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Abstract

The quantization based filtering method (see [15], [16]) is a grid based approximation

method to solve nonlinear filtering problems with discrete time observations. It relies on

off-line preprocessing of some signal grids in order to construct fast recursive schemes for

filter approximation. We give here an improvement of this method by taking advantage

of the stationary quantizer property. The key ingredient is the use of vanishing correction

terms to describe schemes based on piecewise linear approximations. Convergence results

are given and comparison with sequential Monte Carlo methods is made. Numerical

results are presented for the particular cases of linear Gaussian model and stochastic

volatility models.

Key words: Quantization, nonlinear filtering, off-line preprocessing, stationary quantizer,

particle filtering, stochastic volatility models.

1 Introduction

In several scientific fields, it is often required to estimate the changing state of a system using

noisy observations of its evolution over time. A common manner to do this is the Bayesian

approach which constructs the probability density function (pdf) of the state at a given date

conditionally to all the available observations till this date.

In the Gaussian linear case, called also the Kalman case (KF) [8, 1], the required pdf is

Gaussian and by computing sequentially its two first moments, we can determine it exactly.

So in this case an explicit solution is provided. Unfortunately, except in this case, or in a few

other cases like the discrete finite state space [1] and some other mixing Gaussian models [7],

there is usually no closed expression to the problem solution. So, many numerical estimations

have been suggested to represent and recursively produce approximations of the state pdf.
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In this context, two different approaches can be mentioned: fisrt, the requierd pdf is rep-

resented as a sample which would provide an approximation of the distribution when its

size becomes very large [6], this includes for example bootstrap Bayesian method [9] or the

interacting particle filter [13, 14]. Second, a quantization of the state space is used in order

to come back to the discrete finite case. As the size of the quantizations grows to infinity, it

is shown that we can asymptotically approach the continuous infinite state space case. Here,

the deal will be in estimating some weights associated to some given grid points, which define

a finite state discrete distribution. This distribution will approach the continuous space case

as the grid size gets larger. The weighted Monte Carlo filter [1, 14, 6] using random samples

to compute grids and the Kitagawa method [12] for linear non Gaussian models using prede-

fined grids and optimal quantization filtering [15] using off line computations to produce an

optimal quantization of the state process are examples of this approach.

The technique of optimal quantization of random vectors is especially useful in problems

where many expectations or conditional expectations need to be computed. It appears as

an efficient method to transform an integral into a finite weighted sum with a controlled

approximation error. We can find some applications of this technique in [16, 2]. In [17], some

numerical methods to construct optimal quantization grids for multidimensional Gaussian

distributions are given.

Now for the pdf estimation problem we treat here, we use Kallianpur-Striebel formula [11] to

derive a dynamic programming formula allowing to estimate the pdf recursively. Like in [15],

this approach makes possible the use of quantization at each time step in order to compute

conditional expectations. We will call the algorithm introduced in [15] the zero order scheme.

In this paper, we are interested by first order approximation using optimal or at least sta-

tionary quantizers to estimate the required pdf. This approach was first introduced in [3]

for solving optimal stopping time problems, namely multi-asset American option pricing. It

improves the convergence rate of the method. In [16], a first sketch of this idea is presented

for pdf estimation but with a pseudo-numerical scheme, which cannot be implemented in

practice. Our aim here is to propose operating first order schemes which improve the con-

vergence rate of the zero order schemes from both theoretical and practical viewpoints. We

first present them in a backward way; this is the natural manner to devise them and the ap-

propriate formulation to establish error estimates. Then, we show how to derive the forward

formulation to be implemented in practice.

The paper is organized as follows: in the second section we give some brief preliminaries on

quantization and filtering. The third and fourth sections will deal with the algorithms using

first order schemes. Each one presents the approximation procedure, the schemes in their

backward and forward formulation and finally convergence theorems. Then, the fifth section

is dedicated to summarize the previous results, and enlarge them to the case of normalized

filters. Finally, numerical results are presented in the sixth section, including comparison

with particle methods for several models.

Notations:

p ∈ (1,+∞) is a fixed real number, |.| and ‖.‖p denote respectively Euclidean norm on R
d

and Lp-norm. C1
b,Lip is the set of continuous differentiable functions R

d → R, bounded

with bounded Lipschitz continuous derivative and Ck
b the set of continuous k-times dif-

2



ferentiable functions R
d → R, bounded with bounded derivatives. We will also define

‖f‖∞ = supx∈Rd |f(x)| and [f ]Lip = supx 6=x′

|f(x)−f(x′)|
|x−x′| . α > 0 denotes a generic constant,

〈., .〉 the Euclidean inner product on R
d, A′ the transpose of the real matrix A. Finally,

(ei)1≤i≤d is the canonical orthonormal basis of R
d.

2 Preliminaries

2.1 Quantization filtering schemes

We consider a fixed discrete horizon n ∈ N
∗ and some probability space (Ω,F ,P). A signal

process is an R
d-valued discrete time hidden Markov chain (Xk)0≤k≤n evolving according to

the following signal equation:

Xk+1 = Fk+1(Xk, εk+1), 0 ≤ k ≤ n− 1, (2.1)

where Fk : R
d × R

q → R
d, is a Borel function and (εk)1<k≤n is a sequence of iid R

q-valued

random variables, independent of X0. The distribution µ0 of X0 is supposed to be known.

Furthermore, Pk(x, dx
′) will denote the probability transition of Xk, and:

µ0f =

∫
f(x)µ0(dx) and Pkf(x) =

∫
f(x′)Pk(x, dx

′).

At each time step k, Yk an R
d′-valued noisy observation of Xk is made. The dynamics of the

observation process (Yk)0≤k≤n are driven by Borel functions Gk : R
d′ × R

d × R
q′ → R

d′ so

that:

Yk = Gk(Yk−1, Xk, ηk), 1 ≤ k ≤ n, (2.2)

where (ηk) is a sequence of iid R
q′-valued random variables, independent of σ(X0, εk, k ≥ 1).

We assume for convenience, that Y0 = 0 and that, for every 1 ≤ k ≤ n, the distribution of Yk

given Xk and Yk−1 admits a continuous conditional pdf y 7→ gk(Yk−1, Xk, y). We suppose in

addition that gk satisfies the following Lipschitz assumption:

∀x, x′ ∈ R
d, ∀y, y′ ∈ R

d′ ,

|gk(y, x, y
′) − gk(y, x

′, y′)| ≤ [gk]
y,y′

Lip |x− x′| and max
0≤k≤n

sup
x∈Rd

|gk(y, x, y
′)| ≤ Ly,y′

< +∞.

Remark 2.1 As the observation process is fixed, we will drop the dependancy of [gk]
y,y′

Lip and

Ly,y′

in (y, y′) for notational convenience.

The problem we aim to solve is to compute

Πnf = E[f(Xn)|Y1 = y1, . . . , Yn = yn],

for any reasonable Borel function f : R
d → R and a given observation sequence y =

(y1, . . . , yn).

Using Kallianpur-Striebel formula [11], the problem can be reduced to the computation

of the unnormalized filter πn defined by:

πnf = E[f(Xn)
n∏

k=1

gk(yk−1, Xk, yk)].

Then, Πnf = πnf
πn1

.
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Remark 2.2 For convenience, the dependency of Πn and πn in the observation process has

been omitted, as y is fixed. For the same reason, we will denote gk(x) := gk(yk−1, x, yk) for

1 ≤ k ≤ n, and g0 := 1.

By introducing the operators (Hk)0≤k≤n defined below, a sequential definition of the unnor-

malized filter πn can be given.

Namely, if one defines, for every x ∈ R
d:

{
Hkf(x) = gk(x)E[f(Xk+1)|Xk = x], 0 ≤ k ≤ n− 1,

Hn
nf(x) = gn(x)f(x),

(2.3)

then we have

πnf = µ0 ◦H0 · · · ◦Hn
nf. (2.4)

Consequently, we can write sequentially, either in the forward way:

U0 = µ0 ◦H0 , Uk = Uk−1 ◦Hk , 1 ≤ k ≤ n− 1, (2.5)

or in the backward way:

Rn = Hn
n , Rk = Hk ◦Rk+1 , 0 ≤ k ≤ n− 1, (2.6)

so that πnf = µ0R0f = Un−1 ◦Hn
nf .

Remark 2.3 Note that if Gk depends on Xk−1 instead of Xk for 1 ≤ k ≤ n, we are led to

consider the conditional pdf of Yk, given Xk−1 and Yk−1. We can then define differently the

operators Hk so that πnf still satisfy formally equation (2.4).

Namely, {
Hkf(x) = gk+1(x)E[f(Xk+1)|Xk = x], 0 ≤ k ≤ n− 1,

Hn
nf(x) = f(x).

(2.7)

Then, schemes (2.5) and (2.6), with this new definition of the (Hk) operators, are still valid.

Remark 2.4 When Gk depends on both Xk−1 and Xk, we can also adapt the scheme to the

modified R
2d-valued signal Markov chain Zk = (Xk−1, Xk) and the same observation process

Yk. In this case we define the new observation dynamics:

Ḡk(Yk−1, Zk, ηk)
Def
= Gk(Xk−1, Yk−1, Xk, ηk).

We succeed then to restore state equations of type (2.1) and (2.2). The point is that in this

case, the signal dimension is twice the original one. This can be numerically constraining,

particularly when using grid based approximation methods.

From the recursive definition of either Uk or Rk, it becomes clear that it will be useful to

approximate Xk by a random variable X̂k taking a finite number of values, in order to trans-

form conditional expectations in finite weighted sums. This operation is commonly called

quantization, and is extensively used in signal processing fields (see [10, 2, 17]).
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Temporarily, we suppose that we are able to construct such an approximation X̂k. We define

the induced error ∆k := Xk − X̂k. Further details about the error modulus ‖∆k‖p, p ≥ 1

will be given in the next paragraph. In [15], these quantizations X̂k are used to produce

a piecewise constant approximation of Rk. So, the natural approximation procedure by

quantization, as defined in (2.8) below appears as a zero order scheme.

