
HAL Id: hal-00012214
https://hal.science/hal-00012214v1

Submitted on 18 Oct 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modularity and Petri Nets
Laure Petrucci

To cite this version:
Laure Petrucci. Modularity and Petri Nets. 7th International Symposium on Programming and
Systems (ISPS’2005), 2005, Alger, Algeria. pp.7-8. �hal-00012214�

https://hal.science/hal-00012214v1
https://hal.archives-ouvertes.fr


http://www-lipn.univ-paris13.fr/~petrucci/PAPERS
In Proc. 7th Int. Symposium on Programming and Systems (ISPS’2005), Algiers, Algeria, pages 7–8, May 2005.

Modularity and Petri Nets

Laure Petrucci

LIPN, CNRS UMR 7030, Université Paris XIII
99, avenue Jean-Baptiste Clément
F-93430 Villetaneuse, FRANCE
petrucci@lipn.univ-paris13.fr

Abstract. The systems to model are nowadays very large. Their specifi-
cation is often decomposed into several steps. This leads to modularly or
incrementally designed models. Petri nets analysis is generally achieved
via state space analysis, which is often impossible to perform due to the
so-called state space explosion problem. Several methods allow to reduce
the occurrence graph size, e.g. using partial orders, symmetries, . . . Here,
we focus on techniques which take advantage of the modular design of
the system, and hence builds the state space in a modular or incremental
way.

Introduction

Nowadays, systems become larger and larger. In order to cope with a large model,
high-level Petri nets have been designed, where data is carried by tokens and
manipulated by transitions, while the Petri net structure describes the informa-
tion flow. However, the use of such high-level models proves not to be sufficient.
When designing a system, the modeller often decomposes it into different parts
with separate functionalities, e.g. a sender and a receiver in a protocol. This
natural decomposition in the design can also be used in the model, leading to
a modular Petri net. It possesses the additional advantage of designing an en-
tity once and eventually reusing it when several copies occur in the system, e.g.
several receivers behaving exactly in the same way.

A desirable verification issue would then be to check the properties of the
modules separately and infer those of the whole system. Unfortunately, this often
does not work or only for undesired properties. Hence, verification based on a
modular approach is not straightforward and led to several research trends.

Several techniques have been proposed to push further the use of modularity
for verification purposes. They allow to compute the invariants of the whole
system from those of the modules [CP92,CP00] or give compact and/or modular
representation of the occurrence graph, thus avoiding the state space explosion
problem.

Here, we will focus on different compositional/modular techniques for state
space construction.



Modular State Spaces

Let us consider a modular Petri net in which the modules are connected via syn-

chronised transitions. The modular state space was introduced in [CP95,CP00],
further refined and implemented in [LP04].

Instead of having a single flat occurrence graph, which may quickly become
quite large, the modular state space is composed of several graphs. Each mod-
ule has its own state space which reflects only local behaviour: the states are
restricted to the places within the module, while the arcs captures the firing of
local transitions only, i.e. transitions of the module which are not synchronised
with transitions of other modules. In addition to these local state spaces, a syn-

chronisation graph describes the interactions between the individual modules.
The arcs provide information on the firing of synchronised transitions only, and
the nodes are labelled by a product of strongly connected components of the
modules’ state spaces. Hence, interleavings are avoided, and the representation
can be quite compact.

Experiments have been conducted in [LP04,Pet05] showing that when mod-
ules are rather loosely coupled, the modular state space is small (and thus
amenable) compared to the flat occurrence graph. This is the case for models of
flexible manufacturing systems, workflows, . . . encountered in practice.

A drawback could be that verifying properties requires traversing several
graphs, collecting the information scattered in different structures. However,
[CP00,LP04] provide algorithms to check the classical Petri net properties (bound-
edness, deadlocks, liveness, . . . ), and [LM04] addresses the verification of LTL
properties and its implementation within the maria tool [Mar].

