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EVALUATING CONVOLUTION SUMS OF THE DIVISOR
FUNCTION BY QUASIMODULAR FORMS

EMMANUEL ROYER

AssTRACT. We compute many sums involving divisor functions using the
theory of quasimodular forms. Some of our identities were not known,
others were only partially known. The method is systematic.

1. INTRODUCTION

1.1. Results. Let IN denote the set of natural numbers and IN* = IN \ {0}.
For n and jin IN* we set
oj(n) = Z d/

dln

where d runs through the positive divisors of n. If n € IN* we set (1) = 0.
For N € IN* we define

W)= ) or(m)ai(n ~ Nm)

m<n/N

where m runs through the positive integers < n/N. We call Wy the convolu-
tion of level N (of the divisor function). We present a method (introduced in
[LRO5]) to compute some of these sums using quasimodular forms. In par-
ticular, we evaluate Wg, Wy, Wg and W7o which were not known and recover
Wy for N € {1,2,3,4,5,9} by a systematic method. The first evaluation of
Wy is due to Williams [Wil05, Theorem 1.1].

For N € IN*, we denote by A4y the unique cuspidal form spanning the
cuspidal subspace of the modular forms of weight 4 on I'g(N) with Fourier

development! Ay n(z) = e + O (e4niz). We define

+00

AyN(z) = Z T4 N (n)e?™ "z,

n=1

Theorem 1. Let n € IN*, then

Wio) = t3o(n) = 50100 + 501(0),

2 12
1 1 n 1 1 n 1 1 n
Wz(?’l) = EG3(1/1) + 503 (E) - gﬂ(.fl(i’l) - Znal (E) + ﬂGl(Vl) + ﬁal (E),
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1 1 1 1 1
Ws(n) = ﬂﬁa(”) + 203 (g) - Eﬂﬁl(”) i (g) + ﬂal(”) + 5401 (g),

1 1 n 1 n 1 1 n
W4(7’l) = @03(1/1) + EGCJ, (E) + 503 (Z) — ET[G](TI) — ZT[Gl (Z)

+la (n)+i0 (E)
2471 24" 1\1)

5 125 n 1 1 n 1 1 n
Ws(n) = 3350301+ 37593 (5)‘ 3070101 = g0 (5)* 230100+ 5701 (3)

1

- @74,5(”)/

Wt = s+ (2] s (2] s (2) - ent— Lo (2)
6 = 12093V T 3073\ 2) T 2073\3) T 10736 ) T 24V T 91\

1 1 n 1
+ —o1(n) + 7201 (—) — —=T46(n),

21 6)” 120
1 49 n 1 1 n 1 1 n
Wo(n) = — sy S N —Znoy (Z)+ = —a (2
7(m) 12003(”)+120‘73(7) 2871 4”01(7)+2401(”)+2401(7)
1
—7—0T4,7(”)/

1 1 n 1 n 1 n 1 1 n
Weln) = 15503(1) + 2703 (5) * 167 (z) 393 (5) ~ 3" = gnoy (§)

+io (n)+la (E)—i’c (n)
241 24" 1\8) " 6a BV

Wo(n) = ——o3(n) + —03 (f) + g

(5oL
~ 216 2773\3) T 8%\ g9) " 31V T 401y

+lo (n)+lo (E)—lr (n)
2471 24°1\9) g 4V

1 1 n\ 25 n\ 25 n 1 1 n
Wio(n) —ag(n)+7—803(§)+mo3(—)+7—803(E)——nal(n)——nol (—)

T 312 5 40 1"\ 10
+ Lom s & (i)_L (1) = =14 5(1) — = (E)
241 2471\ 10) T 120 410VY T 560 145V T G5 ™45 )

For dimensional reasons, the forms Ayn are primitive forms for N €
{5,...,10}. It follows that the arithmetical functions 74y are multiplicative
and satisfy the relation @) (see below). Moreover, if

+0o

n(z) = oinz/12 H [1 _ eZninz]

n=1
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then, following [Koi84], one obtains

Ay5(2) = [n(@)nG2)]*,
Ass(z) = [n(@)NQ2)1(B32)1(62)]°,
Ags(z) = [n(22)nM42)]*,
Aso(2) = [nG32)]°,

whereas A4y and A4 19 are not products of the 1 function. However, using
Macma[BCP97] (see [Ste(4] for the algorithms based on the computation of
the spectrum of Hecke operators on modular symbols), one can compute
their Fourier coefficients.

n 1]2[3] 4 [5]6]7] 8 9 [10 |11
Ty || 1| -1|-2] =7 |16] 2 |-7| 15 | 23 |-16| -8
n |12]13]14] 15 [16] 1718 19 | 20 | 21 | 22
Tayn) || 14|28 | 7 | —32 |41 |54 |23 | 110 | -112 | 14 | 8
n 1] 2 3] 45617 8 [9]10[11
Ta0m) | 1 | 2 |-8| 4 |5 |-16|—4| 8 |37]10]12
n 12 [ 13 [14] 15 [16] 17 |18 19 [20]21[22
Ta10(n) | 32 [ —58 | -8 | —40 |16 | 66 | 74 | —100 | 20 | 32 | 24

An interesting historic of this topics may be found in [Wil05]].

