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Abstract

We rise a comparative study between two different approaches to construct non

linear filter estimators : on one hand grid methods using zero order and first order

quantization schemes, on the other hand particle filtering algorithms using sequen-

tial importance sampling or resampling. For each method, numerical implementation

is explicited in addition to convergence arguments and algorithmic complexity. Nu-

merical examples are then given over three state space models: the Kalman filter

case, the canonical stochastic volatility model and the infinite dimension explicit filter

introduced in [8]
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1 Introduction

We consider a fixed discrete horizon n ∈ N
∗ and some probability space (Ω,F , P). A signal

process is an R
d-valued discrete time hidden Markov chain (Xk)0≤k≤n evolving according

to some signal equation:

Xk+1 = Fk+1(Xk, εk+1), 0 ≤ k ≤ n − 1, (1.1)

where Fk : R
d × R

q → R
d, is a Borel function and (εk)1<k≤n is a sequence of indepen-

dent identically distributed (iid) R
q-valued random variables, independent of X0. The

distribution µ0 of X0 is supposed to be known. Furthermore, Pk(x, dx′) will denote the
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probability transition of Xk, and:

µ0f =

∫

Rd

f(x)µ0(dx) and Pkf(x) =

∫

Rd

f(x′)Pk(x, dx′).

At each time step k, an R
d′-valued noisy observation Yk is made. The (Yk)0≤k≤n dynamics

are driven by a Borel function Gk : R
d′ × R

d × R
q′ → R

d′ such that

Yk = Gk(Yk−1, Xk, ηk), 1 ≤ k ≤ n, (1.2)

where (ηk) is a sequence of iid R
q′-valued random variables, independent of σ(X0, εk, k ≥

1).

We assume for convenience, that Y0 = 0 and that, for every 1 ≤ k ≤ n, the distribution of

Yk given Xk and Yk−1 admits a continuous conditional pdf y 7→ gk(Yk−1, Xk, y). Further-

more, we assume that gk satisfies the following Lipschitz assumption:

∀x, x′ ∈ R
d, ∀y, y′ ∈ R

d′ ,

|gk(y, x, y′) − gk(y, x′, y′)| ≤ [gk]
y,y′

Lip |x − x′| and Ly,y′
= max

0≤k≤n
sup
x∈Rd

|gk(y, x, y′)| < +∞.

Remark 1.1 As the observation process is fixed, we will drop the dependancy of [gk]
y,y′

Lip

and Ly,y′
in (y, y′) for notational convenience.

The problem we aim to solve is to compute

Πnf = E[f(Xn)|Y1 = y1, . . . , Yn = yn],

for an appropriate Borel function f : R
d → R and a given observation sequence y1:n =

{y1, . . . , yn}. Througout the paper, we will use capital letters to denote random variables

and small letters to designate their realizations. We will also denote by x 7→ p(x|y) the

conditional pdf of a random variable X given that Y = y.

1.1 Sequential definition

In order to implement some numerical schemes solving the filtering problem, it is important

to see that a recursive formulation of the problem is possible owing to the Markov property

of both the signal process (Xk) and the pair signal-observation (Xk, Yk). To establish it

we set p(xk|y1:k−1) and p(xk|y1:k) respectively the prediction and the filtering pdf, for

1 ≤ k ≤ n. Then for a test function f with sufficient regularity properties, we have:

E[f(Xk)|Y1 = y1, . . . , Yk−1 = yk−1] =

∫
f(xk)p(xk|y1:k−1)dxk,

E[f(Xk)|Y1 = y1, . . . , Yk = yk] =

∫
f(xk)p(xk|y1:k)dxk.

Using the Chapman-Kolmogorov formula and the Bayes formula, we can establish the

following recursion:
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Prediction

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (1.3)

Updating/Correction

p(xk|y1:k) =
p(yk|xk, y1:k−1)p(xk|y1:k−1)∫

p(yk|xk, y1:k−1)p(xk|y1:k−1)dxk
=

gk(yk−1, xk, yk)p(xk|y1:k−1)∫
gk(yk−1, xk, yk)p(xk|y1:k−1)dxk

.

(1.4)

Denoting by α a generic constant depending on the fixed observations, we can derive by

induction from (1.4) that:

p(xn|y1:n) = α

∫ n−1∏

k=1

gk(yk−1, xk, yk)p(xk|xk−1)dxkµ0(dx0). (1.5)

Then, it easily derives from the Markov property that:

∫
f(xn)p(xn|y1:n)dxn = α E[f(Xn)

n−1∏

k=1

gk(yk−1, Xk, yk)].

This suggests to consider the so called unnormalized filter πn defined by:

πnf = E[f(Xn)
n∏

k=1

gk(yk−1, Xk, yk)].

Setting f ≡ 1 shows that the normalization constant equals 1
πn1

. Finally one gets

Πnf =
πnf

πn1
.

Remark 1.2 For convenience, the dependency of Πn and πn in the observation process

has been omitted, as it is fixed. For the same reason, we will denote gk(x) := gk(yk−1, x, yk)

for 1 ≤ k ≤ n, and g0 := 1.

Prediction equation (1.3) and update equation (1.4) can merge to write a one step tran-

sition equation, linking p(xk|y1:k) to p(xk−1|y1:k−1) (and consequently the intermediate

filters πk to πk−1).

p(xk|y1:k) = α p(xk−1|y1:k−1)p(yk|xk, yk−1)p(xk|xk−1) (1.6)

By introducing the operators (Hk)0≤k≤n defined below, a sequential definition of the un-

normalized filter πn can be given.

