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PRE-COMPACT FAMILIES OF FINITE SETS OF INTEGERS ANDWEAKLY NULL SEQUENCES IN BANACH SPACESJ. LOPEZ-ABAD AND S. TODORCEVIC1. Introdu
tionThe aÆnities between the in�nite-dimensional Ramsey theory and some problems of theBana
h spa
e theory and espe
ially those dealing with S
hauder basi
 sequen
es have beenexplored for quite some time, starting perhaps with Farahat's proof of Rosenthal's `1-theorem(see [13℄ and [19℄). The Nash-Williams' theory though impli
it in all this was not fully exploitedin this 
ontext. In this paper we try to demonstrate the usefulness of this theory by applyingit to the 
lassi
al problem of �nding un
onditional basi
-subsequen
e of a given normalizedweakly null sequen
e in some Bana
h spa
e E. Re
all that Bessaga and Pel
zynski [7℄ haveshown that every normalized weakly null sequen
e in a Bana
h spa
e 
ontains a subsequen
eforming a S
hauder basis for its 
losed linear span. However, as demonstrated by Maurey andRosenthal [16℄ there exist weakly null sequen
es in Bana
h spa
es without un
onditional basi
subsequen
es. So one is left with a task of �nding additional 
onditions on a given weakly nullsequen
e guaranteeing the existen
e of un
onditional subsequen
es. One su
h 
ondition, givenby Rosenthal himself around the time of publi
ation of [16℄ (see also [19℄). When put in aproper 
ontext Rosenthal's 
ondition reveals the 
onne
tion with the Nash-Williams theory. Itsays that if a weakly null sequen
e (xn) in some spa
e of the form `1(�) is su
h that ea
h xntakes only the values 0 or 1, then (xn) has an un
onditional subsequen
e. To see the 
onne
tion,
onsider the family F = ffn 2 N : xn(
) = 1g : 
 2 �gand note that F is a pre-
ompa
t family of �nite subsets of N: As pointed out in [19℄, Rosenthalresult is equivalent saying that there is an in�nite subset M of N su
h that the tra
eF [M ℄ = ft \M : t 2 Fgis hereditary, i.e., it is downwards 
losed under in
lusion. On the other hand, re
all that thebasi
 notion of the Nash-Williams' theory is the notion of a barrier, whi
h is simply a familyF of �nite subsets of N no two members of whi
h are related under the in
lusion whi
h hasthe property that an arbitrary in�nite subset of N 
ontains an initial segment in F : Thus, inparti
ular, F is a pre-
ompa
t family of �nite subsets of N: Though the tra
e of an arbitrarypre-
ompa
t family might be hard to visualize, a tra
e B[M ℄ of a barrier B is easily to 
omputeas it is simply equal to the downwards 
losure of its restri
tionB �M = ft 2 B : t �Mg:2000 Mathemati
s Subje
t Classi�
ation. Primary 05D10, 46B20, 46A35; Se
ondary 03E05.1



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 2A further examination of Rosenthal's result shows that for every pre-
ompa
t family F of �nitesubsets ofN there is an in�nite setM su
h that the tra
e F [M ℄ is a
tually equal to the downwards
losure of a uniform barrier B onM , or in other words that the�-maximal elements of F [M ℄ forma uniform barrier on M: As it turns out, this fa
t holds 
onsiderably more information that the
on
lusion that F [M ℄ is merely a hereditary family whi
h is espe
ially noti
eable if one need toperform further re�nements of M while keeping tru
k on the original family F : This observationwas the motivating point for our resear
h whi
h helped us to realize that further extensions ofRosenthal's result require analysis of not only pre-
ompa
t families of �nite subsets of N butalso maps from barriers into pre-
ompa
t families of �nite subsets of N; or, more generally, intoweakly 
ompa
t subsets of 
0. We have explained this point in our previous paper [14℄, wherewe have presented various results on partial un
onditionality su
h as near-un
onditionality or
onvex-un
onditionality as 
onsequen
es of the stru
ture theory of this kind of mappings. Thispaper is as a 
ontinuation of this line of resear
h. In Se
tion 3 we show how the 
ombinatori
s onbarriers 
an be used to prove the 
0-saturation for Bana
h spa
es C(K) when K is a 
ountable
ompa
tum. Re
all that the 
0-saturation of Bana
h spa
es C(K) over 
ountable 
ompa
ta K isa result originally due to Pe l
zy�nski and Semadeni [21℄ (see also [5℄ and [12℄ for re
ent a

ountson this result.) More parti
ularly, we show that if (xi) � C(K) is a normalized weakly-nullsequen
e, then there is C � 1, some in�nite set M , some uniform barrier B on M of rank atmost the Cantor-Bendixson rank of K and some uniform assignment � : B ! 
+00 with theproperty that supp�(s) � s for every s 2 B, and su
h that for every blo
k sequen
e (sn) ofelements of B, the 
orresponding sequen
e (x(sn)) of linear 
ombinations,x(sn) = Xi2sn(�(sn))(i)xi;is a normalized blo
k sequen
e C-equivalent to the standard basis of 
0.The last se
tion 
on
erns the following natural measurement of un
onditionality present in agiven weakly null sequen
e (xn) in a general Bana
h spa
e E: Given a family F of �nite sets, wesay that (xn) is F -un
onditional with 
onstant at most C � 1 i� for every sequen
e of s
alars(an), sups2F kXn2s anxnk � CkXn2Nanxnk:Thus, if for some in�nite subset M of N the tra
e F [M ℄ 
ontains the family of all �nite subsets ofM; the 
orresponding subsequen
e (xn)n2M is un
onditional. Typi
ally, one will not be able to�nd su
h a tra
e, so one is naturally led to study this notion when the family F is pre-
ompa
t,or equivalently, when F is a barrier. Sin
e for every pair F0 and F1 of barriers on N there isan in�nite set M su
h that F0[M ℄ � F1[M ℄ or F1[M ℄ � F0[M ℄ and sin
e the two alternativesdepend on the ranks of F0 and F1; one is also naturally led to the following measurement ofun
onditionality that refers only to a 
ountable ordinal 
 rather than a parti
ular barrier of rank
: Thus, we say that a normalized basi
 sequen
e (xn) of a Bana
h spa
e X is 
-un
onditionallysaturated with 
onstant at most C � 1 if there is an 
-uniform barrier B on N su
h that forevery in�nite M � N there is in�nite N �M su
h that the 
orresponding subsequen
e (xn)n2Nof (xn) is B � N-un
onditional with 
onstant at most C. (Here, B � N denotes the topologi
al
losure of the restri
tion B � N whi
h in turn is equal to the tra
e B[N ℄, a pleasant property of



