theorem [l follows by comparison of the Fourier
expansions.
The evaluation of S[2, 3] follows immediately from

S[0,3](n) + S[1, 3](n) + S[2, 31(1n) = Wi (n)

and theorem[Il

4. ON IDENTITIES BY MELFI

The first three identities of theorem [l are a direct consequence of the following
ones:

E)Eq € ]\71651[1"0(1)] = M[To(1)] ® DM4[I's(1)] = CEs ® CDEy,

and

ExEy, E4Erp € 1\7151 [To(2)] = Me[I'0(2)] ® DM4[T'(2)]
=CE¢® CEé,z e CDE, & CDE4,2

which imply by comparison of the first Fourier coefficients

E>E4 = E6 + 3DE,,

1 20
E2E4,2 = —E6 + —E6,2 + 3DE4,2

21 21
and
5 16 3
E4E2[2 = ﬁE6 + ﬁE@Z + EDE4

The last three identities of theorem [l are a direct consequence of the following
ones:

ExEe € M3 [To(1)] = Ms[To(1)] & DMs[To(1)] = CEs & CDEg,
and
ExxEe, ExEn € ME'T0(2)] = Ms[To(2)] ® DM[To(2)]
=CEg® CEg,Z (5] CA&Z @ CDEg¢ @ CDE@Z

which imply by comparison of the first Fourier coefficients

E>E¢ = Eg + 2DEg,

21 64 2016
E2,2E6 = gEg + gE&z — TAS'Z + DEg
and
1 84 504
EsE¢r» = —Eg+ —Egr — —A 2DEg».
2L6,2 85 g+ 35 82~ 7 082 + 6,2

5. ON SOME IDENTITIES OF LAHIRI TYPE

5.1. Method. For a := (1y,...,a4,) € N, b := (by,...,b;) € 2N+ 1)" and N :=
(Ny,...,N;) € N the sum S[a, b, N] defined in () is relied to the quasimodular
forms via the function

(17)  D"Epan, - -D"Ep 4N, € M4 ti0) [To (lem(Ny, ..., N,))]

by+-+b+r+2(ay +...44a,)

where
tb)=#iec{l,...,r}: b =1}.



22 EMMANUEL ROYER

Since we always can consider that the coordinates of a are given in increasing order,
let £ be the nonnegative integer such thata; = --- = a, = 0 and a,1 # 0 (we take
¢ = 0if a has all its coordinates positive). We consider the function

YobN = H(Eb+1N1 -1) H DYEp;1;

j=t+1
by+etbp+r+2(aj1+...+ay)

€ = ME 40 [T (lem(Ny, . .., N))]

k=bjp1++by+r+2(aj1+...+a,)—j

We have

+00

[a, b, N]e2m'nz'

T hi+1
Waon(@ = (2 || |
b N() = (-2) H B

The evaluation of S[(0,1,1), (1,1, 1)]is a consequence (by lemma [T)) of

n=1

(E1 - 1)(DEy)* €
CEg ® CDEg ® CD?*E, ® CD’E, & CE19 ® CDEg ® CD*E¢ & CD’E4 & CD*E;.

The comparison of the first Fourier coefficients leads to
1 2 4
(E; — 1)(DEy)? = —5D2E4 - 2D%E, + iD21€6 + 5D3E4 +6D*E,.

Hence the evaluation of S[(0,1,1),(1,1,1)] given in theorem[4
The evaluation of S[(0,0,0,1,1),(1,1,1,1,1)] is a consequence (by lemma [[T)) of

7

7—i
(E2 - 1*(DE>)* € €A ® CDA EP) EP) CDIEy..

=1 j=0

The comparison of the first Fourier coefficients leads to

8 8 216 144
E, — 1)¥(DEy)? = ——A + —DA = 2D3E, + 18D*E, — =——D°E, + —D°E
(E> — 1)°(DE,) 35 35 2 2 2+ ¢ 2
1 12 234 171
— =D?E4 + =D%E, - =—=D*E4 + =—D°E
5 5 35 35 4
2 9 25 1 4 2
ZD?Eg — =D3Eg + — D*E¢ — =D?Eg + — D®Eg + — D?E
TP e T g Re T oy ke T g ks T g bs F pp R0

Hence the evaluation of S[(0,0,0,1,1),(1,1,1,1,1)] given in theorem 4
We leave the proofs of propositions B and B to the reader. They are obtained
from the linearisations of

(18) (Ez2 — 1)DE»5 € MZ2[To(5)] & M2 [To(10)]
and

DE>DE; 5 € M3 [To(5)]-

5.2. Primitive forms of weight 6 and level 5 or 10. For the evaluation of (I8) we
remark that Ay 5P, 5 is a parabolic modular form of weight 6 and level 5. Since the
dimension of these forms is 1, we have

(19) %M@=iM®M&WMBBGD—h@H

Equation ({9 provides a way to compute the few needed values of 7¢ 5.
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We also give expressions for Ag19; where i € {1,2,3}. We shall use the second
Hecke operator of level 10 given by

meZ meZ | delN mezZ
d|(m,2
(d,10)=1

T, : Z ﬁm)Emez — Z Z dk—l}'\(zd_rg) eZnimz — Z ﬁzm)ezmmz‘
)

The space of parabolic modular forms of weight 6 and level 10 has dimension 5. A
basis is given by