Compositional Verification

Complementary techniques have been introduced in [Kla03]. Let us assume we
have a Petri net and a LTL\X formula it should satisfy. [Kla03] constructs an
observation graph where the transitions that appear in the formula are repre-
sented while the other ones are not. The states thus represent sets of states that
can be reached from another one by firing unobservable transitions only.

This approach is property-dependant as an observation graph must be built
for each formula where different transitions are concerned. It is basically the
same idea as the one mentioned in [LP04]: the Petri net to be analysed can be
regarded as a modular Petri net where the synchronisation transitions are those
of interest, i.e. the observable ones. Then the synchronisation graph of [LP04]
and the observation graph of [Kla03] coincide.

[Kla03] also proposes sufficient conditions for deducing properties of the
whole system from those of its subsystems. The subsystems are not completely
considered in isolation: the other ones are abstracted away by abstraction places.
Thus, when analysing a module, information about its environment behaviour
is present as well. The abstraction places are determined through invariants
computation for the complete system.



Incremental Verification

The design of a system is often incremental: it is first done at an abstract level,
and then parts of it are refined. A similar approach to state space construction
is presented in [LL01]. Three types of refinement are used: type, subnet and
node refinements. The first one consists in extending type definitions, the second
in adding a subnet to the abstract one, and the third in replacing a place (or
transition) by a place-bordered (transition-bordered) subnet satisfying some flow
criteria. The construction of the state space exploits those of the subnets and
abstract net. According to the sort of refinement used, some of the nodes and
arcs in these state spaces are reused, thus avoiding additional computation, or,
for node refinement, the technique is similar to modular state spaces. Local
state spaces are built for the refining nets while a global state space captures
the markings of the other places and points onto the local state spaces, as the
synchronisation graph of modular state spaces does.

References

[CP92] S. Christensen and L. Petrucci. Towards a modular analysis of coloured
Petri nets. In Proc. 13th Int. Conf. Application and Theory of Petri Nets
(ICATPN’92), Sheffield, UK, June 1992, volume 616 of Lecture Notes in Com-
puter Science, pages 113–133. Springer, 1992.

[CP95] S. Christensen and L. Petrucci. Modular state space analysis of coloured
Petri nets. In Proc. 16th Int. Conf. Application and Theory of Petri Nets
(ICATPN’95), Turin, Italy, June 1995, volume 935 of Lecture Notes in Com-
puter Science, pages 201–217. Springer, 1995.

[CP00] S. Christensen and L. Petrucci. Modular analysis of Petri nets. The Computer
Journal, 43(3):224–242, 2000.

[Kla03] K. Klai. Réseaux de Petri : vérification modulaire et symbolique. PhD thesis,
University Paris 6, France, 2003.

[LL01] C. Lakos and G. Lewis. Incremental state space construction of coloured
Petri nets. In Proc. 22nd Int. Conf. Application and Theory of Petri Nets
(ICATPN’01), Newcastle, UK, June 2001, volume 2075 of Lecture Notes in
Computer Science, pages 263–282. Springer, 2001.

[LM04] T. Latvala and M. Mäkelä. LTL model-checking for modular Petri nets. In
Proc. 25th Int. Conf. Application and Theory of Petri Nets (ICATPN’04),
Bologna, Italy, June 2004, pages 298–311, June 2004.

[LP04] C. Lakos and L. Petrucci. Modular analysis of systems composed of semiau-
tonomous subsystems. In Proc. 4th Int. Conf. on Application of Concurrency
to System Design (ACSD’04), Hamilton, Canada, June 2004, pages 185–194.
IEEE Comp. Soc. Press, June 2004.

[Mar] Maria: the modular reachability analyser. http://www.tcs.hut.fi/Software/
maria/index.html.

[Pet05] L. Petrucci. Cover picture story: Experiments with modular state spaces. Petri
Net Newsletter, 2005. To appear.


