
HAL Id: hal-00012227
https://hal.science/hal-00012227

Submitted on 18 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cover Picture Story: Experiments with Modular State
Spaces

Laure Petrucci

To cite this version:
Laure Petrucci. Cover Picture Story: Experiments with Modular State Spaces. Petri Net Newsletter,
2005, 68, pp.cover and 5-10. �hal-00012227�

https://hal.science/hal-00012227
https://hal.archives-ouvertes.fr


http://www-lipn.univ-paris13.fr/~petrucci/PAPERS
Petri Net Newsletter 68, April 2005

Cover Picture Story:

Experiments with Modular State Spaces

Laure Petrucci

LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE
petrucci@lipn.univ-paris13.fr

Abstract. The main analysis techniques for critical systems use state space exploration.
However, one is often quickly limited by the so-called state space explosion problem, even
if the systems models are relatively small. Several methods have been proposed to tackle
this problem in order to get a manageable state space. One of these takes advantage of the
modular structure of the model in order to build a modular state space, which is basically
a set of local state spaces plus a synchronisation graph indicating the global behaviour. In
this paper, we present a few case studies and compare the state space sizes with those of
the full state space. The results are discussed, pointing out the criteria the model should
satisfy for the technique to be efficient.

1 Introduction

The use of high-level Petri net formalisms has made it possible to create Petri net models of large
systems. Even though the use of such models allows the modeller to create compact representations
of data and action, the size of models has been increasing. A large model can make it difficult to
handle the complexity of the modelling as well as the analysis of the total system. It is well-known
that the use of a modular approach to modelling has a lot of advantages: it allows the modeller
to consider different parts of the model independently of one another. A modular approach to
analysis is also attractive: it often dramatically decreases the complexity of the analysis task.

The main analysis technique consists in building the occurrence graph and then check proper-
ties on this graph. However, one often has to cope with the so-called state space explosion problem.
Several techniques have been designed in order to reduce the state space so that it can become
manageable, e.g. partial order reductions [Hol91], sweep-line [CKM01], occurrence graphs with
equivalences/symmetries [Jen94], . . . The Modular State Space technique [CP00,LP04] takes ad-
vantage of the modular organisation of the model. This paper aims at evaluating the pros and
cons of Modular State Spaces.

This paper is structured as follows. Section 2 recalls the basic notions of Modular State Spaces.
In order to make experiments, several case studies are presented in section 3. Their Modular State
Spaces size are compared with the occurrence graph size in section 4. These results are then
discussed.

2 Modular State Spaces

In this section, we recall the basic definitions of modular Petri nets and modular state spaces. The
reader already familiar with these or primarily interested in the experimental results can skip this
section.

2.1 Modular Petri Nets

Modular Petri nets considered here consist only of modules synchronised through shared transi-
tions.



Definition 1 ([LP04], definition 3). A modular Petri net is a pair MN = (S,TF ), satisfying:

1. S is a finite set of modules such that:

– Each module, s ∈ S, is a Petri net: s = (Ps, Ts, Ws, M0s
).

– The sets of nodes corresponding to different modules are pair-wise disjoint:
∀s1, s2 ∈ S : [s1 6= s2 ⇒ (Ps1

∪ Ts1
) ∩ (Ps2

∪ Ts2
) = ∅].

– P =
⋃

s∈S

Ps and T =
⋃

s∈S

Ts are the sets of all places and all transitions of all modules.

2. TF ⊆ 2T \ {∅} is a finite set of non-empty transition fusion sets.

Explanation
(1) A modular Petri net contains a finite set of modules, each of them being a Petri net. These
modules must have disjoint sets of nodes.
(2) Each transition fusion set is a set of transitions to be fused (synchronised) together.

In the following, TF also denotes ∪tf∈TF tf .

Definition 2 ([LP04], definition 4). A transition group tg ⊆ T consists of either a single non-
fused transition t ∈ T \TF or all members of a transition fusion set tf ∈ TF . The set of transition
groups is denoted by TG.