Our method, with the introduction of Dirichlet characters, allows also to
recover a second result of Williams [Wil05, Theorem 1.2] and to extend a
result of Melfi [Mel98, Theorem 2, (7)]. Forb € N*and a € {0,...,b — 1}, we
define

n

S[a, b](n) = Z a1(m)a1(n — m).
mzang;\(())d b)

We compute S[i, 3] for i € {0,1,2}. Our result uses the primitive Dirichlet
character y3 defined by

0 ifn=0 (mod 3)
x3(n)=4{1 ifn=1 (mod3)
-1 ifn=-1 (mod 3)

for all n € IN".

Theorem 2. Let n € IN*, then,
S[0,3](n) =
s 3 -3)- -2 o3
7273 T 1893 3) T 8% \g) T 4" a1\3) " 1"\

+ 21—4 [1+063|n)]o1(n)+ 11—8T49( )
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S[1,3](n) =
- %nal(n) - %Xg(n)nal(n) + %nal (g) + g)(g(n)nal (g) - gnal (g)
" l5(3 |1~ Dor(n) + 11—8749( ).
and
S[2,3](n) =

144 o3(1) = X3(”)a3(”) 32 (§)+19_603(g)

~ Snoi) + émn)nol(m) + 2001 (5) - Ssmon (5) - 2o (5)

1 1
+ ﬁé(’j | n—2)o1(n) — 5’[4,9(7’1).
where 6(3 | n) is 1 if 3 divides n and 0 otherwise.

We next consider convolutions of different divisor sums and complete
results of Melfi [Mel98], Theorem 2, (9), (10)], [HOSWO02, Theorem 6]. We
shall use the unique cuspidal form Ag, spanning the cuspidal subspace of
the modular forms of weight 8 on I'y(2) with Fourier development Ag»(z) =

ez 4 O (e4niz). Using [Koi84], we have

As2(2) = [n(2)n(22)1°.
We define

+00

Agp(z) = Z Tg,2(n)e?™ ",

n=1
This is again a primitive form, hence the arithmetical function 73, is multi-
plicative and satisfies the relation @) (see below).

Theorem 3. Let n € IN*. Then,
- 7

Y 010031~ k) = goos(m) — gros() +
k=0

X, 00200 = o+ o (3)- b (3)+ s (3)- g0

5793(n) = >==01(n),

24 240

1 1 ny 1 1 1 n
Y o103 20 = geos(n) + 7205 (3 ) - 20300 + 570300 - 5501 (5 ).
k<n/2
Moreover,
Y 0100501~ ) = —z0,(1) = “s1105(1) + A=) + mzr (1),
12 2 i

k=0
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Y, a1kos(n—2k) =

k<n/2

1 32 n 1 1 1 n 1
10—207(”) + 10707 (E) - ﬂWGS(n) + ﬂGS(”) + ﬁal (5) - @Ts,z(”),

and
Y, o1(n = 2Wo5(k) =
k<n/2
2 n 1 n 1 n 1 1

31570+ 5797 (5) - 13705 (5) + 3705 (5) 55z~ s

Our method allows also to evaluate sums of Lahiri’s type

(1) Sl@q,...,a.),(b1,...,b),(N1,...,N)]n) =

1 -+ My Op Ny ...0p, N,
(myq,...,my)eIN"

My +...+my=n

[HOSWO02, §3] where the a; are nonnegative integers, the N; are positive
integers and the b; are odd positive integers. To simplify the notations, we
introduce

Sl(a,...,a),(b1,...,b)(n) =S[(a,...,a,),(b1,...,b,),(1,...,D)]n).
For example, we prove the following.
Theorem 4. Let n € IN*. Then,
S1(0,1,1), (1,1, 1)](n) = Ln205(n) - in?’og,(n) + in%g(n)
288 72 288

L 4 1 3
+ %n o1(n) 288n o1(n).

and

- 24°5[(0,0,0,1,1),(1,1,1,1, D)](n) = —%nzag(n) + 1281307 (n)
— 80n07(n) — 600n*o5(n)

