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STUDY OF A THREE COMPONENT CAHN-HILLIARD FLOW MODEL

Franck Boyer1 and Céline Lapuerta2

Abstract. In this paper, we propose a new diffuse interface model for the study of three immiscible

component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach.

The originality of our study lies in particular in the choice of the bulk free energy. We show that one

must take care of this choice in order for the model to give physically relevant results. More precisely, we

give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency

properties with the two-component models. Notice that our model is also able to cope with some total

spreading situations.

We propose to take into account the hydrodynamics of the mixture by coupling our ternary Cahn-

Hilliard system and the Navier-Stokes equation supplemented by capillary force terms accounting for

surface tension effects between the components. Finally, we present some numerical results which

illustrate our analysis and which confirm that our model has a better behavior than other possible

similar models.

Résumé. Dans cet article, nous proposons un nouveau modèle de type interface diffuse pour l’étude

des écoulements incompressibles visqueux à trois constituants non miscibles. L’originalité de notre

étude réside dans la forme particulière de l’énergie libre que nous proposons. Nous montrons que l’on

doit prendre soin à bien choisir cette énergie pour que le modèle donne des résultats physiquement

cohérents. Plus précisément, nous donnons des conditions nécessaires et suffisantes sur la structure de

cette énergie libre pour que le modèle soit bien posé et soit algébriquement et dynamiquement consistant

par rapport aux modèles diphasiques sous-jacents au système triphasique. Notons également que notre

modèle est capable de prendre en compte certaines situations d’étalement total.

Nous proposons de prendre en compte l’hydrodynamique du mélange via un couplage entre notre

système de Cahn-Hilliard à trois constituants et l’équation de Navier-Stokes dans laquelle sont ajoutés

des termes de forces capillaires entre les constituants. Finalement, nous présentons des résultats

numériques qui illustrent notre analyse et qui confirment que notre modèle présente un meilleur com-

portement que d’autres modèles similaires que l’on pourrait considérer.

1991 Mathematics Subject Classification. 35B35, 35K55, 76T30.

October 18, 2005.

Introduction

Multi-component flows are frequently encountered in engineering applications, like for instance nuclear safety
studies which are the industrial context of this work performed for the french “Institut de Radioprotection et de
Sûreté Nucléaire”. Diffuse interface models (see for instance the review in [1]) are now widely used to describe
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diphasic systems (see [5, 13, 26] and Section 1). In these models, the thickness of the interface between the two
phases is supposed to be very small but positive. Each phase is then represented by a smooth function called
the order parameter (which is often taken to be the volumic fraction of the component in the mixture). The
evolution of the system is then driven by the gradient of a total free energy which is the sum of two terms: a
bulk free energy term with a “double-well” shape and a capillary term depending on the gradient of the order
parameter and which accounts for the energy of the interface, that is the surface tension.

It was shown by some authors [4, 5, 13, 14, 21] that one can couple diffuse interface models with the Navier-
Stokes equation in order to cope with the hydrodynamics of such miscible or immicible mixtures. The final
model takes into account the main phenomenon of such flows and is well-suited to numerical simulations since
there is no need to follow the interface or to solve free boundary problems.

Generalizations of diffuse interface models to any number of components have been recently introduced and
studied for instance in [7, 9–11, 18]. Numerical methods were also proposed and used to simulate multi-phase
transitions for instance in [2,3,6]. Kim and coworkers have also studied how to generalize the coupling between
such multi-component Cahn-Hilliard models and the Navier-Stokes equations and how to implement efficient
numerical solvers (see [16, 18, 19]).

In this paper, we propose to study with more details the diffuse interface models which are well-suited
(when coupled with a momentum balance equation) for the simulation of incompressible flows made of three
immiscible phases, with no phase change. As in the references cited above, our study is based on the Cahn-
Hilliard approach. One of the main feature of the present work is that, thanks to a relevant choice of the
free energy, our model coincides exactly with the diphasic Cahn-Hilliard model (described in section 1, see
also [8,20]) when only two phases are present in the mixture. In this case, we say that the model is algebraically

consistent with binary systems. Furthermore, we are able to prove that our model is well-posed and that it is
dynamically consistent with binary systems. This last property is an asymptotic stability property of binary
solutions inside the ternary ones. These consistency properties ensure that non-physical apparition of one phase
inside the interface between the other two will not occur as it is confirmed in numerical simulations given at
the end of the paper.

In order to describe the hydrodynamics of the mixture, we follow previous studies in the field in order to
perform the coupling between our particular ternary Cahn-Hilliard model and the Navier-Stokes equation for
an incompressible flow (in the so-called quasi-incompressible framework see [21]). These equations are defined
on the whole domain (there is no jump conditions) and the interfacial surface tension forces are naturally taken
into account through volumic capillary forces (see [17]). The final fully coupled model is very well adapted to
numerical simulations since interface tracking and surface forces discretization are not needed, just like in the
diphasic case.

The outline of the paper is the following. In section 1, a brief introduction to the Cahn-Hilliard diphasic
model is given. In the second one, we present the general construction of ternary models based on a given
but still undetermined free energy for the system. Then we state Theorem 2.4 which says that, under suitable
assumptions on this energy, there exists a unique global weak solution to the problem. We want to point out
here that the assumptions needed to prove this last result are more general than the usual ones in the literature
and allow us to apply this well-posedness result to all the particular models we study in the remaining of the
paper. Notice, in particular, that we are able to cope with some total spreading situations (see for instance
Remark 3.3 and Section 5.3.4) . To our knowledge, this is a new feature compared to other studies.

In the third section we prove that the bulk free energy in the model has to fit a particular form (Theorem
3.2) in order for the system to be physically relevant. We study particular examples of such suitable bulk free
energies in sections 3.2 and 3.3, and we provide a complete analysis for each of them. We also prove that, under
suitable conditions, these particular models are dynamically consistent with diphasic systems (Theorems 3.9
and 3.10). This ensures the stability of binary interfaces inside a ternary system.

Fourth section is devoted to the proof of our well-posedness result stated at the end of section 2. Finally,
section 5 is dedicated to numerical simulations. Some results are presented in the classical case of a lens located
at the interface between the other two components (see [23, 24]). The contact angles between the phases and
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the pressure jumps are correctly computed. Moreover, our theoretical results are illustrated by some numerical
evidences that non consistent models as well as some other models in the literature (see [11, 18]) may lead to
unsatisfactory results compared to our models. We conclude this section with some results obtained by solving
the whole Cahn-Hilliard / Navier-Stokes system in order to simulate the rising of a bubble across a liquid/liquid
interface. Our results are in agreement with a theoretical predictive criterion on the volume of the bubble given
in [12] to determine whether or not the bubble will cross the liquid/liquid interface. This proves that capillarity
effects are correctly captured by our model.

1. The two-component Cahn-Hilliard model

We give here a brief overview of the Cahn-Hilliard model for two non-miscible constituents. The domain Ω
is an open bounded, connected, subset of R

d with d = 2 or d = 3, with a sufficiently smooth boundary.
The Cahn-Hilliard approach consists in assuming that the interface between the two phases in the system

has small but finite width ε. Then, the composition of the mixture is described at each point by the value of
an order parameter c which is typically the concentration of one of the constituent in the mixture. The value
of the order parameter is 0 or 1 where only one of the phases is present and varies rapidly but smoothly across
the interface.

Moreover, the evolution of the system is driven by the minimization of a free energy under the constraint of

mass conservation of each phase that is

∫

Ω

c dx = constant. The expression of the free energy of the mixture

depending on two parameters ε (the interface width) and σ (the surface tension) can be written as follows:

Fdiph
σ,ε (c) =

∫

Ω

12
σ

ε
c2(1 − c)2 +

3

4
σε |∇c|2 dx. (1)

The first term (the bulk free energy) is non-negative and has a classical double-well structure with two minima
for c = 0 and c = 1 corresponding to the two pure phases, whereas the second term (the capillary term) tends
to penalize the interfacial zone. The equilibrium shape of infinite plane interfaces, in one dimension, can be
explicitly computed by solving the 1D problem





−3

2
σεc′′0 + 24

σ

ε
c0(1 − c0)(1 − 2c0) = 0,

lim
+∞

c0 = 1

lim
−∞

c0 = 0,

whose solution is, up to a translation,

c0(x) = 0.5

(
1 + tanh

(
2x

ε

))
.

Hence, we can see that ε can be considered as the characteristic size of the transition layer between the two
stable states c = 0 and c = 1 which is called the interface. We can now compute the total energy contained in
such an interfacial shape and we find that

∫

R

Fdiph
σ,ε (c0) dx = σ,

so that σ is exactly the surface tension contained in the interface per surface unit. A very important feature
of the Cahn-Hilliard approach is that the two relevant physical parameters which are σ and ε can be imposed
independently one from each other. In particular, it is possible for numerical purposes to choose ε depending
on the mesh size we use without modifying the surface tension σ contained in the model.
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Once we have defined this energy Fdiph
σ,ε , we can describe the time evolution of the mixture, thanks to the

Cahn-Hilliard equation 



∂c

∂t
−∇ · (M∇µ) = 0,

µ =
δFdiph

σ,ε

δc
= −3

2
σε∆c + 24

σ

ε
c(1 − c)(1 − 2c),

(2)

which is nothing but the flow along the gradient of the functional Fdiph
σ,ε with respect to the H−1(Ω) inner

product ensuring the mass conservation property. The functionnal derivative of the energy with respect to the
order parameter, called µ, is the chemical potential of the mixture and the coefficient M (which may depend
on c) is a diffusion coefficient called mobility. The first natural boundary condition for this equation is the
homogeneous Neumann boundary condition for µ which ensures that there is no diffusion through the boundary
of the domain. Another boundary condition is necessary to complete the system. It is often taken to be
the homogeneous Neumann condition for the order parameter c which modelizes the fact that the interface is
supposed to be orthogonal to the boundary of the domain. If one wants to modelize more general contact angles
on the boundary of the domain, it is possible to apply non-homogeneous and non-linear Neumann conditions
to this problem (see [14]).

2. Three-component Cahn-Hilliard models

In this section, we propose a general description of ternary Cahn-Hilliard models.

2.1. General framework

The aim of this section is to propose a well-suited generalization of the diffuse interface model presented
above in the case of ternary systems made of three immiscible components. Like for the binary model, the given
physical parameters are the three surface tensions σ12, σ13 and σ23 between two of the three components and
the interfacial width ε > 0, which is supposed to be the same for the three kinds of interfaces. This assumption
is not restrictive since, in practical situations, the parameter ε is chosen so that the interfacial zone contains at
least 2 or 3 cells of the mesh. The key-point here is that, this artificial modification of the interface width can
be performed without changing the surface tensions contained in the model.

As a starting point, we describe a ternary system by using three order parameters, c1, c2 and c3, each of
them being the concentration of one the components in the mixture. Since we only consider perfect mixtures,
these three unknowns are linked through the relationship

c1 + c2 + c3 = 1, (3)

so that, admissible states will belong to the hyperplane

S =

{
(c1, c2, c3) ∈ R

3, c1 + c2 + c3 = 1

}
. (4)

We will now describe the Cahn-Hilliard energy for such a system. In view of the diphasic case, it is natural
to look for such energy as the sum of a bulk free energy F (c1, c2, c3), that is a kind of “triple-well” structured
non-convex function to be determined, and capillary terms |∇ci |2. Without loss of generalities, we postulate
that the free energy can be written as follows

F triph
Σ,ε (c1, c2, c3) =

∫

Ω

12

ε
F (c1, c2, c3) +

3

8
εΣ1|∇c1|2 +

3

8
εΣ2|∇c2|2 +

3

8
εΣ3|∇c3|2 dx, (5)

where Σ = (Σ1, Σ2, Σ3) is a triple of parameters to be determined. Notice that the coefficients 12 and
3

8
are

natural in view of the diphasic case (1).
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Most of the work in Section 3 will be to determine how to choose the bulk free energy F and the parameters
Σi in order for the model to fit with the prescribed surface tensions σ12, σ13 and σ23 and to be consistent with
the two-component situation. First, let us derive from (5) the general evolution equation satisfied by the order
parameters.