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 3any barrier.) It turns out that only inde
omposable 
ountable ordinals 
 matter for this notion.We shall see, extending the well-known example of Maurey-Rosenthal of a normalized weakly-null sequen
e without un
onditional subsequen
es, that every normalized basi
 sequen
e has asubsequen
e whi
h is !-un
onditionally saturated, and that this 
annot be extended further. Forexample, we show that for every inde
omposable 
ountable ordinal 
 > ! there is a 
ompa
tumK of Cantor-Bendixson rank 
 + 1 and a normalized 1-basi
 weakly-null sequen
e (xn) � C(K)su
h that (xn) is �-un
onditionally saturated for all � < 
 but not 
-un
onditionally saturated.More pre
isely, the summing basis of 
0 is �nitely blo
k-representable in every subsequen
e of(xn), and so in parti
ular, no subsequen
e of (xn) is un
onditional.2. PreliminariesLet N denote the set of all non-negative integers and let FIN denote the family of all �nite setsof N. The topology on FIN is the one indu
ed from the Cantor 
ube N2 via the identi�
ation ofsubsets of N with their 
hara
teristi
s fun
tion. Observe that this topology 
oin
ides with theone indu
ed by 
0, the Bana
h spa
e of sequen
es 
onverging to zero, with the same identi�
ationof �nite sets and 
orresponding 
hara
teristi
 fun
tions. Thus, we say that a family F � FINis 
ompa
t if it is a 
ompa
t spa
e under the indu
ed topology. We say that F � FIN is pre-
ompa
t if its topologi
al 
losure Ftop taken in the Cantor 
ube N2 
onsists only of �nite subsetsof N: Given X; Y � N we write(1) X < Y i� maxX < min Y . We will use the 
onvention ; < X and X < ; for every X .(2) X v Y i� X � Y and X < Y nX .A sequen
e (si) of �nite sets of integers is 
alled a blo
k sequen
e i� si < sj for every i < j,and it is 
alled a �-sequen
e i� there is some �nite set s su
h that s v si (i 2 N) and (si ns) is ablo
k sequen
e. The set s is 
alled the root of (si). Note that si !i s i� for every subsequen
e of(si) has a �-subsequen
e with root s. It follows that the topologi
al 
losure F of a pre-
ompa
tfamily F of �nite subsets of N is in
luded in its downwards 
losureF� = fs � t : t 2 Fgwith respe
t to the in
lusion relation and also in
luded in its downwards 
losureFv = fs v t : t 2 Fgwith respe
t to the relation v : We say that a family F � FIN is �-hereditary if F = F� andv-hereditary if F = Fv: The �-hereditary families will simply be 
alled hereditary families. Weshall 
onsider the following two restri
tions of a given family F of subsets of N to a �nite orin�nite subset X of N F � X =fs 2 F : s � Xg;F [X ℄ =fs \X : s 2 Fg:There are various ways to asso
iate an ordinal index to a pre-
ompa
t family F of �nitesubsets of N. All these ordinal indi
es are based on the fa
t that for n 2 N, the index of thefamily Ffng = fs 2 FIN : n < s; fng [ s 2 Fg



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 4is smaller or equal from that of F : For example, one may 
onsider the Cantor-Bendixson indexr(F), the minimal ordinal � for whi
h the iterated Cantor-Bendixson derivative ��(F) is equal to;, then 
learly r(Ffng) � r(F) for all n 2 N: Re
all that �F is the set of all proper a

umulationpoints of F and that ��(F) = T�<� �(��(F)): The rank is well de�ned sin
e F is 
ountableand therefore a s
attered 
ompa
tum so the sequen
e ��(F) of iterated derivatives must vanish.Observe that if F is a nonempty 
ompa
t, then ne
essarily r(F) is a su

essor ordinal.We are now ready to introdu
e the basi
 
ombinatorial 
on
epts of this se
tion. For this weneed the following pie
e of notation, where X and Y are subsets of N�X = X n fminXg and X=Y = fm 2 X : maxY < mgThe set �X is 
alled the shift of X . Given integer n 2 N, we write X=n to denote X=fng =fm 2 X : m > ng. The following notions have been introdu
ed by Nash-Williams.De�nition 2.1. ([15℄) Let F � FIN.(1) F is 
alled thin if s 6v t for every pair s, t of distin
t members of F .(2) F is 
alled Sperner if s * t for every pair s 6= t 2 F .(3) F is 
alled Ramsey if for every �nite partition F = F0 [ � � � [ Fk there is an in�nite setM � N su
h that at most one of the restri
tions Fi �M is non-empty.(4) F is 
alled a front on M if F � P(M), it is thin, and for every in�nite N �M there is somes 2 F su
h that s v N .(5) F is 
alled a barrier on M if F � P(M), it is Sperner, and for every in�nite N � M thereis some s 2 F su
h that s v N .Clearly, every barrier is a front but not vi
e-versa. For example, the family N[k℄ of all k-element subsets of N is a barrier. The basi
 result of Nash-Williams [15℄ says that every front(and therefore every barrier) is Ramsey. Sin
e as we will see soon there are many more barriersthan those of the form N[k℄ this is a far rea
hing generalization of the 
lassi
al result of Ramsey.To see a typi
al appli
ation, let F be a front on some in�nite set M and 
onsider its partitionF = F0 [ F1; where F0 is the family of all �-minimal elements of F . Sin
e F is Ramsey thereis an in�nite N �M su
h that one of the restri
tions Fi �M is empty. Note that F1 � N mustbe empty. Sin
e F0 � N is 
learly a Sperner family, it is a barrier on N . Thus we have shownthat every front has a restri
tion that is a barrier. Sin
e barrier are more pleasant to workwith one might wonder why introdu
ing the notion of front at all. The reason is that indu
tive
onstru
tions lead more naturally to fronts rather than barriers. To get an idea about this, it isinstru
tive to 
onsider the following notion introdu
ed by Pudlak and R�odl.De�nition 2.2. ([22℄) For a given 
ountable ordinal �, a family F of �nite subsets of a givenin�nite set M is 
alled �-uniform on M provided that:(a) � = 0 implies F = f;g,(b) � = � + 1 implies that Ffng is �-uniform on M=n,(
) � > 0 limit implies that there is an in
reasing sequen
e f�ngn2M of ordinals 
onverging to� su
h that Ffng is �n-uniform on M=n for all n 2M .F is 
alled uniform on M if it is �-uniform on M for some 
ountable ordinal �.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 5Remark 2.3. (a) If F is a front on M , then F = Fv.(b) If F is uniform on M , then it is a front (though not ne
essarily a barrier) on M .(
) If F is �-uniform (front, barrier) on M and � : M ! N is the unique order-preserving ontomapping between M and N , then �"F = f�"s : s 2 Fg is �-uniform (front, barrier) on M .(d) If F is �-uniform (front, barrier) on M then F � N is �-uniform (front, barrier) on N forevery N �M .(e) If F is uniform (front, barrier) on M , then for every s 2 Fv the familyFs = ft : s < t and s [ t 2 Fgis uniform (front, barrier) on M=s.(e) If F is �-uniform on M , then ��(F) = f;g, hen
e r(F) = �+ 1. (Hint: use that ��(Ffng) =(��(F))fng for every � and every 
ompa
t family F).(f) It is easy to prove by indu
tion on n that every n-uniform family on M is of the form M [n℄.This is not the 
ase in general.(g) An important example of a !-uniform barrier on N is the family S = fs : jsj = min(s) + 1g.We 
all S a S
hreier barrier sin
e its downwards 
losure is 
ommonly 
alled a S
hreier family.Indeed, it 
an be proved a B is a !-uniform family on M i� there is an unbounded mappingf : M ! ! su
h that B = fs �M : jsj = f(min s) + 1g.The following result based on Nash-Williams' extension of Ramsey's theorem explains therelationship between the 
on
epts introdu
ed above (see [4℄ for proofs and fuller dis
ussion).Proposition 2.4. The following are equivalent for a family F of �nite subsets of N:(a) F is Ramsey.(b) There is an in�nite M � N su
h that F �M is Sperner.(
) There is an in�nite M � N su
h that F �M is either empty or uniform on M .(d) There is an in�nite M � N su
h that F �M is either empty or a front on M .(e) There is an in�nite M � N su
h that F �M is either empty or a barrier on M .(f) There is an in�nite M � N su
h that F �M is thin.(g) There is an in�niteM � N su
h that for every in�nite N �M the restri
tion F � N 
annotbe split into two disjoint families that are uniform on N . �In this kind of Ramsey theory one frequently performs diagonalisation arguments that 
an beformalized using the following notion.De�nition 2.5. An in�nite sequen
e (Mk)k2N of in�nite subsets of N is 
alled a fusion sequen
eof subsets of M � N if for all k 2 N:(a) Mk+1 �Mk �M ,(b) mk < mk+1, where mk = minMk .The in�nite set M1 = fmkgk2N is 
alled the fusion set (or limit) of the sequen
e (Mk)k2N:We have also the following simple fa
ts 
onne
ting these 
ombinatorial notions with thetopologi
al 
on
epts 
onsidered at the beginning of this se
tion.Proposition 2.6. Fix a family F � FIN.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 6(a) If F is a barrier on M then F� = Fv = F, and hen
e F� is a 
ompa
t family.(b) If F is a barrier on M then for every N �M , F � N� = F� � N .(
) Suppose that F is a barrier on M . Then for every N � M su
h that M nN is in�nite wehave that F [N ℄ = F � N�, and in parti
ular F [N ℄ is downwards 
losed.(d) A family F �M [<1℄ is the topologi
al 
losure of a barrier on M i� Fv�max = F��max isa barrier on M .Barriers des
ribe small families of �nite sets, as it is shown in the following.Theorem 2.7. [14℄ Let F � FIN be an arbitrary family. Then there is an in�nite set M � Nsu
h that either(a) F [M ℄ is the 
losure of a uniform barrier on M , or(b) M [1℄ � F�.Note that it follows that if F is pre-
ompa
t then 
ondition (a) must hold.We shall follow standard terminology and notation when dealing with sequen
es in Bana
hspa
es (see [13℄). We re
all now few standard de�nitions we are going to use along this paper.De�nition 2.8. Let (xi) be a sequen
e in a Bana
h spa
e E.(a) (xi) is 
alled weakly-null i� for every x� 2 E�, the sequen
e of s
alars (x�(xi))i tends to 0.(b) (xi) is 
alled a S
hauder basis of E i� for every x 2 E there is a unique sequen
e of s
alars(ai) su
h that x = Pi aixi. This is equivalent to say that xi 6= 0 for every i, the 
losed linearspan of (xi) is X , and there is a 
onstant � � 1 su
h that for every sequen
e of s
alars (ai), andevery interval I � N, kXi2I aixik � �kXi2Naixik: (1)(
) (xi) is 
alled a basi
 sequen
e i� it is a S
hauder basis of its 
losed linear span, i.e., xi 6= 0for every i, and there is � � 1 su
h that for every sequen
e of s
alars (ai), and every intervalI � N, kPi2I aixik � �kP aixik. The in�mum of those 
onstants � is 
alled the basi
 