+ 648n°05(n) + @VPG:&(T[)

11232 456
— 144n%05(n) — T3n403(n) - 3Tn601 (n)

+576n’03(n) + 51&_)&11501 (n)

— 432n*01(n) — 48n%03(n)

8 8
3 = .
+ 48n°c1(n) + 35n’c(n) 5 (n).
We continue our evaluations by the more complicated sum S[(0, 1), (1, 1), (2, 5)].
The reason why it is more difficult is that the underlying space of new cus-
pidal modular forms has dimension 3.
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The space of newforms of weight 6 on I'¢(10) has dimension 3. Let
{Ag,10,i}1<i<3 be the unique basis of primitive forms with

N610,1(2) = €™ + 4e*= + 6= + O(),
Ae102(2) = €22 — 4¢84 24657 4 O(e57),

A6,10,3(Z) = 2Tz _ gz _ npobmiz | O(ESm‘Z)'

Again, by [Koi84], we know that these functions are not products of the n
function. We denote by 74 10,i(1) the nth Fourier coefficient of Ag 19;. Note
that the sequences 7410, are multiplicative. Again, Stein’s algorithms on
Macma give the following tables.

n 1 2 3 4 5 6 7 8 9 10 | 11

T6,101(1) || 1 4 6 16 | -25| 24 | -118| 64 |-207 |-100 | 192

n 121 13 14 15 16 | 17 | 18 19 20 21 | 22

Te0,1(n) || 96 | 1106 | —472 | =150 | 256 | 762 | —828 | —2740 | —400 | —708 | 768

n 1] 2 [ 345 6 7 8 | 9 10 | 11
Tet02(n) | 1 | —4 | 24 | 16 | 25 | =96 | —172 | —64 | 333 | —100 | 132
n 2 13 141516 17 | 18 [ 19 [20 ] 21 | 22
Te102(n) || 384 | —946 | 688 | 600 | 256 | —222 | —1332 | 500 | 400 | —4128 | =528
n 1 [ 2 3]4]5]6 7 8 9 [10] 11
Te103(n) | 1 | —4 | —26| 16 | —25| 104 | —22 | —64 | 433 | 100 | —768
n 12 [ 1314 [15]16 17 ] 18 | 19 | 20 | 21 | 22
Te103(1) || —416 | —46 | 88 | 650 | 256 | 378 | —1732 | 1100 | —400 | 572 | 3072

We also need the unique primitive form

+00

Nes(z) = 2 To,5(n)e?™ "™

n=1

of weight 6 on I'y(5). It is not a product of the 1 function and, its first Fourier
coefficients are given in the following table.

n 1 2 3 4 5 6 7 8 9 10 11
Te5(n) || 1 2 | -4 | -28 | 25 -8 192 | =120 | =227 | 50 |-148
n 12 | 13 | 14 | 15 16 17 18 19 20 21 22

T6,5(n) || 112 | 286 | 384 | =100 | 656 | —1678 | —454 | 1060 | =700 | =768 | =296
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Proposition 5. Let n € IN*. Define

A(n) = En (n) + gn (E) + @n (E) + —120011 (ﬁ)
= 13"V T g5 )T 395 ) T T3 % 10
B(n) = —%nzal (g) — 481’0, (g)
C(n) = 24no (g)
12 216 864 n
D(n) = gi’lﬂmo(ﬂ) - gnﬂw(”) ~ o5 145 (E
108 864 n
E(n) = §T6,5(”) + 35 765 (E
24 12
F(n) = ——16,101(n) + —T6,102(n).
5 7
Then,
5 x 242 2 bo1(a)o1(b) = A(n) + B(n) + C(n) + D(n) + E(n) + F(n).
(a,b)eN*2
2a+5b=n

In each of our previous examples, we did not leave the field of rational
numbers. This may not happen since, the primitive forms have no nec-
essarily rational coefficients. However, every evaluation will make use of
totally real algebraic numbers for coefficients since the extension of Q by
the Fourier coefficients of a primitive form is finite and totally real [Shi72}
Proposition 1.3]. We shall evaluate S[(1,1),(1,1),(1,5)]. Let t be one of the
two roots of X? — 20X + 24. There exist three primitive forms of weight 8 on
I'0(5) determined by the beginning of their Fourier development:

Ags,1(2) = €22 — 14647 4 O(e7%)

Ag5(2)
Ag53(2)

eZm’z + (20 _ t)e4m'z + 0(66771'2)

eZm’z + te4m’z + O(€6m’2).