Notation : From now on, we will note C = (c1, c2, c3) and µ = (µ1, µ2, µ3).

The time evolution of C is governed by the gradient of the energy F triph
Σ,ε with respect to the H−1(Ω) inner

product under the additional constraint (3), which has to hold everywhere at any time. In order to ensure this
last constraint, we use a Lagrangian multiplier β (see [10]). The system of equations is written for i = 1, 2, 3






∂ci

∂t
= ∇ · (Mi∇µi) ,

µi =
δF triph

Σ,ε

δci

+ β = −3

4
εΣi∆ci +

12

ε
∂iF (C) + β.

(6)

To eliminate β, we write the equation satisfied by S = c1 + c2 + c3, and we want S ≡ 1 to be a solution to this
equation. We easily see that this can only happen if we postulate that

M0 = M1Σ1 = M2Σ2 = M3Σ3.

Under this assumption, the sum S satisfies

∂S

∂t
= ∇ ·

(
M0∇

(
−3

4
ε∆S + β

(
1

Σ1
+

1

Σ2
+

1

Σ3

)
+

12

εΣ1
∂1F (C) +

12

εΣ2
∂2F (C) +

12

εΣ3
∂3F (C)

))
. (7)

Now we see that S ≡ 1 is solution of (7) if and only if the Lagrange multiplier is defined by

β = −
3∑

i=1

4ΣT

εΣi

∂iF (C),

where ΣT is defined by
3

ΣT

=
1

Σ1
+

1

Σ2
+

1

Σ3
.

Using this expression of β, the ternary system (6) now reads, for i = 1, 2, 3:





∂ci

∂t
= ∇ ·

(
M0

Σi

∇µi

)
,

µi =
4ΣT

ε

∑

j 6=i

(
1

Σj

(∂iF (C) − ∂jF (C))

)
− 3

4
εΣi∆ci.

(8)

Finally, the system (8) is build so that if the initial data is admissible, that is C(0) ∈ S, then C(t) ∈ S for
any time t. Hence, we can eliminate a posteriori one of the three unknowns c1, c2 or c3, which can be recovered
using the constraint (3). In the same way, it is easily seen that the three chemical potentials (µ1, µ2, µ3) are
linked through the relation

3∑

i=1

µi

Σi

= 0. (9)

Hence, the system (8) reduces to a set of two coupled Cahn-Hilliard equations. This is of course these two
equations that are used for numerical computations. Nevertheless, for the theoretical study of the model it is
worth working with the full system (8). A very important point here is that, since we only eliminate one of the
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unknows a posteriori, the solution we obtain does not depend on the choice of the unknown that we eliminate.
This is not true, for instance, for the models developped in [16, 19] where the elimination of one of the order
parameters is performed in the very beginning of the modelisation.

Just like in the diphasic case, we supplement the previous system with Neumann boundary conditions for
each of the unknowns (ci, µi) which ensures, in particular, that the volume of each phase is conserved along the
evolution.

2.2. Coercivity of the capillary terms

We will see later that it may happen (in the so-called total spreading situation, see section 5.3.4) that one of
the coefficients Σi appearing in (5) is negative. That is the reason why we want to pay a particular attention to
be able to perform the analysis of the system (8) without assuming the positivity of the Σi. Nevertheless, for
the system to be well-posed it is clear that the total free energy (5) has to be, at least, bounded from below.

This remark leads us to necessary and sufficient conditions on the (Σi)i that we give below for the capillary
part of the energy to be non-negative. This condition (11) (notice that we do not know if it has any physical
meaning) let us cope with some but not all total spreading situations.

Proposition 2.1. Let (Σ1, Σ2, Σ3) ∈ R
3. There exists Σ > 0 such that for any n ≥ 1,

Σ1|ξ1|2 + Σ2|ξ2|2 + Σ3|ξ3|2 ≥ Σ
(
|ξ1|2 + |ξ2|2 + |ξ3|2

)
, ∀(ξ1, ξ2, ξ3) ∈ (Rn)

3
, s.t. ξ1 + ξ2 + ξ3 = 0, (10)

if and only if the following two conditions hold

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0, (11)

Σi + Σj > 0, ∀i 6= j. (12)

Proof. First of all, since we are only concerned with triples (ξ1, ξ2, ξ3) satisfying
3∑

i=1

ξi = 0, we see that we only

need to study the case n = 2. Without loss of generality we can also assume that ξ1 =

(
x
0

)
and ξ2 =

(
y
z

)
.

Hence, property (10) holds if and only if the quadratic form

Q(x, y, z) = Σ1x
2 + Σ2(y

2 + z2) + Σ3

(
(x + y)2 + z2

)
,

is definite positive. The matrix associated to this quadratic form is given by

Q =




Σ1 + Σ3 Σ3 0

Σ3 Σ2 + Σ3 0
0 0 Σ2 + Σ3



 ,

and it is easily seen, by computing the main minor determinants, that this matrix is definite positive if and
only if

Σ1 + Σ3 > 0,

(Σ1 + Σ3)(Σ2 + Σ3) − Σ2
3 = Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0,

Σ2 + Σ3 > 0.

Remarking that

Σ1 + Σ2 =
Σ2

1 + (Σ1Σ2 + Σ1Σ3 + Σ2Σ3)

Σ1 + Σ3
,

the claim is proved. �
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We also give, for further use, the following straightforward consequence of the previous result.

Corollary 2.2. Let (Σ1, Σ2, Σ3) ∈ R
3 such that (11) and (12) hold. There exists Σ ≥ 0 such that for any n ≥ 0

and any (ξ1, ξ2, ξ3) ∈ (Rn)3, we have

Σ1|ξ1|2 + Σ2|ξ2|2 + Σ3|ξ3|2 ≥ −Σ|ξ1 + ξ2 + ξ3|2.

2.3. Existence and uniqueness of weak solutions

We state now the general assumptions needed on the bulk free energy F in order to be able to prove the
well-posedness of the system (8):

• We assume that F is of C2 class and satisfies

F (C) ≥ 0, ∀C ∈ S, (13)

• There exist B1, B2 > 0 such that

|F (C)| ≤ B1 |C|p +B2, ∀C ∈ S, (14)

|DF (C)| ≤ B1 |C|p−1 +B2, ∀C ∈ S, (15)

|D2F (C)| ≤ B1 |C|p−2 +B2, ∀C ∈ S, (16)

where p = 6 if d = 3, and 2 ≤ p < +∞ if d = 2.
• There exists D1 ≥ 0 such that

(
D2F (C)ξ, ξ

)
≥ −D1 (1 + |C|q) |ξ|2, ∀C ∈ S, ∀ξ ∈ R

3, (17)

where 1 ≤ q < 4 if d = 3 and 1 ≤ q < +∞ if d = 2.

Remark 2.3. One can replace (13) by the assumption that F is bounded from below on S since adding a
constant to F does not change the equations (8).

Let us notice that assumptions (13)-(16) are classical in the study of Cahn-Hilliard equations and systems
even though some authors study the important case of logarithmic bulk free energies that we do not treat here
(see for instance [2]). On the contrary, assumption (17) is more original since in many cases the bulk free energy
is supposed to the sum of a convex part and a quadratic non-convex part (see [4, 25]) so that assumption (17)
is satisfied with q = 0. We will show in section 3.3 that it is crucial to be able to cope with more general bulk
free energies for which it will be necessary to allow large enough values of q in (17).

More precisely, this assumption (17) is not necessary to prove the existence of solutions to (8) but is needed
to establish regularity properties that imply uniqueness of such solutions.

Theorem 2.4. Let Ω be a bounded smooth domain in R
d, d = 2 or 3. Assume that conditions (11), (12) and

assumptions (13)-(17) hold. For any C0 ∈ (H1(Ω))3 such that C0(x) ∈ S, for almost every x ∈ Ω, there exists

a unique weak solution (C, µ) of (8) on [0, +∞[ with initial data C0 such that,

C(t, x) ∈ S, for a.e. (t, x) ∈ [0, +∞[×Ω,

C ∈ L∞(0, +∞; (H1(Ω))3) ∩ L2
loc(0, +∞; (H3(Ω))3) ∩ C0([0, +∞[; (H1(Ω))3), (18)

µ ∈ L2(0, +∞; (H1(Ω))3). (19)

In the bidimensional case, this result still holds if we allow the mobility M0 in (8) to be a smooth, bounded
and non vanishing function of the order parameters C. In the 3D case, existence holds but uniqueness is not
known in that case.

We postpone the proof of this result to Section 4 since we want now to discuss how to choose the parameters
(Σi)i and the bulk free energy F .
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3. Algebraically and dynamically consistent ternary models

One of the main goals of this work is to give a three immiscible component model which exactly coincides
with the two component model described in section 1 in the case where only two phases are present. We will
say that the model is algebraically consistent (see Definition 3.1). Note that this very natural property does not
hold for various models studied in the literature (see [11,18] for instance). Actually, it will be shown in section
5.3 that this consistency property is crucial in view of the numerical simulation of three-component systems.

3.1. Algebraically consistent models

Let us first give a list of natural properties that the free energy F triph
Σ,ε and the Cahn-Hilliard system (8) have

to fulfill in order to be physically coherent.

Definition 3.1. We say that the model defined by (5) and (8) is algebraically consistent with the diphasic
systems corresponding to the given surface tensions σ12, σ13, σ23 respectively if the following properties hold:

(P1) When the component i is not present, that is ci = 0, the total free energy F triph
Σ,ε (c1, c2, c3) of the system

has to be exactly equal to the total free energy of the diphasic system containing the two other phases:

F triph
Σ,ε (c, 1 − c, 0) = Fdiph

σ12,ε(c), ∀c ∈ H1(Ω),

F triph
Σ,ε (c, 0, 1 − c) = Fdiph

σ13,ε(c), ∀c ∈ H1(Ω),

F triph
Σ,ε (0, c, 1 − c) = Fdiph

σ23,ε(c), ∀c ∈ H1(Ω).

(P2) When the component i is not present in the mixture at the initial time, the component i must not
appear during the time evolution of the system. In other words, any admissible solution to the system
(8) must satisfy, for any i ∈ {1, 2, 3},

ci(0) = 0 =⇒ ci(t) = 0, ∀t ≥ 0.

All the physical parameters ε, M0, σ12, σ13 and σ23 being fixed, our model is completely determined by the
expression of the free bulk energy F and of the coefficients Σ = (Σi)i in (5). Assuming that the bulk free energy
is smooth we are now able to give a complete characterisation of algebraically consistent models according to
the above definition.

Theorem 3.2. Let σ12, σ13, σ23 be three positive real numbers. The model defined by (5) and (8) is algebraically
consistent with the diphasic systems of surface tensions σ12, σ13, σ23 respectively if and only if we have

Σi = σij + σik − σjk , ∀i ∈ {1, 2, 3}, (20)

and there exist smooth functions G and H such that

F (C) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3)

+ c2
1c

2
2c

2
3 G(C) + (c1 + c2 + c3 − 1) H(C), ∀C ∈ R

3.
(21)

Remark 3.3. In the physical literature (see [23]), the coefficient Si = −Σi defined by (20) is well known and
called the spreading coefficient of the phase i at the interface between phases j and k. If Si is positive (that is
Σi < 0), the spreading is said to be total and if Si is negative, it is said to be partial (see the reference above).