It is defined as follows:



ˆ̂
Hkf(X̂k) = gk(X̂k)E[f(X̂k+1)|X̂k], 0 ≤ k ≤ n− 1,
ˆ̂
Hn

nf(X̂n) = gn(X̂n)f(X̂n).
(2.8)

Defining µ̂0 the discrete distribution of X̂0, we have respectively the following forward and

backward iterative zero order approximation schemes:

ˆ̂
U0 = µ̂0

ˆ̂
H0 ,

ˆ̂
Uk =

ˆ̂
Uk−1 ◦ ˆ̂

Hk , 1 ≤ k ≤ n− 1, (2.9)

and
ˆ̂
Rn = Hn

n ,
ˆ̂
Rk =

ˆ̂
Hk ◦ ˆ̂

Rk+1 , 0 ≤ k ≤ n− 1, (2.10)

so that ˆ̂πnf = µ̂0
ˆ̂
R0f =

ˆ̂
Un−1 ◦Hn

nf .

Formally, this scheme is slightly different from that presented in [15] (the definition of Hk

operators is different inducing a shifted scheme structure). Nevertheless, the zero order

quantization filter estimator itself remains the same. This form of the scheme allows to

produce costlessly some error bounds for a wider class of test functions f than in the original

theorem established in [15].

Theorem 2.1 Assume that the transition kernels Pk of the signal Markov chain are K-

Lipschitz operators i.e ∀f : R
d → R Lipschitz, [Pkf ]Lip ≤ K[f ]Lip.

Then, for any f such that Hn
nf is bounded Lipschitz continuous, and 0 ≤ k ≤ n, there exists

a sequence of positive constants (Ck,n
j )k≤j≤n such that:

‖Rkf(Xk) − ˆ̂
Rkf(X̂k)‖p ≤

n∑

j=k

C
k,n
j ‖∆j‖p

and Ck,n
j ≤ α(p, f)Ln−k Kn−j+1−1

K−1 .

Proof.

The proof of this result is easily adapted from [15] by considering the shifted scheme (2.10),

based on the definition (2.3) of the Hk operators. We simply take in consideration that at the

last date, we will have Hn
nf instead of f . For that reason, the Lipschitz bounded assumption

is made on Hn
nf rather than on f . For a detailed proof, see [18]. 2

Remark 2.5 This shifted structure (2.10) of the zero order scheme can be useful since reg-

ularity and boundedness assumptions have to be satisfied by Hn
nf instead of f (see [15]).

This is an advantage, particularly when the conditional pdf gk goes to zero very fast as

|x| → +∞. For example, if gn(x) = 1√
2π

exp(− |yn−x|2
2 ), Hn

nf is Lipschitz continuous and

bounded for f bounded Lipschitz continuous as well as for any Lipschitz function f such that

|f(x)| = O(exp(α|x|2
2 )) for some 0 < α < 1.
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Corollary 2.1 If Pk is Lipschitz and Hn
nf is bounded Lipschitz continuous, then there exists

a sequence of positive constants (Cn
j )0≤j≤n such that:

|πnf − ˆ̂πnf | ≤
n∑

j=0

Cn
j ‖∆j‖p.

Let us now examine the quantization error ∆k and try to establish some convergence

rate toward 0, in which case Corollary 2.1 will give a convergence rate of the zero order

quantization filter estimation.

2.2 Background on quantization and optimal quantization

The aim of quantization is the definition of a random variable taking finite number of values

in R
d as an approximation of an R

d-valued one. In this paragraph, we will present results

useful to our work, further details can be found in [10, 17].

Let X : (Ω,F ,P) → R
d be a random vector and let PX denote its probability distribution. A

positive integer N being fixed, let h : R
d → R

d be a Borel map such that |h(Rd)| ≤ N .

We say that h(X) is a N -quantization of X and that h(Rd) is a N -quantizer. For convenience,

the function h itself will be called N -quantizer.

Now, when X ∈ Lp(Ω), we aim to construct an Lp-optimal N -quantization of X. That is

to determine the function h, if any, which minimizes the Lp-quantization error.

This amounts to solving the optimization problem:

inf{‖X − h(X)‖p
p, h : R

d → R
d, Borel map s.t. |h(Rd)| ≤ N}. (2.11)

This optimization problem has (at least) one solution (see e.g [10]). Any such a solution h∗

is called an Lp-optimal N -quantizer (or Lp-optimal N -codebook). Furthermore, one shows

that Lp-optimal N -quantizers have full size i.e |h∗(Rd)| = N and we denote Γ∗ := h∗(Rd) =

{x1, . . . , xN}. It is clear that in this case, h∗ will necessarily be a projection following the

nearest neighbor rule on Γ∗. Namely:

h∗(ξ) =
N∑

i=1

xi1Ci(Γ∗)(ξ) (2.12)

where (Ci(Γ
∗))1≤i≤N , called the Voronoi diagram of Γ∗, makes up a Borel partition of R

d

satisfying :

Ci(Γ
∗) ⊂ {ξ ∈ R

d s.t. |ξ − xi| = min
1≤k≤N

|ξ − xk|}.

As a consequence, the induced Lp-mean quantization error (or Lp-distortion) reads:

DX,p
N := ‖X − h∗(X)‖p

p = ‖ min
1≤i≤N

|X − xi|‖p
p.

According to [10, 2], DX,p
N is a (strictly) decreasing sequence converging to 0 when N → +∞.

Furthermore, the rate of convergence of DX,p
N toward 0 is ruled by Zador’s Theorem:
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Theorem 2.2 (see [10, 2]) Assume that
∫

Rd |ξ|p+η
PX(dξ) < +∞ for some η > 0. Then

lim
N

(N
p

dDX,p
N ) = Jp,d‖ϕ‖ d

d+p

where PX(dξ) = φ(ξ)λd(dξ)+µ̄(dξ), µ̄⊥λd (λd Lebesgue measure on R
d) and for every q ∈ R

∗
+,

‖g‖q := (
∫
|g|q(u)du)

1

q .

This theorem, combined with Corollary 2.1 establishes a convergence rate result for the

quantization based zero order scheme (2.9).

Now let us introduce an important property of quadratic optimal quantizers:

Proposition 2.1 (Stationary quantizer property)

If X̂ is a L2-optimal N -quantization of X, then the stationary quantizer property is verified.

Namely,

E[X|X̂] = X̂. (2.13)

This property is of great help to appreciate the quality of some estimations. This is shown

in further details in [17] for numerical integration and in [3] for optimal stopping problems.

To illustrate this point by a short example, take the problem of approximating f(X) by f(X̂),

when f ∈ C2
b . We have for some ξ ∈ (X, X̂):

f(X) − f(X̂) = 〈Df(X̂),∆〉 +
1

2
∆′D2f(ξ)∆.

So, if X̂ is a stationary N -quantization of X, we have:

E[f(X)|X̂] − f(X̂) = 〈Df(X̂),E[∆|X̂]〉 +
1

2
E[∆′D2f(ξ)∆|X̂]

‖E[f(X)|X̂] − f(X̂)‖p ≤ 1

2
‖D2f‖∞‖〈∆,∆〉‖p ≤ 1

2
‖D2f‖∞‖∆‖2

2p

We see that, owing to the stationary quantizer property (2.13) we succeed to gain one order

in estimation costlessly.

Back to our filtering problem, we are interested in quantizing the Markov chain (Xk)0≤k≤n.

We must settle at each step 0 ≤ k ≤ n, a quantizer size Nk and an Lp-optimal Nk-quantizer

of Xk denoted Γk = {x1
k, . . . , x

Nk

k }. Consequently, we define (X̂k) an Lp-optimal (Nk)-

quantization of the process (Xk) by:

X̂k =

Nk∑

i=1

xi
k1Ci(Γk)(Xk), for 0 ≤ k ≤ n. (2.14)

As the resulting process (X̂k)0≤k≤n is no longer a Markov chain, this procedure is called

marginal quantization1 of the process (Xk).

Nevertheless, an approximation of the transition kernels Pk of the chain is provided by the

following transition probability terms:

p
ij
k = P[X̂k+1 = x

j
k+1|X̂k = xi

k], i ∈ {1, . . . , Nk} and j ∈ {1, . . . , Nk+1}.
For 0 ≤ k < n and i ∈ {1, . . . , Nk}, we will denote

P̂kf(xi
k) = E[f(X̂k+1)|X̂k = xi

k] =

Nk+1∑

j=1

f(xj
k+1)p

ij
k .

1More details on process quantization are given in [15].
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2.3 Generic first order scheme

As Theorem 2.2 gives a convergence rate of DXk,p
N toward zero, results such as Corollary 2.1

suggest that the quantization filter scheme would lead to better results if we succeed to upper

bound the error by higher powers of ‖∆j‖p. This leads us to the idea of mimicking first order

Taylor expansions in the Rk approximation.

From now on, (X̂k) denotes a marginal stationary (Nk)-quantization of (Xk), and we denote

X̂k(Ω) = Γk = {x1
k, . . . , x

Nk

k }. So, X̂k =
∑Nk

i=1 x
i
k1Ci(Γk). Since X̂k is σ(Xk)-measurable,

using the chaining rule for conditional expectation E[.|X̂k] = E[E[.|Xk]|X̂k] yields:

E[f(Xk+1)|X̂k] = E[Pkf(Xk)|X̂k]. (2.15)

In view of Proposition 2.1, if D(Pkf) exists (and is Lipschitz) we can write:

E[f(Xk+1)|X̂k] = Pkf(X̂k) + 〈D(Pkf)(X̂k),

0︷ ︸︸ ︷
E[∆k|X̂k]〉 +O(|∆k|2). (2.16)

We can then approach E[f(Xk+1)|X̂k] by Pkf(X̂k) with an L1-estimation error of order

O(‖∆k‖2
2). This is the key idea for constructing first order quantization schemes. For such a

purpose, we assume that:

H 1 For any observation process y, all functions gk lie in C1
b,Lip and there exists L > 0 such

that

max
0≤k≤n

{‖gk‖∞, ‖Dgk‖∞, [Dgk]Lip} ≤ L.

and that:

H 2 Pk is K-Lipschitz and ∀f ∈ C1
b,Lip:

Pkf ∈ C1
b,Lip and [DPkf ]Lip ≤ K(‖Df‖∞ ∨ [Df ]Lip).