Namely, if one defines, for any x ∈ R
d:

{
Hkf(x) = gk(Xk)E[f(Xk+1)|Xk = x], 0 ≤ k ≤ n − 1,

Hn
nf(x) = gn(x)f(x),

(1.7)
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then we have

πnf = µ0 ◦ H0 · · · ◦ Hn
nf. (1.8)

Consequently, we can write sequentially, either in the forward way:

U0 = µ0 ◦ H0 , Uk = Uk−1 ◦ Hk , 1 ≤ k ≤ n − 1, (1.9)

or in the backward way:

Rn = Hn
n , Rk = Hk ◦ Rk+1 , 0 ≤ k ≤ n − 1, (1.10)

so that πnf = µ0R0f = Un−1 ◦ Hn
nf .

As we can see, the operators involved in the sequential definition of the filter have to

be estimated numerically. Both methods we will present and compare below follow two

different known approaches to approximate a conditional expectation. The first one, the

quantization filtering method, is a grid method to transform an expectation into a finite

weighted sum. These grids and their companion weights can be pre-computed and stored

off line. As concerns filtering, this method has been introduced in [14], where the authors

use optimal quantizers to construct what we will call a zero order quantization filter.

Further developments of this method can be found in [16], where the stationary property

of optimal quantizers is used to develop some schemes based on first order approximations.

In section 2, we recall the construction of these schemes, as well as the most important

convergence results. Section 3 deals with the second filtering apporach we will be interested

in. It is a Monte Carlo particle method using importance sampling to simulate random

grids. This method has been deeply developed by practionners of filtering in different

application fields (see [7]). Two algorithms will be focused on, the sequential importance

sampling (SIS) and the sequential importance resampling (SIR). Numerical experiments

have been made on three state models presented in section 4, details on tests and numerical

results are then depicted in section 5.

2 Quantization based filters

2.1 Zero order scheme

A process quantizer size (Nk)0≤k≤n being fixed, and a quantizer Γk being precomputed,

we set (X̂k)0≤k≤n a marginal quantization of (Xk)0≤k≤n defined by:

X̂k = ProjΓk
(Xk).

Quantization filters are constructed using recursive schemes. The zero order scheme intro-

duced in [14] uses quantizers to approximate operators Hk by piecewise constant operators

defined on the grids Γk. Namely, we define:




ˆ̂
Hkf(X̂k) = gk(X̂k)E[f(X̂k+1)|X̂k], 0 ≤ k ≤ n − 1,

ˆ̂
Hn

nf(X̂n) = Hn
nf(X̂n) = gn(X̂n)f(X̂n).

(2.1)
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So, defining µ̂0 as the (discrete) distribution of X̂0, we have respectively the following

forward and backward iterative approximation schemes :

ˆ̂
U0 = µ̂0

ˆ̂
H0 ,

ˆ̂
Uk =

ˆ̂
Uk−1 ◦ ˆ̂

Hk , 1 ≤ k ≤ n − 1, (2.2)

and
ˆ̂
Rn = Hn

n ,
ˆ̂
Rk =

ˆ̂
Hk ◦ ˆ̂

Rk+1 , 0 ≤ k ≤ n − 1, (2.3)

so that
ˆ̂πnf = µ̂0

ˆ̂
R0f =

ˆ̂
Un−1 ◦ Hn

nf.

This formulation of the zero order scheme provides an implementable solution to the non

linear filtering problem. This scheme consists of a recursive procedure based on weighted

sums involving the optimal quantization grids and some weights, which only depend on

the signal distribution. These quantities are usually computed off line, since they do not

depend on the observation process.

To be more specific, we denote Γk = {x1
k, ..., x

Nk

k } and p
ij
k = E[1

{X̂k+1=xj
k+1

}
|X̂k = xi

k] ∈ R,

then the implemented forward algorithm writes as Algorithm 0.

Algorithm 0 Zero order quantization based algorithm

k = 0 1 ≤ i ≤ N0 and 1 ≤ j ≤ N1

ˆ̂
U0(j) =

∑N0

i=1 µ̂i
0p

ij
0

0 ≤ k ≤ n − 2 1 ≤ i ≤ Nk+1 and 1 ≤ j ≤ Nk+2

ˆ̂
Hk+1(i, j) = gk+1(x

j
k+1)p

ij
k+1

ˆ̂
Uk+1(j) =

∑Nk

i=1
ˆ̂
Hk+1(i, j)

ˆ̂
Uk(i)

k = n 1 ≤ j ≤ Nn

Hn
nf(xj

n) = gn(xj
n)f(xj

n)

ˆ̂πnf =
∑Nn

j=1
ˆ̂
Un−1(j)H

n
nf(xj

n)

Note that (µ̂i
0)1≤i≤N0

designates the vector of discrete probabilities : µ̂i
0 = P(X̂0 ∈

Ci(Γ0)). The use of the backward formulation (2.3) associated to the L2-optimal marginal

(Nk)-quantizations of (Xk), allows to establish a convergence rate to zero for the error

estimate, for a Borel test function f satisfying Hn
nf bounded Lipschitz continuous, when

the quantizer size N =
∑n

k=0 Nk goes to +∞. Namely,

|πnf − ˆ̂πnf | = O(N−1/d),

(see [14]), with a constant depending on the observation vector and on the time horizon

n.

2.2 First order schemes

In order to obtain better convergence rates, we introduce first order schemes (see [4, 15]

and [16]). The main idea to develop them is to write a piecewise linear approximation
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of Rkf , mimicking some first order Taylor expansion (see [4, 15]) and using differential

terms to introduce first order correctors. The generic first order scheme could be written

as follows:




R̂nf(X̂n) = Hn
nf(X̂n),

R̂kf(xi
k) = gk(x

i
k)E[R̂k+1(X̂k+1) + 〈D̂Rk+1f,∆k+1〉|X̂k = xi

k],

0 ≤ k ≤ n − 1.