Proof. 1/ Property (P1) applied, for instance, when c1 = 0 implies that

F triph
Σ,ε (0, c, 1 − c) = Fdiph

σ23,ε(c), ∀c ∈ H1(Ω),
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which reads, using (1) and (5),

∫

Ω

12

ε
F (0, c, 1− c) +

3

4
ε(Σ2 + Σ3)|∇c|2 dx =

∫

Ω

12
σ23

ε
c2(1 − c)2 +

3

4
σ23ε|∇c|2 dx.

Since this equality has to be true for any c ∈ H1(Ω), we can identify the coefficients in front of the capillary
terms and the two bulk terms. This gives

Σ2 + Σ3

2
= σ23, and F (0, c, 1− c) = σ23c

2(1 − c)2, ∀c ∈ R.

Hence, changing the role of order parameters, we obtain

Σ1 + Σ2

2
= σ12,

Σ1 + Σ3

2
= σ13,

Σ2 + Σ3

2
= σ23, (22)

and





F (c, 1 − c, 0) = σ12c
2(1 − c)2,

F (c, 0, 1 − c) = σ13c
2(1 − c)2,

F (0, c, 1 − c) = σ23c
2(1 − c)2.

(23)

It is easily checked that (22) is equivalent to (20).

Let us now look for F under the form

F (C) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + P (C) (24)

where P is a smooth function. From (23), we deduce that property (P1) is satisfied if and only if we have

P (c, 1 − c, 0) = P (c, 0, 1 − c) = P (0, c, 1− c) = 0, ∀c ∈ R. (25)

We now use the following straightforward result.

Lemma 3.4. Let f : R
3 7→ R be smooth function. The two following properties are equivalent:

(1) f(c, 1− c, 0) = f(c, 0, 1− c) = f(0, c, 1− c) = 0, for any c ∈ R.

(2) There exist two smooth functions g and h such that

f(c1, c2, c3) = c1c2c3 g(c1, c2, c3) + (c1 + c2 + c3 − 1) h(c1, c2, c3).

From Lemma 3.4 and (25), we deduce that there exist smooth functions Q and H1 such that

P (C) = c1c2c3Q(C) + (c1 + c2 + c3 − 1)H1(C), ∀C ∈ R
3. (26)

2/ Property (P2) says that the particular triples of the form (c, 1− c, 0), (c, 0, 1− c) and (0, c, 1− c) have to
be solutions of (8) which implies that

(
1

Σj

(∂iF − ∂jF ) +
1

Σk

(∂iF − ∂kF )

)
∣∣ci=0,ck=1−cj

= 0, ∀{i, j, k} = {1, 2, 3}, ∀cj ∈ R. (27)
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Using (24), we find that relations (27) are equivalent to the following conditions on P






(
1

Σ2
(∂1P − ∂2P ) +

1

Σ3
(∂1P − ∂3P )

)
(0, c, 1− c) = 2σ23c(1 − c)

(
1

Σ2
(1 − c) +

1

Σ3
c

)
, ∀c ∈ R,

(
1

Σ1
(∂2P − ∂1P ) +

1

Σ3
(∂2P − ∂3P )

)
(c, 0, 1− c) = 2σ13c(1 − c)

(
1

Σ1
(1 − c) +

1

Σ3
c

)
, ∀c ∈ R,

(
1

Σ1
(∂3P − ∂1P ) +

1

Σ2
(∂3P − ∂2P )

)
(c, 1 − c, 0) = 2σ12c(1 − c)

(
1

Σ1
(1 − c) +

1

Σ2
c

)
, ∀c ∈ R.

(28)

Using now (26), it follows





(
1

Σ2
(∂1P − ∂2P ) +

1

Σ3
(∂1P − ∂3P )

)
(0, c, 1− c) =

(
1

Σ2
+

1

Σ3

)
c(1 − c)Q(0, c, 1− c),

(
1

Σ1
(∂2P − ∂1P ) +

1

Σ3
(∂2P − ∂3P )

)
(c, 0, 1− c) =

(
1

Σ1
+

1

Σ3

)
c(1 − c)Q(c, 0, 1− c),

(
1

Σ1
(∂3P − ∂1P ) +

1

Σ2
(∂3P − ∂2P )

)
(c, 1 − c, 0) =

(
1

Σ1
+

1

Σ2

)
c(1 − c)Q(c, 1 − c, 0).

(29)

Comparing (28) and (29), we deduce that Q has to fulfill





Q(0, c, 1− c) = Σ2c + Σ3(1 − c), ∀c ∈ R,

Q(c, 1 − c, 0) = Σ1c + Σ2(1 − c), ∀c ∈ R,

Q(c, 0, 1− c) = Σ1c + Σ3(1 − c), ∀c ∈ R.

(30)

We can now look for Q under the form

Q(C) = Σ1c1 + Σ2c2 + Σ3c3 + R(C), ∀C ∈ R
3. (31)

Properties (30) are equivalent to

R(c, 1 − c, 0) = R(c, 0, 1− c) = R(0, c, 1− c) = 0, ∀c ∈ R,

so that Lemma 3.4 implies that R can be written

R(C) = c1c2c3G(C) + (c1 + c2 + c3 − 1)H2(C), ∀C ∈ R
3. (32)

Gathering together (24), (26), (31) and (32) proves the claim. �

Equations (8) only makes sense when the condition (3) is satisfied, that is on the hyperplane S. It is easily
seen that, in this context, the term containing the function H in (21) does not play any role in the final system
of equations. Hence, from now on, we assume that H = 0.

3.2. First examples

Most of the previous works in the field (see [11,18]) consider the following definition for the bulk free energy,

F (C) = F̃0(C) =
def

σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3. (33)

Theorem 3.2 above says, in particular, that this choice for F is not algebraically consistent with the corresponding
diphasic systems as defined above. We show some numerical results in section 5.3.2 (see Figure 5) illustrating
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that these non-consistent models are not well-adapted for the study of three component mixtures and may lead
to non-physical behaviors.

Let us now concentrate on possible consistent choices for F according to Theorem 3.2. The simplest bulk
free energy one can consider to build a consistent model is the following fourth order polynomial

F0(C) = σ12c
2
1c

2
2 + σ13c

2
1c

2
3 + σ23c

2
2c

2
3 + c1c2c3(Σ1c1 + Σ2c2 + Σ3c3)

=
Σ1

2
c2
1(c2 + c3)

2 +
Σ2

2
c2
2(c1 + c3)

2 +
Σ3

2
c2
3(c1 + c2)

2,
(34)

the (Σi)i being defined by (20). When restricted to the hyperplane S of admissible values of C we also have
the equivalent formula

F0(C) =
Σ1

2
c2
1(1 − c1)

2 +
Σ2

2
c2
2(1 − c2)

2 +
Σ3

2
c2
3(1 − c3)

2, ∀C ∈ S. (35)

One can see that this function only depends, and in an explicit way, on the physical parameters of the problem
σ12, σ13 and σ23. This is one of the main features of our approach compared to the other models available in
the literature for which approximate calibration is needed to determine the parameters of the model (see for
instance [11]).

As we have already seen, the model reduces to two coupled Cahn-Hilliard equations. In the particular case
F = F0, which is often used in numerical simulations, system (8) is equivalent to





∂ci

∂t
= ∇ ·

(
M0

Σi

∇µi

)
, for i = 1, 2

µi = −3

4
εΣi∆ci +

12

ε

(
Σif(ci) − δc1c2(1 − c1 − c2)

)
,

(36)

where δ =
6Σ1Σ2Σ3

Σ1Σ2 + Σ1Σ3 + Σ2Σ3
and f(x) = x(1 − x)(1 − 2x). The concentration of the third component is

then given by c3 = 1− c1 − c2 and the chemical potential µ3 by (9). As we have already seen, any of the three
concentrations ci can be eliminated by this procedure which leads to fully equivalent systems.

The simple system (36) above will be used in many situations (see section 5). Nevertheless, this model suffers
from some drawbacks in particular cases:

• In the total spreading case, that is when one of the Σi is negative, assumption (13) is never satisfied.
Indeed, if for instance Σ1 is negative, it is easily seen that

F0(−1, 1, 1) = 2Σ1 < 0.

In fact, it may happen that, even under condition (11), F0 is not bounded from below on the hyperplane
S (take for instance Σ1 = Σ2 = 1 and Σ3 = −0.2). In that case, Theorem 2.4 does not apply and in
fact, we guess that the system (8) is ill-posed, which is confirmed by numerical simulations which blow
up in very short times.

• Even though the system (8) obtained with F = F0 is algebraically consistent with diphasic systems and
well-posed at least when all the Σi are positive, it will appear in section 3.4 that this system is not
always dynamically consistent with diphasic systems. This means that, even if diphasic solutions of (8)
(i.e. triples of the form (c, 1− c, 0)) do exist, these solutions may not remain “diphasic” when we apply
small perturbations of the initial data. This phenomenon may produce non physical instabilities of the
interfaces (see the numerical simulations in section 5 and in particular Figure 6).

That is the reason why we study in the sequel a more general possible choice for the bulk free energy F which
will ensure well-posedness, but also algebraic and dynamical consistency of the model.



12

3.3. Higher order bulk free energy

As we have seen before, if one of coefficients Σi is negative, and even in some cases where all the Σi are
positive, it can be necessary to consider more complicated bulk free energies allowed by Theorem 3.2 to preserve
the algebraic consistency with binary systems. We will concentrate in the sequel on the following particular
case

FΛ,α(C) = F0(C) + Λc2
1c

2
2c

2
3(ϕα(c1) + ϕα(c2) + ϕα(c3)), (37)

where Λ is a non-negative real parameter and ϕα is the function ϕα : x 7→ 1
(1+x2)α , α ≥ 0. When Λ = 0,

we recover the bulk free energy F0 introduced in the previous paragraph. The simple case α = 0 leads to the
following sixth order polynomial bulk free energy

FΛ,0(C) = F0(C) + 3Λc2
1c

2
2c

2
3, (38)

which will be used in the numerical simulations presented in Section 5. Unfortunately, our analysis does not
apply in 3D for this limit case α = 0. That is the reason why we consider here (37) instead of (38).

Let us introduce Φα(x) = x2ϕα(x). We state here, for further use, the main useful properties of ϕα and Φα.

Lemma 3.5. (1) For any α ≥ 0, there exists Kα > 0 such that

ϕα(x) ≤ Kα

|x|2α
, |ϕ′

α(x)| ≤ Kα

|x|2α+1
, ∀x ∈ R,

∣∣∣∣x − 1

2
Φ′

α(x)

∣∣∣∣ ≤ Kα

|x|3
1 + x2

≤ Kα

2
|x|2, ∀x ∈ R.

(2) We have

Φα is convex, for any α ∈
[
0,

8

17

]
,

xΦ′
α(x) ≥ 0, ∀x ∈ R, for any α ∈ [0, 1]. (39)

3.3.1. Well-posedness of the Cahn-Hilliard system

We want to show in this section that the system (8) is well-posed when the bulk free energy is defined by
(37). To this end, it is enough to apply Theorem 2.4. The main point here, is to prove that FΛ,α satisfies the
assumptions of this theorem, in particular in the 3D case. From now on, we make the following assumption:






α ∈ [0, 1], if d = 2,

α ∈
]
0,

8

17

]
, if d = 3.