Remark 2.6 Notice that under assumption H2, for f ∈ C1
b,Lip we have:

‖DPkf‖∞ = [Pkf ]Lip ≤ K[f ]Lip = K‖Df‖∞

Under these assumptions, we can see that ∀f ∈ C1
b,Lip, ∀0 ≤ k ≤ n−1, Rkf defined recursively

by (2.6), is differentiable and:

DRkf = DgkPkRk+1f + gkDPkRk+1f (2.17)

So, we can establish the following proposition, using a backward induction:

Proposition 2.2 Assuming H1 and H2 involves:

∀f ∈ C1 such that Hn
nf ∈ C1

b,Lip, we have ∀0 ≤ k ≤ n− 1, Rkf ∈ C1
b,Lip.

Furthermore:

‖Rkf‖∞ ≤ Ln−k‖Hn
nf‖∞

‖DRkf‖∞ ≤ (LK)n−k‖DHn
nf‖∞ + Ln−k‖Hn

nf‖∞
Kn−k − 1

K − 1
uk := ‖DRkf‖∞ ∨ [DRkf ]∞

≤ (3LK)n−kun + Ln−k‖Hn
nf‖∞

(3K)n−k − 1

3K − 1
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with the convention Km−1
K−1 = m when K = 1.

Proof. The proof is based on an induction on k. Suppose for a given 0 ≤ k ≤ n − 1,

Rk+1f ∈ C1
b,Lip.

(Notice that Hn
nf ∈ C1

b,Lip by assumption).

By definition, we have Rkf = gkPkRk+1f .

According to H1 and H2, we can establish easily that Rkf ∈ C1
b,Lip, through a backward

induction.

Furthermore,
‖Rkf‖∞ ≤ L‖PkRk+1f‖∞

≤ L‖Rk+1f‖∞
(2.18)

From (2.17) and Remark 2.6, we have also:

‖DRkf‖∞ ≤ L‖PkRk+1f‖∞ + L‖DPkRk+1f‖∞
≤ L‖Rk+1f‖∞ + LK‖DRk+1f‖∞

(2.19)

In addition,
[DRkf ]Lip ≤ L (‖Rk+1f‖∞ +K‖DRk+1f‖∞

+Kuk+1 +K‖DRk+1f‖∞)
(2.20)

where uk+1 := ‖DRk+1f‖∞ ∨ [DRk+1f ]Lip.

Noticing from (2.19) that also:

‖DRkf‖∞ ≤ L (‖Rk+1f‖∞ +K‖DRk+1f‖∞ +Kuk+1 +K‖DRk+1f‖∞) ,

we have:

uk ≤ L (‖Rk+1f‖∞ +K‖DRk+1f‖∞ +Kuk+1 +K‖DRk+1f‖∞)

≤ 3LKuk+1 + L‖Rk+1f‖∞.
(2.21)

Recursively we conclude the announced result. 2

Now, applying the previous idea (from equations (2.15) and (2.16)) to the sequential filter

estimation via quantization, when Hn
nf ∈ C1

b,Lip, a generic first order scheme can be designed

as follows:




R̂nf(X̂n) = Hn
nf(X̂n),

D̂Rnf(X̂n) = DHn
nf(X̂n),

R̂kf(X̂k) = gk(X̂k)E[R̂k+1f(X̂k+1) + 〈D̂Rk+1f(X̂k+1),∆k+1〉|X̂k],

0 ≤ k ≤ n− 1.

(2.22)

and then, π̂nf = µ̂0R̂0f .

In (2.22), D̂Rkf is a quantization based estimate for DRkf . It needs to be specified to

transform the above scheme into an implementable algorithm. In [16], the scheme (2.22) is

introduced with no computational considerations concerning DRkf . It is shown that under

assumptions H2 and H1, the quantization based unnormalized filter converges toward πnf

at a rate
∑n

k=1 ‖∆k‖2
2 (instead of

∑n
k=1 ‖∆k‖2 in the original zero order scheme from [15]).

Our aim is to propose some estimate D̂Rkf for DRkf , in order to combine computability

skills and convergence rate improvement. In this aim, two methods will be exhibited:

9



• the first one is based on an induction: at each time step k we evaluate {D̂Rk, R̂k} using

{D̂Rk+1, R̂k+1}. This approach leads to a one step recursive scheme and is investigated

in Section 3;

• the second one is based on an integration by parts following an approach developed

in [3]: the operator D̂Rk is defined as a weighted expectation of R̂k. The scheme

constructed by plugging D̂Rkf expression in (2.22) leads to a two step recursive scheme,

details are investigated in Section 4.

3 One step first order iterative scheme

We introduce for this section the following assumption, in the spirit of H2, but in fact a bit

more restrictive:

H 2’ For each 1 ≤ k ≤ n, Fk admits a bounded, uniformly Lipschitz derivative with

respect to its first variable. Namely, ∀x, x′ ∈ R
d, ∀ε ∈ R

d:

|∂xFk(x, ε) − ∂xFk(x
′, ε)| ≤ [∂xFk]

1
Lip|x− x′| and ‖∂xF‖∞ := max

1≤k≤n
‖∂xFk‖∞ < +∞.

Example 3.1 This assumption is e.g. satisfied by dynamics with an additive noise, typically

for functions Fk : (x, u) 7−→ bk(x) + σku, where bk is differentiable with bounded Lipschitz

continuous derivative and σk ∈ M(d, q), or by dynamics where Fk satisfies: Fk(x, u) =

bk(x) + σk(x)u, bk, σk being differentiable with bounded Lipschitz continuous derivatives,

applied to signal innovations εk with compactly supported pdf.

3.1 Definition of the scheme

In this paragraph, we investigate the recursive approach to estimate DRk. Under H2’, the

probability transitions Pk are K-Lipschitz with K = ‖∂xF‖∞. Furthermore, the Pk are

differentiable in the following sense: for every f ∈ C1
b,Lip,

DPkf = QkDf, k = 0, . . . , n− 1, (3.1)

where, for every Borel map ϕ : R
d → R

d,

Qkϕ(x) = E[∂xFk+1(Xk, εk+1)
′ϕ(Xk+1)|Xk = x], for x ∈ R

d. (3.2)

The quantization based estimate for DPkf is then naturally defined by:

Q̂kDf(xi
k) = E[∂xFk+1(Xk, εk+1)

′Df(X̂k+1)|X̂k = xi
k], for i = 1, . . . , Nk. (3.3)

Finally, following equation (2.17) one sets:

D̂Rkf(xi
k) = Dgk(x

i
k)P̂k

ˆ̂
Rk+1f(xi

k) + gk(x
i
k)Q̂kDf(xi

k) (3.4)

as a zero order approximation of DRkf defined on Γk = {x1
k, . . . , x

Nk

k }, for any k ∈ {1, . . . , n− 1 }.
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Remark 3.1 From a numerical point of view, it would be more natural to use P̂kR̂k+1

instead of P̂k
ˆ̂
Rk+1. In fact, the algorithm structure would be less complex. Our choice in

(3.4) is motivated on one hand by theoretical need to take a zero order approximation for

the differential term estimator. On the other hand, using P̂kR̂k+1 will introduce distortion

terms in both D̂Rk and R̂k which generates important numerical instability as emphasized

by numerical tests in Figure 5.

Now, plugging (3.4) into the generic first order scheme (2.22) yields the following first order

scheme:

Scheme B: Backward expression





R̂nf(X̂n) = Hn
nf(X̂n),

D̂Rn(X̂n)f = DHn
nf(X̂n),

R̂kf(X̂k) = gk(X̂k)E[R̂k+1f(X̂k+1) + 〈D̂Rk+1f(X̂k+1),∆k+1〉|X̂k],

D̂Rkf(X̂k) = Dgk(X̂k)E[
ˆ̂
Rk+1f(X̂k+1)|X̂k] + gk(X̂k)Q̂kD̂Rk+1f(X̂k)

k = 0, . . . , n− 1.

(3.5)

Note that this scheme is completely computable, as it can be rewritten easily using finite

weighted sums. The quantizers Γk and the weights - which we call from now on companion

parameters - can be computed off line and stored in an accessible codebook, so that the only

on line computation cost will be the calculus of operators R̂k,
ˆ̂
Rk and D̂Rk.

The scheme can be reformulated in distribution as follows:

Scheme B





ˆ̂
Rnf(xi

n) = Hn
nf(xi

n), i = 1, . . . , Nn,

R̂nf(xi
n) = Hn

nf(xi
n), i = 1, . . . , Nn,

D̂Rnf(xi
n) = DHn

nf(xi
n), i = 1, . . . , Nn,

ˆ̂
Rkf(xi

k) = gk(x
i
k)
∑Nk+1

j=1
ˆ̂
Rk+1f(xj

k+1)p
ij
k ,

R̂kf(xi
k) = gk(x

i
k)
∑Nk+1

j=1

(
R̂k+1f(xj

k+1)p
ij
k + 〈D̂Rk+1f(xj

k+1), δ
ij
k 〉
)

D̂Rkf(xi
k) = Dgk(x

i
k)
∑Nk+1

j=1
ˆ̂
Rk+1f(xj

k+1)p
ij
k + gk(x

i
k)
∑Nk+1

j=1 γ
ij
k D̂Rk+1f(xj

k+1),

i = 1, . . . , Nk, 0 ≤ k < n,

(3.6)

where the companion parameters, pij
k , γij

k , and δij
k are defined by:

p
ij
k = E[1{X̂k+1=x

j
k+1

}|X̂k = xi
k] ∈ R,

γ
ij
k = E[∂xFk(Xk, εk+1)

′1{X̂k+1=x
j
k+1

}|X̂k = xi
k] ∈ Md(R) (3.7)

δ
ij
k = E[∆k+11{X̂k+1=x

j
k+1

}|X̂k = xi
k],

= E[(Xk+1 − x
j
k+1)1{X̂k+1=x

j
k+1

}|X̂k = xi
k] ∈ R

d.

Forward expression of scheme B

For applications, it is crucial in terms of computational efficiency, to rewrite the scheme

in a forward way. This allows us to compute costlessly intermediate estimations of πkf ,
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1 ≤ k ≤ n− 1, and to use different test functions f without recomputing the hole scheme.