(2.4)

where D̂Rk+1f is a numerical approximation of DRk+1f when it exists and < ., . > denotes

the Euclidean inner product in R
d.

A first order quantization based unnormalized filter estimator, is then defined by:

π̂nf = µ̂0R̂0f.

The way the approximation D̂Rk+1f is defined leads to several variants. To establish

error estimates, one makes an extensive use of the stationarity property of L2-optimal

quantizers i.e.

E[Xk|X̂k] = X̂k. (2.5)

In the following, we will present the two schemes constructed in [16]: the one step recursive

scheme based on a recursive definition of the differential term estimator D̂Rk and the

two step recursive scheme based on an integration by part transformation of conditional

expectation derivative DPkRk+1.

To establish such first order scheme, we need Fk to be differentiable and the test function

f to satisfy Hn
nf differentiable with continous Lipschitz bounded derivatives (in [16], we

see that we can relax this assumption in case of regularizing semi-groups Pk).

2.2.1 One step recursive first order scheme

The recursive definition of the differential term estimator is given in [16] by:





D̂Rn(X̂n)f = DHn
nf(X̂n),

D̂Rkf(X̂k) = Dgk(X̂k)E[
ˆ̂
Rk+1f(X̂k+1)|X̂k] + gk(X̂k)E[∂xFk(Xk, εk+1)

′D̂Rk+1f(X̂k+1)|X̂k]

k = 0, . . . , n − 1.

(2.6)

where ∂xFk(Xk, εk+1)
′ is the matrix transpose of ∂xFk(Xk, εk+1). Combined with (2.6),

scheme (2.4) is completely computable, as it can be rewritten easily using finite weighted

sums. The first order corrector terms introduce new companion parameters γ
ij
k , and δ

ij
k

defined by:

γ
ij
k = E[∂xFk(Xk, εk+1)

′1
{X̂k+1=xj

k+1
}
|X̂k = xi

k] ∈ Md(R), (2.7)

δ
ij
k = E[∆k+11{X̂k+1=xj

k+1
}
|X̂k = xi

k],

= E[(Xk+1 − x
j
k+1)1{X̂k+1=xj

k+1
}
|X̂k = xi

k] ∈ R
d,
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which can be computed off-line during the quantization operation. The on line computa-

tion cost is reduced to the computation of R̂k,
ˆ̂
Rk and D̂Rk operators.

Moreover, the resulting scheme can be reformulated in a forward way, which allows to

consider problems with intermediate filtering dates or multiple test functions without

adding heavy computations. The implemented algorithm, Algorithm 1, uses a forward

formulation based on matricial operators (see [16] for details).

Forward expression

Û0 = µ̂0Ĥ0 and Ûk = Ûk−1Ĥk k = 1, . . . , n − 1,

where Ĥk is a lower triangular operator matrix defined by Ĥk =




Ĥ1
k 0 0

Ĥ2
k Ĥ3

k 0

0 Ĥ4
k Ĥ1

k


 .

Using some additionnal assumptions on Pk, gk and Fk (see [16]), we establish for

L2-optimal Nk-quantizers of (Xk), that:

|πnf − π̂nf | = O(N
−2

d ).

2.2.2 Two step recursive first order scheme

This method is based on an integration by part formula (see [4, 5, 2]) which leads to write

DPkRk+1f as a weighted conditional expectation, namely:

DPkRk+1f(x) = E[Rk+1f(Xk+1)Ψk(Xk, εk+1)|Xk = x],

where Ψk(Xk, εk+1) = (Ψi(x, ε))0≤i≤d and

Ψi : R
d × R

d → R

(x, ε) 7→ div
(
∂εF (x, ε)−1∂xF (x, ε)

)i
+

1

p(ε)
〈
(
∂εF (x, ε)−1∂xF (x, ε)

)i
, Dp(ε)〉

(∂εF (x, ε)−1∂xF (x, ε))i designates the ith line of the matrix (∂εF (x, ε)−1∂xF (x, ε)).

Note that some assumptions on both Fk and the signal innovation pdf p are needed to allow

such a transformation (see [16] for details). The resulting formula for R̂k, 0 ≤ k ≤ n − 1,

is consequently:

R̂kf(X̂k) = gk(X̂k)P̂kR̂k+1f(X̂k) + gk(X̂k)×(
E[〈Dgk+1(X̂k+1)P̂k+1

ˆ̂
Rk+2f(X̂k+1), ∆k+1〉|X̂k] − E[ 〈gk+1(X̂k+1)×

E[
ˆ̂
Rk+2f(X̂k+2)Ψk+1(Xk+1, εk+2)|X̂k+1], ∆k+1〉|X̂k]

)
. (2.8)

This formula introduces a new weight λ
ij
k :

λ
ij
k = E[Ψk(Xk, εk+1)1{X̂k+1=xj

k+1
}
|X̂k = xi

k] ∈ R
d
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Algorithm 1 One step recursive 1st order quantization based filtering scheme

k = 0 1 ≤ i ≤ N0 and 1 ≤ j ≤ N1

Û11
0 (j) =

∑N0

i=1 µi
0p

ij
0 Û21

0 (j) = 0 ∈ R
d

Û22
0 (j) =

∑N0

i=1 µi
0γ

ij
0 Û31

0 (j) = 0 ∈ R

Û32
0 (j) =

∑N0

i=1 µi
0δ

ij
0 Û33

0 (j) = Û11
0 (j)