onstantof (xi).(d) (xi) is 
alled �-un
onditional (� � 1) i� for every sequen
e of s
alars (ai), and every subsetA � N, kXi2A aixik � �kXi2Naixik: (2)(xi) is 
alled un
onditional if it is �-un
onditional for some � � 1.Given two basi
 sequen
es (xi)i2M and (yi)i2N of some Bana
h spa
es E and F , indexedby the in�nite sets M;N � N, we say that (xi)i2M � E and (yi)i2N � F are �-equivalent,denoted by (xi)i2M �� (yi)i2N , if the order preserving bije
tion � between the two index-setsM and N lifts naturally to an isomorphism between the 
orresponding 
losed linear spans ofthese sequen
es sending xi to y�(i).The sequen
e of evaluation fun
tionals of 
0 is the biorthogonal sequen
e (pi) of the naturalbasis (ei) of 
0, i.e. if x = Pi aiei 2 
0, then pi(x) = ai. Note that weakly 
ompa
t subsetsK of 
0 are 
hara
terized by the property that every sequen
e in K has a pointwise 
onvergingsubsequen
e to an element of K. It is 
lear that for every weakly-
ompa
t subset K � 
0 the



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 7restri
tions of evaluation mappings (pi) toK is weakly-null in C(K). The sequen
e of restri
tionswill also be denoted by (pi). Observe that (pi) as a sequen
e in the Bana
h spa
e C(K) is amonotone basi
 sequen
e i� K is 
losed under restri
tion to initial intervals.There are two parti
ularly important examples of weakly-
ompa
t subsets of 
0 naturallyasso
iated to a normalized weakly null sequen
e (xi)i2M of a Bana
h spa
e E:(a) the set RE((xi)i2M) = f(x�(xi))i2M 2 
0 : x� 2 BE�gis symmetri
, 1-bounded and weakly-
ompa
t subset of 
0.(b) If E = C(K), K 
ompa
tum, then the setRK((xi)i2M) = f(xi(
))i2M 2 
0 : 
 2 Kgis also 1-bounded and weakly-
ompa
t.In both 
ases one has that (xi)i2M is 1-equivalent to the evaluation mapping sequen
es ofC(RE((xi)i2M)) and C(RK((xi)i2M)).We say that a subset X of 
0 is weakly pre-
ompa
t if its 
losure relative to the weak topologyof 
0 is weakly 
ompa
t. We have then the following, not diÆ
ult to prove.Proposition 2.9. (a) F � FIN is pre-
ompa
t i� the set f�s : s 2 FINg � 
0 of 
hara
teristi
fun
tions of sets in F is weakly-pre-
ompa
t.(b) For every weakly-pre-
ompa
t subset X of 
0 and every " > 0 one has thatsupp "X = ffn 2 N : j�(n)j � "g : � 2 Xg is pre-
ompa
t:Finally, we introdu
e few 
ombinatorial notions 
on
erning mappings from families of �nitesets of integers into 
0. For more details see [14℄.De�nition 2.10. ([14℄) Let F � FIN be an arbitrary family, and let f : F ! 
0.(a) f is internal if for every s 2 F one has that supp f(s) � s.(b) f is uniform if for every t 2 FIN one has thatjf'(s)(min(s=t)) : t v s; s 2 Fgj = 1(
) f is Lips
hitz if for every t 2 FIN one has thatjf'(s) � t : t v s; s 2 Fgj = 1(d) f is 
alled a U -mapping if F if it is internal and uniform.(e) f is 
alled a L-mapping if F if it is internal and Lips
hitz.Remark 2.11. (a) Every uniform mapping is Lips
hitz, but the re
ipro
al is in general false.For example, the mapping f : FIN ! 
0 de�ned by f(s)(i) = i if i 2 s and f(s)(i) = 0 isLips
hitz but not uniform.(b) Every L-mapping f : F ! 
0 
an be naturally extended to a 
ontinuous mapping f 0 : Fv !
0 by setting f 0(t) = f(s) � t for (any) s 2 F su
h that t v s.(
) The importan
e of internal mappings 
an be seen, for example, by the well-known resultof Pudlak-R�odl [22℄ stating that if f : B ! X is a fun
tion de�ned on a barrier B on M then



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 8there is N � M , a barrier C on N , and an internal mapping g : B � N ! C su
h that for everys; t 2 B � N one has that f(s) = f(t) i� g(s) = g(t).(d) U -mappings were used in [14℄ to produ
e some weakly-null sequen
es playing important rolein the better understanding of an abstra
t 
on
ept of un
onditionality (see [14℄ for more details).The main result on mappings de�ned on barriers is the following:Theorem 2.12. [14℄ Suppose that B is a barrier on M , K � 
0 is weakly-
ompa
t and supposethat f : B ! K. Then for every " > 0 there is N �M and there is a U -mapping g : B � N ! 
00su
h that for every s 2 B � N one has thatkf(s) � N � g(s)k`1 � ":Corollary 2.13. Suppose that f : B ! 
0 is an internal mapping de�ned on a barrier B.Suppose that in addition f is bounded, i.e. there is C su
h that for every s 2 B one has thatkf(s)k1 � C. Then for every " > 0 there exists is a U -mapping g : B � N ! 
00 su
h that forevery s 2 B � N one has that kf(s)� g(s)k`1 � ":Proof. Let us prove �rst that the image of f is weakly-pre-
ompa
t: For suppose that (f(sn))nis an arbitrary sequen
e. Let M � N be su
h that (supp f(sn))n2M 
onverges to some s 2 Bv.This is possible be
ause f is internal. Sin
e f is bounded, we 
an �nd N � M su
h that(f(sn))n2N is weak-
onvergent in 
0.Now the desired result follows from 2.12 by using that f is in addition internal. �3. 
0-saturation of C(K) for a 
ountable 
ompa
tum KRe
all the result of Pel
zynski and Semadeni [21℄ whi
h says that every Bana
h spa
e of theform C(K) for K a 
ountable 
ompa
tum is 
0-saturated in the sense that every of its 
losedin�nite-dimensional subspa
es 
ontains an isomorphi
 