Nes5(2) = [A@)AB2)]V® D1 5(2)
Fe52(2) = Nes5(22)
F(z) = 3 [A=)AG2)]Y® 110(2)
Fi(z) = [A@)AG2)]VE D1 5(2)
Fz(Z) = TzF(Z)

To simplify the computations, we use an echelonised basis:

4 31 15 1 3
V1 = —EA6,5 + EF@S,Z + ﬁF + %Fl + %Fz
= e(z) + O(e(62))
Vo= lA + —Fe5,2 + lF
2= 5pRes t gres2t gahe
= e(2z) + O(e(62))
1 7 1 1 1
V3 = _%A&S + 1_0F6,5,2 + 3—2F — %Fl + %Fz
= e(3z) + O(e(62))
1 1 1
Vy= —EA@S - EF@S,Z - ﬁFz
= e(4z) + O(e(62))
1 11 11 1 3
Vs = —A¢5s — —Fg50— —F—- —F; — —F
> 7577 T 50 %927 8000 480 ' 400 >
= e(5z) + O(e(6z2)).

We deduce
A(),lO,i = V1 + bing + C,‘V3 + diV4 + eiV5

since 7¢10,i(1) = 1. Now, from 7¢10,i(4) = 76,10(2)>, we get d; = b? so that
Aérlo,[ = V1 + b,‘Vz + C,‘V3 + biZV4 + eiV5.

Next, from 74 10,/(6) = T6,10,(2)76,10,i(3), and 7¢,10,i(8) = T6,10,((2)76,10,/(4), We respec-
tively get

(20) 2¢; + bic; + 2¢; = 10 — 2b; — b7
and
(21) 8c; — 8e; = 24 + 16b; + 617 + b>.

Equations Z0) and 1)) give either b; = —4 or b; # —4 and
1 1
C; =4 - Ebl-i'zbzz

and 5 . .
= 1—2b— =2 — =1P,
¢ 27T % T gl



24 EMMANUEL ROYER

We first deal with the case b; # —4. We then get

1 1 5 1 1
A6,10,,' =Vi+bVy+ (4 — Ebi + szz) Vi + biZV4 + (1 - Ebi - Eblz - gb?)V5.
Using 76,10,/(10) = 7¢,10,i(2)76,10,i(5), we obtain
5 1 1
b (1 2 -2 —b3) -
2 2t 8
1 1 5 1 1
30+ 15h - 1 (4——171» —b?) P (1— 2h— 212 - -b3)
30+15 0 2+4:1+5l+6 > 2~ ghi

from what we get
bi € {-4,4,1-iV31,1+iV31}.

The solution b; = —4 is in this case not allowed whereas the solution 1 + i V31
are not possible since the coefficients of a primitive form are totally real algebraic
numbers. We thus obtain a first primitive form:

A6,10,1 =V1+4V, +6V3+16V4—25Vs.
We assume now that b; = —4 so that
A6,10,,‘ =Vi-4V, + Cl‘V3 + 16V, + (Cl‘ + 1)V5

From 76,10,i(15) = 76,10,i(3)76,10,/(5), we obtain c; = 24 or ¢; = —26. We hence get the
two other primitive forms

A6,10,2 =V -4V, +24V3 +16V4 + 25Vs

and
Ngpo3 = V1 —4V, —26V3 + 16V, — 25V,

We deduce the following expressions:

1
(22) 6101 = ~Aes5 +16Fes52 + F + 7 Fa
4 7 7
(23) Nej102 = —§A6,5 + 8F65.2 + gF - ﬂFl
(24) Acins = —~Ags — 16Fsss + ~Fy — LF
6,10,3 — 3 6,5 6,5,2 3 1 4 2.

Equations 22) to @4) provide a way to compute the few needed values of 74 10, for
iefl,2,3}.

5.3. Primitive forms of weight 8 and level 5. The method is the same as in §6.21
so we will be more brief. The space of parabolic forms of weight 8 and level 5 has
dimension 3 and a basis is

Gi(2) = [A@)AG2)]°

G2(2) = [A(R)A(B2)]°15(2)*

1
=——[Es, @
Gs Y [Es, P12y

where [ , ] is the Rankin-Cohen bracket here defined by

1 ’ !’
[Es, D1p]; = z—m(4E4q)1,5 —2E,®15)
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(see [[Zag92) part 1, SE] or [MRO5, partie I, §6] for more details). We echelonise this
basis by defining:

46 82 3
Wi = %Cﬁ + 2—5G2 - EGB = E(Z) + 0(6(42))
47 76 4
Wy = —375 G — —375 Gy + —375 Gs = (3(22) + 0(6(42))
41 1 1
Ws = —9G2 + —G3 = ¢e(3z) + O(e(4z)).

3751 750 750
The primitive forms are then

Ag[5]i = W1 + b,‘Wz + Cl‘Wg,.
From 7355,i(4) = 7g5,(2)* — 27 and 1355,i(6) = Ts5,i(2)735,(3) we get
1
ci =78 +2b; — Ebf
(bi + 14)(b7 — 20b; + 24) = 0.

Finally, defining v as one of the roots of X2 - 20X + 24, we get

16 22 1
(25) Ags1 = ?Gl + ?GZ - §G3
(26) Ag,5,2 = (12 - Z))G1 + G2
(27) Ag/5/3 = (U - 8)G1 + Gz.

Equations (Z5) to (Z2) provide a way to compute the few needed values of g5, for
ie(1,2,3).
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