0 ≤ k ≤ n − 2 1 ≤ i ≤ Nk+1 and 1 ≤ j ≤ Nk+2

Ĥ1
k+1(i, j) = gk+1(x

i
k+1)p

ij
k+1 Ĥ2

k+1(i, j) = Dgk+1(x
i
k+1)p

ij
k+1

Ĥ3
k+1(i, j) = gk+1(x

i
k+1)γ

ij
k+1 Ĥ4

k+1(i, j) = gk+1(x
i
k+1)δ

ij
k+1

Û11
k+1(j) =

∑Nk+1

i=1 Û11
k (i)Ĥ1

k+1(i, j)

Û21
k+1(j) =

∑Nk+1

i=1 Û21
k (i)Ĥ1

k+1(i, j) + Û22
k (i)Ĥ2

k+1(i, j)

Û22
k+1(j) =

∑Nk+1

i=1 Û22
k (i)Ĥ3

k+1(i, j)

Û31
k+1(j) =

∑Nk+1

i=1 Û31
k (i)Ĥ1

k+1(i, j) + 〈Û32
k (i), Ĥ2

k+1(i, j)〉
Û32

k+1(j) =
∑Nk+1

i=1 Ĥ3
k+1(i, j)Û

32
k (i) + Û33

k (i)Ĥ4
k+1(i, j)

Û33
k+1(j) =

∑Nk+1

i=1 Û33
k (i)Ĥ1

k+1(i, j)

k = n Hn
nf(xj

n) = gn(xj
n)f(xj

n) Hn
nf(xj

n) = gn(xj
n)f(xj

n)

π̂nf =
∑Nn

j=1(Û
33
n−1(j) + Û31

n−1(j))H
n
nf(xj

n) + 〈Û32
n−1(j), DHn

nf(xj
n)〉

Depending only on the signal parameters, it can be precomputed like p
ij
k and δ

ij
k and kept

off line in accessible tables. As for the previous first order scheme, a forward transcription

of the scheme is possible using finite weighted sums which gives the following implemented

algorithm, Algorithm 2.

Under some additional assumptions on the weight function Ψk, we insure a convergence

rate of order N− 2ρ

d where ρ ∈]12 , 1) (see [16]).
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Algorithm 2 Two step recursive 1st order quantization based filtering scheme

0 ≤ k ≤ n − 2 1 ≤ i ≤ Nk, 1 ≤ j ≤ Nk+1 and 1 ≤ l ≤ Nk+2 (g0 := 1)

Ĥ1
k(i, j) = gk(x

j
k)p

ij
k

Ĥ2
k(i, l) = gk(x

i
n)

∑Nk+1

j=1 〈pjl
k+1Dgk+1(x

j
k+1) − gk+1(x

j
k+1)λ

jl
k+1, δ

ij
k 〉

Initial 1 ≤ j ≤ N1 and 1 ≤ l ≤ N2

Û1
0 (j) =

∑N0

i=0 µ̂i
0Ĥ

1
0 (i, j)

Û2
2 (l) =

∑Nk

i=1 µ̂i
0Ĥ

2
0 (i, l)

Transition 1 ≤ k ≤ n − 2, 1 ≤ j ≤ Nk+1 and 1 ≤ l ≤ Nk+2

Û2
k+2(l) =

∑Nk

i=1 Ĥ2
k(i, l)Û1

k (i) +
∑Nk+1

j=1 Ĥ1
k+1(j, l)Û

2
k+1(j)

Û1
k (j) =

∑Nk

i=1 Ĥ1
k(i, j)Û1

k−1(i)

Final Hn
nf(xj

n) = gn(xj
n)f(xj

n) DHn
nf(xj

n) = f(xj
n)Dgn(xj

n) + gn(xj
n)Df(xj

n)

π̂nf =
∑Nn

j=1 Û2
n(j)Hn

nf(xj
n)+

∑Nn−1

i=1 Û1
n−2(i)gn−1(x

i
n−1)

∑Nn

j=1

(
Hn

nf(xj
n)pij

n−1 + 〈DHn
nf(xj

n), δij
n−1〉

)

3 Particle filters

In this section, we provide some background on two classical Monte Carlo particle methods

for non linear filters. Based on online simulations, this approach provides, like quantization

based methods do, a reformulation of conditional expectations as finite weighted sums.

This time the sum terms are random variables. The following subsections deal with two

basic particle filtering methods using an importance sampling technique.

3.1 Sequential Importance Sampling (SIS)

Suppose we are able to simulate N independent random vectors (X i)1≤i≤N , distributed

according to L(Xn|Y1 = y1, . . . , Yn = yn). An estimator ΠN
n f of the filter would be:

ΠN
n f =

1

N

N∑

i=1

f(Xi).

In other words, from a quantization viewpoint, we approximate the a posteriori distribu-

tion by the set of random samples Xi with weights 1
N . This estimate is unbiased and its

rate of convergence is ruled by central limit theorem (see e.g. [7]).

Unfortunately, the initial assumption that the distribution L(Xn|Y1 = y1, . . . , Yn = yn)

is simulatable is usually not satisfied. This distribution is unknown as it is the one we

aim to approximate by the filtering procedure. In simulation, this problem is often over-

passed by applying an importance sampling procedure. Namely, we choose a simulatable
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distribution q(xn|y1:n), that we will call importance distribution and write:

Πnf =

∫
f(xn)ω(xn)q(xn|y0:n)dxn,

where ω(x) = p(x|y0:n)
q(x|y1:n) will be called the importance weight function. Now, if we designate

by (Xi)1≤i≤N N iid samples of distribution q, a new definition of the filter estimator can

be given by:

ΠN
n f =

N∑

i=1

f(Xi)ω(Xi).