The function Ag 53 is obtained from Ag5, by application of the conjugation
of Q(t) (i.e t = 20 — t) on the Fourier coefficients. We denote by 755, the
multiplicative function given by the Fourier coefficients of Ags ;.

n 1 2 3 4 5 6 7 8 9
18,5,1(1) 1 -14 | -48 68 125 672 | —1644 840 117

n 10 11 12 13 14 15 16 17 18
18,51(n) || —1750 | 172 | =3264 | 3862 | 23016 | —6000 | —20464 | —12254 | —1638

n 1 2 3 4 5
78,5,.2(1) 1 —t+20 8t—-70 =20t + 248 -125

n 6 7 8 9 10
t8502(n) | 70t — 1208 =56t + 510 | =120t + 1920 | 160t + 1177 125¢ — 2500

n 11 12 13 14 15
18,502(n) || —400t + 6272 | 184t — 13520 | 608t — 4310 | —510t + 8856 | —1000t + 8750
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Proposition 6. Let n € IN*. Define

=2+ L 2)
An) = 1311 o3(n) + 3 n-o3 5
B(n) = —%n%l(n) - 24n’0; (E)
5 5
288 ,
C(n) = 325” T4,5(n)
792 + 12t 1032 — 12t
D(n) = T%,m(”) + TTS,SB(H)-
Then
5 x 242 Z abaq(a)oy(b) = A(n) + B(n) + C(n) + D(n).
(a,h)eN"=
a+5b=n

Remark 1. The two terms in the right hand side of the definition of D(n) in
proposition @l being conjugate, we have

792 4+ 12t
475

To stay in the field of rational numbers, we could have used the fundamental
fact that, for every even k > 0 and every integer N > 1, the space of cuspidal
forms of weight k on I'g(N) has a basis whose elements have a Fourier
development with integer coefficients [Shi94], Theorem 3.52]. However, the
coefficients of these Fourier developments are often not multiplicative: this
is a good reason to leave Q.

D(n) = troe/0 [ T8,5,2(7’l)] €Q.

Remark 2. 1f 7. is one of our T functions, its values are the Fourier coefficients
of a primitive forms (of weight k on I'3(N) say). It therefore satisfies the
following multiplicativity relation

(2) T.(mn) = Z [u(d)dk_lu(%)u(g).

d|(m,n)
(d,N)=1

1.2. Method. Since our method is based on quasimodular forms (antici-
pated by Rankin [Ran56] and formally introduced by Kaneko & Zagier in
[KZ95]), we briefly recall the basics on these functions, refering to [MR05]
and [[LR0O5] for the details.

Define

To(N) = {(”Cl 2) - (a,b,c,d) e Z* ad —bc=1, N | c}

for all integers N > 1. In particular, I'g(1) is SL(2,Z). Denote by ¢ the
Poincaré upper half plane:

H ={zeC: Imz>0}.
Definition 7. Let N € N, k € IN* and s € IN*. A holomorphic function
f: # —C
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is a quasimodular form of weight k, depth s on I'o(N) if there exist holomorphic
functions fo, f1,..., fs on H such that

® iy E) - Zﬁ (=5)

forall ( ab ) € I'o(N) and such that f; is holomorphic at the cusps and not identically
vanishing. By convention, the 0 function is a quasimodular form of depth O for
each weight.

Here is what is meant by the requirement for f; to be holomorphic at the
cusps. One can show [MR05, Lemme 119] that if f satisfies the quasimod-
ularity condition (@), then f; satisfies the modularity condition

)=

az+b

—(k—2s)
(cz+d) fs (cz+d

for all (“ b ) € I'g(N). Asking f; to be holomorphic at the cusps is asking that,
forall M = ( p ) € I'g(1), the function

z (Yz+0)” (e 25)f (az+ﬁ)

Yz +06

has a Fourier expansion of the form
w - nz
Z fsm(ne (@)

n=0
where

up = inf{u € N*: T € M~'To(N)MJ.

In other words, f; is automatically a modular function and is required to be
more than that, a modular form of weight k—2s on I'o(N). It follows that if f
is a quasimodular form of weight k and depth s, non identically vanishing,
then k is even and s < k/2.

A fundamental quasimodular form is the Eisenstein series of weight 2
defined by

+00
Ex(z)=1-24 Z o1(n)e?™"z,
n=1
It is a quasimodular form of weight 2, depth 1 on I'g(1) (see e.g. [Ser77,
Chapter 7]).

We shall denote by 1\71155 [['o(IN)] the space of quasimodular forms of weight

k, depth < s on I'o(N) and Mi[I'o(N)] = MfO[Fo(N)] the space of modular
forms of weight k on I'g(N).
Our method for theorem[dlis to remark that the function

HN(z) = E2(2)E2(Nz)

=1-24 Z [al(n + 0 ( N)] 2minz | 576 Z Wi ()i
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is a quasimodular form of weight 4, depth 2 on I'o(N) that we linearize using
the following lemma.