(40)

(1) Polynomial growth:

By Lemma 3.5, it is straightforward to check that for any non-negative Λ and α, there exists B1, B2 >
0 such that

|FΛ,α(C)| ≤ B1 |C|6−2α +B2, ∀C ∈ S, (41)

|DFΛ,α(C)| ≤ B1 |C|5−2α +B2, ∀C ∈ S, (42)

|D2FΛ,α(C)| ≤ B1 |C|4 +B2, ∀C ∈ S. (43)

Therefore, assumptions (14)-(16) are fulfilled, for d = 2 and d = 3. Notice that the exponent 4 in the
right-hand side of (43) is sharp (see (44) below).
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(2) Bound from below for the Hessian:

One easily checks, using (43), that assumption (17) is satisfied, with q = 4, by FΛ,α for any Λ ≥ 0
and any α ≥ 0. Unfortunately, in the 3D case, we absolutely need that q < 4.

Of course all the terms in F0 are fourth-order polynomial terms and contribute to D2FΛ,α only
with second order terms. Let us now consider one of the additional terms in FΛ,α, say for instance
G(C) = Λc2

1c
2
2c

2
3ϕα(c1) = ΛΦα(c1)c

2
2c

2
3. Using Lemma 3.5 one can easily see that

|∂i∂jG(C)| ≤ K|C|4−2α,

as soon as (i, j) 6= (1, 1). Hence, these terms contribute to the inequality (17) with a power q = 4−2α < 4
thanks to assumption (40) for d = 3. It remains to consider the term

∂2
1G(C) = Φ′′

α(c1)c
2
2c

2
3, (44)

which is of order 4 and not below. Nevertheless, since α satisfies (40) we know from Lemma 3.5 that Φα

is convex and in particular, the term ∂2
1G(C) above is non-negative. As a consequence its contribution

to (D2FΛ,α.ξ, ξ) is ∂2
1G |ξ1|2 which is non-negative. This proves that the bound from below (17) is

fulfilled by FΛ,α with q = 4 − 2α.
(3) Bound from below:

First of all, it is clear from (35) and (37) that FΛ,α is non-negative on S for any Λ ≥ 0 and any α ≥ 0
as soon as all the coefficients (Σi)i are positive. In the case where one of the (Σi)i is negative we show
below that FΛ,α is bounded from below as soon as Λ > 0.

In particular, using Theorem 2.4, this proves that system (8) with F = FΛ,α is well posed for any
values of (Σi) satisfying (11)-(12) as soon as Λ > 0 and (40) holds. Furthermore, (45) shows that the
additionnal higher order term in the bulk free energy acts as a stabilizing term which tends to the ideal
case where the bulk free energy is non-negative as Λ tends to infinity.

Proposition 3.6. Let σ12, σ13 and σ23 be three positive numbers and Σ1, Σ2 and Σ3 defined by (20).
For any α satisfying (40) and any Λ > 0 the bulk free energy FΛ,α defined by (34) and (37) is bounded

from below on the hyperplane S and we have

lim
Λ→+∞

(
inf
S

FΛ,α

)
= 0. (45)

Proof. Suppose for instance that Σ1 < 0. Since all the σij are positive, we deduce from (22) that
necessarily Σ2 > 0 and Σ3 > 0.

1/ Using (34), we see that for any C ∈ S we have

FΛ,α(C) ≥ −|Σ1|
2

c2
1(c2 + c3)

2 + Λc2
1c

2
2c

2
3(ϕα(c1) + ϕα(c2) + ϕα(c3))

≥ −|Σ1|
2

c2
1(c2 + c3)

2 + Λc2
1(Φα(c2)c

2
3 + Φα(c3)c

2
2).

Let us define

MΛ,α = Φ−1
α

( |Σ1|
Λ

)
.

For any C ∈ S such that |c2| ≥ MΛ,α and |c3| ≥ MΛ,α, we have

FΛ,α(C) ≥ −|Σ1|
2

c2
1(c2 + c3)

2 + ΛΦα(MΛ,α)c2
1(c

2
3 + c2

2)

≥ −|Σ1|
2

c2
1(c2 + c3)

2 +
Λ

2
Φα(MΛ,α)c2

1(c2 + c3)
2 = 0,
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by definition of MΛ,α. Hence, we have shown that FΛ,α(C) is non-negative as soon as C ∈ S is such
that |c2| ≥ MΛ,α and |c3| ≥ MΛ,α.

2/ Let us now consider C ∈ S such that |c2| ≤ MΛ,α, for instance. The same study can be done in
the case |c3| ≤ MΛ,α. Using (35) and since Λ > 0 and Σ2 > 0, we have for such a C:

FΛ,α(C) ≥ Σ1

2
c2
1(1 − c1)

2 +
Σ3

2
(1 − c1 − c2)

2(c1 + c2)
2.

If we denote by G(c1, c2) the right-hand side member of this inequality, we can write

G(c1, c2) =
Σ1

2
c2
1(1 − c1)

2 +
Σ3

2
c2
1(1 − c1)

2 +
Σ3

2
H(c1, c2), (46)

with

H(c1, c2) = c2

(
(1 − c1)

2(2c1 + c2) − 2(1− c1)(c1 + c2)
2 + c2(c1 + c2)

2
)
.

Using that |c2| is assumed to be bounded by MΛ,α, one obtains

∣∣∣∣
Σ3

2
H(c1, c2)

∣∣∣∣ ≤ KMΛ,α(1 + M3
Λ,α)(1 + |c1|3)

where K depend only on |Σ3|. Using Young’s inequality, it follows that for all 0 < δ < 1

∣∣∣∣
Σ3

2
H(c1, c2)

∣∣∣∣ ≤ KMΛ,α(1 + M3
Λ,α) +

δσ13

2
c4
1 +

K

δ3
M4

Λ,α(1 + M12
Λ,α).

Then, we use the following elementary result whose proof is left to the reader.

Lemma 3.7. For all 0 < δ < 1, we have

x2(1 − x)2 ≥ δ

2
x4 − 1

2

δ

(1 − δ)2
, ∀x ∈ R.

It follows from (46) that

G(c1, c2) ≥ σ13c
2
1(1 − c1)

2 −
∣∣∣∣
Σ3

2
H(c1, c2)

∣∣∣∣

≥ −KMΛ,α(1 + M3
Λ,α) − K

δ3
M4

Λ,α(1 + M12
Λ,α) − 1

2

δσ13

(1 − δ)2
,

which proves that G (and so also FΛ,α) is bounded from below for such values of C. The first part of
the proposition is proved.

Finally, for Λ large enough, we can see that MΛ,α is smaller than 1, so we can take δ = MΛ,α in the
previous inequality which implies that

inf
S

FΛ,α(C) ≥ −KMΛ,α(1 + M3
Λ,α) − KMΛ,α(1 + M12

Λ,α) − 1

2

MΛ,ασ13

(1 − MΛ,α)2
.

The claim is proved because the right hand-side of the inequality above tends to zero when Λ tends to
∞, since we have lim

Λ→+∞
MΛ,α = 0. �
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(4) Non-negativity:

More interestingly, we are going to show that under suitable conditions and for Λ large enough,
the bulk free energy FΛ,α is non-negative and have only the triples (1, 0, 0), (0, 1, 0) and (0, 0, 1) as
minimizing states on S.

Proposition 3.8. Let α satisfying (40). There exists Λ0 > 0 such that inf
S

FΛ,α = 0 for all Λ ≥ Λ0 if

and only if we have

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0. (47)

Notice that we find here the condition (47) which is exactly the same than (11).

Proof. First of all, if condition (47) is not satisfied then inf
S

FΛ,α < 0. Indeed, in that case there exists

(a, b) 6= (0, 0) such that (see the proof of Proposition 2.1)

Σ1a
2 + Σ2b

2 + Σ3(a + b)2 < 0.

It is easily seen in that case that, for any α and any Λ, we have

FΛ,α(ax, bx, 1 − (ax + bx)) ∼
x→0

(
Σ1a

2 + Σ2b
2 + Σ3(a + b)2

)
x2,

so that FΛ,α takes negative values on S in the neighborhood of (0, 0, 1). Similar arguments show that
FΛ,α takes negative values in the case Σ1Σ2 + Σ1Σ3 + Σ2Σ3 = 0.

Assume now that (47) holds. We want to show that the function HΛ,α defined by HΛ,α(c1, c2) =
FΛ,α(c1, c2, 1 − c1 − c2) is non-negative for Λ large enough. Obviously, for any (c1, c2) we can not have
simultaneously

|c1| <
1

4
, |c2| <

1

4
, |1 − c1 − c2| <

1

4
.

Assume for intance that |1 − c1 − c2| ≥ 1
4 , the other two cases can be treated in the same way. Using

Corollary 2.2 and (35), (37), we have

HΛ,α(c1, c2) =
1

2
Σ1

[
c1(1 − c1)

]2
+

1

2
Σ2

[
c2(1 − c2)

]2
+

1

2
Σ3

[
(c1 + c2)(1 − c1 − c2)

]2

+ Λc2
1c

2
2(1 − c1 − c2)

2(ϕα(c1) + ϕα(c2) + ϕα(1 − c1 − c2))

≥− 1

2
Σ
[
c1(1 − c1) + c2(1 − c2) − (c1 + c2)(1 − c1 − c2)

]2
+ Λc2

1c
2
2Φα(1 − c1 − c2).

A straightforward computation shows that the first term equals − 1
2Σ(2c1c2)

2. Furthermore, since we

assumed that |1 − c1 − c2| ≥ 1
4 and thanks to (39) we have Φα(1 − c1 − c2) ≥ Φα( 1

4 ). Hence it follows
that

HΛ,α(c1, c2) ≥− 2Σc2
1c

2
2 + Λc2

1c
2
2Φα

(
1

4

)
,

and this last quantity is non-negative for any c1, c2 as soon as

Λ ≥ 2Σ

Φα

(
1
4

) .

�
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3.3.2. Conclusions

We sum up here the conclusions of the previous study:

• If all the (Σi)i defined by (20) are positive then, problem (8) with F = FΛ,α is well-posed for any Λ ≥ 0
and any α satisfying (40). In particular the simplest choice F = F0 is always acceptable. Furthermore,
the three pure components states (1, 0, 0), (0, 1, 0) and (0, 0, 1) are the unique minimizers of the energy.

• If one of the (Σi)i is negative, then F0 may be unbounded from below. Nevertheless, under condition
(47), for any Λ > 0 and any α satisfying (40), the problem (8) with F = FΛ,α is well-posed.

Furthermore, always under the condition (47), for any α satisfying (40) and any Λ > 0 large enough,
the bulk free energy FΛ,α is non-negative and has only the expected three minimizers.

We can observe the differences between different bulk free energies by looking at the isolines of the function F
in barycentric coordinates. More precisely we draw an equilateral triangle (the so-called Gibbs triangle) whose
vertices represent the three pure phases (1, 0, 0), (0, 1, 0) and (0, 0, 1). Then, we can look at any C ∈ S as the
barycentric coordinates of any point of the plane with respect to the three vertices of the triangle. The points
located at the interior of the Gibbs triangle represents physically admissible values of the concentrations.

In Figure 1, we compare first in the case of three identical surface tensions (left and center plots), the

difference between the non-consistent F̃0 and the consistent F0 bulk free energy. In the non-consistent case
the center of the Gibbs triangle is a kind of saddle-point for F whereas in the consistent case, the center is a
local maximum of F . Since the evolution of the system is driven by the minimization of the total energy we
understand easily that the choice of F̃0 will lead to instabilities. In the right plot we show that the shape of F0

has always the same structure (with a local maximum point inside the Gibbs triangle) even for three different
surface tensions.