opy of 
0: The purpose of this se
tionis to examine the 
0-saturation using the theory of mappings on barriers developed above inSe
tion 3. We start with a 
onvenient reformulation of the problem. We start with a de�nition.De�nition 3.1. For a given subset X of 
0, let suppX = ffi 2 N : �(i) 6= 0g : � 2 Xg be thesupport set of X . We say that a weakly 
ompa
t subset K of 
0 is supported by a barrier on Mif its support set suppK is the is the 
losure of a uniform barrier on M .Lemma 3.2. Suppose that K is a 
ountable 
ompa
tum. Suppose that (xi) � C(K) is a nor-malized weakly null sequen
e. Then for every " > 0 there is subsequen
e (xi)i2M and a weakly-
ompa
t subset L � 
0 supported by a barrier on N of rank not bigger than the Cantor-Bendixsonrank of K su
h that (xi)i2M and the evaluation mapping (pi)i2N of C(L) are (1 + ")-equivalent.Proof. Fix " > 0. Find �rst an stri
tly de
reasing sequen
e ("i) su
h that Pi "i � " and su
hthat f"i : i 2 Ng \ fjxi(
)j : 
 2 Kg = ;: (3)This is possible be
ause K is 
ountable. Now de�ne ' : K ! P(N) by '(
) = fi 2 N :jxi(
)j � "ig. Note that (3) implies that ' is a 
ontinuous fun
tion. Enumerate K = f
kgk2N.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 9Sin
e (xi) is weakly-null we 
an �nd a fusion sequen
e (Mk) su
h that for every k and everyi 2Mk one has that jxi(
k)j < "k . Now if we set N to be the 
orresponding fusion set then forevery k one has that fi 2M : jxi(
k)j � "ig � fn0; : : : ; nk�1g. This means that the mapping = �M �  is 
ontinuous with image in
luded in FIN. Set N = �M and denote the immediateprede
essor of i 2 N in M by i�. Sin
e K is a zero-dimensional 
ompa
tum, we 
an �nd 
lopensets Ci � K (i 2 N) su
h thatK n x�1i ((�"i� ; "i�)) � Ci � K n x�1i ([�"i; "i℄) for every i 2 N .Set yi = �Cixi for ea
h i 2 N . So one has(i) kxi � yikK < "i� , so (xi)i2N and (yi)i2N are 1 + "-equivalent, and(ii) for every 
 2 K and every i 2 N , if jyi(
)j � "i, then yi(
) = 0.Sin
e for every 
 2 K, by (ii) above, one has thatfi 2 N : yi(
) 6= 0g = fi 2 N : 
 2 Ci and jxi(
)j � "ig =  (
);it follows that the support set F of RK((yi)i2N) 
oin
ide with the image of  , so it is a 
ompa
tfamily of N. We use now Theorem 2.7 to �nd P � N su
h that F [P ℄ is the 
losure of a uniformbarrier on P . This implies thatRK((yi)i2P ) is supported by a barrier B on P . Let � be the uniqueorder preserving mapping from N onto P , and let � : 
0 � P = f� 2 
0 : supp � � P g � 
0 ! 
0be de�ned by �(�)(n) = �(�(n)). This is an homeomorphism between 
0 � P and 
0, both withthe weak topology, so L = �"RK((yi)i2P ) is a weakly-
ompa
t subset of 
0 and supported bythe barrier ��1B = f��1s : s 2 Bg on N. Now it is easy to see that the evaluation mapping(pi)i2N of C(L) is a normalized weakly-null sequen
e 1 + "-equivalent to (xi)i2P . �Theorem 3.3. Suppose that (xi) � C(K) is a normalized weakly-null sequen
e for a 
ountable
ompa
tum K. Then there is a 
onstant C � 1, an in�nite set M , a uniform barrier B onM whose rank is at most the Cantor-Bendixson rank of K, and some U -mapping � : B ! 
+00su
h that for every blo
k sequen
e (sn) � B the 
orresponding sequen
e of linear 
ombinations(Pi2sn(�(sn))(i)xi)n is a normalized blo
k sequen
e C-equivalent to the unit ve
tor basis of 
0.Proof. The proof is by indu
tion on the Cantor-Bendixson rank of K. First of all, by Lemma3.2 we may assume that K is a weakly-
ompa
t subset of 
0 supported by a barrier B on N andthat the normalized weakly null sequen
e (xi) is the 
orresponding evaluation mapping sequen
e(pi)i2N. If � = 1, then B = N[1℄ and 
learly (pi) is equivalent to the unit ve
tor basis of 
0. Soassume that � > 1. By going to a subsequen
e of (pi) if needed, we may also assume in this 
asethat jsj � 2 for every s 2 B. For ea
h integer n set Fn = Sm�n Bfmg. Sin
e B is a �-uniformfamily, we have that for every n, ��Fn = ;, so its Cantor-Bendixson rank is stri
tly smallerthan �+ 1. For ea
h n 2 N, let Kn = ff � s : s 2 Fng:This is a 
ompa
tum whose support is Fn and whose rank is stri
tly smaller than �+ 1. So, theevaluation mapping sequen
e (pi) is a weakly-null sequen
e of C(Kn) for every n. Observe thatfor every sequen
e of s
alars (ai) we have thatkXi aipikn = kXi aipikKn = supfkXi2s aipikK : s 2 Fng: (4)



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 10Using the fa
t that the family Fn is hereditary, we obtain that (pi) is 1-un
onditional. Sin
e weassume that all the singletons fig belong to Fn, it follows that (pi)i�1 is indeed a 1-un
onditionalnormalized weakly null sequen
e in C(Kn).Fix " > 0, and let ("n)n be a summable sequen
e withPn "n < "=2. By the Ramsey propertyof the uniform barrier B, we 
an �nd a fusion sequen
e (Mk)k su
h that, setting nk = minMkfor ea
h k 2 N, we have that for every k the following di
hotomy holds:(I) Either for every s 2 B � Mk there is some �k(s) 2 
00 with supp �k(s) � s, 0 ��k(s)(i) � 1 for every i 2 s, and su
h that for every su
h that kPi2s �k(s)(i)pikK = 1 whilekPi2s �k(s)(i)piknk < "k , or else(II) kPi2s aipikK � 2"�1k kPi2s aipiknk for every s 2 B �Mk and every (ai)i2s.Suppose �rst that (I) holds for every k. Let M1 = fnkg be the 
orresponding fusion set.Then let C = B � M1. For s 2 C, de�ne �(s) = �k(s), where nk = min s. This is well de�nedsin
e s 2 B �Mk. For a given s 2 C, letx(s) =Xi2s �(s)(i)pi:Our intention is to show that for every blo
k sequen
e (si)i in C one has that (x(si))i is 2 + "-equivalent to the 
0-basis. So �x su
h sequen
e (si) and let (bi)i2N be a sequen
e of s
alars withjbij � 1 for every integer i. Sin
e ea
h x(si) is normalized and sin
e (pi) is monotone, we obtainthat kXi bix(si)kK � (1=2)kXi bieik1:Suppose that � 2 K, and let i0 = minfi : si \ supp � 6= ;g. Fix i > i0, and let ki be su
h thatnki = min si. Sin
e supp � \ si 2 Fmax si0 we have thatjx(si)(�)j � k Xj2si\suppf a(ki)i pikmaxsi0 < "ki : (5)It follows that jXi bix(si)(�)j � jbi0 j+Xi>i0 jbijjx(si)(�)j � jbi0j+ "2 : (6)So, kPi bix(si)kK � (1 + "=2)kPbieik1. Finally use Corollary 2.13 to perturb � and make itU -mapping.Suppose now that k0 is the �rst k su
h that (II) holds for k. Set M = Mk. It readilyfollows that for every x in the 
losed linear span of (pi)i2M one has that kxkK � "�1k0 kxknk0 . Byindu
tive hypothesis applied to (pi) � C(Knk0 ), there is some C � 1, some uniform barrier Con some N � M of rank not bigger than the one of Knk0 and some � ful�lling the 
on
lusionsof the Lemma. Fix s 2 C. Then k�(s)knk0 = 1, so we 
an �nd some ts � s su
h that 1 =k�(s)knk0 = k�(s) � tskK . Observe that, by 1-un
onditionality of k � knk0 , k�(s) � tknk0 = 1.De�ne � : C ! 
00 by �(s) = �(s) � ts. Finally, let us 
he
k that (x(si)) � C(K) is C"�1nk -equivalent to the 
0-basis for every blo
k sequen
e (si)i in C. Fix s
alars (ai), jaij � 1 (i 2 N).We obtain the inequality kPi ai�(si)kK � (1=2)kPi aieik1 by the monotoni
ity of the basi
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e (pi). Now,kXi ai�(si)kK � 1"nk0 kXi ai�(si)knk0 � 1"nk0 kXi ai�(si)knk0 � C"nk0 kXi aieik1: (7)�4. ConditionalityWe start with the following natural slightly variation on the notion of S�-un
onditionalityfrom [3℄, and whi
h is a generalization of un
onditionality (see De�nition 2.8 (d)).De�nition 4.1. Let F be a family of �nite sets of integers. A normalized basi
 sequen
e (xn) ofa Bana
h spa
e E is 
alled F -un
onditional with 
onstant at most C � 1 i� for every sequen
eof s
alars (an), sups2F kXn2s anxnk � CkXn2Nanxnk:This generalizes the notion of un
onditionality 
overed by the 
ase of F = FIN. The questionis whether every normalized weakly-null sequen
e has a F -un
onditional subsequen
e. Observethat the subsequen
e (xn)n2M is F -un
onditional i� it is F [M ℄-un
onditional, so the existen
eof an F -un
onditional subsequen
e is 
losely related to the form of the tra
es F [M ℄. If weassume that in addition the family F is hereditary, then, by the Theorem 2.7, two possibilities
an o