This forward form can be established as follows: one first checks that at each 0 ≤ k ≤ n− 1,

the vector




ˆ̂
Rk

D̂Rk

R̂k


 satisfies the following one step induction:




ˆ̂
Rk

D̂Rk

R̂k


 = Ĥk




ˆ̂
Rk+1

D̂Rk+1

R̂k+1


 , (3.8)

where Ĥk is a lower triangular operator matrix defined by: Ĥk =




Ĥ1
k 0 0

Ĥ2
k Ĥ3

k 0

0 Ĥ4
k Ĥ1

k


 , with

for f : R
d → R and ϕ : R

d → R
d,

Ĥ1
0f(x) = E[f(X̂1)|X̂0 = x],

Ĥ2
0f(x) = 0 ∈ R

d,

Ĥ3
0ϕ(x) = E[∂xF1(x, ε1)

′ϕ(X̂1)|X̂0 = x],

Ĥ4
0ϕ(x) = E[〈ϕ(X̂1),∆1〉|X̂0 = x],

and for every 1 ≤ k < n

Ĥ1
kf(X̂k) = gk(X̂k)E[f(X̂k+1)|X̂k],

Ĥ2
kf(X̂k) = Dgk(X̂k)E[f(X̂k+1)|X̂k],

Ĥ3
kϕ(X̂k) = gk(X̂k)E[∂xFk+1(Xk, εk+1)

′ϕ(X̂k+1)|X̂k],

Ĥ4
kϕ(X̂k) = gk(X̂k)E[〈ϕ(X̂k+1),∆k+1〉|X̂k].

Notice that here Ĥ1
k =

ˆ̂
Hk.

Then, one can see from (3.8) that:



ˆ̂
R0

D̂R0

R̂0


 = Ĥ0 ◦ Ĥ1 ◦ · · · ◦ Ĥn−1




Hn
n

DHn
n

Hn
n


 .

Setting Ûk = µ̂0 ◦ Ĥ0 ◦ · · · ◦ Ĥk, the forward scheme satisfies the following recursive formula:

Û0 = µ̂0Ĥ0 and Ûk = Ûk−1Ĥk k = 1, . . . , n− 1,

so that π̂nf = 〈Ûn−1




Hn
nf

DHn
nf

Hn
nf


 , e3〉.

3.2 Error bounds

The main result of this section is to establish a convergence result for scheme B better than

the zero scheme rate. We recall that here, (X̂k) is a marginal, stationary (Nk)-quantization

of (Xk).
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Theorem 3.1 Assume H1 and H2’ and let f satisfying Hn
nf ∈ C1

b,Lip. Then, there exists a

sequence of positive real constants (Mn
j )0≤j≤n such that:

|πnf − π̂nf | ≤
n∑

j=0

Mn
j ‖∆j‖2

2p

with Mn
j ≤ α(p, f)n+5

2 Ln( (LK)j+1−1
LK−1 )( (3K)n−j+1−1

3K−1 )( (L)j+1−1
L−1 ).

The key to prove the above error bound is to rely on the backward form of the scheme B

(see 3.6). The main technical step is to produce some upper error bounds for the differential

term approximation, namely Âk = DRkf(X̂k) − D̂Rkf(X̂k).

The proof of the first lemma below is left to the reader:

Lemma 3.1 For any ϕ bounded Lipschitz continuous, Qkϕ : R
d → R

d is Lipschitz and

[Qkϕ]Lip ≤ ‖ϕ‖∞[∂xFk+1]
1
Lip + ‖∂xF‖2

∞[ϕ]Lip.

Then, the error bounds for ‖Âk‖p are given in the lemma:

Lemma 3.2 For f satisfying Hn
nf ∈ C1

b,Lip, there exists a non negative real sequence (Dk,n
j )0≤k≤j≤n

such that:

‖Âk‖p ≤
n∑

j=k

D
k,n
j ‖∆j‖p

where Dk,n
j ≤ α(p, f)Ln−k( (LK)j−k+1−1

LK−1 )(Kn−j+1−1
K−1 ).

Proof.

From equations (2.17), (3.4) and (3.1):

Âk = Dgk(X̂k)PkRk+1f(X̂k) + gk(X̂k)QkDRk+1f(X̂k)

−Dgk(X̂k)E[
ˆ̂
Rk+1f(X̂k+1)|X̂k] − gk(X̂k)Q̂kD̂Rk+1f(X̂k)

= Dgk(X̂k)
(
PkRk+1f(X̂k) − E[PkRk+1f(Xk)|X̂k]

)

+Dgk(X̂k)
(
E[PkRk+1f(Xk)|X̂k] − E[

ˆ̂
Rk+1f(X̂k+1)|X̂k]

)

+gk(X̂k)
(
QkDRk+1f(X̂k) − E[QkDRk+1f(Xk)|X̂k]

)

+gk(X̂k)
(
E[QkDRk+1f(Xk)|X̂k] − Q̂kD̂Rk+1f(X̂k)

)

Then, using H1, one gets:

‖Âk‖p ≤ L‖PkRk+1f(X̂k) − E[PkRk+1f(Xk)|X̂k]‖p

+L‖E[PkRk+1f(Xk)|X̂k] − E[
ˆ̂
Rk+1f(X̂k+1)|X̂k]‖p

+L‖QkDRk+1f(X̂k) − E[QkDRk+1f(Xk)|X̂k]‖p

+L‖E[QkDRk+1f(Xk)|X̂k] − Q̂kD̂Rk+1f(X̂k)‖p. (3.9)
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Now, the Lp-contraction property of conditional expectation implies that:

‖PkRk+1f(X̂k) − E[PkRk+1f(Xk)|X̂k]‖p ≤ ‖PkRk+1f(X̂k) − PkRk+1f(Xk)‖p

≤ [PkRk+1f ]Lip‖∆k‖p

≤ K‖DRk+1f‖∞‖∆k‖p.

For the second term in the right handside of inequality (3.9), we will use on one hand the

chaining rule for conditional expectation (see equation (2.15)) and on the other hand its

Lp-contraction property, to write:

‖E[PkRk+1f(Xk)|X̂k] − E[
ˆ̂
Rk+1f(X̂k+1)|X̂k]‖p

= ‖E[Rk+1f(Xk+1)|X̂k] − E[
ˆ̂
Rk+1f(X̂k+1)|X̂k]‖p

≤ ‖Rk+1f(Xk+1) − ˆ̂
Rk+1f(X̂k+1)‖p

which implies, by Theorem 2.1:

‖E[PkRk+1f(Xk)|X̂k] − E[
ˆ̂
Rk+1f(X̂k+1)|X̂k]‖p ≤

n∑

j=k+1

C
k+1,n
j ‖∆j‖p.

The same arguments on conditional expectations give:

‖QkDRk+1f(X̂k) − E[QkDRk+1f(Xk)|X̂k]‖p ≤ [QkDRk+1f ]Lip‖∆k‖p,

which by Lemma 3.1 writes:

‖QkDRk+1f(X̂k) − E[QkDRk+1f(Xk)|X̂k]‖p ≤
(
‖DRk+1f‖∞[∂xFk+1]

1
Lip + ‖∂xF‖2

∞[DRk+1f ]Lip

)
‖∆k‖p

since DRk+1 is bounded Lipschitz by Proposition 2.2.

Then, using the definition of Q̂k yields:

‖E[QkDRk+1f(Xk)|X̂k] − Q̂kD̂Rk+1f(X̂k)‖p

≤ ‖ (∂xFk+1(Xk, εk+1))
′
(
DRk+1f(Xk+1) − D̂Rk+1f(X̂k+1)

)
‖p

≤ ‖∂xFk+1‖∞
(
‖Âk+1‖p + ‖DRk+1f(Xk+1) − DRk+1f(X̂k+1)‖p

)

≤ ‖∂xFk+1‖∞
(
‖Âk+1‖p + [DRk+1f ]Lip‖∆k+1‖p

)
.

Finally, using ‖∂xF‖∞ = K and Proposition 2.2, we derive:

‖Âk‖p ≤ L
(
[∂xFk+1]

1
Lip‖DRk+1f‖∞ +K2[DRk+1f ]Lip +K‖DRk+1f‖∞

)
‖∆k‖p

+L
(
C

k+1,n
k+1 +K([DRk+1f ]Lip

)
‖∆k+1‖p

+L
n∑

j=k+2

C
k+1,n
j ‖∆j‖p + LK‖Âk+1‖p. (3.10)
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The required result follows from a backward induction on k. See [18] for explicit upper

bounds. 2

Proof of Theorem 3.1.

Let Vkf denote the intermediate estimation error when considering the previous first order

approximation scheme B in its backward form : Vkf := E[Rkf(Xk)|X̂k] − R̂kf(X̂k).

Using triangular inequalities, we isolate three error sources in |Vkf |. If we set:

R̄kf(X̂k) = gk(X̂k)E[PkRk+1f(Xk)|X̂k],

= gk(X̂k)E[Rk+1f(Xk+1)|X̂k],

then we have:

|Vkf | ≤ |E[Rkf(Xk)|X̂k] −Rkf(X̂k)| + |Rkf(X̂k) − R̄kf(X̂k)|
+|R̄kf(X̂k) − R̂kf(X̂k)|. (3.11)

Using a first order Taylor expansion, there exists ζ̂1
k ∈ (X̂k, Xk) such that

E[Rkf(Xk)|X̂k] = E[Rkf(X̂k) + 〈DRkf(ζ̂1
k),∆k〉|X̂k]

= E[Rkf(X̂k) + 〈DRkf(X̂k),∆k〉 + 〈DRkf(ζ̂1
k) − DRkf(X̂k),∆k〉|X̂k]

X̂k being a stationary quantization of Xk, one derives from Proposition 2.1 that:

E[〈DRkf(X̂k),∆k〉|X̂k] = 〈DRkf(X̂k),E[∆k|X̂k]〉 = 0.