Σ1 = Σ2 = Σ3 = 4, F = F̃0 Σ1 = Σ2 = Σ3 = 4, F = F0 Σ1 = 6, Σ2 = 8,Σ3 = 4, F = F0

Figure 1. Fourth order polynomial bulk free energies

In Figure 2, we concentrate on a total spreading case, and we compare the plots obtained for FΛ,0 for various
values of Λ. For very small values of Λ (left plot) the function FΛ,0 takes negative values (the lightgray zone at
the top-right corner of the plot) and the system will not behave correctly since it will try to reach this global
negative minimum for the energy. If we increase Λ (center plot) we find that FΛ,0 is non-negative but has many
local minima that the system can try to reach in order to minimize the energy. We are in a case where the
model will not be dynamically consistent (see Section 3.4 below) and instabilities will appear. Finally, for large
enough Λ (right plot), FΛ,0 is of course non-negative and has no other local minima than the three vertices of
the Gibbs triangle and possess a local maximum inside the Gibbs triangle. Hence, for such a value of Λ we
recover the same shape than in the center and right plots of Figure 1.

3.4. Dynamical consistency of the models

Our model is built to ensure algebraic consistency with diphasic mixtures. Hence for any Λ ≥ 0, we have
particular exact solutions of (8) of the form (c, 1 − c, 0) where c satisfies a “diphasic” Cahn-Hilliard equation
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Λ = 0.4 Λ = 0.7 Λ = 10.0

Figure 2. Total spreading case Σ1 = Σ2 = 4,Σ3 = −0.8. Various values of Λ.

as shown in (2). We will now prove that our models are also dynamically consistent in the sense that such
particular “diphasic” solutions are stable under perturbations of initial data. This point is crucial in view of
numerical computations since it ensures that numerical errors near those particular initial data will decrease
exponentially in time. Furthermore, in practical fully ternary situations, dynamically consistent models lead to
much more stable interfaces between two of the components as illustrated in section 5.3.3.

Let us introduce the spaces L2
m(Ω) (resp. H1

m(Ω)) to be the sets of functions in L2(Ω) (resp. H1(Ω)) whose
mean-value over Ω is zero. Thanks to the Poincaré inequality, c 7→ |∇c|L2 is a norm on H1

m(Ω) that we denote
by | · |1. Furthermore, we recall that for any f ∈ L2

m(Ω) there exists a unique u ∈ H1
m(Ω) such that





−∆u = f, in Ω

∂u

∂n
= 0, on ∂Ω.

We denote this unique element u by u = (−∆)−1f and we note |f |−1 =
∣∣(−∆)−1f

∣∣
1

=
(
(−∆)−1f, f

) 1
2

L2 which

is a norm on L2
m(Ω). We recall finally that we have the interpolation property

|f |L2 ≤ |f |
1
2
−1|f |

1
2
1 , ∀f ∈ H1

m(Ω). (48)

Theorem 3.9. Let α satisfying (40). Assume that conditions (11)-(12) and assumptions (13)-(17) hold. There

exists Λ1 > 0 such that for any Λ ≥ Λ1, diphasic solutions of system (8) are stable in the following sense:

For any K > 0, there exists δ, γ > 0 such that for any C0 ∈ S such that
∣∣C0

∣∣
H1 ≤ K:

∣∣c0
j

∣∣
−1

≤
√

δ and

∫

Ω

c0
j dx = 0 =⇒ |cj(t)|−1 ≤

∣∣c0
j

∣∣
−1

e−γt, ∀t > 0.

As a consequence, this theorem and (48) imply that if c0
j is small enough and with zero mean then cj(t) tends

to zero exponentially in time in all the spaces Hs(Ω) with s < 1.

Theorem 3.10. If Σ satisfy

Σi >
ΣT

2
> 0, ∀i = {1, 2, 3}, (49)

the claim of Theorem 3.9 holds with Λ = 0.

This last result means that, under assumption (49), the simplest possible algebraically consistent model, that
is the one for F = F0, is well-posed and dynamically consistent with diphasic systems. In section 5.3.3, we give
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numerical results showing that, when the condition (49) is not satisfied, the model can present non physical
instabilities.

We give now the proof of Theorem 3.9 for d = 3, the bidimensional case being easier.

Proof. Assume for instance that j = 1. Since m(c0
1) = 0 we know that m(c1(t)) = 0 for any t ≥ 0. The equation

satisfied by c1 reads
∂c1

∂t
=

M0

Σ1
∆µ1.

Applying the operator (−∆)−1 defined above to this equation gives

∂(−∆)−1c1

∂t
= −M0

Σ1
(µ1 − m(µ1)),

so that, taking the L2(Ω) inner product of this equation with c1(t) which has a zero mean-value, we get

1

2

d

dt

(
(−∆)−1c1, c1

)
L2 = −M0

Σ1

∫

Ω

(µ1 − m(µ1))c1 dx = −M0

Σ1

∫

Ω

µ1c1 dx.

Using now the definition of µ1 and of FΛ,α we get

1

2

d

dt

(
(−∆)−1c1, c1

)
L2 +

3M0ε

4
|∇c1|2L2

+
12M0

ε

∫

Ω

c2
1

[
1 − β1c2c3 + 2Λγ1c

2
2c

2
3(ϕα(c2) + ϕα(c3))

]
+ Λγ1c1Φ

′
α(c1)c

2
2c

2
3 dx

=
12M0

ε

∫

Ω

c3
1(3 − 2c1) dx

+
24M0Λ

ε

ΣT

3Σ1Σ2Σ3

∫

Ω

c3
1c2c3(Σ2c2 + Σ3c3)(ϕα(c1) + ϕα(c2) + ϕα(c3)) dx

+
12M0Λ

ε

ΣT

3Σ1Σ2Σ3

∫

Ω

c3
1c

2
2c

2
3(Σ3ϕ

′
α(c2) + Σ2ϕ

′
α(c3)) dx

where

β1 =
6Σ2Σ3

Σ1Σ2 + Σ1Σ3 + Σ2Σ3
=

2ΣT

Σ1
and γ1 =

ΣT

3Σ1

(
1

Σ2
+

1

Σ3

)
=

(Σ2 + Σ3)

Σ1Σ2 + Σ1Σ3 + Σ2Σ3
. (50)

Notice that since conditions (11) and (12) hold we have γ1 > 0. Then, in the left-hand side of the above equality

the term

∫

Ω

2Λγ1c
2
1c

2
2c

2
3(ϕα(c2) + ϕα(c3)) dx is non-negative. In the left-hand side, it remains one integral term

that we write:

∫

Ω

c2
1(1 − β1c2c3) + Λγ1c1Φ

′
α(c1)c

2
2c

2
3 dx =

1

2

∫

Ω

c1Φ
′
α(c1)(1 − β1c2c3 + 2Λγ1c

2
2c

2
3) dx

+

∫

Ω

c1

(
c1 −

1

2
Φ′

α(c1)

)
(1 − β1c2c3) dx. (51)

We remark that if Λ >
β2

1

8γ1
> 0, then 1 − β1X + 2Λγ1X

2 ≥ 1 − β2
1

8Λγ1
> 0, for all X ∈ R. Hence, in (51) we

have
1

2

∫

Ω

c1Φ
′
α(c1)(1 − β1c2c3 + 2Λγ1c

2
2c

2
3) dx >

1

2

∫

Ω

c1Φ
′
α(c1)

(
1 − β2

1

8Λγ1

)
dx ≥ 0.
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Consequently, we obtain

1

2

d

dt

(
(−∆)−1c1, c1

)
L2 +

3M0ε

4
|∇c1|2L2 +

K0

ε

∫

Ω

c1Φ
′
α(c1) dx

≤ 12M0

ε

∫

Ω

c3
1(3 − 2c1) dx − 12M0

ε

∫

Ω

c1

(
c1 −

1

2
Φ′

α(c1)

)
(1 − β1c2c3) dx

+
24M0Λ

ε

ΣT

3Σ1Σ2Σ3

∫

Ω

c3
1c2c3(Σ2c2 + Σ3c3)(ϕα(c1) + ϕα(c2) + ϕα(c3)) dx

+
12M0Λ

ε

ΣT

3Σ1Σ2Σ3

∫

Ω

c3
1c

2
2c

2
3(Σ3ϕ

′
α(c2) + Σ2ϕ

′
α(c3)) dx

Let I1, . . . , I4 be the four integrals in the right-hand side above. For the term I1, we have the estimate

|I1| ≤ K|c1|3L3 + K|c1|4L4 .

Thanks to Lemma 3.5, we get

|I2| ≤ Kα

∫

Ω

|c1|3(1 + |c2||c3|) dx ≤ Kα|c1|3L3 + Kα|c1|3
L

9
2
|C|2L6 ,

|I3| ≤ Kα

∫

Ω

|c1|3−2α|C|3 + |c1|3|C|3−2α
dx

≤ Kα|c1|3−2α
L6−4α |C|3L6 + Kα|c1|3

L
18

3+2α
|C|3−2α

L6 ,

and in the same way

|I4| ≤ Kα

∫

Ω

|c1|3|C|3−2α
dx ≤ Kα|c1|3

L
18

3+2α
|C|3−2α

L6 .

Applying Theorem 2.4, the norm of the solution C in L∞(R+, H1) depends only on K. As we assumed that
0 < α ≤ 8

17 , using the Sobolev embedding H1(Ω) ⊂ L6(Ω) and Poincaré’s inequality, we get

1

2

d

dt

(
(−∆)−1c1, c1

)
L2 +

ε

Kp

|c1|2H1 ≤ Kα|c1|3
L

9
2

+ K|c1|3L3 + K|c1|4L4 + Kα|c1|3
L

18
3+2α

+ Kα|c1|3−2α

L6−4α (52)

From the embeddings H
5
6 ⊂ L

9
2 ⊂ L4 ⊂ L3 and the interpolation H

5
6 = [L2, H1] 5

6
, it follows

Kα|c1|3
L

9
2

+ K|c1|3L3 + K|c1|4L4 ≤ Kα|c1|
1
2

L2 |c1|
5
2

H1 + Kα|c1|
2
3

L2 |c1|
10
3

H1 .

In the same way, from H
3−3α
3−2α ⊂ L6−4α, H

3−3α
3−2α = [L2, H1] 3−3α

3−2α
and the Poincaré inequality, one gets

|c1|3−2α

L6−4α ≤ Kα|c1|αL2 |c1|3−3α

H1 ≤ Kα|c1|
α
4

L2 |c1|3−
9
4 α

H1 ,

and finally using H
3−α

3 ⊂ L
18

3+2α and H
3−α

3 = [L2, H1] 3−α
3

, one obtains

|c1|3
L

18
3+2α

≤ Kα|c1|αL2 |c1|3−α

H1 .

Introducing now y(t) =
(
(−∆)−1c1, c1

)
L2 and z(t) = |c1|2H1 and using (48), we obtain from (52) and the above

estimates
1

2

d

dt
y(t) +

ε

Kp

z(t) ≤ Kα

(
z

11
8 y

1
8 + z

11
6 y

1
6 + z

24−17α
16 y

α
16 + z

6−α
4 y

α
4

)
, ∀t ≥ 0. (53)
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From Theorem 2.4, we know that z is uniformly bounded in time by a constant CK which depends only on K
and that y ∈ C0(R). Let us now choose δ small enough so that

Kα

(
C

3
8

Kδ
1
8 + C

5
6

Kδ
1
6 + C

8−17α
16

K δ
α
16 + C

2−α
4

K δ
α
4

)
≤ ε

4Kp

. (54)

Notice that 8 − 17α ≥ 0 thanks to (40). Since by assumption we have y(0) ≤ δ, then the continuity of y and z
with respect to the time imply that there exists a maximal time T0 ∈]0; +∞] such that

Kα

(
z

3
8 y

1
8 + z

5
6 y

1
6 + z

8−17α
16 y

α
16 + z

2−α
4 y

α
4

)
≤ ε

2Kp

, ∀ 0 ≤ t < T0. (55)

Hence, (53) leads to
1

2

d

dt
y(t) +

ε

KP

z(t) ≤ ε

2Kp

z(t), ∀0 ≤ t ≤ T0,

and therefore
d

dt
y(t) +

ε

Kp

z(t) ≤ 0, ∀0 ≤ t ≤ T0.