We approximate the a posteriori distribution by the set of the N random samples (or

particles) Xi and the associated importance weights. In our case, we always know a

distribution which can be chosen as an importance distribution: that of the hidden signal

(Xk), so we define:

q(x0:n|y0:n) = p(x1:n) = µ0(x0)
n∏

k=1

p(xk|xk−1). (3.1)

This choice gives the advantage of making possible a sequential approximation of the

particles and weights {xi
k, ωk(x

i
k)} via simulation, by the use of the prediction and update

equations (1.3) and (1.4). At each time step 0 ≤ k ≤ n, we simulate an N -sample (X i
0:n)

having q as a pdf. The filter estimator at each date 1 ≤ k ≤ N is then:

Πq,N
k f =

N∑

i=1

f(Xi
k)ωk(X

i
0:k),

with the sequential update equation for the importance weights:

ωk+1(x
i
0:k+1) = α

p(xi
k+1|y1:k+1)

p(xi
0:k+1)

= α
p(xi

k|y1:k)p(yk+1|xi
k+1, yk)p(xi

k+1|xi
k)

p(xi
k+1|xi

k)p(xi
0:k)

= α ωk(x
i
0:k)gk+1(yk, x

i
k+1, yk+1) (3.2)

and ωk+1(x
i
0:k+1) =

ωk(x
i
0:k)gk+1(yk, x

i
k+1, yk+1)∑N

i=1 ωk(x
i
k)gk+1(yk, x

i
k+1, yk+1)

(3.3)

Hence, we can implement sequentially Algorithm 3.

The convergence rate of the method is independent of the signal dimension, since it is of

Monte Carlo type. For each bounded continuous test function f , we have:

E[|Πy,nf − Πq,N
y,n f |] ≤ mn√

N
‖f‖∞. (3.4)

where mn is a constant depending on n and on the observation.

10



Algorithm 3 Algorithm SIS

• Simulate from the signal initial distribution {(xi
0)1≤i≤N , 1

N }
∗ At a given date 0 ≤ k ≤ n − 1, we have {(xi

k)1≤i≤N , (ωk)1≤i≤N}
• Simulate particles xi

k+1 ∼ p(xk+1|xi
k)

• Update weights using equation (3.2) and (3.3), with the observation yk+1

• Go to ∗ for date k + 1

3.2 Sequential Importance Resampling or Bootstrap filter (SIR)

The method described previously suffers from the problem of weight degeneracy, as the

sequential definition implies to multiply repeatedly the likelihood terms. This produces

sometimes particles with very small weights, that we carry out throughout the estimation

although their contribution to the distribution description is negligible. This problem

occurs for example when the importance distribution is badly adjusted to the filter distri-

bution.

One solution to the degeneracy problem is introduced in [10, 1]. It suggests to diffuse

sequentially equally weighted particles by adding a resampling step to the previous al-

gorithm. This new method called Sequential Importance Resampling (SIR) or Bootstrap

filter uses interaction between particles to eliminate weakly weighted ones. As an intereac-

tion phase is introduced, samples are no longer independent and Monte Carlo arguments

cannot be used to establish a convergence rate like in the previous case. Nevertheless, in

[7, 13, 6], it is shown that by the means of convenient resampling procedures, for example

the multinomial sampling procedure, a convergence rate of type (3.4) can be established.

Algorithm 4 Algorithm SIR

• Simulate from the signal initial distribution (xi
0)1≤i≤N

∗ At a given date 0 ≤ k ≤ n − 1, we have (xi
k)1≤i≤N

• Simulate particles xi
k+1 ∼ p(xk+1|xi

k)

• Update weights using equations (3.2) and (3.3), with the observation yk+1

• Resampling step:

Simulate N samples i
j
k+1 from the discrete multinomial distribution

with parameters (ωi
k+1)1≤i≤N

• Go to ∗ with date k + 1 and modified particles (x
ij
k+1

k+1 )1≤j≤N

The choice of resampling procedures, also called branching methods, can be conditionned

by variance reduction criteria, numerical complexity or convergence rate preserving [6,

7]. The common point they share is that they aim to obtain an unweighted empirical

distribution to sequentially approximate intermediate filtering pdf. Namely, they achieve

that E[1
{ij

k
=i}

] = ωi
k.

11



Algotithm 0 C0N
2

Algotithm 1 C1N
2d3

Algorithm 2 C2N
3d

Algorithm 3 C3N

Algorithm 4 C4N

Table 1: Comparison of complexity degrees for different numerical filtering algorithms

3.3 Elements for a comparison

As mentioned above, the underlying principles of numerical methods in sequential non

linear filtering are the same (see [12]). Both particle and quantization based methods

use the approximation of the objective distribution by a finite state one, so that the final

expression of the filter estimator appears as a finite weighted sum. The difference lies

in the construction of such an approximation. For quantization filters, we use off line

precomputed marginal distribution quantizers. For particle filters, the grids are random

samples of the same distributions, that need to be computed on line.

Following this remark, we see that both approaches are similar, and we expect that they

behave the same way when treating comparable state models and observations. However

some differences deserve to be pointed out.

As a Monte Carlo method, particle filters give a random solution to the filtering prob-

lem. This is a point we do not have to manage when treating with quantization methods.

Conversly, being based on Monte Carlo convergence arguments, particle methods do not

suffer from dimension dependency when considering their theoretical convergence rate,

whereas quantization based methods do depend on the dimension of the state space. Con-

sidering the theoretical convergence results, quantization methods are still competitive till

dimension 2 for zero order schemes and till dimension 4 for first order ones.