Then,

|E[Rkf(Xk)|X̂k] −Rkf(X̂k)| = |E[〈DRkf(ζ̂1
k) − DRkf(X̂k),∆k〉|X̂k]|

≤ E[|DRkf(ζ̂1
k) − DRkf(X̂k)||∆k||X̂k]

≤ [DRkf ]LipE[|X̂k − ζ1
k ||∆k||X̂k]

≤ [DRkf ]LipE[|∆k|2|X̂k]. (3.12)

By Taylor expansion of PkRk+1f , we analogically find ζ̂2
k ∈ (X̂k, Xk) such that:

R̄kf(X̂k) = gk(X̂k)
(
PkRk+1f(X̂k) + 〈DPkRk+1f(X̂k),E[∆k|X̂k]〉

+E[〈DPkRk+1f(ζ̂2
k) − DPkRk+1f(X̂k),∆k〉|X̂k]

)

Rkf(X̂k) − R̄kf(X̂k) = gk(X̂k)E[〈DPkRk+1f(ζ̂2
k) − DPkRk+1f(X̂k),∆k〉|X̂k]

Hence, |Rkf(X̂k) − R̄kf(X̂k)| ≤ L[DPkRk+1f ]LipE[|∆k|2|X̂k]

≤ LK ([DRk+1f ]Lip ∨ ‖DRk+1f‖∞) E[|∆k|2|X̂k] (3.13)

For the last term in the right handside of inequality (3.11), we have:

|R̄kf(X̂k) − R̂kf(X̂k)| =
∣∣∣gk(X̂k)

(
E[Rk+1f(Xk+1)|X̂k] − E[R̂k+1f(X̂k+1)|X̂k]

−E[〈D̂Rk+1f(X̂k+1),∆k+1〉|X̂k]
)∣∣∣

≤ L
∣∣∣E
[
Rk+1f(Xk+1) − E[Rk+1f(Xk+1)|X̂k+1] | X̂k

]

−E[〈D̂Rk+1f(X̂k+1),∆k+1〉|X̂k]
∣∣∣

+L
∣∣∣E
[
E[Rk+1f(Xk+1)|X̂k+1] − R̂k+1f(X̂k+1)|X̂k

]∣∣∣
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Furthermore, there exists ζ̂3
k+1 ∈ (X̂k+1, Xk+1) such that

Rk+1f(Xk+1) = Rk+1f(X̂k+1) + 〈DRk+1f(X̂k+1),∆k+1〉
+〈DRk+1f(ζ̂3

k+1) − DRk+1f(X̂k+1),∆k+1〉
E[Rk+1f(Xk+1)|X̂k+1] = Rk+1f(X̂k+1) + E[〈DRk+1f(ζ̂3

k+1) − DRk+1f(X̂k+1),∆k+1〉|X̂k+1]

Consequently:

|R̄kf(X̂k) − R̂kf(X̂k)| ≤ L|E[Vk+1f |X̂k]| (3.14)

+L|E[〈
(
DRk+1f(X̂k+1) − D̂Rk+1f(X̂k+1)

)
,∆k+1〉|X̂k]|

+L[DRk+1f ]Lip

(
E[|∆k+1|2|X̂k] + E

[
E[|∆k+1|2|X̂k+1]

∣∣∣X̂k

])

(3.15)

Finally combining previous inequalities (3.12), (3.13), (3.14), we obtain by using Lp-contraction

property of conditional expectation:

‖Vkf‖p ≤ ([DRkf ]Lip + LKuk+1) ‖∆k‖2
2p

+2L[DRk+1f ]Lip‖∆k+1‖2
2p + L‖〈Âk+1,∆k+1〉‖p

+L‖Vk+1f‖p.

(3.16)

Applying Holder inequality combined to Lemma 3.2 to the term ‖〈Âk+1,∆k+1〉‖p, we have:

‖〈Âk+1,∆k+1〉‖p ≤ ‖|Âk+1||∆k+1|‖p

≤ ‖Âk+1‖2p‖∆k+1‖2p

≤
n∑

j=k+1

D
k+1,n
j ‖∆j‖2p‖∆k+1‖2p

≤ 1

2

n∑

j=k+1

D
k+1,n
j

(
‖∆j‖2

2p + ‖∆k+1‖2
2p

)
(3.17)

Plugging (3.17) into (3.16) yields:

‖Vkf‖p ≤ ([DRkf ]Lip + LKuk+1) ‖∆k‖2
2p

+L
(
2[DRk+1f ]Lip + 1

2

∑n
j=k+1D

k+1,n
j

)
‖∆k+1‖2

2p

+1
2L
∑n

j=k+1D
k+1,n
j ‖∆j‖2

2p + L‖Vk+1f‖p.

(3.18)

Then, by induction taking k = 0 and writing |πnf − π̂nf | ≤ ‖V0f‖p we derive the required

result. See [18] for further details. 2

Theorem 3.1, with ‖∆k‖2
2p = O(‖∆k‖2p), shows that the scheme B succeeds to embetter

the zero-order convergence rate. The forthcoming section has been motivated by our wish to

relax H2’ and to preserve the convergence rate improvement.
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4 Two step iterative first order scheme

To construct this second first order scheme, the idea is to represent DPkRk+1f as a weighted

conditional expectation of Rk+1f i.e.

DPkRk+1f(x) = E[Rk+1f(Xk+1) ×Weight|Xk = x],

and then to quantize this representation formula. This is achieved classically by the mean of

an integration by parts formula.

Note that in all this section, we will assume q = d. Furthermore, Fk will be supposed to be

differentiable.

4.1 Integration by parts formula

For notational convenience, we will temporarily drop the k indices in the notations of Xk, Fk

and Pk. We will also temporarily assume f ∈ C1
b .

We start by a transformation of the problem, via differentiation. For that, we need first to

assume the following:

H 3 ∀ 0 ≤ k ≤ n, ∃ ck > 0 such that for any x ∈ R
d and ε ∈ R

d:

(∂εFk(x, ε))(∂εFk(x, ε))
′ ≥ ckId.

We have then, for any x, ε ∈ R
d:

∂x(foF )(x, ε) = ∂xF (x, ε)′(Df)oF (x, ε),

∂ε(foF )(x, ε) = ∂εF (x, ε)′(Df)oF (x, ε).

Assuming H3 yields ∂x(foF )(x, ε) = Gx(ε)∂ε(foF )(x, ε), where:

Gx : R
d → Md(R)

ε 7→
(
∂εF (x, ε)−1∂xF (x, ε)

)′
.

Now, in order to allow a differentiation under the integral sign and then apply integration by

parts, we will assume the following technical hypothesis:

H 4 Assume that signal innovations εk distribution is absolutely continuous toward Lebesgue

measure, with a differentiable density p satisfying for all x ∈ R
d,

∫

Rd

|∂xF (x, ε)|p(ε)dε < +∞ and lim
|ε|→+∞

Gx(ε)p(ε) = 0.

Then, the i-th component of DPf(x) for a given index 1 ≤ i ≤ d reads:

∂Pf

∂xi
(x) =

∫

Rd

〈Gi
x(ε), ∂ε(foF )(x, ε)〉p(ε)dε (4.1)

where: Gi
x : R

d → R
d

ε 7→ (Gx(ε))′ei.
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Furthermore, performing an integration by parts formula on (4.1), and taking in account H4

yields:
∂Pf

∂xi
(x) = −

∫

Rq

(foF (x, ε) + C(x))Ψi(x, ε)p(ε)dε (4.2)

where: Ψi : R
d × R

d → R

(x, ε) 7→ div Gi
x(ε) +

1

p(ε)
〈Gi

x(ε),Dp(ε)〉.

Finally, defining the weight vector Ψ(x, ε) := (Ψi(x, ε))0≤i≤d, we obtain the generalization of

equation (4.2): D(Pkf)(x) = −E[
(
f(Fk+1(x, εk+1)) + Ck(x)

)
Ψk(x, εk+1)].

In a Monte Carlo method context, the constant Ck is tuned in order to minimize the variance

of a probabilistic estimator of D(Pkf)(x). In our quantization context, as the variance

problem does not occur, a natural value for Ck would be zero. It is at least the choice

that minimizes computation cost and provides satisfactory numerical results (see [4] for a

discussion about Ck for an American option pricing problem).

From now on, we will take Ck = 0.

4.2 Numerical scheme

Consider now a test function f satisfying Hn
nf ∈ C1

b,Lip. Then, according to Proposition 2.2,

Rkf ∈ C1
b,Lip. Using results of the previous paragraph, we can write, for each 0 ≤ k ≤ n− 1:

DPkRk+1f(x) = −E[Rk+1f(Xk+1)Ψk+1(x, εk+1)|Xk = x].

So, (X̂k) still being a stationary marginal (Nk)-quantization of (Xk), an approximation of

DRkf would be:

D̂Rkf(X̂k) = Dgk(X̂k)E[
ˆ̂
Rk+1f(X̂k+1)|X̂k] − gk(X̂k)E[

ˆ̂
Rk+1f(X̂k+1)Ψk(Xk, εk+1)|X̂k].

If one replaces this expression in (2.22), it results in the following two step recursive scheme

formulated in a backward way:

Scheme A Backward formulation





R̂nf(X̂n) = Hn
nf(X̂n),

R̂n−1f(X̂n−1) = gn−1(X̂n−1)E[Hn
nf(X̂n) + 〈DHn

nf(X̂n),∆n〉|X̂n−1],

R̂kf(X̂k) = gk(X̂k)P̂kR̂k+1f(X̂k) + gk(X̂k)×(
E[〈Dgk+1(X̂k+1)P̂k+1

ˆ̂
Rk+2f(X̂k+1),∆k+1〉|X̂k] − E[ 〈gk+1(X̂k+1)×

E[
ˆ̂
Rk+2f(X̂k+2)Ψk+1(Xk+1, εk+2)|X̂k+1],∆k+1〉|X̂k]

)
,

0 ≤ k ≤ n− 2.

(4.3)

This scheme A can be rewritten in distribution using finite weighted sums. As for the

previous scheme, the weights are to be computed simultaneously with the optimal quantizers.