ur: The �rst one is that some tra
e of F 
onsists on all �nite subsets of some in�niteset M . In this 
ase, for subsequen
es of (xn)n2M the F -un
onditionality 
oin
ides with theun
onditionality. The se
ond 
ase is when some tra
e of F is the 
losure of a uniform barrier.So one is naturally led to examining the standard 
ompa
t families of �nite subsets of N. Webegin with the following positive result announ
ed in [16℄ and �rst proved by E. Odell [20℄
on
erning the S
hreier family S = fs � N : jsj � min(s) + 1g.Theorem 4.2. Suppose that (xn) is a normalized weakly-null sequen
e of a Bana
h spa
e E.For every " > 0 there is a S-un
onditional subsequen
e with 
onstant 2 + ". �Re
all that if F is a barrier on some set M then its tra
e F [N ℄ on any 
o-in�nite subset N ofM is hereditary and that for every pair F0 and F1 of barriers on the same domain M there isan in�nite set N � M su
h that F0[N ℄ � F1[N ℄ or F1[N ℄ � F0[N ℄. Sin
e the two alternativesare dependent on the ranks of F0 and F1; one is naturally led to the following measurement ofun
onditionality.De�nition 4.3. Suppose that 
 is a 
ountable ordinal. A normalized basi
 sequen
e (xn) ofa Bana
h spa
e E is 
alled 
-un
onditionally saturated with 
onstant at most C � 1 if forevery 
-uniform barrier B on N and for every in�nite M there is in�nite N �M su
h that the
orresponding subsequen
e (xn)n2N of (xn) is B-un
onditional with 
onstant at most C.We say that (xn)n is 
-un
onditionally saturated if it is 
-un
onditionally saturated with
onstant C for some C � 1.Remark 4.4. (a) A sequen
e (xn)n is 
-un
onditionally saturated i� given a 
-uniform barrierB every subsequen
e of (xn)n has a further B-un
onditional subsequen
e. The reason for this is
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-uniform barriers B and C on a set M we have that there is N � M su
h thateither B � N � C � N � B � N �N [�1℄ or the symmetri
 situation holds, where F �G = fs [ t :s 2 G; t 2 F and s < tg (see [4℄).(b) It follows from Theorem 4.2 that every normalized weakly null sequen
e is !-un
onditionallysaturated. Sin
e the !-uniform barriers are of the form fs 2 FIN : jsj = f(min s) + 1g for someunbounded mapping f : M ! N one 
an easily modify the proof of Theorem 4.2 to prove thatevery normalized weakly-null sequen
e is !-un
onditionally saturated with 
onstant at most2 + ".(
) If the normalized basi
 sequen
e (xn) is monotone, then it is B-un
onditional i� it is B-un
onditional for every uniform barrier B on N.(d) An analysis of the Maurey-Rosenthal [16℄ example of a weakly-null sequen
e (xn) with noun
onditional basi
 subsequen
e (see Example 4.5 below) reveals an !2-uniform barrier BMRsu
h that no in�nite subsequen
e (xn)n2M is BMR-un
onditional with any �nite 
onstant C. Sothis is an example of a normalized weakly-null sequen
e with no !2-un
onditionally saturatedsubsequen
e.(e) Re
all that an ordinal 
 is 
alled inde
omposable if for every � < 
, �! � 
. Equivalently,
 = !� for some �. Suppose that 
 is the maximal inde
omposable ordinal smaller than some�xed ordinal �. Then a normalized basi
 sequen
e (xn) is �-un
onditionally saturated if andonly it is 
-un
onditionally saturated.Example 4.5. First of all, for a �xed 0 < " < 1 
hoose a fast in
reasing sequen
e (mi) su
hthat 1Xi=0Xj 6=i minf(mimj )1=2; (mjmi )1=2g � "2 : (8)Let FIN[<1℄ be the 
olle
tion of all �nite blo
k sequen
es E0 < E1 < � � �< Ek of nonempty�nite subsets of N. Now 
hoose a 1� 1 fun
tion� : FIN[<1℄ ! fmig (9)su
h that '((si)ni=0) > sn for all (si) 2 FIN[<1℄ Now let BMR be the family of unions s0 [ s1 [� � � [ sn of �nite sets su
h that(a) (si) is blo
k and s0 = fng.(b) jsij = �(s0; : : : ; si�1) (1 � i � n).It turns out that BMR is a !2-uniform barrier on N (see Proposition 4.11 below), hen
eBMR = BMRv is a 
ompa
t family with rank !2 + 1. Observe that by de�nition, every s 2 BMRhas a unique de
omposition s = fng [ s1 [ � � �[ sn satisfying (a) and (b) above. Now de�ne themapping � : BMR ! 
00, �(s) = en + nXi=1 1jsij 12 Xk2si ek: (10)It follows that � is a U -mapping de�ned on the barrier BMR. Now we 
an de�ne the Bana
hspa
e XMR as the 
ompletion of 
00 under the normkxkMR = supfjh�(s); xij : s 2 BMRg:
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00 is now a normalized weakly-null monotone basis of XMR with-out un
onditional subsequen
es. Indeed, without !2-un
onditionally saturated subsequen
es.Moreover this weakly-null sequen
e has the property that the summing basis (Si) of 
, the Ba-na
h spa
e of 
onvergent sequen
es of reals, is �nitely-blo
k representable in the linear span ofevery subsequen
e of (ei) (and so the summing basis of 
0), more pre
isely, for every M , everyn 2 N and every " > 0 there is a normalized blo
k subsequen
e (xi)n�1i=0 of (ei)i2M su
h that forevery sequen
e of s
alars (ai)n�1i=0 ,maxfj mXi=0 aij : m < ng � k n�1Xi=0 aixikC(K) � (1 + ") maxfj mXi=0 aij : m < ng:On the other hand, by Proposition 4.2 the sequen
e (pi) is !-un
onditionally saturated with
onstant � 2.Another presentation of this spa
e is the following: Sin
e � is uniform, it is Lips
hitz, sothere is a unique extension � : BMR ! 
00, naturally de�ned by �(s) = �(t) � t, where t 2 BMRis (any) su
h that s v t. Now de�ne K = �"BMR � 
00. This is a weakly-
ompa
t subset of
00 whose rank the same than BMR, i.e., !2 + 1. Then the 
orresponding evaluation sequen
e(pi) � C(K) is 1-equivalent to the basis (ei)i of XMR.Building on the idea of Example 4.5, we are now going to �nd, for every 
ountable inde-
omposable ordinal 
, a U -sequen
e with no un
onditional subsequen
es but �-un
onditionallysaturated for every � < 
. Before embarking into the 
onstru
tion, we need to re
all a lo
alizedversion of Pt�ak's Lemma. For this we need the following notation: Given a family F , and n 2 N,let F 
 n = fs0 [ � � � [ sn�1 : (si)n�1i=0 � F is blo
kg:It 
an be shown that F 
 n is a �n-uniform family if F is an �-uniform family.Given � 2 
00 we will write �1=2 to denote (�(i)1=2). Given � 2 
00 and a �nite set s, leth�; si = h�; �si =Pi2s �(i).De�nition 4.6. A mean is an element � 2 
+00 with the property that Pi2N�(i) = 1. We saythat � : B ! 
+00 is a U -mean-assignment if � is a U -mapping su
h that for every s 2 B one hasthat �(s) is a mean.Lemma 4.7. Suppose that B is an �-uniform barrier on M , � � 1. Let 
 = 
(�) be themaximal inde
omposable ordinal not bigger than �,and let n = n(�) 2 N, n � 1, be su
h that
n � � < 
(n+ 1). Then for every k 2 N, k > 1, every " > 0, and every �-uniform barrier Con M with � > �k there N �M and U -mean-assignment � : C � N ! 
+00 su
h thatsupfh�(s) 12 ; ti : t 2 Bg � (1 + ")(n+ 1)(nk) 12 (11)for every s 2 C � N .Proof. The proof is by indu
tion on �. Fix " > 0 and k > 1. Let C be an �-uniform family onM su
h that � > �k.
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e that if we prove that for every N � M there is one mean � with support in C � Nsu
h that (11) holds, then the Ramsey property of the uniform barrier C gives the existen