From an algorithmic viewpoint, some more differences deserve to be mentionned. It is

about the complexity of each algorithm, summerized in Table 1.

Owing to the off line computations of the quantizer grids, constants C0, C1 and C3

for quantization filters represent elementary operations computation cost. For particle

filters, C3 and C4 include simulation cost, and could be dependent of N which results in

more complex algorithms. This occurs for SIR algorithm with some particular resampling

algorithms.

Finally, we should remark that quantization methods need smaller grid sizes than

Monte Carlo methods to attain convergence regions. This will be pointed out in numerical

results below. This fact, in some cases, compensates the relatively high complexity range

of quantization methods, particularily in low signal dimensions.
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4 State Equations

We aim to compare numerical performances of the two approaches. In this paragraph, we

briefly present three models chosen to make up the benchmark. As a first step, we consider

the Kalman filter, a typical case where an exact explicit solution can be computed. Then,

we will consider a canonical stochastic volatility model, issued from the discretization of

a diffusion process representing an asset price dynamics on a financial market. We will

finally examine the nonlinear filter case introduced in [8] by V. Genon Catalot, for which

some semi-closed forms of the solution are available. It can also be adapted to treat asset

prices.

4.1 Kalman filter (KF)

For this model, both signal and observation equations are linear with Gaussian indepen-

dent noises. It is well known that the filter in this case is a Gaussian process which

parameters (the two first moments) can be computed sequentially by a deterministic al-

gorithm (KF), (see e.g. [9] for details). We set:





Xk = ρXk−1 + θεk+1, X0 ∼ N (m0, Σ
′
0Σ0)

Yk = Xk + αηk,

εk and ηk iid ∼ N (0, Id),

ρ, θ, α ∈ Md(R).

(4.1)

4.2 Canonical stochastic volatility model (SVM)

This is the time discretization of a continuous diffusion model commonly used in finance.

The stock price St and its volatility σt solve the following stochastic differential system:

{
dSt = 1

2σ2
t Stdt + σtStdW 1

t ,

d(log(σ2
t )) = −λlog(σ2

t )dt + τdW 2
t .

(4.2)

So, the Euler scheme with time step ∆ writes:

{
log(

Sk+1

Sk
) = σk

√
∆ηk,

log(σ2
k+1) − log(σ2

k) = −λ log(σ2
k)∆ + τ

√
∆εk+1.

(4.3)

where ηk and εk are iid N (0, 1).

Now, setting Yk = log(
Sk+1

Sk
) and Xk = log(σ2

k) leads to the following discrete time state

equations. 



Xk = ρXk−1 + θεk+1,

Yk = exp(Xk

2 )ηk,

εk and ηk iid ∼ N (0, 1),

ρ = (1 − λ∆) and θ = τ
√

∆ ∈ R
∗
+.

(4.4)
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When ∆ ∈ (0, 2
λ) then ρ = (1 − λ∆) ∈ (−1, 1) and (Xk) is a positively recurrent

Markov chain which converges geometrically to its invariant distribution N (0, θ2

1−ρ2 ) (with

respect to the total variation metric). The non linearity introduced in the observation

equation makes impossible to determine exactly the filtering distribution. This is a case

where numerical methods are necessary to solve the filtering problem.

4.3 Explicit non linear filter [8]

In this example, we treat a non linear non Gaussian state equation introduced by V. Genon

Catalot in [8]. When both the noise distribution and the initial signal distribution are spec-

ified in an appropriate way, it is shown how to construct an infinite dimensional explicit

non-linear filter, in the sense that all parameters of the a posteriori pdf can be determined

by recursive explicit schemes.

For that we introduce the family of the so called Serial Gaussian distributions SG(σ2, (αi)i≥0)

(see [8]) which probability density functions are defined by:

u 7→


∑

i≥0

αi
u2i

σ2iC2i


 1

σ
√

2π
exp(− u2

2σ2
),

where:

• C2i = (2i)!
2ii!

is the 2ith moment of a N (0, 1) distribution.

• ∀i ≥ 0, αi ≥ 0 and
∑

i≥0 αi = 1. We will denote α = (αi)i≥0.

• σ > 0.

SG(σ2, α) can be seen as a mixture distribution with a scale parameter σ and a mixture

parameter α. In a filtering context, considering the following state equations:

{
Xk = ρXk−1 + θεk+1

Yk = Xkηk

where





εk iid ∼ N (0, 1),

ηk iid ∼ B(±1, 1
2) ×

√
E(λ),

X0 ∼ SG(σ2
0, (α

0
i )i≥0),

it is established that the filter distribution as well as the prediction one will be SG(σ2, (αi)i≥0),

with parameters that can be evaluated sequentially. We will denote for 0 ≤ k ≤ n:

L(Xk|Y1:k) ∼ SG(σ̂2
k, (α̂

k
i )i≥0),

L(Xk+1|Y1:k) ∼ SG(σ2
k+1, (α

k+1
i )i≥0),

where scale and mixture parameters are defined by Algorithm 5:

By construction, we see that starting from a special SG distribution, with finite number

of mixture parameters leads to a finite dimension filter.

14



Algorithm 5 Explicit filter

Initial step : L(X0) ∼ SG(σ2
0, (α

0
i )i≥0)

Transition from date k to k + 1:
Update: σ̂k(Yk) = σk

|Yk|√
Y 2

k
+2λσ2

k

α̂k
0(Yk) = 0

α̂k
i (Yk) = αk

i−1

fi−1(
Yk√
λσk

)P
i≥0

αk
i fi(

Yk√
λσk

)
where fi(z) = (2i+1)z2i

(z2+2)i+3
2

Prediction: σ2
k+1 = θ2 + ρ2σ̂2

k

αk+1
i =

(
ρσ̂k

σk+1

)2i ∑
j≥i C

i
j(

θ
σk+1

)2(i−j)α̂k
i where Ci

j = j!
i!(j−i)!