Consequently, the implemented algorithm reads as follows:
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Scheme A




ˆ̂
Rnf(xi

n) = Hn
nf(xi

n), i = 1, . . . , Nn,

R̂nf(xi
n) = Hn

nf(xi
n), i = 1, . . . , Nn,

R̂n−1f(xi
n−1) = gn−1(x

i
n−1)

∑Nn

j=1

(
Hn

nf(xj
n)pij

n−1 + 〈DHn
nf(xj

n), δij
n−1〉

)
,

i = 1, . . . , Nn−1,

ˆ̂
Rkf(xi

k) = gk(x
i
k)
∑Nk+1

j=1
ˆ̂
Rk+1f(xj

k+1)p
ij
k , i = 1, . . . , Nk, 0 ≤ k < n,

R̂kf(xi
k) = gk(x

i
k)
∑Nk+1

j=1 R̂k+1f(xj
k+1)p

ij
k + gk(x

i
k)×∑Nk+1

j=1

∑Nk+2

l=1

(
ˆ̂
Rk+2f(xl

k+2)p
jl
k+1〈Dgk(x

j
k+1), δ

ij
k 〉

−gk+1(x
j
k+1)

ˆ̂
Rk+2f(xl

k+2)〈λ
jl
k+1, δ

ij
k 〉
)
,

i = 1, . . . , Nk, 0 ≤ k ≤ n− 2

(4.4)

where the companion parameters, pij
k , λij

k , and δij
k are defined by:

p
ij
k = E[1{X̂k+1=x

j
k+1

}|X̂k = xi
k] ∈ R, (4.5)

λ
ij
k = E[Ψk(Xk, εk+1)1{X̂k+1=x

j
k+1

}|X̂k = xi
k] ∈ R

d, (4.6)

δ
ij
k = E[∆k+11{X̂k+1=x

j
k+1

}|X̂k = xi
k],

= E[(Xk+1 − x
j
k+1)1{X̂k+1=x

j
k+1

}|X̂k = xi
k] ∈ R

d. (4.7)

It is important to recall, that the interest of such an approach lies in the possibility of

carrying out the computation of all the above companion parameters off line. Once the state

equations are fixed and the noise distribution is simulatable, the quantizers and companion

parameters can be kept off line. On line computation cost will then be reduced to the

sequential determination of
ˆ̂
Rk and R̂k on each grid. Compared to the previous case, scheme

A is more demanding in on line memory capacity, as it involves two step computations, but,

it is worth noting that the new companion parameters λij
k are of lower dimension, which

compensates the two step recursion effect while considering the algorithm complexity or the

storage capacity dedicated to codebooks.

Here also, as for scheme B, we can see that this backward definition can be rewritten in a

forward form. For 0 ≤ k ≤ n, let Ĥk be the operator defined on any function f : Γk+2 → R,

such that:

Ĥkf(xi
k) = gk(x

i
k)E[〈E[f(X̂k+2)|X̂k+1]Dgk+1(X̂k+1)

−gk+1(X̂k+1)E[f(X̂k+2)Ψk+1(Xk+1, εk+2)|X̂k+1],∆k+1〉|X̂k = xi
k].

For a time step 0 ≤ k ≤ n− 2, we have the following one step transition system:




ˆ̂
Rk =

ˆ̂
Hk

ˆ̂
Rk+1,

R̂k =
ˆ̂
HkR̂k+1 + Ĥk

ˆ̂
Rk+2.

(4.8)

Introducing Ûk in addition to
ˆ̂
Uk we can define the following forward scheme:
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Scheme A: Forward expression





ˆ̂
U0 = µ̂0 ◦ ˆ̂

H0,

Û2 = µ̂0 ◦ Ĥ0,

for any 0 ≤ k ≤ n− 3,
ˆ̂
Uk+1 =

ˆ̂
Uk ◦ ˆ̂

Hk+1,

Ûk+3 = Ûk+2 ◦ ˆ̂
Hk+2 +

ˆ̂
Uk ◦ Ĥk+1.

(4.9)

Finally, given the final conditions:





R̂nf(X̂n) = Hn
nf(X̂n),

ˆ̂
Rn(X̂n) = Hn

nf(X̂n),

R̂n−1(X̂n−1) = gn−1(X̂n−1)E[Hn
nf(X̂n) + 〈DHn

nf(X̂n),∆n〉|X̂n−1],

we have for any n > 1,





µ̂0
ˆ̂
R0 =

ˆ̂
Un−1 ◦Hn

n = ˆ̂πn,

µ̂0R̂0 =
ˆ̂
Un−2R̂n−1 + ÛnH

n
n = π̂n.

4.3 Error bounds

The main result of this paragraph is the following theorem, providing a convergence rate of

the unnormalized filter approximation error for the two step recursive scheme A.

Theorem 4.1 Let (X̂k) be a marginal stationary (Nk)-quantization of (Xk), f satisfying

Hn
nf ∈ C1

b,Lip. Assume H1, H2, H3, H4, q = d and furthermore :

H 5 There exists a constant ψp > 0 and s̄ > 1 such that:

max
0≤k≤n−1

‖Ψk(Xk, εk+1)‖s̄p ≤ ψp < +∞.

Hence, there exists a non negative real sequence of constants (Mn
j )0≤j≤n such that:

|πnf − π̂nf | ≤
n∑

j=0

Mn
j ‖∆j‖2

max{stp,t̄p,2p}

where s = s̄
s̄−1 , t > 0, 1

t
+ 1

t̄
= 1 and Mn

j ≤ α(p, f)(n+ 1)Ln( (L)j+1−1
3K−1 )( (3K)n−j+1−1

3K−1 ).

Example 4.2 Assume that Fk : R × R → R reads:

Fk(x, ε) = bk(x) + σk(x)ε, (4.10)

where σk and bk are differentiable with bounded derivatives and ∀x ∈ R
d, σk(x) > ck. Then:

Ψk(x, ε) =
σ′

k
(x)+p′

p
(ε)(εσ′

k
(x)+b′

k
(x))

σk(x) .
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• When εk ∼ N (0, 1), it is the natural framework to study the Euler scheme of a Brownian

diffusion. In this case, the previous hypothesis H5 is satisfied.

• When εk distribution is centered Laplace of parameter λ > 0, or εk+m ∼ Gamma(m, 1)

with m > 1, hypothesis H5 is also satisfied.

• In a more general case, when εk ∈ Lp+η for some η > 0 the following assumption:

H 5’ There exists a constant ψp > 0 and s̄′ > 1 such that ‖p′

p
(ε1)‖s̄′p ≤ ψp < +∞.

could replace H5 and gives more explicit conditions on the signal innovation distribu-

tion.

Compared to Example 3.1 given for the one step iterative scheme, we see that hypothesis H5

(or H5”) allows to relax the boundedness constraint on ∂εFk in H2’ to involve some other

constraints on the signal innovations distribution.

The structure of the proof of Theorem 4.1 is the same as that of the previous section.

We first study the error induced by the differential term estimation. Let us reconsider for

0 ≤ k ≤ n− 1 and the test function f : Âk := DRkf(X̂k) − D̂Rkf(X̂k).

The error bounds for ‖Âk‖p with the new definition of the differential term approximation

D̂Rkf are given by the following lemma:

Lemma 4.1 With assumption H5 on the weight function Ψk and f such that Hn
nf ∈ C1

b,Lip,

there exists a non negative real sequence (Dk,n
j )0≤k≤j≤n such that:

‖Âk‖p ≤
n∑

j=k

D
k,n
j ‖∆j‖sp

where s = s̄
s̄−1 and Dk,n

j ≤ α(p, f)Ln−k (3K)n−j+1−1
3K−1 .

Proof.

We redefine the operators Qk and Q̂k for f : R
d → R

d as follows:

Qkf(Xk) = −E[f(Xk+1)Ψk(Xk, εk+1)|Xk],

Q̂kf(X̂k) = −E[f(X̂k+1)Ψk(Xk, εk+1)|X̂k].

Then Qkf = DPkf , so that:

DRkf(X̂k) = Dgk(X̂k)PkRk+1f(X̂k) + gk(X̂k)QkRk+1f(X̂k),

D̂Rkf(X̂k) = Dgk(X̂k)P̂k
ˆ̂
Rk+1f(X̂k) + gk(X̂k)Q̂k

ˆ̂
Rk+1f(X̂k).

Consequently, Âk can be written as:

Âk = Dgk(X̂k)
[
PkRk+1f(X̂k) − P̂k

ˆ̂
Rk+1f(X̂k)

]
+ gk(X̂k)

[
QkRk+1f(X̂k) − Q̂k

ˆ̂
Rk+1f(X̂k)

]
,

so that using H1 and that P̂k
ˆ̂
Rk+1f(X̂k) = E[

ˆ̂
Rk+1f(X̂k+1)|X̂k], we have:

‖Âk‖p ≤ L‖PkRk+1f(X̂k) − E[
ˆ̂
Rk+1f(X̂k+1)|X̂k]‖p + L‖QkRk+1f(X̂k) − Q̂k

ˆ̂
Rk+1f(X̂k)‖p.

(4.11)
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Since conditional expectation is an Lp-contraction,, the first term on the right hand side of

inequality (4.11) writes: we have:

‖PkRk+1f(X̂k) − E[
ˆ̂
Rk+1f(X̂k+1)|X̂k]‖p

≤ ‖PkRk+1f(X̂k) − E[PkRk+1f(Xk)|X̂k]‖p

+‖E[PkRk+1f(Xk) − ˆ̂
Rk+1f(X̂k+1)|X̂k]‖p

≤ [PkRk+1f ]Lip‖∆k‖p + ‖Rk+1f(Xk+1) − ˆ̂
Rk+1f(X̂k+1)‖p.

(4.12)

It follows from Theorem 2.1 that:

‖PkRk+1f(X̂k) − P̂k
ˆ̂
Rk+1f(X̂k+1)‖p ≤∑n

j=k+1C
k+1,n
j ‖∆j‖p +K‖DRk+1f‖∞‖∆k‖p.

Moreover, the second term on the right hand side of inequality (4.11) gives:

‖QkRk+1f(X̂k) − Q̂k
ˆ̂
Rk+1f(X̂k)‖p

≤ ‖QkRk+1f(X̂k) − E[QkRk+1f(Xk)|X̂k]‖p + ‖E[QkRk+1f(Xk)|X̂k] − Q̂k
ˆ̂
Rk+1f(X̂k)‖p

≤ ‖QkRk+1f(X̂k) −QkRk+1f(Xk)‖p

+‖E[E[Rk+1f(Xk+1)Ψk(Xk, εk+1)|Xk]|X̂k] − E[
ˆ̂
Rk+1f(X̂k+1)Ψk(Xk, εk+1)|X̂k]‖p

≤ ‖QkRk+1f(X̂k) −QkRk+1f(Xk)‖p + ‖Ψk(Xk, εk+1)
(
Rk+1f(Xk+1) − ˆ̂

Rk+1f(X̂k+1)
)
‖p.

(4.13)

But, QkRk+1f(Xk) = DPkRk+1f(Xk), so hypothesis H2 on Pk implies that:

[QkRk+1f ]Lip = [DPkRk+1f ]Lip ≤ K([DRk+1f ]Lip ∨ ‖DRk+1f‖∞) = Kuk+1.