A transition group corresponds to a synchronised action. The arc weight function W is extended
to transition groups, i.e. ∀p ∈ P, ∀tg ∈ TG :

W (p, tg) =
∑

t∈tg

W (p, t), W (tg , p) =
∑

t∈tg

W (t, p).

Markings of modular Petri nets are defined as markings of Petri nets, over the set P of all places
of all modules. The restriction of a marking M to a module s is denoted by Ms.

Definition 3 ([LP04], definition 5). A transition group tg is enabled in a marking M , denoted
by M [tg〉, iff ∀p ∈ P : W (p, tg) ≤ M(p).
When a transition group tg is enabled in a marking M1 it may occur, changing the marking M1

to another marking M2, defined by: ∀p ∈ P : M2(p) = (M1(p) − W (p, tg)) + W (tg , p).

2.2 Modular State Spaces

In this section, we will recall the formal definitions of the modular state space from [LP04].
When building the modular state space, we will use Strongly Connected Components. The set

of all strongly connected components is denoted by SCC . We use vc to denote the component to
which a node v belongs.

We denote the set of states reachable from M by occurrences of local (non-fused) transitions
only, in all the individual modules, by [[M〉.

The notation with a subscript s means the restriction to module s, e.g. [M〉s is the set of all
nodes reachable from global marking M by occurrences of transitions in module s only.

We use M1[[σ〉〉M2 to denote that M2 is reachable from M1 by a sequence σ ∈ (T \ TF )
∗

TF
of internal transitions followed by a fused transition.

For any reachable marking M , we use M 6c to denote the product (or tuple) of Strongly Con-
nected Components (SCCs) M c

s of the individual modules:

∀M ∈ [M0〉 : M 6c =
∏

s∈S

M c

s .

The definition of a modular state space consists of two parts: the state spaces of the individual
modules and the synchronisation graph.



Definition 4 ([LP04], definition 7). Let MN = (S,TF ) be a modular Petri net with the initial
marking M0. The modular state space of MN is a pair MSS = ((SS s)s∈S ,SG), where:

1. SSs = (Vs, As) is the local state space of module s:

(a) Vs =
⋃

v∈(VSG)s

[v〉s.

(b) As = {(M1, t, M2) ∈ Vs × (T \ TF )s × Vs |M1[t〉M2}.

2. SG = (VSG , ASG) is the synchronisation graph of MN :

(a) VSG = [[M0〉〉 6c ∪ {M 6c
0}.

(b) ASG = {(M 6c
1 , (M ′

1
6c
, tf ), M 6c

2 ) ∈ VSG × ([M0〉 6c × TF ) × VSG |M ′
1 ∈ [[M1〉 ∧ M ′

1[tf 〉M2}.

Explanation
(1) The definition of the state space graphs of the modules is a generalisation of the usual definition
of state spaces.

(1a) The set of nodes of the state space graph of a module contains all states locally reachable
from any node of the synchronisation graph.

(1b) Likewise, the arcs of the state space graph of a module correspond to all enabled internal
transitions of the module.
(2) Each node of the synchronisation graph is labelled by a M 6c and is a representative for all the
nodes reachable from M by occurrences of local transitions only, i.e. [[M〉. The synchronisation
graph contains the information on the nodes reachable by occurrences of fused transitions.

(2a) The nodes of the synchronisation graph represent all markings reachable from another
marking by a sequence of internal transitions followed by a fused transition. The initial node is
also represented.

(2b) The arcs of the synchronisation graph represent all occurrences of fused transitions.

The state space graphs of the modules only contain local information, i.e. the markings of the
module and the arcs corresponding to local transitions but not the arcs corresponding to fused
transitions. All the information concerning these is stored in the synchronisation graph.

3 Case Studies

In this section, we describe the case studies that have been used for experimenting the Modular
State Space technique.

3.1 Distributed Database

The cover picture of this Petrinet newsletter represents a model derived from the distributed
database presented in [Jen92] (for 3 database managers on the cover picture). The original coloured
Petri net has been unfolded into a Modular Petri net, where a net as described in figure 1(a) is
associated with each database manager, while the whole system is synchronised through the net
in figure 1(b). The full transitions with the same name are those to be fused, i.e. they form a
transition fusion set. They are used for a database manager i to send a message to all other
database managers, or to receive all the acknowledgements from these. Note that the transition is
different for database manager i from those for database managers j, ∀j 6= i.



receiveacks_1

receiveacks_i

sendmess_i

sendmess_n

Waiting_i

Sent_i

Inactive_i

Ack_i

sendack_i

receivemess_i

Processing_i

sendmess_1

receiveacks_n

.