e forsome N � M of a mean-assignment � : C � N ! 
00 su
h that �(s) has the property (11) forevery s 2 C � N . Then Corollary 2.13 gives the desired U -mapping.Let D be a 
-uniform barrier on M (if n = 1 we take D = B), and �x N � M . Find �rstP � N be su
h that (D 
 nk) � P � C as well as B � P � D 
 (n+ 1). Consider (
i)i2P su
hthat Dfig � P is 
i-uniform on P=i. Observe that for every i 2 P we have that 
i < 
, so, sin
e
 is inde
omposable, 
i! � 
. Let �0 be any mean su
h that supp�0 2 B � P . By indu
tivehypothesis applied to appropriate �i's, we 
an �nd a blo
k sequen
e (�j)nk�1j=0 of means withsupport in B � P su
h that for every 1 � j � nk � 1,supfh� 12j ; ti : t 2 D; and min t � max supp�j�1g < "2j+1 : (12)Let � = (1=(nk))Pnk�1j=0 �j . Observe that supp � 2 (D 
 (nk)) � P � C. Then, for every t 2 B,by (12), h� 12 ; ti = 1(nk) 12 k�1Xj=0Xi2t �j(i) 12 � 1 + "2(nk) 12 : (13)Let us point out that supp � is, possibly, not a set in C. However it is easy to slightly perturb �to a newer mean with support in C and satisfying (13) for every t 2 B: Let s 2 C be su
h thatsupp � v s, and set u = s n supp �. Let Æ > 0 be su
h that(1 + "2)(1� Æ)1=2 + (nkÆjuj)1=2 � 1 + ": (14)Now set � = (1� Æ)� + Æjuj�u: (15)� is a mean whose support is s 2 C. It 
an be shown now that for every t 2 B,Xi2t �(i) 12 � 1 + "(nk) 12 ; (16)by the 
hoi
e of Æ. Finally, let t 2 B and let us 
omputePi2t(�(i))1=2: First of all we have thatPi2t(�(i))1=2 = Pi2u(�(i))1=2, where u = t \ P . Now, sin
e u 2 B � P � D 
 (n+ 1), we 
an�nd t0 < � � �< tn in D su
h that u v t0 [ � � � [ tn, and hen
eh�1=2; ti = nXj=0h�1=2; tji � (n+ 1)(1 + ")(nk) 12 ; (17)as promised. �Corollary 4.8. Suppose that B is an �-uniform barrier on M , � � 1. Then for every " > 0there is some k = k(�; ") su
h that for every �-uniform barrier on M with � > �k there N �Mand some U -mean-assignment � : C � N ! 
+00 su
h that,supfh�(s)1=2; ti : t 2 Bg � " (18)for every s 2 B � N . �
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omposable 
ountable � and a sequen
e ("n) of positive reals. Then:(a) there is a 
olle
tion (Bn) of �n-uniform barriers on N=n and a 
orresponding sequen
e ofU -mean-assignments �n : Bn ! 
+00 with the following properties:(a.1) �n > 0, supn �n = �,(a.2) for every m < n and every s 2 Bnsupfh�n(s) 12 ; ti : t 2 Bmg < "n: (19)(b) Suppose that in addition � = !
 with 
 limit. Let �n " � be any sequen
e su
h that�n! � �n+1 (n 2 N). Then there is a double sequen
e (Bni ) su
h that for every integers n and i(b.1) Bni is an �(n)i -uniform barrier on N=(n+ i), with �(n)i > 0 and �(n)i "i �n.(b.2) There are U -mean-assignments �n;i : Bni ! 
00 su
h that for every s 2 Bni , and every(m; j)<lex (n; i) supfh�n;i(s) 12 ; ti : t 2 Bmj g < "n+i; (20)where we re
all that <lex denotes the lexi
ographi
al order on N2 de�ned by (m; i) <lex (n; j) i�m < n, or m = n and i < j.Proof. (a): Choose �n "n � su
h that for every n 2 N, �n+1 > �nk(�n; "n), that is is possiblesin
e � is inde
omposable. Let Cn be an �n-uniform family on N (n 2 N). By Corollary 4.8 we
an �nd a fusion sequen
e (Mn) su
h that(
) Cm �Mm � Cn if m � n, and(d) for every n 2 N there is a U -mean-assignment �n : Cn �Mn ! 
+00 su
h thatsupfh�n(s) 12 ; ti : t 2 [l<n Clg < "n (21)for every s 2 Cn � Mn. Let M = fmng be the fusion set of (Mn), and � : M ! N be the
orresponding order preserving onto mapping. It is not diÆ
ult to see that Cn = (�"Bn) � (N=n),and �n : Cn ! 
00 de�ned naturally out of �n � ful�ls all the requirements.(b): Suppose that � = !
 with 
 limit. Let �n " � be any sequen
e su
h that �n! � �n+1(n 2 N).Claim. There is a fusion sequen
e (Mn), Mn = fm(n)i g, a double sequen
e (Bni ) of �(n)i -uniformbarriers on Mn=m(n)i and U -mean-assignments �n;i : Bni ! 
+00 su
h that(e) �(n)i "i �n (n 2 N), and(f) for every (m; j)<lex (n; i), every s 2 Bni and every t 2 Bmj , h(�n;i(s))1=2; ti < "n+i.Proof of Claim: First, use Corollary 4.8 applied to �0 to produ
e an in�nite set M0 = fm(0)i g anda sequen
e (B0i ) of �(0)i -uniform barriers on M0=fm(0)i g with �(0)i " �0 and U -mean-assignments�0;i : B0i ! 
00 su
h that for every i and every s 2 B0i , h�0;i(s)1=2; ti � "i for every t 2 B0jwith j < i. In general, suppose we have found for every k � n Mk = fm(k)i g � Mk�1, (Bki )�(k)i -uniform barriers on Mk=m(k)i and U -mean-assignments �k;i : Bki ! 
00 su
h that for every(k; j) <lex (m; i) every s 2 Bmi and every t 2 Bkj h�m;i(s)1=2; ti � "m+i. For ea
h k � n de�nethe following families Bk = fs �Mk : �s 2 Bkmin sg: (22)
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learly an �k-uniform family on Mk. Sin
e �n! � �n+1, we 
an use again Corollary 4.8and �nd an in�nite subset Mn+1 = fm(n+1)i g � Mn and a sequen
e (Bn+1i ) of �(n+1)i -uniformbarriers on Mn+1=m(n+1)i and U -mean-assignments �n+1;i : Bn+1i ! 
00 su
h that for everys 2 Bn+1i , supfh(�n+1;i(s)) 12 ; ti : t 2 [k�nBm [[j<iB(n+1)j g < "n+i+1; (23)so, in parti
ular for every k � n and every t 2 Bkj , h(�n+1;i(s)) 12 ; ti < "n+i+1 . �Let M be the fusion set of (Mn), i.e. M = fm(n)0 g. Observe that m(n+i)0 � m(n)i for every nand i, so M=m(n)0 � Mn=m(n)i . Set Cni = Bni � (M=m(n+i)0 ). This is an �(n)i -uniform barrier onM=m(n+i)0 . Consider �n;i = �n;i � Cni : Cni ! 
00 has the property that for every (m; j)<lex (n; i),every every s 2 Cni and every t 2 Cmj , h(�n;i(s))1=2; ti < "n+i. Now use � : M ! N, �(m(n)0 ) = 0,to de�ne the desired mean-assignments and families. �Remark 4.10. Observe that if B is �-uniform on M with � > 0, then M [1℄ � B. It readilyfollows that the mean-assignments �n and �n;i obtained in Lemma 4.9 have the property thatk�n(s)1=2k1 � "n and k�n;i(s)1=2k1 � "n+i for every s in the 
orresponding domains.Proposition 4.11. (a) Suppose that C and Bi are � and �i-uniform families on M (i 2 N)with �i " �, �i; � � 1. Let � : FIN[<1℄ ! N be 1-1. Then for every n 2 N the familyD = fs0 [ � � � [ sn : (si) is blo
k, s0 2 C and si 2 B�((s0;:::;si�1)) for every 1 � i � n� 1gis 
-uniform on M , where 
 = �n + �� if 1 � � < ! and n > 0, and 
 = �n + � if � � ! orn = 0.(b) Suppose that Bi is �i-uniform on M (i 2 N) with �i " �. Let � : FIN[<1℄ ! N be 1-1. Thenthe family C = ffng [ s0 [ � � � [ sn�1 :(fng; s0; : : : ; sn�1) is blo
k, andsi 2 B�((fng;s0;:::;si�1)) for every 0 � i � n� 1gis �!-uniform on M .Proof. (a): The proof is by indu
tion on n. If n = 0, the result is 
lear. So suppose thatn > 0. Now the proof is by indu
tion on �. Suppose �rst that � = 1. Then C = M [1℄, and so,for every m 2MDfmg = fs1 [ � � � [ sn :(s1; s2; : : : ; sn) is blo
k, s1 2 B�((fmg)) andsi 2 B�((fmg;s1;s2;:::;si�1)) for every 2 � i � n� 1g;so, by indu
tive hypothesis, Dfmg is �(n� 1) + 
m-uniform on M=m, depending whether �m is�nite or in�nite, but in any 
ase with 
m " �. Hen
e D is �n-uniform on M . The general 
asefor 1 � � < ! is shown in the same way.Suppose now that � � !. Then for every m 2MDfmg = ft [ s1 [ � � � [ sn : (t; s1; : : : ; sn) is blo
k, t 2 Cfmg andsi 2 B�((fmg[t;s1;:::;si�1)) for every 1 � i � n� 1g;