Finally, we note that the conditional pdf of the observation Yk given the signal Xk, is

independent of the past observations and writes as:

gk(x, y) =
λx2

|y|3 exp(−λx2

y2
).

It satisfies the conditions to construct and establish the quantization filter convergence

rates (see [16]).

5 Numerical experiments

5.1 Stationary suboptimal quantizers

Quantization based filters use precomputed quantizer grids and companion parameters.

Although this preprocessing procedure is done off line, it is worth noting that in some

cases, we can recycle optimal quantizers of standard distributions to construct stationary

suboptimal quantizers that preserve the announced convergence rates. In fact, suppose

there exists a sequence of affine invertible functions Tk : R
d → R

d, such that Xk = Tk(Z),

for all 0 ≤ k ≤ n, Z being a knwon distribution. Taking Γ = {z1, . . . , zN} an L2-optimal

N -quantizer of Z, we can define a stationary N -quantizer of Xk by setting:

X̂k =
N∑

i=1

Tk(z
i)1{T−1

k
(Xk)∈Ci(Γ)} = Tk(Ẑ). (5.1)

This quantizer is no more optimal (in fact it is not even a Voronoi quantizer), but, since the

Tk are assumed to be affine, X̂k still satisfies the stationary property. That is the property

needed to establish first order scheme theoretical convergence rate to zero. Namely, we

have :

E[Xk|X̂k] = Tk(E[Z|Ẑ]) = Tk(Ẑ) = X̂k.

Furthermore, even if in this case X̂k is suboptimal, owing to the optimality of Ẑ, and to

the Zador Theorem (see [3, 11]), we have ‖Xk − X̂k‖2 = O(N
−1

d ). In fact we have:

‖Xk − X̂k‖2 = ‖Tk(Z) − Tk(Ẑ)‖2 ≤ |||Tk|||‖Z − Ẑ‖2.
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This will be particularly interesting when we will consider for example linear signal dy-

namics with Gaussian innovations and Gaussian initial distribution. This is the case for

Kalman filter or for the canonical stochastic volatility model (see (4.1) and (4.4)). It is

also the case for particular explicit filter model, when the initial distribution is Gaussian

(i.e. SG(σ2
0, (α

0
i )i≥0) where α0 = 1 and αi = 0 for all i > 0). In these cases, Xk is Gaussian

at all dates and we can drastically reduce the offline computation runtime needed to im-

plement the quantization based filters since quantizer grids are obtained from the N (0, Id)

ones by an affine transformation.

Another important case of interesting preprocessing optimization is the case of stationary

signal processes : the transition companion parameters do not depend on the time step

considered, so only one transition is needed. Namey, P(X̂k+1 = xj |X̂k = xi) is the same

on the unique grid Γ = Γ0 = {x1, . . . , xN} quantizing the stationnary distribution.

This is even more interesting, as it can be associated to the previous point. As-

sume for example that for any 0 ≤ k ≤ n, we have Xk ∼ N (0, Σ′Σ) where Σ satisfies

Σ′Σ = (ρΣ)′ρΣ + θ′θ. In this particular case, we could first compute1 Γ an L2-optimal

quantizer of the centered reduced Gaussian distribution. The quantizers Γk are then de-

duced by the expansion Γk = Σ×Γ0 coupled with (5.1), the companion parameters stored

off line are those of one single transition as they are time independant.

5.2 Convergence tests

We select the following three test functions:

f1(x) = x, f2(x) = |x|2, f3(x) = exp(−|x|).

For quantization based methods, as the schemes are deterministic, we simply need to

study the behavior of the filter estimators (or dierctly the errors when a reference value is

available), as the total size N of the grids goes to infinity.

For particle filtering methods, as the estimators are random variables, the testing approach

is slightly different. In fact, we need to represent the empirical mean as well as a variance

estimate as functions of the particle number N . For that purpose, we simulate a large

number M of realizations of the filter random estimator, and represent the empirical con-

fidence interval containing 90% of the observed values. This is achieved by computing the

5% and the 95% centiles over the population of the M filter random estimator realizations.

These values will be represented as functions of the particle number N and the scheme

performance is measured with respect to the confidence interval length.

1Optimal quantizers for the Gaussian distribution can be downloaded on

http://www.proba.jussieu.fr/pageperso/pages/
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5.3 Results and comments

5.3.1 Kalman filter: d=1

True values are computed by the Kalman-Bucy filter algorithm. For particle methods, we

represent a realization of the filter estimator with 5000 particles. For quantization based

filters, the two first order schemes are compared to the zero order one with Nk = 100 for

all 0 ≤ k ≤ n (see Table 2).

(ρ, θ, α,Σ0) (0.65,1.0,0.1,0.05) (0.996,0.0316,0.0632,0.7)

Π̂y,10f1 Π̂y,10f2 Π̂y,10f3 Π̂y,25f1 Π̂y,25f2 Π̂y,25f3

KF (Ref. Values) 0.0776126 0.9165 0.011546 1.01053 0.3643086 1.02273

SIS (5000 pts) 0.0605323 0.923421 0.0102159 1.08403 0.339045 1.17991

SIR (5000 pts) 0.0781505 0.915884 0.0115783 1.01208 0.363763 1.02594

QF0 (100 pts) 0.077596 0.916493 0.0115486 1.016 0.36235 1.03397

QF1 1-step (100 pts) 0.077601 0.916491 0.0115493 1.0121 0.363741 1.02593

QF1 2-step (100 pts) 0.0776013 0.916491 0.0115493 1.0121 0.363744 1.02591

Table 2: One dimensional Kalman filter case.