Noting that λ2
0y(t) ≤ z(t), where λ0 is the first positive eigenvalue of the operator (−∆) with Neumann boundary

conditions, we get
d

dt
y(t) + γy(t) ≤ 0, ∀0 ≤ t ≤ T0,

where γ =
ελ2

0

Kp
. We obtain that y(t) ≤ y(0)e−γt, ∀ 0 ≤ t < T0. In particular y(t) ≤ δ so that for all t ≤ T0, so

using (54) we have

Kα

(
z

3
8 y

1
8 + z

5
6 y

1
6 + z

8−17α
16 y

α
16 + z

2−α
4 y

α
4

)
≤ ε

4Kp

, ∀ 0 ≤ t < T0.

Finally, thanks to the continuity of y in time and the maximality of T0 satisfying the property (55), we can
conclude that in fact T0 = +∞ and the claim is proved. �

In the same way, the proof of Theorem 3.10 for d = 3 is the following.

Proof. We consider here the case where Λ = 0, that is F = F0. We use the same approach than before and we
get in this particular case

1

2

d

dt

(
(−∆)−1c1, c1

)
L2 +

3M0ε

4
|∇c1|2L2 +

12M0

ε

∫

Ω

c2
1

(
1 − β1

(
c2 +

c1

2

)(
1 −

(
c2 +

c1

2

)))
dx

=
12M0

ε

∫

Ω

c3
1

(
3 − β1

2

)
+ c4

1

(
β1

4
− 2

)
dx, (56)

where we have written c2 = c2 +
c1

2
− c1

2
, and c3 = 1 − c1 − c2 = 1 −

(
c2 +

c1

2

)
− c1

2
.

As Σi >
ΣT

2
> 0, we see from (50) that β1 < 4. Therefore, we have 1 − β1X(1 − X) > 1 − β1

4
> 0, for all

X ∈ R. Then, the integral term in the left-hand side of (56) is non-negative. Hence, using Young’s inequality
we obtain

1

2

d

dt

(
(−∆)−1c1, c1

)
L2 +

3M0ε

4
|∇c1|2L2 ≤ K

(
|c1|3L3 + |c1|4L4

)
.

Then we use the embedding H
3
4 ⊂ L4, the interpolation H

3
4 = [L2, H1] 3

4
and the inequality (48) in order to

conclude by the same argument than in the previous proof. �
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4. Proof of Theorem 2.4

We turn back in this section to the proof of our well-posedness result for the system (8). We recall that
we have to take care of the fact that one of the coefficients (Σi)i is allowed to be negative (as soon as the
assumptions of the theorem are fulfilled).

As usual, the various constants depending only on the physical parameters of the problem, appearing in the
following proof may change from one line to another without changing the notation. Furthermore, we only give
the proof in the 3D case, which is more difficult than the 2D one.
Proof.

• Step 1: Galerkin approximation:
We introduce the family (ϕ`)`≥1 of the eigenfunctions of the operator −∆ (with homogeneous Neumann

condition). We assume that ϕ1 = 1. We recall that the (ϕ`)` are orthogonal in L2 and H1. Let Φn =
Span(ϕ1, ..., ϕn) the space spanned by the family (ϕ`)1≤`≤n and PΦn the orthogonal projector on Φn in L2(Ω).

We look for (Cn, µn) defined by for i = {1, 2, 3}

cn
i =

n∑

`=1

α`
i(t)ϕ

` µn
i =

n∑

`=1

β`
i (t)ϕ

`

where α`
i and β`

i are smooth, such that Cn(0) = PΦn(C0) and

(
d

dt
cn
i , ϕ

)
= −

∫

Ω

M0

Σi

∇µn
i · ∇ϕ dx, ∀ϕ ∈ Φn, ∀i ∈ {1, 2, 3}, (57)

∫

Ω

µn
i ϕ dx =

∫

Ω

3

4
εΣi∇cn

i · ∇ϕ +
4ΣT

ε

∑

j 6=i

[
1

Σj

(∂iF (Cn) − ∂jF (Cn))

]
ϕ dx, ∀ϕ ∈ Φn, ∀i ∈ {1, 2, 3}. (58)

The approximate problem (57) is a system of ordinary differential equations where the unknowns are the
functions α`

i since the equation (58) gives β`
i as a nonlinear function of the (α`

i )`. Since the bulk free energy F
is smooth enough we can use the Cauchy-Lipschitz theorem which says that there exists a unique solution of
problem (57)-(58) on a maximal time interval [0, tn[, tn ∈]0, +∞].

Let us remark that, as C0 ∈ S, we have c1(0)+c2(0)+c3(0) = 1, and then PΦncn
1 (0)+PΦncn

2 (0)+PΦncn
3 (0) =

PΦn1 = 1 because ϕ1 = 1 belongs to all the Galerkin approximation spaces. Furthermore, we have seen that
the system (8) is built to ensure that for any t ∈ [0, tn]

3∑

i=1

cn
i = 1. (59)

Hence, Cn(t) ∈ S for any n, and any t ∈ [0, tn[.
• Step 2: Mass conservation:

Let us introduce m(cn
i (t)) =

1

|Ω|

∫

Ω

cn
i (t) dx, the total mass of the i-th component. From (57) with ϕ = ϕ1

we find that
d

dt
m(cn

i ) =
1

|Ω|
d

dt

∫

Ω

cn
i (t)ϕ1 dx = 0.

Hence for any t ∈ [0, tn[, we have

m(cn
i (t)) = m(cn

i (0)) = m(PΦn(c0
i )) = m(c0

i ). (60)

• Step 3: Energy estimates:



22

Take ϕ = µn
i in (57) and ϕ =

dcn
i

dt
in (58). We obtain for any i ∈ {1, 2, 3},

(
dcn

i

dt
, µn

i

)
= −

∫

Ω

M0

Σi

|∇µn
i |2 dx,

and (
dcn

i

dt
, µn

i

)
=

∫

Ω

3

4
εΣi∇cn

i · ∇dcn
i

dt
+

4ΣT

ε

∑

j 6=i

[
1

Σj

(∂iF (Cn) − ∂jF (Cn))

]
dcn

i

dt
dx.

Summing these equations over i from 1 to 3 and using the property
d

dt

3∑

i=1

cn
i = 0 we get

d

dt

[∫

Ω

3∑

i=1

3

8
εΣi |∇cn

i |2 dx +
12

ε

∫

Ω

F (Cn) dx

]
+

3∑

i=1

∫

Ω

M0

Σi

|∇µn
i |2 dx = 0. (61)

Of course, the term under the time derivative is nothing but the total energy of the system F triph
Σ,ε (Cn(t)). Using

Proposition 2.1 and the property (9), we see that the second term in (61) satisfies

3∑

i=1

∫

Ω

M0

Σi

|∇µn
i |2 dx =

3∑

i=1

∫

Ω

M0Σi

∣∣∣∣
∇µn

i

Σi

∣∣∣∣
2

dx ≥ ΣM0

3∑

i=1

1

Σ2
i

|∇µi|2L2 . (62)

In particular this term is non-negative and we finally find that the total energy of the system decreases along
the time. Furthermore, we can control the energy of the approximate initial data as follows

∫

Ω

3∑

i=1

3

8
εΣi|∇cn

i (0)|2 dx +
12

ε

∫

Ω

F (Cn(0)) dx ≤
3∑

i=1

3

8
ε|Σi|

∣∣∇c0
i

∣∣2
L2 +

12

ε

(
B1|Cn(0)|6L6 + B2|Ω|

)

≤ K1 + K2

3∑

i=1

∣∣PΦnc0
i

∣∣6
H1 ≤ K1 + K2

∣∣C0
∣∣6
H1 ,

since we assumed that p = 6 in (14) as soon as d = 3.

We have shown a bound on the total energy F triph
Σ,ε (Cn(t)) which does not depend on t and n. Using

Proposition 2.1 (and (59)) and assumption (13), we find that the H1(Ω) seminorm of Cn(t) is controlled by
the total energy. As a consequence, with (60), we get that the existence time of the approximate problem is
tn = +∞ and that the following estimate holds

|Cn|L∞(0,∞;H1) ≤ K1. (63)

Coming back to (61) and using (62) we find that

|∇µ
n|L2(0,∞;L2) ≤ K1. (64)

Furthermore, there exists K2 > 0 independent of t and of n such that

|m(µn
i )|< K2, ∀i ∈ {1, 2, 3}. (65)
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Indeed, we have

m(µn
i ) = (µn

i , ϕ1) =
3

4
εΣi (−∆cn

i , ϕ1) +


4ΣT

ε

∑

j 6=i

(
1

Σj

(∂iF (Cn) − ∂jF (Cn))

)
, ϕ1




=

∫

Ω

4ΣT

ε

∑

j 6=i

(
1

Σj

(∂iF (Cn) − ∂jF (Cn))

)
dx,

thanks to the Neumann boundary condition ∇cn
i · n = 0 on Γ. Using (15), we have

|m(µn
i )| ≤ 4 |ΣT |

ε

∫

Ω

∑

j 6=i

(
1

|Σj|
(|∂iF (Cn)| + |∂jF (Cn)|)

)
dx

≤ K

(∫

Ω

B1 |Cn|p−1 dx + B2 |Ω|
)

≤ K
(
1 + |Cn|5H1

)
,

because p = 6 in (15) as soon as d = 3. The estimate (65) follows from (63). Finally, combining (64) and (65)
we get, by the Poincaré inequality, for any n

|µn|L2(0,T ;H1) < K3(1 + T ), ∀T > 0. (66)

In order to establish a compactness property for the approximate solutions under study, we now look for an

estimate of
∂Cn

∂t
in the space L2(0, T ; (H−1(Ω))3). From equation (57) we deduce

∣∣∣∣∣

∫ T

0

〈
∂cn

i

∂t
, ϕ

〉

H−1,H1
0

dt

∣∣∣∣∣ =
∣∣∣∣∣

∫ T

0

∫

Ω

M0

Σi

∇µn
i · ∇PΦnϕ dx dt

∣∣∣∣∣ =

∣∣∣∣∣

∫ T

0

∫

Ω

M0

Σi

∇µn
i · ∇ϕ dx dt

∣∣∣∣∣
≤ K|∇µn

i |L2(0,T ;L2)|∇ϕ|L2(0,T ;L2) ≤ K|∇ϕ|L2(0,T ;L2), ∀i ∈ {1, 2, 3},

for any ϕ ∈ L2(0, T ; H1
0(Ω)), thanks to estimate (64). It follows that

∣∣∣∣
∂Cn

∂t

∣∣∣∣
L2(0,T ;H−1)

< K. (67)

• Step 4: Passage to the limit in the equations:
Using the estimates (63), (66) and (67), we can extract subsequences of (Cn)n and (µn)n (always denoted

by (Cn)n and (µn)n) such that

Cn ⇀ C in L∞(0,∞, (H1(Ω))3) weak-∗,
Cn ⇀ C in L2

loc(0,∞, (H1(Ω))3) weak,
∂Cn

∂t
⇀

∂C

∂t
in L2

loc(0,∞, (H−1(Ω))3) weak,

µ
n ⇀ µ in L2

loc(0,∞, (H1(Ω))3) weak.

From estimates (63) and (67), we can use the Aubin–Lions–Simon’s compactness theorem to obtain, up to a
subsequence,

Cn → C in C0([0, T [, (L2(Ω))3) strong, ∀T > 0.