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 17By indu
tive hypothesis, Dfmg is �n+
m-uniform on M=m, with 
m " � , so D is �n+�-uniformon M , as desired.(b) follows easily from (a). �The following is a generalization of Maurey-Rosenthal example for arbitrary 
ountable inde-
omposable ordinal �.Theorem 4.12. For every 
ountable inde
omposable ordinal � there is a normalized weakly-null sequen
e whi
h is �-un
onditionally saturated for every � < � but without un
onditionalsubsequen
es.Proof. Our example is a slightly modi�
ation of a U -sequen
e introdu
ed in [14℄. So, weare going to de�ne a �-uniform barrier B on N, a U -mean-assignment ' : B ! 
00 and someG � FIN � FIN and then de�ne the norm on 
00 byk�k = maxfk�k1; supfjh'(s) � t; �ij : (s; t) 2 Ggg (24)where G � FIN�FIN is su
h that its �rst proje
tion is B. Noti
e that some sort of restri
tionshave to be needed in the formula (24), sin
e it is not diÆ
ult to see that that for a 
ompa
tand hereditary family F , a normalized weakly-null sequen
e (xi)i is F -un
onditional i� it isequivalent to the evaluation mapping sequen
e (pi)i of a weakly-
ompa
t subset K � 
0 that isF -
losed, i.e. 
losed under restri
tion on elements of F .Fix " > 0, and let "n = "=2n+3. Suppose that � = !
 . There are two 
ases to 
onsider.Suppose �rst that 
 = �+1. We apply Lemma 4.9 (a) to the inde
omposable ordinal !� and ("n)to produ
e the 
orresponding sequen
es of barriers (Cn) and U -mean-assignments �n : Cn ! 
00(n 2 N) satisfying the 
on
lusions (a.1) and (a.2) of the Lemma. If 
 is limit, then we use the part(b) of that lemma to produ
e a double sequen
e (Bni ) and U -mean-assignments �n;i : Cni ! 
00satisfying (b.1) and (b.2). In order to unify the two 
ases we set for n; i,Bni = ( Ci if 
 is su