Lemma 8. Let k > 2 even. Then,
_ k2-1
M [To(N)] = ) DMy i[To(N)] & CD** 7'y,
i=0
We have set
_1d
C 2imdz’
Let {Bx}xen be the sequence of rational numbers defined by its exponential
generating function

+00 k
t t
et —1 :kZ_OIBkE

We shall use the Eisenstein series to express the needed basis:

En(z) =1 Z o3(m)e™™N € My{To(N)]

for all k € 2N* + 2, N € IN*. If N = 1 we simplify by writing Ey := E; n. For
weight 2 forms, we shall need

q)u,b (Z) =

forallb>1anda|b.
Let x be a Dirichlet character. If f satisfies all of what is needed to be a
quasimodular form except (B) being replaced by

(cz +d) "f(”“b) x(d) Zﬁ(z (CHd)i

then, one says that f is a quasimodular form of weight k, depth s and
character xy on I'y(N). (In particular, we ask f; to be a modular form of

character x). We denote by M<S [To(N), x] the vector space of quasimodular
forms of weightk, depth < s and character y onTo(N). If x = xpisa principal
character to a modulus dividing N, then M<S [To(N), x] = M<S [To(N)].

If fe M;S [[o(N)], then f has a Fourier development with Fourier co-
efficients {ﬂn)}neN. We define the twist of f by the Dirichlet character x
by

blTa [bE>(bz) — aEx(az)] € Ma[To(b)]

+0co
Fox@ =Y xmfme.
n=0
In [LRO5, Proposition 9], we proved the following proposition.

Proposition 9. Let x be a primitive Dirichlet character of conductor m. Let f be a
quasimodular form of weight k and depth s on To(N). Then f ® x is a quasimodular

form of weight k, depth less than or equal s and character x* on T (lcm(N, mz)).

Remark 3. The condition of primitivity of the character may be replaced by
the condition of non annulation of its Gauss sum.
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The proof of theorem Pl follows from the linearization of E - Ep ® x3.
TheoremsBand Bl follow from the linearization of derivatives of forms of

type E]‘Ek,N.

1.3. Generalisation of the results. For N > 1 and k > 2, let A* be the set

of triples (1, ¢, t) such that ¢ is a primitive Dirichlet character of modulus
L, ¢ is a primitive Dirichlet character of modulus M and ¢ is an integer such
that fLM | N (and tLM # 1 if k = 2) with the extra condition

otherwise

o) = *
4) gbqb(n):{(l) N =1 N,

We write 1 for the primitive character of modulus 1 (the constant function
n +— 1). We extend the definition of g;: for k and n in IN* we set

oty = Y (5) o

dln

where d runs through the positive divisors of n. If n ¢ IN* we set o;f’q) (n) =
If M is the modulus of the primitive character ¢, we define the sequence

{Bf}keN by its exponential generating function

M-1 +
teCt & tk
Y Oz = DBl
¢=0 k=0
Forany (, ¢,t) € Ay, define
EZ’r(f’(Z) — 6(1/) Z 2ninz
k n=1
and
BV () = EV?(tz) if (k, 1, ¢) # (2,1,1)
E;’l(z) - tE;'l(tz) otherwise

where 6(¢ = 1) is 1 if i) = 1 and 0 otherwise.
For N > 1 and k > 2 even, the set

{E;fj’ L, 1) € Ay}

is a basis for the orthogonal subspace (called Eisenstein subspace, the scalar
product being the Petersson one) of the cuspidal subspace Si[I'o(NN)] of
Mi[To(N)] [DS05), Chapter 4].

Moreover, by Atkin-Lehner-Li theory [DS05, Chapter 5], a basis for

Sk[To(N)] is
) aq(HyIroa)

(d,M)eIN*
dMIN

where a is
ag : M[ToM)] —  Mi[To(M)]
f = [z f(dz)]
and HZ[FO(M)] is the set of primitive forms of weight k on I'o(M).
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A corollary is the following generalisation of theorems [l and If f

is a modular form, we denote by {ﬂn)}neN the sequence of its Fourier
coefficients.