In particular, Cn(0) converges strongly to C(0) in (L2(Ω))3 and thus C(0) = C0 because PΦn converges to the
identity for the strong topology of operators.
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It is now straightforward, using the above convergences, to pass to the limit in the approximate problem.
This shows the existence of a weak solution to problem (8).
• Step 5: Further estimates:

Let (C, µ) be the weak solution to (8) obtained in the previous step. We already know that C belongs
to L∞(0, +∞, (H1(Ω))3) and that ∇µ belongs to L2(0, +∞, (L2(Ω))9). We want now to investigate further
regularity properties of C. The following estimates will be fundamental in order to prove the uniqueness of such
a solution in the next step.

First, we seek estimates for ∆C in (L2(Ω))3. Multiplying by −∆ci the definition of µi in (8), and integrating
by parts, we get for each i ∈ {1, 2, 3}

(∇µi,∇ci) =
3

4
εΣi|∆ci|2L2 −

4ΣT

ε

∫

Ω

∑

j 6=i

[
1

Σj

(∂iF (C) − ∂jF (C))

]
∆ci dx.

Summing these equations over i and noting that, thanks to (59),

3∑

i=1

∆ci = 0, one gets

3∑

i=1

(∇µi,∇ci) =

3∑

i=1

3

4
εΣi|∆ci|2L2 +

12

ε

3∑

i=1

∫

Ω

∇∂iF (C) · ∇ci dx. (68)

Let us pay attention to the last term V above. Thanks to assumption (17) and to the mass conservation
property, this term satisfies

V =
12

ε

3∑

i=1

3∑

j=1

d∑

k=1

∫

Ω

∂i∂jF (C)∂xk
cj∂xk

ci dx

=
12

ε

d∑

k=1

∫

Ω

(D2F (C).∂xk
C, ∂xk

C) dx

≥ −12

ε
D1

d∑

k=1

∫

Ω

(1 + |C|q)|∂xk
C|2 dx ≥ −K

ε

∫

Ω

(1 + |C − m(C)|q)|∇C|2 dx.

Using Proposition 2.1, we deduce from (68) that

εΣ|∆C|2L2 ≤
3∑

i=1

εΣi|∆cn
i |2L2 ≤ K

ε

∫

Ω

(1 + |C − m(C)|q)|∇C|2 dx + K|∇µ|L2 |∇C|L2 . (69)

As d = 3, using the elliptic regularity of the Laplace operator and Agmon and Poincaré inequalities, we get

∫

Ω

|C − m(C)|q |∇C|2 dx ≤ |C− m(C)|qL∞ |∇C|2L2 ≤ K|∆C|
q

2

L2 |∇C|
q

2 +2

L2 .

Since in the assumption (17) for the three-dimensional case we assumed that q < 4, we see that the power of
|∆C|L2 in the above inequality is strictly less than 2. Hence, using Young’s inequality it follows from (69)

|∆C|2L2 ≤ K

(
1 + |∇C|2(

4+q

4−q )
L2

)
+ |∇µ|L2 |∇C|L2 . (70)
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Since C ∈ L∞(0, +∞, (H1(Ω))3) and ∇µ ∈ L2(0, +∞, (L2(Ω))9), we see that the right-hand side of this estimate
belongs to L2

loc(]0, +∞[). It follows that

|C|L4(0,T ;H2) ≤ K(T ), ∀0 ≤ T < +∞. (71)

We can now show, as claimed in Theorem 2.4, that C belongs to L2(0, T ; (H3(Ω))3), for any T > 0. Indeed,
taking the gradient of the definition of the chemical potential µi we get

3

4
εΣi∇∆ci = ∇µi −∇



4ΣT

ε

∑

j 6=i

[
1

Σj

(∂iF (C) − ∂jF (C))

]

 .

Hence,

ε2
3∑

i=1

Σ2
i |∇∆ci|2L2 ≤ K|∇µ|2L2 + K

3∑

i=1

|∇∂iF (C)|2L2 . (72)

Since d = 3, we use (16) and the following Agmon’s inequality

|∇C|∞ ≤ K|∆C|
1
2

L2 |∇∆C|
1
2

L2 ,

in order to obtain

3∑

i=1

|∇∂iF (C)|2L2 ≤
3∑

i,j=1

|∂i∂jF (C)∇C|2L2 ≤ K

∫

Ω

(1+ |C|p−2)2 |∇C|2 dx

≤ K|∇C|2∞(1 + |C|2(p−2)

L2(p−2) ) ≤ K|∆C|L2 |∇∆C|L2(1 + |C|2(p−2)

L2(p−2) )

= K|∆C|L2 |∇∆C|L2(1 + |C|8L8)

because, in the 3D case, we assumed that p = 6 in (16). Using now the embedding H
9
8 ⊂ L8 and the interpolation

property H
9
8 = [H1, H2] 1

8
, we deduce that

K

3∑

i=1

|∇∂iF (C)|2L2 ≤ K|∆C|L2 |∇∆C|L2(1 + |C|7H1 |C|H2)

≤ ε2

2

3∑

i=1

Σ2
i |∇∆ci|2L2 + K|∆C|2L2

(
1 + |C|14H1 |C|2H2

)
.

Using this last estimate in (72), we get

ε2

2

3∑

i=1

Σ2
i |∇∆ci|2L2 ≤ K|∇µ|2L2 + K|C|2H2

(
1 + |C|14H1 |C|2H2

)
.

We remark that the power of |C|H2 in this estimate is exactly equal to 4 so that, with (63), (66), (71), we obtain

|C|L2(0,T ;H3) ≤ K(T ), ∀0 ≤ T < +∞, (73)

using once more the elliptic regularity properties of the Laplace operator.
• Step 6: Uniqueness:
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We assume that there exist two weak solutions (ci, µi) and (di, νi) for i = 1, 2, 3 of problem (8) for the same
initial data. Letting C = (c1, c2, c3) and D = (d1, d2, d3), we have for all ϕ ∈ H1,

(
∂

∂t
(ci − di), ϕ

)
= −M0

Σi

∫

Ω

(∇µi −∇νi) · ∇ϕ dx, (74)

Taking ϕ = εΣi(ci − di) as a test function and summing the equations over i leads to

d

dt

(
3∑

i=1

εΣi

2
|ci − di|2L2

)
= −εM0

3∑

i=1

∫

Ω

∇(µi − νi) · ∇(ci − di) dx

= εM0

3∑

i=1

∫

Ω

(µi − νi)∆(ci − di) dx =
def

U

(75)

We are now going to estimate the right-hand side U of this equality. Using the definition of µi and νi and noting

that

3∑

i=1

∆(ci − di) = 0, one gets

U = −ε2
3∑

i=1

3

4
M0Σi|∆(ci − di)|2L2 + 12M0

3∑

i=1

∫

Ω

(∂iF (C) − ∂iF (D))∆(ci − di) dx.

Using Proposition 2.1, Young’s inequality and assumption (16), we deduce that

U +
Σ

2
ε2M0

3∑

i=1

|∆(ci − di)|2L2

≤ K
3∑

i=1

∫

Ω

|∂iF (C) − ∂iF (D)|2 dx ≤ K

∫

Ω

(1+ |C|2(p−2) + |D|2(p−2)) |C −D|2 dx

≤ K
(
1 + |C|2(p−2)

L2(p−2) + |D|2(p−2)

L2(p−2)

)
|C −D|2L∞ .

Since we only consider in this proof the three dimensional case, Agmon and Young inequalities yield

U + K1Σε2|∆(C −D)|2L2 ≤ K
(
1 + |C|8(p−2)

L2(p−2) + |D|8(p−2)

L2(p−2)

)
|C−D|2L2

= K
(
1 + |C|32L8 + |D|32L8

)
|C −D|2L2 ,

because we assumed that p = 6 in (16) when d = 3. We now use the embedding H
9
8 ⊂ L8 and the interpolation

property H
9
8 = [H1, H3] 1

16
to get

|C|32L8 ≤ K|C|30H1 |C|2H3 .

It follows that

U ≤ K
[
1 + |C|30H1 |C|2H3 + |D|30H1 |D|2H3

]
|C−D|2L2 . (76)

We can now proceed to the proof of the uniqueness. Let us introduce

y(t) =

3∑

i=1

εΣi

2
|ci − di|2L2 .
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Equation (75) and estimate (76) leads to the differential inequality

y′(t) ≤ a(t)|C−D|2L2 ,

where a is the function defined by

a(t) = K
[
1 + |C|30H1 |C|2H3 + |D|30H1 |D|2H3

]
.

Using now Proposition 2.1 (and since

3∑

i=1

(ci − di) = 0) we deduce that y is a non-negative function and that

y′(t) ≤ 2

Σε
a(t)y(t).

Thanks to the regularity properties (18) of the solutions C and D, we see that a lies in L1(]0, T [) for any T > 0.
Furthermore, y(0) = 0 since C and D have the same initial data. Using the Gronwall Lemma we deduce that
y(t) = 0 for any positive time which proves that C = D. �

5. Numerical simulations

First of all, we expose in this section the fully coupled Cahn-Hilliard / Navier-Stokes model based on the
ternary model (8) introduced and studied in the beginning of this article. The coupling we propose is classical
and let us take into account hydrodynamics of ternary systems and in particular, capillary effects at interfaces.

Then, after a brief description of the numerical schemes we used, we present the results obtained for the
classical test case of a lens located at the interface between the other two components. We discuss on these
results the validity of our model and we illustrate the fact that the properties of algebraic and dynamical
consistency with binary systems, that we studied in previous sections, are crucial for this kind of models.

Finally, the full model is validated through the computation of a bubble rising across a liquid/liquid interface.
We obtain in this case good agreement with theoretical predictions.

5.1. Navier-Stokes/Cahn-Hilliard system

The previous diffuse interface model can be easily coupled with the Navier-Stokes equations in order to take
into account the quasi-incompressible hydrodynamics of the mixture. This coupling (but also some variants)
can be justified by several means that we do not develop here (see [5, 13, 17, 18]).

The velocity jump being zero between two phases, we can define an unique mixture mean velocity u, smooth
on the domain. Thus, in order to couple the equations, we add a convection term in the evolution equation for
the concentrations as follows

∂ci

∂t
+ (u · ∇)ci = ∇ ·

(
M0

Σi

∇µi

)
,

the definition of the chemical potential µi being the same as in (8). Then, the evolution of the mean velocity u
is described by the non-homogeneous Navier-Stokes equation,





%

(
∂u

∂t
+ u · ∇u

)
−∇ · (2ηD(u)) + ∇p =

3∑

i=1

µi∇ci + %g

∇ · u = 0.

where the thermophysical properties, such that the density and the dynamical viscosity, respectively denoted
by %i and ηi in the phase i, are approximated by smooth functions, which depend on the order parameters and
satisfy
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%(c1, c2, c3) = %i if ci = 1 and η(c1, c2, c3) = ηi if ci = 1.

The first source term in this equation represents the capillary forces which takes place at each of the interfaces
between the three components. Notice that, if we try to write the evolution of the total energy of the system
(kinetic energy + Cahn-Hilliard energy) then we have to multiply the evolution equation for each ci by µi and
the Navier-Stokes equation by u and then we sum up the results. By integration by parts, we see that the
contribution of all the convection terms in the Cahn-Hilliard system is exactly balanced with the contribution
of the capillary forces.

5.2. Numerical schemes

In order to solve the problem, we use a Galerkin finite elements method. The velocity is discretized using
the classical P1bubble element whereas the pressure, the order parameters and the chemical potentials are
approximated using the P1 element. Since the pressure and the order parameters are chosen in the same
approximation space, we see that the contribution of convection terms in the evolution of the total volume of
each constituent is exactly zero.