Hence,

‖QkRk+1f(X̂k) −QkRk+1f(Xk)‖p ≤ Kuk+1‖∆k‖p. (4.14)

Using Holder inequality, with s = s̄
s̄−1 ≥ 1 we get:

‖Ψk(Xk, εk+1)
(
Rk+1f(Xk+1) − ˆ̂

Rk+1f(X̂k+1)
)
‖p

≤ ‖Ψk(Xk, εk+1)‖s̄p‖Rk+1f(Xk+1) − ˆ̂
Rk+1f(X̂k+1)‖sp (4.15)

It follows from Theorem 2.1 and hypothesis H5 by combining terms (4.13), (4.14) and (4.15)

that:

‖QkRk+1f(X̂k) − Q̂k
ˆ̂
Rk+1f(X̂k)‖p

≤
n∑

j=k+1

ψpC
k+1,n
j ‖∆j‖sp +Kuk+1‖∆k‖p, (4.16)

and ‖Âk‖p ≤ L(ψp + 1)
n∑

j=k+1

C
k+1,n
j ‖∆j‖sp + LK (uk+1 + ‖DRk+1f‖∞) ‖∆k‖sp

≤
n∑

j=k+1

D
k,n
j ‖∆j‖sp. (4.17)
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Then, explicit upper bounds for Dk,n
j can easily be established. (see [18]) 2

Proof of Theorem 4.1. Reconsider Vkf = E[Rkf(Xk)|X̂k] − R̂kf(X̂k) for 0 ≤ k ≤ n. The

proof can be carried out as in the previous case of Theorem 3.1. The unique difference lies

in the term Âk. Using Lemma 4.1 combined with Holder inequality for some t > 1 and its

conjugate t̄ = t
t−1 we have:

‖〈Âk+1,∆k+1〉‖p ≤ ‖Âk+1‖tp‖∆k+1‖t̄p ≤ 1
2

∑n
j=k+1D

k+1,n
j (‖∆j‖2

stp + ‖∆k+1‖2
t̄p

).

Then inequality (3.16) writes:

‖Vkf‖p ≤ ([DRkf ]Lip + LKuk+1) ‖∆k‖2
2p + 2L[DRk+1f ]Lip‖∆k+1‖2

2p

+L
1

2

n∑

j=k+1

Dk+1n
j (‖∆j‖2

stp + ‖∆k+1‖2
t̄p) + L‖Vk+1f‖p

≤ ([DRkf ]Lip + LKuk+1) ‖∆k‖2
max{stp,t̄p,2p}

+L


[DRk+1f ]Lip +D

k+1,n
k+1 +

1

2

n∑

j=k+2

D
k+1,n
j


 ‖∆k+1‖2

max{stp,t̄p,2p}

+
1

2
L

n∑

j=k+2

D
k+1,n
j ‖∆j‖2

max{stp,t̄p,2p} + L‖Vk+1f‖p (4.18)

By induction, we derive: ‖Vkf‖p ≤∑n
j=k M

k,n
j ‖∆j‖2

max{stp,t̄p,2p}.
Taking k = 0 and writing |πnf − π̂nf | ≤ ‖V0f‖p we establish the announced result. See [18]

for a detailed proof of the explicit expressions of (Mk,n
j ). 2

4.4 The case of regularizing kernels

In this paragraph we deal with an interesting skill of the two step recursive first order scheme,

which allows to establish first order schemes for non differentiable test functions f , more

precisely with no differentiability assumption on Hn
nf .

Proposition 4.1 H2” Assume Pk is K-Lipschitz such that for all f bounded Lipschitz

continuous, Pkf ∈ C1
b,Lip.

If f is a test function such that Hn
nf is bounded Lipschitz continuous, then Rkf ∈ C1

b,Lip for

all 0 ≤ k ≤ n− 1.

This proposition is easily proved, using equation (2.17) and an induction on k. Further-

more, it allows to define an alternative scheme to scheme A, taking into account the non

differentiability of Hn
nf :
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Scheme A’





R̂nf(X̂n) = Hn
nf(X̂n) =

ˆ̂
Rnf(X̂n),

R̂n−1f(X̂n−1) = gn−1(X̂n−1)E[Hn
nf(X̂n)|X̂n−1] =

ˆ̂
Rn−1f(X̂n−1),

R̂kf(X̂k) = gk(X̂k)P̂kR̂k+1f(X̂k) + gk(X̂k)×(
E[〈Dgk+1(X̂k+1)P̂k+1

ˆ̂
Rk+2f(X̂k+1),∆k+1〉|X̂k] − E[ 〈gk+1(X̂k+1)×

E[
ˆ̂
Rk+2f(X̂k+2)Ψk+1(Xk+1, εk+2)|X̂k+1],∆k+1〉|X̂k]

)
,

0 ≤ k ≤ n− 2.

(4.19)

We then define the first order unnormalized filter estimator by π̂nf = E[R̂0f(X̂0)] generated

from scheme A’. The error induced by such an estimator introduces additional zero order

type terms as we need one single backward iteration to be able to use first order correctors.

This can be seen clearly in the the following theorem which proof is detailed in [18].

Theorem 4.2 Let (X̂k) be a stationary (Nk)-quantization of (Xk), f satisfying Hn
nf is

bounded Lipschitz continuous. Assume H1, H2”, H3, H4, H5 and q = d,

then, there exists a non negative real sequence of constants (M̄n
j )0≤j≤n such that:

|πnf − π̂nf | ≤
n∑

j=0

M̄n
j ‖∆j‖2

max{stp,t̄p,2p} + C1‖∆n−1‖p + C2‖∆n‖p

where s = s̄
s̄−1 , t > 0, 1

t
+ 1

t̄
= 1.

In practice, the regularizing effect can be viewed in the case of the Euler scheme of a diffusion

implemented with a Gaussian noise (see Example 4.2 and Appendix B). This is the case

studied in [3] for pricing American options with first order schemes. It is shown that Pk

satisfies H2”. Nevertehless, a special attention have to be given to the Lipschitz constants

dependency in time discretization step, and consequently in our filtering problem, to the

observtaion horizon. Namely, if f is Lipschitz continuous, then according to Proposition 2 in

[3] we have [DPkf ]Lip ≤ C[f ]Lip

√
n. This result alters M̄n

j dependency in n and consequently

the filter estimator convergence for high observation horizons.

Remark 4.1 For numerical implementation, we can compensate the error bounds deteri-

oration in Theorem 4.2 by bigger quantizers in the two last observation dates n − 1 and

n.

5 Convergence result for the normalized filter

Let f be such that Hn
nf ∈ C1

b,Lip. Owing to Theorem 3.1 and Theorem 4.1, we have seen that

the estimation error on the unnormalized filter πn, using stationary (Nk)-quantizations (X̂k),

can be written:

|πnf − π̂nf | ≤
n∑

j=0

Mn
j (f, α)‖∆j‖2

2αp,
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where α = max{ st
2 ,

t̄
2 , 1} ≥ 1 or α = 1 depending on whether we are using scheme A or B,

and ∆j = Xj − X̂j .

Now, we derive results on the normalized first order quantization filter estimator Π̂n, defined

by Kallianpur-Striebel formula as Π̂nf = π̂nf
π̂n1

.

Thus, the estimation error will be:

|Πnf − Π̂nf | ≤ |πnf

πn1
− πnf

π̂n1
| + |πnf − π̂nf

π̂n1
|

≤ ‖Hn
nf‖∞πn−11

πn1π̂n1
|πn1 − π̂n1| +

1

π̂n1
|πnf − π̂nf |

≤
n∑

j=0

Mn
j (f, α) + cyMn

j (1, α)‖Hn
nf‖∞

π̂n1
‖∆j‖2

2αp (5.1)

Since α = 1 in Theorem 3.1, the convergence rate improvement obtained for the unormalized

filter is preserved by the normalization.

When α > 1, which is the case for Theorem 4.1, further results are needed to establish

a convergence rate improvement. In fact, from inequality (5.1) it comes out that we need

to describe the L2αp-behavior of sequences of L2p-optimal quantizers. In this direction, a

rather satisfactory result can be established using Zador Theorem 2.2 and Holder inequality.

Namely, if X ∈ Lr′(Rd) for every r′ > 0, then ‖X − h∗N (X)‖s = O(N
−ρ

d ) for any ρ ∈ (0, r
s
).

This allows to establish the following theorem, for Π̂n obtained from the two step recursive

scheme:

Theorem 5.1 Assume that s̄ in H5 satisfies s̄ > 3
2 and that for 0 ≤ k ≤ n and all r > 0

Xk ∈ Lr(Rd). Let (X̂k) be an L2-optimal (Nk)-quantization of (Xk).

Then, there exists ρ ∈ (1
2 , 1] such that for all f : R

d → R satisfying Hn
nf ∈ C1

b,Lip we have:

|Πnf − Π̂nf | ≤
n∑

j=0

cj(ρ, p, d)
Mn

j (f, α) + cyMn
j (1, α)‖Hn

nf‖∞
π̂n1

N
−2ρ

d

j .

Proof. If s̄ > 3
2 , then 1 < s < 3 and there exists 4

3 < t < 4
s
. For such a number t > 1 we

will have t̄ < 4 and st < 4 so that inequality (5.1) is satisfied for α = max{ t̄
2 ,

st
2 , 1} ∈ [1, 2[.

Hence, for some ρ ∈ (1
2 ,

1
α
) ⊂ (0, 1

α
), we can write: ‖∆k‖2αp = O(N

−2ρ

d

k ).

Consequently from (5.1), |Πnf − Π̂nf | ≤
∑n

j=0 cj(ρ, p, d)
Mn

j (f,α)+cyMn
j (1,α)‖Hn

nf‖∞
π̂n1

N
−2ρ

d

j . 2

Remark 5.1 A conjecture has been made recently by H. Luschgy and G. Pagès to describe

the Ls′-behavior of sequences of Lr-optimal quantizers of an R
d-valued random vector for

some 0 < r < s′ < r + d:

If X ∈ Lr(Rd) such that PX(dξ) = ϕ(ξ)λd(dξ) and
∫
ϕ

1− s′

r+ddλd < +∞, then any sequence

(h∗N ) of Lr-optimal N -quantizers most likely satisfies ‖X − h∗N (X)‖s′ = O(N− 1

d ).