.

.

.

.

.

(a) Database manager i

sendmess_n

Active

receiveacks_1

Passive

sendmess_1 .
.
.

.

.

.
receiveacks_n

(b) System control

Fig. 1. The modular distributed database

3.2 Automated Guided Vehicles

The Automated Guided Vehicles (AGVs) prob-
lem, in figure 2, was introduced in [KH91]. It has
been solved by means of Modular State Spaces
in [LP04].
The problem is that of a factory floor which consists
of three workstations which operate on parts, two in-
put and one output stations, and five AGVs which
move parts from one station to another. The various
stations appear on the edges of the net. The two in-
put stations are the subsystems consisting of sets of
places {I1, I2} and {I3, I4} (and their neighbouring
transitions). The three workstations are captured by
the subsystems with sets of places {W11, . . . , W14},
{W21, . . . , W24} and {W31, . . . , W36}. The out-
put station is the subsystem consisting of places {O1,
O2}. The subsystems for the various AGVs are mod-
elled by the central parts of the net. Thus vehicle A
is captured by the places {A1, . . . , A6} and com-
mutes between input station 1 and workstation 1.
Four other vehicles (B, D, E and F) travel on the
factory floor.
The greyed boxes represent dangerous zones, i.e. ar-
eas where the presence of multiple AGVs will lead
to a collision. The factory floor, as shown, does not
directly exhibit controls of the AGVs. However, it
is intended that the filled transitions represent pos-
sible control points. In other words, some controller
can inhibit the firing of these transitions and thereby
prevent collisions from occurring between the AGVs.
The other transitions are not controllable, but can

I1

I2

A6

A1

B14

B1

A2

A5

W36

B13

A4

A3

W11

W12

W13

W14
B2

B3

t1 t2

t7

t3

t30

t18

t20

t19

t4

t6

t5

t8

t9

t26

I3

I4

t16 t17

B5

t22

t21

D6

D1

D4

D3

t12

t14
t15

t11

t10

t13

W21

W22

W23

W24

t24

t44

t45

t39

B10

B12

t31

t27

t28

t29

t23

t25

B7

B8

E10

E1

E3

t43

t35

t37

t36

E8

t41

t42

E5

E6

B4

D2

B11

D5

B6

B9

E9

E2

t34

t40

t38

F4

F5

F6

F3

F1

F8

O1

O2

t49 t53

t48

t50

t51t47

t46

t52

t33

F7

F2

E4

E7

W34

W33

W31

W35

W32

t32

Fig. 2: The five AGVs problem.

provide sensory information about the progress of the AGVs. It is then part of the problem to
design the logic of the controller so as to eliminate the possibility of collisions, while minimising
the disruption to the system. In other words, it is desirable to retain as much concurrent activity
as possible, without allowing collisions to occur.

3.3 Philosophers

We considered two versions of the philosophers problem: the usual one, depicted in figure 3, and
the poisoned philosophers from [CPN], shown in figure 4: a philosopher can die while eating and
then his corpse decomposes.



take_i

Eating_i

leave_i

Thinking_i

(a) Classical philosopher i

take_j

Occupied_j

leave_j

Free_j

take_j-1

leave_j-1

(b) Chopstick j

Fig. 3. The classical philosophers problem

take_i,i

Eating_i

leave_i,i

Unborn_i
Thinking_i

Taking_i

Dead_iLeaving_i

born_i

take_i,j

leave_i,j decompose_i

die_i

(a) Poisoned philosopher i

take_j,j

Occupied_j

leave_j,j

Free_j

take_j-1,j

leave_j-1,j

(b) Chopstick i

Fig. 4. The poisoned philosophers problem

3.4 Railway crossing

The last example is derived from the classical railway crossing problem. The version considered is
presented in figure 5. It is untimed but a transition simulating waiting in a state has been added,
and several trains can travel.

lower

down

raise

up

get_down

get_up

wait_1

close

open

wait_4

wait_3

wait_2

(a) Gate

lower

order_upwait4train

order_down

Cwait_1 raise

Cwait_3

Cwait_2
approach_n

approach_1 .
.
.

exit_n

exit_1 .
.
.