The temporal interval is uniformly discretized, with a fixed time step ∆t. A semi-discretization in time
is used to decouple the Cahn-Hilliard and Navier-Stokes equations in a time step. In order to do this, the
Cahn-Hilliard equations are first solved with an explicit advection velocity:





cn+1
i − cn

i

∆t
+ (un · ∇)cn+1

i = ∇ ·
(

M0(C
n)

Σi

∇µn+1
i

)
,

µn+1
i = −3

4
εΣi∆cn+1

i +
4ΣT

ε

∑

j 6=i

1

Σj

(
∂iF (Cn+1) − ∂jF (Cn+1)

)
,

for each i ∈ {1, 2}. Notice that we allow the mobility M0 to depend on C even though are analysis in this
paper only concerns a constant mobility coefficient. The resolution is performed using a Newton method, with
a degenerate explicit mobility. In the second step, the Navier-Stokes equations are solved using a standard
augmented Lagrangian technique or a penalty-projection method [15]. We use the concentrations and the
chemical potentials compute from the first step to define capillary forces. Moreover, the advection term is
linearized using an explicit advection velocity. Noting %n+1 = %(Cn+1) and ηn+1 = η(Cn+1), the Navier-Stokes
equation are written






%n+1

(
un+1 − un

∆t
+ (un · ∇)un+1

)
−∇ · (2ηn+1D(un+1)) + ∇pn+1 =

3∑

i=1

µn+1
i ∇cn+1

i + %n+1g

∇ · un+1 = 0.

The practical implementation has been performed using the software object-oriented component library
PELICANS, developed at IRSN (see [22]).

5.3. Liquid lens between two stratified fluids

We begin the illustration of the behavior of our model by the classical test case of the liquid lens which is
initially spherical and located at the interface between two other immiscible fluids (see [24] for instance). We
study the lens spreading which can be partial or total (see [23]). The domain is Ω =]0.0, 0.1[×]0.02, 0.08[ and
the triangular mesh has approximatively 40800 elements (spatial step h = 8.33 10−4). The interface width is
taken to be ε = 3h.
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5.3.1. Partial spreading

When all coefficients (Σi)i are positive, the lens spreading is said to be partial. In that case, the equilibrium
state can be computed analytically: the final shape of the lens is the union of two pieces of circles, the contact
angles being given as a function of the three surface tensions by the Young relations as shown in Figure 3.

sin θ1

σ23
=

sin θ2

σ13
=

sin θ3

σ12

PSfrag replacements

θ1

θ2

θ3

phase 1

phase 2

phase 3

Figure 3. Theoretical shape of the lens at the equilibrium

We solve here the full Navier-Stokes/Cahn-Hilliard system with a degenerate mobility (M0 = 5. 10−7(1 −
c1)

2(1 − c2)
2(1 − c3)

2). The time step ∆t is equal to 0.001. We give below in Figure 4 the results obtained
with the bulk free energy F0 (which is a reasonable choice here since all the Σi are positive in the presented

situations). The white zone corresponds to the points where (1 − c1)(1 − c2)(1 − c3) >
3

8
(which can be

considered as the approximate interfacial zone) and the black solid line stands for the location of the interface
in the analytic solution of the problem. We remark that the shape of the lens and the contact angles at triple
point are correctly captured.

(1 ; 0.8 ; 1.4) (1 ; 1 ; 1) (1 ; 0.6 ; 0.6)

Figure 4. Equilibrium states obtained with F = F0 for different surface tensions (σ12; σ13; σ23)

Another usual way to validate our model is the Laplace law which says that, at the equilibrium, the pressures
p1, p2 in the phases 1 and 2 are equal and that the pressure p3 in the lens satisfies

σ13

r13
= p3 − p1 = p3 − p2 =

σ23

r23
,

where ri3 is the radius of the circle being at the interface between the phase i and the lens. The interface
thickness is fixed at 0.028 and the spatial step h varies. We see in Table 1 that our model give satisfactory
results for the pressure jumps across the interfaces.

5.3.2. Comparisons with non consistent models

We compare in this section our algebraically consistent model with F = F0 with the non-consistent one based

on F̃0 and with the model studied in [16,19], which is also based on F̃0 but is built in a different way than what
we do in section 2.1.

We show in Figure 5 the results obtained for these three models on the test case of the lens where only
Cahn-Hilliard equations are solved. We see that only the algebraically consistent model gives correct results
across the interfaces since for the other models, the phase i appears in the middle of the interface between the
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Table 1. Relative error for the pressure jump at t = 7.5

surface tensions theoretical pressure jump relative error
(σ12 ; σ13 ; σ23) p3 − p2 = p3 − p1 h = 1.4 10−3 h = 10−3 h = 8.3 10−4 h = 7 10−4

(1 ; 0.8 ; 1.4) 57.87 3.1% 2.3% 2% 1.9%
(1 ; 1 ; 1) 52.11 3.05% 2.1% 1.8% 1.7%

(1 ; 0.6 ; 0.6) 14.11 3.9% 2.7% 2.6% 2.5%

other two phases j and k, which is of course not physical. As shown in our analytical study of previous sections
this phenomenon is closely linked to the structure of the model and then persists under refinement of the mesh
or of the interfacial width ε. Notice that these fact was already observed in [19, Fig. 4.5].

Hence, the use of our new model for the bulk free energy is crucial and gives very significant qualitative
improvement of the results compared to the various models found in the literature. The consistency with
diphasic systems (see Theorems 3.2, 3.9 and 3.10) prevents the model from non-physical apparition of one of
the component in the interface between the other two.
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Figure 5. Vertical cutline of order parameters at x = 0.05 for (σ12, σ13,σ23)=(1 ; 1 ; 1) and
contour line of c2 at 5 levels c2 = 0.1, 0.3, 0.5, 0.7, 0.9 for three different models

5.3.3. Non-dynamically consistent models

The importance of the dynamical consistency of the model is also illustrated in this section. An example is
given where the condition (49)

Σi >
ΣT

2
> 0,

of Theorem 3.10 is not satisfied. Like in Theorem 3.10, F is equal to F0 and the mobility is chosen to be
constant. We only solve the Cahn-Hilliard equations and choose ∆t = 1. Surface tensions are (σ12, σ13,σ23)=(1
; 0.5 ; 0.55) so that we have

Σ3 = 0.05 <
ΣT

2
' 0.068.
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Figure 6. Equilibrium state obtained for (σ12, σ13, σ23)=(1, 0.5, 0.55) and vertical cutline of
the order parameter c3 at x = 0.01 for F = F0 and F = FΛ,0

Hence, Theorem 3.10 does not hold and we do not know if the model is dynamically consistent. Nevertheless,
we observe in Figure 6 that there is artificial apparition of the phase represented by c3 in the interface between
the two stratified phases. Notice that this apparition is much less important than in Figure 5. This is explained
by the fact that the problem here does not come from a structural defect of the model (since it is algebraically
consistent) but only from a dynamical instability which develops due to numerical errors.

If now we take F to be FΛ,0 for Λ large enough, Theorem 3.9 holds. In this case, the model is dynamically
consistent and the numerical instabilities almost disappear as shown in Figure 6.

5.3.4. Total spreading

In the case where one of coefficients Σi is negative, the spreading is said to be total. We use here the bulk
free energy FΛ,0 with Λ = 7 which ensures stability of the model. We only solve the Cahn-Hilliard equations
with constant mobility since we are not interested in this test case with hydrodynamics. Two configurations
are shown in Figure 7 where the surface tensions are respectively (3 ; 1 ; 1) and (1 ; 1 ; 3) . We can see that in
both cases, the phase i associated to the negative coefficient Σi, spreads between the other two.

(σ12, σ13, σ23)=(3 ; 1 ; 1), Σ3 < 0

(σ12, σ13, σ23)=(1 ; 1 ; 3), Σ1 < 0

Figure 7. Evolution with the time of the lens in total spreading cases, using F = FΛ,0 with Λ = 7
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Figure 8. Vertical cutline of the order parameters at x = 0.035 for (σ12, σ13,σ23)=(3 ; 1 ; 1)

One more time, it is important to notice that the use of the high order bulk free energy FΛ,0 with Λ large
enough is fundamental here. Indeed, if we try to use F = F0 in this test case then the bulk free energy takes
negative values and then the computation rapidly blows up because the concentrations do not remain bounded.
We compare in Figure 8 the results obtained at the same time (after a few time steps and before the blow up)
in the two cases F = F0 and F = FΛ,0.

5.4. Rising bubbles

In this final section, we study the bubble rising across a liquid/liquid interface. Two behaviors can occur : the
bubble can penetrate the liquid/liquid interface and rise into the upper liquid layer or it can remain captured
between the two liquid layers. Greene and al. [12] propose a criterion on the bubble’s volume to predict the
penetration in the light fluid. The criterion only takes into account Archimede’s force and surface tension forces.
They predict that the bubble crosses the interface if its volume V is greater than

V ∗ =

[
2π( 3

4π
)

1
3 σ23

g(%2 − %1)

] 3
2

.

The physical parameters we chose are detailled in Table 2 and we get that V ∗ ' 2.5 10−7 which leads to a
critical radius r∗ ' 0.0039. We assume here that the flow is 3D axisymmetric and the 2D computational domain
[0; 2r]× [0; 15r], r being the radius of the bubble. The triangular mesh has approximatively 34400 elements and
the interface width ε is chosen so that approximately 3 triangles of the mesh lies in the interfaces. The time
step is 0.001 s. The two behaviors are obtained as shown in Figure 9 and we find that there exists a numerical
critical radius r∗

num
∼ 0.0035 as reported in Table 3.

Notice that it is coherent that r∗
num

< r∗ because the theoretical criterion given in [12] overestimates the
required force for the bubble crossing and neglects many hydrodynamics effects.

Table 2. Physical properties

% (kg.m−3) η (Pa.s)
bubble (c1) 1 10−4

light liquid (c2) 1000 10−1

heavy liquid (c3) 1500 1.5 10−1

surface tensions (N.m−1)
gaz/liquid σ12, σ13 0.07
liquid/liquid σ23 0.1
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r = 0.0032 < r∗
num

r = 0.0042 > r∗
num

t = 0 t = 0.067 t = 0.16 t = 0.2 t = 0.214 t = 0.28

Figure 9. Bubble rising across a liquid/liquid interface for r = 0.0032 and r = 0.0042

Table 3. Results obtained for the bubble penetration, for different radii

radius r (m) 0.0022 0.0032 0.0034 0.0035 0.0039 0.0042
bubble penetration no no no yes yes yes

6. Conclusion

In this article we proposed the construction and the analysis of particular ternary Cahn-Hilliard models for
which well-posedness and consistency properties are ensured. We pay particular attention to the total spreading
cases and our analysis is valid in all the cases where condition (11) holds. We also describe the coupling of
the ternary Cahn-Hilliard model with the Navier-Stokes equations by taking into account capillary effects on
the hydrodynamics of the mixture. Finally, we give numerical results which illustrate our analysis but also the
behavior and the potentiality of the model.

To our knowledge, there are still open questions in the field. For instance, is it possible to propose a ternary
Cahn-Hilliard model which leads to satisfactory results even for total spreading cases which do not satisfy
condition (11)? One can also wonder if it is possible to generalize our study to more than three components.
Of course, the general description of multi-component systems described in Section 2.1 is valid for any number
of components (see for instance [2, 9, 11]) and can be useful if one is interested in systems with phase changes.
Nevertheless, the use of such models for more than three immiscible components is not straightforward and we
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do not know if an analysis similar to the one we propose in this paper is possible to ensure consistency properties
in such cases.
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