Proposition 10. Let N > 1. There exist scalars ay,¢ 1, ara,f and a such that, for
all n > 1, we have

Wn(n) = Z a¢¢ta¢¢(t)+ Z a¢¢tna¢¢(t)+anal(n)

(lp,qb,t)eAN . W0, t)eAN 5
n
+ Z aMdff( ) Z aM,d,le]?\(E)
(d,M)EN" feH,[To(M)] , M)eN feH3[To(M)]
AMIN
+la (n)+la (n)
241 24" 1\N

More generally, for any N > 1 and any even € > 4, the arithmetical functions

1 n
ne T, i) - 2so1(m) = zoe (%)

and

ne Z 1(k)oe-1(n — kN) - —01 (%)— 21_406’—1(”)
k<n/N

are linear combinations of the sets of functions

vo (1
ol )}

WDHEAY 1o

= 7))

(dM)eIN feH;, [Fo(M)]

U freetly)

., M)GIN feH,[To(M)]
dM

The same allows to generalize theorem[2l If b > 1 is an integer, denote by
X(b) the set of Dirichlet character of modulus b. By orthogonality, we have

n—1

Sla,bl(n) = —= Y x@ Y x(m)or(m)or(n = m).

©) XeX(b) m=1
It follows that the function to be considered is now
o0 XEZX(‘b)MEz Ex®x.
We restrict to b squarefree so that the Gauss sum associates to any character
of modulus b is non vanishing. For N > 1, let )((0) be the principal character
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of modulus N. For x € X(b), we define A Ky @8 A} except we replace
condition @) by

0
Yo = Xy
Then, similary to the proposition[I(] we have the following proposition.

Proposition 11. Let b > 1 squarefree and a € [0,b — 1] be integers. Then, the
function

> Sl ) = 20006 1) + 60 |1~ o ()

is a linear combination of the set of functions

XEX() WP HEAY, |

{n — nalf'q) (?)},
XEX() (PP HEAY ,

J U U {5

X€X(b) @M)EN" e 1o(M), ¥
IMIN feH[ToM),xy X1

U =)

X€X(b) @,M)EN" e To(M), Y
MIN feH;[To(M),xp X1

{n = noy(n)}

where N is the least common multiple of 2 and b*> and 6(b | n —a) is 1ifn = a
(mod b) and 0 otherwise.

2. CONVOLUTION OF LEVEL 3,5, 6,7, 8,9 anD 10

2.1. Level 3. By lemmaf§ we have
M;2[To(3)] = Ma[To(3)] ® DM,[To(3)] @ CDE,.

The vector space My[I'z(3)] has dimension 2 and is spanned by the two
linearily independant forms E4 and Es3. The vector space M[I'o(3)] has
dimension 1 and is spanned by ®;3. By computation of the first Fourier
coefficients, it follows that

1 9
(5) H3 = EE4 + EE4'3 + 4Dq)1,3 + 4DE2
The comparison of the Fourier development in (&) leads to the corre-
sponding result in theorem [l
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2.2. Level 5. By lemmal8 we have
M[T0(5)] = My[T'o(5)] ® DM2[To(5)] © CDE.

The vector space My[I'g(5)] has dimension 3 and is spanned by the linearily
independant forms E4, E45 and Ays. The vector space M[I'o(5)] has di-
mension 1 and is spanned by ®;5. By computation of the first Fourier
coefficients, it follows that

1 25 288 24 12
Hs = —E —FE;s — —A — Do —DE
(6) 5= pgbat opbas — = Mas+ 5 DO s+ —DEp

The comparison of the Fourier development in (@) leads to the corre-
sponding result in theorem [l

2.3. Level 6. By lemma§, we have
MZ2[To(6)] = Ma[T(6)] ® DMa[T(6)] @ CDE;.

The vector space My[I'g(6)] has dimension 5 and is spanned by the five
linearily independant forms E4, E4» ,E43 Esg and Asg. The vector space
M;[T'g(6)] has dimension 3 and is spanned by the three linearily independant
forms @1 5, @1 3 and P36. By computation of the first Fourier coefficients, it
follows that

18 24

1 2 9
7) H, = —E;4+ —E —FE —FEq¢—
(7) He sobatosbaet oEast 5eEas— ¢

The comparison of the Fourier development in (@) leads to the corre-
sponding result in theorem [l

A4/6 + ZD(DL:; + 3D®3,6 +2DE,.