essor ordinalCni if 
 is limit ordinaland �n;i = ( �i if 
 is su

essor ordinal�n;i if 
 is limit ordinal:Let � : FIN[<1℄ ! N be 1-1 mapping su
h that �((s0; : : : ; sn)) > max sn for every blo
ksequen
e (s0; : : : ; sn) of �nite sets. For ea
h n de�neCn = fs0 [ � � � [ sn�1 : (si) is blo
k and si 2 Bn�((fng;s0;:::;si�1)) for every 0 � i � n g;So, by Proposition 4.11, if � = !�+1, then Cn is a !�(n � 1) + �-uniform family on N, where �is su
h that Bn�((fng)) is �-uniform; while if � = !
 with 
 limit, then it is �n(n � 1) + � where� is su
h that Bn�((fng)) is �-uniform. Now letC = fs 2 FIN : �s 2 Cminsg: (25)It turns out that C is an �-uniform family on N (so it is a front), not ne
essarily a barrier.Observe that every s 2 C has a unique de
omposition s = fng [ s(0) [ � � � [ s(n � 1) with



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 18n = min s and s(i) 2 B�(s[i℄), and where s[i℄ = (fng; s0; : : : ; si�1) (0 � i � n � 1). For everys 2 C and every i � s, set �(s; i) = (�mins;�(s[i℄)(s(i)))1=2:De�ne now � : C ! 
00 for every s 2 C by�(s) = emin s + n�1Xi=0 �(s; i); (26)It is not diÆ
ult to see that � : C ! 
00 is a U -mapping. Now de�ne on 
00 the normk�k = supfjh�(s) � (s n t); �ij : s 2 C; t � s(i); for some i < min sg == supfjh�(s) � (u n t); �ij : u v s 2 C; t � s(i); for some i < min sg; (27)the last equality be
ause � is Lips
hitz and supported by a front. Let X the 
ompletion of
00 under this norm. Then the Hamel basis (en)n of 
00 is a normalized basis of X, moreovermonotone (sin
e � is Lips
hitz with domain a front) and weakly-null: To prove this, it is enoughto see that the setL = f�(s) � (u n t) : s 2 B; u v s; and t � s(i) for some i < min sgis weakly-
ompa
t. So, let (�(sn) � (un n tn))n a typi
al sequen
e in L. Sin
e C is a front, we
an �nd an in�nite set M and u 2 FIN su
h that (un)n2M 
onverges to u and su
h that (sn) isa �-system with root u v r. Sin
e � is Lips
hitz de, we obtain that (�(sn) � tn)n2M 
onvergesto �(sm) � t for (any) m 2 M . If u = ;, then (�(sn) � (tn [ u))n2M 
onverges to 0. Otherwise,let N � M and j < min u be su
h that tn � sn(j) for every n 2 N . Now (tn)n2N is a sequen
ein the 
losure of Bmins�(s[i℄), hen
e, we 
an �nd P � N su
h that (tn)n2P is 
onvergent with limit t.It follows that (�(sn) � (un n tn))n2P has limit �(sn) � (u n t) 2 L, where n is (any) integer in P .The next is a 
ru
ial 
omputation.Claim. For every s; t 2 C and every i � min s and j � min s, we have that0 � h�(t; j); �(s; i)i � ( "maxfmins;min tg if t[j℄ 6= s[i℄1 if t[j℄ = s[i℄:Proof of Claim: Set n = min s, m = min t, and assume that t[j℄ 6= s[i℄. Suppose �rst that� = !�+1. Then, by de�nition of the mean assignments, h�(t; j); �(s; i)i � "maxf�(t[j℄);�(s[i℄)g,but �(u0; : : : ; uk) � maxuk for every blo
k sequen
e (ui), whi
h derives into the desired in-equality. Assume now that � = !
 , 
 limit ordinal. If min s = min t, then h�(t; j); �(s; i)i �"min s+maxf�(t[j℄);�(s[i℄)g � "min s. While if min t 6= min s, say min t < min s, then h�(t; j); �(s; i)i �"min s+�(s[i℄) � "min s.If �(s[i℄) = �(t[j℄) = l, then min s = min t = n, andh�(s; i); �(t; j)i � k(�n;l(s(i)))1=2k`2k(�n;l(t(j)))1=2k`2 � 1; (28)sin
e both are means. �Claim. The summing basis (Sn) of 
 is �nitely blo
k represented in any subsequen
e of (en)n.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 19Proof of Claim: Fix an in�nite set M of integers, and l 2 N. Let v 2 B �M=l, v = fng [ v(0)[� � � [ v(n� 1) its 
anoni
al de
omposition, and setxi = Xj2v(i) �(v; i)(j)ej: (29)Observe that h�(v); x(v; i)i = h�(v; i); �(v; i)i = 1, so from the previous 
laim we obtain thatkxik = 1. Now 
onsider s
alars (ai)i�n�1 with kPi�n�1 aiSik1 = 1. Observe that this impliesthat maxi�n�1 jaij � 2. We are going to show that1 � k X0�i�n�1 aixik � 3 + ": (30)To get the left hand inequality, suppose that 1 = kP0�i�n�1 aiSik1 = jPi�m aij, wherem � n� 1. Let t = fng [ s(0)[ � � � [ s(m). By (27) it follows thatk Xi�n�1 aixik � h�(v) � t; Xi�n�1 aixii = jXi�m aij = 1: (31)Next, �x s 2 C and t � s(k) for some k < min s. Suppose �rst that min v = min s. Leti0 = maxfi � n� 1 : v(i) = s(i)g. If k > i0 then by the previous 
laim we obtainjh�(s) � (s n t); Xi�n�1 aixii)j �jXi�i0 aij+ Xi0<i;j�n�1 2jh�(s; i); �(t; j)ji ��k Xi�n�1 aiSik1 + 2n2"n � (1 + ")k Xi�n�1 aiSik1: (32)Suppose that k � i0. Thenjh�(s) � (s n t); Xi�n�1 aixii)j �j Xi�i0;i6=k ai + akh�(v; k); �(v; k) � (s(k) n t)ij++ Xi0<i;j�n�1 2jh�(s; i); �(t; j)ji ��3k Xi�n�1 aiSik1 + 2n2"n � (3 + ")k Xi�n�1aiSik1: (33)Suppose now that n = min v 6= min s, say min s < min v. Let i0 < n, if possible, be su
h thatmin s 2 v(i0). Then,jh�(s) � (s n t); Xi�n�1aixii)j �jai0 jk�(v; i0)k1 + 2 Xi0�i<n X0�j<min th�(t; j); �(s; i)i ��2"n + 2n2"n � ": (34)�Finally, it rests to show that the sequen
e (en) is �-un
onditionally saturated for every � < �.We 
onsider the two obvious 
ases:Case 1. � = !�+1. Let D = fs � N : �s 2 B0minsg:This is an !�-uniform family on N sin
e ea
h family B0m is �m-uniform and supm �m = !�.Therefore, the next 
laim gives that (en) is �-un
onditionally saturated for every � < �.



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 20Claim. (en)n is D-un
onditional with 
onstant at most 2 + ".Proof of Claim: Fix t 2 D, and let (ai)i2N be s
alars su
h that kPi2Naieik = 1. Fix also s 2 C.Suppose �rst that min s 2 t. Then sin
e �(s[i℄) > min s � min t and �t 2 B0min t we obtain thatjh�(s);Xi2t aieiij � jamin sj+ " � (1 + ")kXi aieik: (35)Now suppose that min s =2 t, but s \ t 6= ; (otherwise h�(s);Pi2t aieii = 0). Leti0 = minfi < min s : s(i) \ t 6= ;g:Then for every i0 < i < min s we have that �(s[i℄)> max si0 � min t, sojXj2t aj�(s; i)(j)j< "�(s[i℄); (36)hen
e jh�(s) � u;Xi2t aieiij �j Xj2t\s(i0)aj�(s; i0)(j)j+ Xi0<i<min s jXj2t aj�(s; i)(j)j==jh�(s) � (fng [ s(0) [ � � � [ (s(i0) \ t)); Xi�min t aieiij++ Xi0<i<min s jXj2t aj�(s; i)(j)j � k Xi�min taieik+ "kXi2Naieik ��(2 + ")kXi aieik; (37)the last inequality be
ause (ei) is monotone. �Case 2. � = !
 , 
 a 
ountable limit ordinal. The desired result follows from the following fa
t.Claim. For every n 2 N; the sequen
e (ei) is Bn0 -un
onditional with 
onstant at most 2n+ 1.Proof of Claim: Fix n 2 N and t 2 Bn0 . Let (ai)i2N be s
alars su
h that kPi2Naieik = 1. Fixs 2 C. Suppose �rst that n � min s. Then in a similar manner that in Case 1 one 
an showthat jh�(s);Xi2t aieiij � jamin sj+ " � (1 + ")kXi aieik: (38)Suppose that m = min s < n, thenjh�(s);Xi2t aieiij �jamin sj+ m�1Xi=0 j Xj2s(i)\taj�(s; i)(j)j==jamin sj+ m�1Xi=0 jh�(s) � ui; Xj�min(s(i)\t)ajij ��(2m+ 1)kXi aieik: (39)where ui = s(0) [ � � � [ (s(i)\ t). ��



PRE-COMPACT FAMILIES OF FINITE SETS AND WEAKLY NULL SEQUENCES 21Corollary 4.13. For every inde
omposable ordinal � there is a weakly-
ompa
t K � 
00 su
hthat(a) K � B
0 is point-�nite (i.e. f�(n) : � 2 Kg is �nite for every integer n) supported by a�-uniform barrier on N,(b) the evaluation mapping sequen
e (pi)i of C(K) is a normalized weakly-null monotone basi
sequen
e, and(
) The summing basis of 
 is 4-�nitely representable in every subsequen
e of (pi)i; hen
e nosubsequen
e of (pn) is un
onditional, but(d) (pi)i is �-un
onditionally saturated for every � < �.Proof. Let C be the �-uniform family on N and let � : C ! 
00 be the U -mapping given inproof of Theorem 4.12. Let M � N be su
h that C � N is a �-uniform barrier on N. Let � be theorder-preserving mapping from M onto N. Let B = �"C = f�"(s) : s 2 Cg and let ' : B ! 
00be naturally de�ned by '(s) = �(��1(s)). B is a uniform barrier on N and ' is a U -mapping.Observe that every s 2 B has a unique de
omposition, given by the one of ��1s. LetK = f'(s) � (u n t) : u v s 2 B; t � s(i) for some ig:This is a weakly-
ompa
t subset of 
0, and the 
orresponding evaluation mapping sequen
e (pi)iis 1-equivalent to the subsequen
e (en)n2M of the weakly-null sequen
e (ei)i given in the proofof Theorem 4.12. So K ful�lls all the requirements. �Referen
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