This allows to establish an equivalent of Theorem 5.1 where ρ = 1 and s̄ is assumed to satisfy

s̄ > 1 + 1
d

and then to rise convergence rate order of two step recursive schemes to the one

step recursive one.
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6 Numerical illustrations

Previous filter approximation methods will be applied to estimate Πnf1 and Πnf2, where

f1(x) = x and f2(x) = exp(−|x|). Elements of comparison with alternative filter estimation

methods will be given, namely particle filtering methods:

SIS Sequential Importance Sampling [1, 6] which is based on a weighted Monte Carlo ap-

proach. This method can be considered as close to the quantization method in the sense

that it uses weight transformations in the updating step. Unfortunately, it is known to

suffer from weights degenerescense.

SIR Sequential Importance Re-sampling [9, 6] which adds a re-sampling step to the previous

algorithm in order to avoid weights degenerescense.

We will test estimations for different fixed observation sets and so we denote by Π̂y,n, the

estimation filter associated to the observation process y = (y0, . . . , yn).

In all the following examples, we choose to study stationary signal processes in order to sim-

plify the off line procedure of computing the quantizers. In fact, as we marginally quantize

the signal process, we can just expand the grids of the centered reduced corresponding dis-

tribution. The obtained quantizers are no longer optimal, some further manipulations are

necessary to save the quantizer stationarity property especially in the multidimensional cases.

This paragraph is an overview of selected numerical experiments illustrating first order

schemes behaviour. Further numerical tests will be detailed in a forthcoming paper [19],

especially concerning the comparison with the particle filtering approach. Results obtained

with infinite dimension filters [7, 5] will also be presented.

6.1 Kalman filter

Both signal and observation equations are linear with Gaussian independent noises. It is

known, that the filter in this case has a Gaussian distribution which parameters (mean and

variance) can be computed sequentially via a deterministic algorithm (KF), (see [8]).

We set:





Xk = ρXk−1 + θεk+1,

Yk = Xk + αηk,

εk and ηk iid ∼ N (0, Id),

ρ, θ, α ∈ Md(R).

(6.1)

6.1.1 One dimensional case: d=1

We choose −1 < ρ < 1 and X0 ∼ N (0, θ2

1−ρ2 ), so that for any 0 ≤ k ≤ n, we have Xk ∼
N (0, θ2

1−ρ2 ). In this particular case, we could first compute2 Γ an L2-optimal quantizer of the

centered reduced Gaussian distribution and the companion parameters for a single transition

step. The quantizers Γk are then deduced by an expansion Γk = θ2

1−ρ2 × Γ.

The two first order schemes are compared to the zero order one with Nk = 200, 0 ≤ k ≤ n.

2Optimal quantizers for the Gaussian distribution are downloadable on

http://www.proba.jussieu.fr/pageperso/pages/
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Exact values are computed via the Kalman-Bucy recursive filter algorithm. Particles methods

are also tested for the sake of comparison.

(ρ, θ, α) (0.65,1.0,0.1) (0.8,1.0,0.1)

Π̂y,25f1 Π̂y,25f2 Π̂y,25f1 Π̂y,25f2

KF(Ref. Value) -3.239 0.039 1.754 0.17394

SIS (5000 pts) -3.244 0.039 1.7487 0.17489

SIR (5000 pts) -3.2398 0.039 1.7542 0.1739

QF Or0 (200 pts) -3.2394 0.0393 1.7522 0.17425

QF Or1 1-step (200 pts) -3.2381 0.039431 1.7524 0.17422

QF Or1 2-step (200 pts) -3.2381 0.039431 1.7524 0.17422

Table 1: One dimensional Kalman filter case.

6.1.2 Multidimensional case: d=2

Although the quantization based filter schemes presented previously depend on the signal

dimension d, for both complexity and convergence rate, it remains interesting to compute

estimations for medium signal dimensions. We reconsider equation (6.1) with parameters:

ρ =

(
0.996 0

0 0.996

)
, θ =

(
0.05 −0.01

−0.01 0.02

)
and α = 0.5Id.

The initial signal distribution is centered, Gaussian with covariance matrix:

Σ0 =

(
0.325 −0.087

−0.087 0.0626

)
.

The chosen prior distribution is the stationary one. For signal quantization, we take Γ =

{z1, . . . , zN} the L2-optimal N -quantizer of a centered reduced Gaussian distribution. At

0 ≤ k ≤ N , Xk ∼ N (0,Σ0) and we define the marginal stationary (Nk)-quantizer of (Xk) as

follows:

X̂k =

N∑

i=1

Σ
1

2

0 z
i1

{Xk∈Σ
1
2
0

Ci(Γ)}

Although quantizers are not optimal, we obtain satisfactory convergence results. Convergence

errors are represented in Figure 4. From the log-log scale representation in Figure 4, we can

evaluate the convergence rate improvement using a regression. Table 6.1.2 summarizes the

computed slopes of the regressions.

Or0 Or1 1-step Or1 2-step

-0.45 -1.1 -1.04

Table 2: Regression slopes on the log-log scale representation (d=2)
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We observe nearly the expected theoretical results. The convergence rate for the zero order

scheme is close of 1
d

= 0.5. For first order schemes, the slope is slightly better than the

theoretical one 2
d

= 1.

6.2 Canonical stochastic volatility model (SVM)

We introduce now a non linearity in the observation equation. We consider the following

state equations in R: 



Xk = βXk−1 + σεk+1,

Yk = exp(Xk

2 )ηk,

εk and ηk iid ∼ N (0, 1),

−1 < β < 1 and σ ∈ R
∗
+.

(6.2)

Remark 6.1 This is the time discretization of a continuous diffusion model introduced in

finance as a model of an asset dynamics with stochastic volatility. The stock price St and its

volatility σt solve the following stochastic differential system:

{
dSt = µtStdt+ σtStdWt,

d(ln(σ2
t )) = −λln(σ2

t )dt+ τdWt.
(6.3)

The stock price is supposed to be observable so that the filtering problem corresponds to a

volatility estimation problem, given the set of observed past prices. Taking a time discretiza-

tion step ∆, the Euler scheme writes:

{
ln(

Sk+1

Sk
) = (µk − 1

2σ
2
k)∆ + σk

√
∆ηk,

ln(σ2
k+1) = (1 − λ∆)ln(σ2

k) + τ
√

∆εk+1.
(6.4)

Now, taking Yk = ln(
Sk+1

Sk
), Xk = ln(σ2

k), ηk and εk iid N (0, 1) conducts to the state equations

adopted for the illustration.

Here also we choose X0 ∼ N (0, σ2

1−β2 ), in order to use the same grid at each time step k.

The choice of the triplet (λ, τ,∆) will determine the discrete time model parameters (β, σ).

The exact filter value is not computable for such model, so Figure 1 shows the convergence

behavior of the quantization filters. The first order schemes clearly converge faster.

Comparison with particle methods is made possible by computing some confidence interval

through the 5% and 95% centiles over 4000 realizations of the particle filter estimator. In

Figure 2 are depicted this interval bounds and one realization of the random estimator as

functions of the particle number. For a comparison between the two methods (particles and

quantization), we represent in Figure 3 quantization based filters in the confidence interval

of 10000 particles.

6.3 Numerical stability

Two stability aspects have been studied through numerical applications. The implemented

state equations are those of the previous section (see equation (6.2)) when we model stochastic
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volatility.

The first point we will be interested in, is degeneration of intuitive scheme devised in Remark

3.1. An illustration of such a problem is represented by Figure 5.

The second point is the stability of our estimations in time. This is a recurrent problem

in filtering methods. Even if we considered a fixed observation horizon all over this work,

it is important to study the estimation behaviour when n grows. As the constants Mn
j are

exponentially depending of the observation horizon, we have been interested in verifying that

this does not alter the numerical performances of our filter estimators. (see Figure 6). Note

that the chosen state equations and the stationarity assumption give that K = β < 1.

Acknowledgment: I am grateful to Pr. Gilles Pagès and Pr. Huyên Pham who supported

this work and contributed to its development by enriching suggestions.

References

[1] S. Arulampalam, T. Clapp, N. Gordon, and S. Maskall. A tutorial on particle filters for

On-line Non-linear/Non Gaussian Bayesian tracking. QinetiQ Ltd, DSTO, IEEE, 2001.

[2] V. Bally and G. Pagès. A quantization algorithm for solving discrete time multi-

dimensional optimal stopping problems. Bernoulli, 9:1003–1049, 2003.

[3] V. Bally, G. Pagès, and J. Printems. First order schemes in the numerical quantization

method. Mathematical finance, 13(1):1–16, 2003.

[4] V. Bally, G. Pagès, and J. Printems. A quantization tree method for pricing and hedging

multidimensional american options. Mathematical Finance, 15(1):119–168, 2005.

[5] M. Chaleyat-Maurel and V. Genon-Catalot. Computable inifite dimensional filters with

applications to discretized diffusion processes. Preprint of Laboratoire de Probabilités
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[19] A. Sellami. Comparative survey on non linear filtering methods : the quantization and

the particle filtering approaches. Preprint of Laboratoire de Probabilités et Modèles
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Figure 1: Quantization filter approximations for SVM as a function of the quantizer size Nk

- three different observation 50-tuples (right: Πy,50f1, left: Πy,50f2) - (β, σ) = (0.996, 0.0316).
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Figure 2: Particle filter approximations for SVM as a functions of particle number using SIR

algorithm (left: Π100f1, right: Π100f2) - (β, σ) = (0.995, 0.01) - Centiles over 4000 realizations.
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Figure 3: Quantization filter estimator as functions of quantizer size, in the SIR confidence

interval with 104 particles (right: Π̂100f1, left: Π̂100f2) - (β, σ) = (0.995, 0.01).
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Figure 4: Quantization filter estimator errors for 2-dimensional Kalman case as a function of

the quantizer size Nk (left: ‖Π10f1 − Π̂10f1‖2, right: log-log scale representation).
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Figure 5: Quantization filter estimator for SVM using intuitive first order schemes as function

of quantizer size (right: Π̂100f1 as a function of quantizer size N for n = 100, left: Π̂.f1 as a

function of n for N = 170) - (β, σ) = (0.995, 0.01).
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Figure 6: Horizon varying effect on quantization based filters for SVM (top: Π̂.f2 for Nk = 10

as a function of n, bottom: Π̂.f2 for Nk = 200 as a function of n) - (β, σ) = (0.995, 0.01).
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