2.4. Level 7. By lemmal§, we have
M32[To(7)] = My[To(7)] ® DM[To(7)] © CDE;.

The vector space My4[I'0(7)] has dimension 3 and is spanned by the three
linearily independant forms E4, E47 and As7. The vector space M»[I'o(7)]
has dimension 1 and is spanned by the form ®; ;. By computation of the

first Fourier coefficients, it follows that

1 49 288 36 12
8 H, = —E —E 7, — —A —Dod —DE>.
8) 7= ggEa+ 5gEar — 35 Aar + — DPy7 + —DE,

The comparison of the Fourier development in () leads to the correspond-
ing result in theorem [l

2.5. Level 8. By lemma§, we have
M32[To(8)] = M4[To(8)] @ DM;[T'0(8)] & CDE;.

The vector space My[I'9(8)] has dimension 5 and is spanned by the five
linearily independant forms E4, Eso, Esa, Esg and Asg. The vector space
M5[To(8)] has dimension 3 and is spanned by the forms @ 4, ®; g and

@114,2 =ZP @1,4(22).
By computation of the first Fourier coefficients, it follows that

1 3 3 4 21 3
Hg = —E —E —FE —FE;5 — 9A —Do —DE,.
) 8= goba+ gghaz + opEaa + gEus 94,8+4 18+ 5DE2
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The comparison of the Fourier development in (@) leads to the correspond-
ing result in theorem [

2.6. Level 9. By lemmal8, we have
MZ2[To(9)] = Ma[To(9)] @ DMa[T(9)] @ CDE;.

The vector space My[I'90(9)] has dimension 5 and is spanned by the five
linearily independant forms E4, E4 ® x3, E43, E19 and A4 9. The vector space
M;[T(9)] has dimension 3 and is spanned by the forms ®; 3, @13 ® x3 and
(Dl,g.

By computation of the first Fourier coefficients, it follows that

1 4 9 32 16 4
(10) H9 = %E4 + £E4,3 + EE4'9 — ?A4,9 + ?Dq)lrg + gDEz.

The comparison of the Fourier development in ({I0) leads to the correspond-
ing result in theorem [l

2.7. Level 10. By lemmaf8 we have
M;2[T(10)] = Ma[To(10)] & DM;[To(10)] & CDE.
The vector space M4[I'0(10)] has dimension 7 and is spanned by the seven
linearily independant forms Ey, E4», E45, E410, A4 10, Ass and
Ays50 =z = Ag5(22).

The vector space M>[I'¢(10)] has dimension 3 and is spanned by the forms
1,19, P15 and
@1,5,2 =ZP @1/5(22).

By computation of the first Fourier coefficients, it follows that

(11)

1 2 5 10 24 432 1728
Hyo = mEzL + @Em + %E4,5 + EE4,10 - §A4,1o - EA4,5 - €A4,5,2

27 6
+ —DD + =DE,.
5 1,10 5 2

The comparison of the Fourier development in ([d]) leads to the correspond-
ing result in theorem [l

3. CONVOLUTIONS OF LEVEL 1, 2,4

The convolution of level dividing 4 have been evaluated in [LR05, Propo-
sition 7]. We obtained

5 n 1
Wi(n) = Eﬁs(”) - 501(”) + 501(”)
from the equality
E3 = E4 + 12DE,
in M32[To(1)];
1 1

1 1 n 1 n 1 n
WQ(VI) = EGCJ,(T[) + 503 (E) — ngGl(Tl) — ZT[Gl (E) + ﬂgl(”) + ﬂal (E)
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from the equality

H, = éE4 + %E&z + 3D(Dl,2 + 6DE,
in M3?[T(2)]; and

1 1 n 1 n 1 1 n
W4(7’l) @Gg(ﬂ)‘i‘EGg( )+§(73 (Z)— Enﬁl(n)—zn01(4)
+ L (n) + la (n)
241 T g1\

from the equality

1 3 4 9

H4 = %E4 + OE42 + 5E44 + 2D®14 + 3DE>.

in M$2[To(4)].

4. TWISTED CONVOLUTION SUMS

Let X(O) be the principal character of modulus 3. Noticing that
S10,31m = Y ai@ar®) — Y 1Y @or1@ar(b),

a+b=n a+b=n
we consider E3 - Ez(E2®)(g ). Since E, ®)((0) € M<1 Io(9), x (0) ]\7151[1”0(9)],
we have N
— Ex(Ex® X)) € M [To(9)].
We use the same method and notations as in §.6 We compute

1 27
30 10E4,9 +32A4,9+16D(D1,3—16D(D1,9+12DE2.

The evaluation of S[1,3] given in theorem [ follows by comparison of the
Fourier developments.
We compute S[1, 3] after having remarked that

E5— E(E2®)( )——E4+ Ey3—

X§ ) + xa(n) {1 ifn=1 (mod 3)
SRR

Hence, the function to be linearized here is

0 otherwise.

—Ez[Ez ®X )+ E; ® x3]

whose nth Fourier coefficient (n € IN¥) is
—2456(3 | n — 1)o1(n) + 5765[1, 3](n).

This is again a quasimodular form in ]\F/VIEZ[FO(9)] and, as in §2.6 we linearize
it as
19 1 27 D(d D
cobat ogEa®xs — 3Eas+ 55Es0 +32A49 = 8DP1 5 —6D(P13® x3) + 8DPy.
The evaluation of S[1,3] given in theorem [ follows by comparison of the
Fourier developments.