5.3.2 Kalman filter: d=3

We still consider equation (4.1) with parameters:

ρ =




0.996 0 0

0 0.996 0

0 0 0.996


, θ =




0.02 0.02 0.01

0.02 0.06 −0.01

0.01 −0.01 0.04


 and α = I3.

The initial signal distribution is centered and Gaussian with covariance matrix:

Σ′
0Σ0 =




0.11 0.23 4e − 4

0.23 0.53 −8e − 4

4e − 4 −8e − 4 0.0018


 .

The chosen prior distribution is the stationary one. If we denote Γ = {z1, . . . , zN} the

L2-optimal N -quantizer of a centered reduced Gaussian distribution. At 0 ≤ k ≤ N ,

Xk ∼ N (0, Σ′
0Σ0) and according to (5.1) we define the marginal stationary (Nk)-quantizer

of (Xk) as follows:

X̂k =
N∑

i=1

Σ0z
i1{Xk∈Σ0Ci(Γ)}.

Although the quantization filter convergence rate and numerical complexity depend on the

signal dimension d, it remains interesting to apply them for medium dimension signals.

The chosen quantizers are not optimal but we obtain satisfactory convergence results.
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Convergence errors are depicted in Figure 1 for f2 and in Figure 2 for f3. From log-log

scale regression in Figure 1, we can evaluate the convergence rate improvement. The Table

3 summarizes the computed slopes of the log-log regressions.

Or0 Or1 1-step Or1 2-step

-0.34 -0.52 -0.81

Table 3: Regression slopes on the log-log scale representation (d=3)

We observe nearly the expected theoretical results. A convergence rate of 1
d ≈ 0.33 for

zero order schemes, for first order schemes, the slopes are different from the theoretical

one 2
d ≈ 0.66, but still better than the zero order slopes.

Figure 3 depicts confidence intervals over 5000 particle filter realizations and the ref-

erence values computed exactly for f2 and approximated via a Monte Carlo estimation

for f3 using the known simulatable distribution of the filter. While SIS degenrates, SIR

method gives satisfying results. Compared with the quantization filters, it is important

to see that the range of N is different from one approach to another when the same error

range is considered. The error reached by quantization filters for 800 points is farly less

than the confidence interval length given by particle filters with 7000 >>
√

800 particles.

5.3.3 Stochastic volatility model

In Figure 4 a comparison is made between particle filter methods over M = 4000 real-

izations and quantization based ones. We note the degeneracy of SIS method. SIR and

quantization based methods converge to the same values. Furthermore, even for small

quantizer sizes, we see that quantization based estimations always lie in the confidence

interval of SIR computed for large particle sizes (N = 10000).

5.3.4 Non linear explicit filter

For numerical application, we considered the case where the a priori signal distribution is

Gaussian. This is a particular serial Gaussian distribution SG(σ2, (αi)i≥0), where α0 = 1

and αi = 0 for all i > 0. As it has been precised in paragraph 4.3, the model allows to

construct a semi closed solution to the filtering problem: it is of Serial Gaussian distrib-

ution with recursively determined parameters (see Algorithm 5). Hence, reference values

for the considered test functions can be computed via Monte Carlo simulations from the

filter distribution.

Results in Figure 5 have been obtained for the set of parameters (ρ, θ, λ) = (0.5, 1, 0.1)

and n = 10. We choose the stationary distribution N (0, θ2

1−ρ2 ) as the initial signal one.

In Figure 6, are depicted resluts for (ρ, θ, λ) = (0.65, 1, 0.1) and n = 10. Here, the initial

distribution has been fixed to N (0, σ2
0) with σ0 = 0.05.

On one hand the first line depicts the quantization based filter behaviour with respect
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to the total quantizer size. On the other hand, the second and third line represent re-

spectively the SIS and the SIR confidence intervals with the empirical mean value and

centiles as functions of the particle number. Confidence intervals for particle filters are

estimated over M = 1000 realizations.

As for the previous example, we observe the degeneracy of SIS filter, the convergence

value is far from the reference value. Quantization based filter and SIR filter converge to

the reference value. It is worth noting that the grid size order is quite different whether the

method is a quantization based one or a particle filter one. Once again, in this example,

particle methods need much more points than quantization ones. This compensates by

far the higher complexity order of quantization approach.
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Figure 1: Quantization filter estimator errors for 3-dimensional Kalman case as a function

of the quantizer size Nk (top: ‖Π10f2 − Π̂10f2‖2, bottom: log-log scale representation).
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Figure 2: Quantization filter estimator errors for 3-dimensional Kalman case as a function

of the quantizer size Nk : ‖Π10f3 − Π̂10f3‖2 .
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Figure 3: Particle filter confidence intervals for 3-dimensional Kalman case as a function

of the partcile number N .
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Figure 4: Particle filter and quantization filter approximations for SVM (left: Πy,100f1,

right: Πy,100f3) - (β, σ) = (0.995, 0.01).
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Figure 5: Explicit filter estimators as function of grid sizes (left: Π̂10f2, right: Π̂10f3) -

(ρ, θ, λ, n) = (0.5, 1, 0.1, 10).
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Figure 6: Explicit filter estimators as function of grid sizes (left: Π̂10f2, right: Π̂10f3) -

(ρ, θ, λ, σ0, n) = (0.65, 1, 0.1, 0.05, 10).
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