(b) Controller

pass_i

after_i

far_i

before_i

i_wait_1

i_wait_3

i_wait_2
approach_i

exit_i

(c) Train i

Fig. 5. The railway crossing system

4 Experiments

Experiments have been conducted with a prototype tool using the algorithms described in [LP04]
in order to obtain the sizes (number of nodes and arcs) of the modular state space. The size of
the (flat) occurrence graph is also given, either generated by a tool or calculated. We expressed,
when possible the numbers as a function of the parameter n (number of trains, philosophers, . . . ).
Those for the occurrence graph of the database and the philosophers models were already given
in [Jen94].

The 5 AGVs example is loosely coupled. Therefore, much interleaving is avoided when build-
ing the modular state space and this leads to very good results. On the contrary, the traditional
philosophers’ example is strongly synchronised. All the transitions then appear in the synchroni-
sation graph which has exactly the same size as the occurrence graph. The local graphs induce



Model param
Occurrence Graph

NOG AOG

5 AGVs 30, 965, 760 345, 784, 320

Database n n × 3n−1 2(n − 1) × 3n−2 + 2n

Philosophers
2 3 4
3 4 6

n NOG(n − 1) + NOG(n − 2) 2n × Fn, Fn = Fn−1 + Fn−2, F2 = F3 = 1

Poisoned
philosophers

2 21 38
3 99 264

n 4NOG(n − 1) + 3NOG(n − 2) + 6
Railway n 4(n2 + n + 1) 4n3 + 22n2 + 16n + 11

Table 1. Occurrence graphs

Model param
Modular State Space

NMSS AMSS

5 AGVs 900 2, 687

Database n 6n + 3 4n

Philosophers
2 11 4
3 16 6

n NOG(n) + 4n AOG(n)

Poisoned
philosophers

2 33 30
3 99 171

n 4NMSS(n − 1) + NMSS(n − 2) + 8n + 4
Railway n

n(n+1)
2

+ 5n + 10 n2 + 8n + 10

Table 2. Modular State Spaces

additional local nodes. The modified version of the philosophers introduces local behaviour which
leads to better results. A similar remark applies to the railway crossing example.

Finally the cover picture database example gives a significant reduction in the state space size.
That might seem surprising at first, as there are very few local transitions w.r.t. synchronised
ones. But with a closer look, we notice that the initial marking enables only n synchronised transi-
tions (sendmess i), and then local behaviour takes place, until the corresponding receiveacks i

occurs, which leads back to the initial marking. Hence, even though there are many synchronised
transitions, all of them quasi-live, they cannot be fired that often.

References

[CKM01] S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method for state space ex-
ploration. In Proc. 7th Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’2001), Genova, Italy, Apr. 2001, volume 2031 of Lecture Notes in Computer
Science, pages 450–464. Springer, 2001.

[CP00] S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Computer Journal,
43(3):224–242, 2000.

[CPN] Design/CPN online. http://www.daimi.au.dk/designCPN.
[Hol91] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Int., 1991.
[Jen92] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and practical use. Volume 1:

basic concepts. Monographs in Theoretical Computer Science. Springer, 1992.
[Jen94] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and practical use. Volume 2:

analysis methods. Monographs in Theoretical Computer Science. Springer, 1994.
[KH91] B. Krogh and L. Holloway. Synthesis of feedback control logic for discrete manufacturing systems.

Automatica, 27(4), 1991.
[LP04] C. Lakos and L. Petrucci. Modular analysis of systems composed of semiautonomous subsystems.

In Proc. 4th Int. Conf. on Application of Concurrency to System Design (ACSD’04), Hamilton,
Canada, June 2004, pages 185–194. IEEE Comp. Soc. Press, June 2004.