The evaluation of S[2, 3] follows immediately from
S[0,3](n) + S[1,3](n) + S[2,3](n) = W1(n)
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and theorem[Il

5. ON IDENTITIES BY MELFI

The first three identities of theorem [3l are a direct consequence of the
following ones:

E>Ey € M [To(1)] = Me[To(1)] @ DMu[To(1)] = CEs ® CDE,,
and

EsEap, E4E2p € ME'T0(2)] = Ms[To(2)] & DM4[To(2)]
= CE¢ ®CEgp ® CDE4 ® CDEy4»

which imply by comparison of the first Fourier coefficients

E,E, = E¢ + 3DEy,

1 20
= —Eg+ —Eg» + 3DE
ExE4p o Ee + T 3DEy4,
and
5 16 3
= 2 Eg+ =——Eg» + =DEy.
E4E>» 7 Ee¢ + spEe2+ 5DEs

The last three identities of theorem [l are a direct consequence of the
following ones:

ExEq € M '[To(1)] = Ms[To(1)] @ DMe[T'o(1)] = CEs ® CDEs,
and

Ex2Ee, ExEe € M [T0(2)] = Ms[To(2)] & DMe[To(2)]
= CEg ®CEg» ® CAgp ® CDE¢ ® CDEgp

which imply by comparison of the first Fourier coefficients

E>Eq = Eg + 2DE;,

21 64 2016
= — —Fgr — ——A DE
E>»Es 35 Eg + g5 b82 ~ 7 Q82 + DEg
and
1 4 4
E2E6,2 = —Eg + 8—E82 - ﬁAglz + 2DE6,2.

85 8 17

6. ON SOME IDENTITIES OF LAHIRI'S TYPE

Fora:= (a1,...,a,) € N",b := (by,...,b,) € 2N+1)"and N := (Ny,...,N,) €
IN*" the sum S[a, b, N] defined in () is relied to the quasimodular forms via
the function

(12) D™Ep, 41N, - D"Ep 41y, € M1 0rtHb) [To (lem(Ny, ..., N)))]

bi+-+bp+r+2(ag +...+ar)

where
tb)y=#iefl,...,r}: b =1}
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Since we always can consider that the coordinates of aare given in increasing
order, let £ be the nonnegative integer such thata; = --- =a, = 0and a1 #0
(we take ¢ = 0 if a has all its coordinates positive). We consider the function

4 r
\I]a,b,N = H(Ebj+l,N1 - 1) H Daijj+1,N]‘
j=1 j=t+1
byt +by+r+2(ajy1 +..+ay)
r<ay+...+a,+t(b
€ &b MET O R lem(Ny, .., N))]
k=bji1++bp+r+2(aj 1+ ay) =]

We have

r

WapN() = (-2)" [H

=1

bi+1| ,
— |} Sla, b, NJ&*™™=.
Bb]‘+l n=1

The evaluation of S[(0,1,1),(1,1,1)] is a consequence (by lemma ) of

(E1 — 1)(DEy)* €
CEg ® CDEy ® CD?E4 @ CD?E, & CEq9 ® CDEg & CD*E & CD?E, & CD*E,.

The comparison of the first Fourier coefficients leads to

(E> — 1)(DE,)? = —%D2E4 - 2D%E, + %D2E6 + §D3E4 + 6D*E,.
Hence the evaluation of S[(0,1,1),(1,1,1)] given in theorem £l
The evaluation of S[(0,0,0,1,1),(1,1,1,1,1)] is a consequence (by lemma
B) of
77—
(E» — 1°(DE)? € CA & CDA @ @ CDEy.

i=1 j=0

The comparison of the first Fourier coefficients leads to

144

8 8 D°E, + ?D6E2

216

Ey —1)(DE,)? = ——A + —DA - 2D%E, + 18D*E, — =—

(E2 —1)°(DEy) A5 2+ 18D*E, z
1

12 234 171
- —D*E,+ =D%E, - ==D*E,+ —D°E
5 4T 5T T3 AT g
2 9 , 25 , 1, 4 2
= -z = - — ZD?Eq.
+7D Eg 7D E6+21D Eg 6D Eg + 15D E8+55 10

Hence the evaluation of S[(0,0,0,1,1),(1,1,1,1,1)] given in theorem Bl
We leave the proofs of propositions Bl and [ to the reader. They are
obtained from the linearizations of

(E22 — 1)DEas € M2[[o(5)] @ ME2[[o(10)]

and
DE>DE; 5 € MEo[To(5)].
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