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DISCRETE COMPACTNESS FOR THE hp VERSION OF

RECTANGULAR EDGE FINITE ELEMENTS

DANIELE BOFFI, MARTIN COSTABEL, MONIQUE DAUGE, AND LESZEK DEMKOWICZ

Abstract. Discretization of Maxwell eigenvalue problems with edge finite elements in-
volves a simultaneous use of two discrete subspaces of H1 and H(curl), reproducing the
exact sequence condition. Kikuchi’s Discrete Compactness Property, along with appropri-
ate approximability conditions, implies the convergence of discrete eigenpairs to the exact
ones.

In this paper we prove the discrete compactness property for the edge element approxi-
mation of Maxwell’s eigenpairs on general hp adaptive rectangular meshes. Hanging nodes,
yielding 1-irregular meshes, are covered, and the order of the used elements can vary from
one rectangle to another, thus allowing for a real hp adaptivity. As a particular case, our
analysis covers the convergence result for the p-method.

1. Introduction

The importance of the exact sequence

H1 grad−→ H(curl)
curl−→ H(div)

div−→ L2

has been recognized in the analysis of Maxwell equations [12, 13, 2]. In two space dimensions
the sequence reduces to

H1 grad−→ H(curl)
curl−→ L2.

In this paper we shall deal with the two dimensional case.
The fundamental idea behind the construction of edge elements is based on the reproduc-

tion of the sequence at the discrete level. This idea had been also successfully exploited
in the framework of mixed finite elements for elliptic problems, where it is also known as
commuting diagram property [34].

Thus, we shall consider discrete subspaces of H1 and H(curl) forming part of the discrete
exact sequence. It is in this context that Kikuchi [35] introduced the fundamental notion of
the Discrete Compactness Property which, along with appropriate approximability proper-
ties, guarantees the convergence of discrete Maxwell eigenvalues to the exact ones. We also
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refer to the book [17] for a definition corresponding to discrete compactness in an abstract
setting. In another important contribution Caorsi et al. [16] have demonstrated that the
discrete compactness property is not only a sufficient but also a necessary condition for the
convergence of Maxwell eigenvalues without the appearance of any spurious mode.

Let us recall that the difficulty related with the Maxwell curl curl operator is the lack
of ellipticity manifested by the presence of the infinite dimensional kernel formed by the
gradients. Nevertheless the Maxwell problem is well posed as soon as the divergence free
constraint is imposed. With this constraint, the Maxwell problem recovers ellipticity proper-
ties due to the compact embedding of H0(curl)∩H(div) into L2. The Discrete Compactness
is the correct discrete analogue of the above compact embedding.

For the sake of clarity let us give the definition of Discrete Compactness Property. Like
the usual approximability properties, it is related to a sequence of discrete spaces. Let (Xn)n

be a sequence of finite dimensional subspaces of H0(curl) and (Qn)n a related sequence of
subspaces ofH1. We say that the sequence (Qn,Xn)n has the Discrete Compactness Property
if there holds:

Any sequence un ∈ Xn of discrete divergence free fields, i.e. satisfying

(un, gradφn) = 0, ∀φn ∈ Qn

and uniformly bounded in H(curl), has a subsequence converging in L2.

The Discrete Compactness Property has been extensively studied in the framework of the
h version of edge finite elements where it is well known to hold true for a variety of edge finite
elements on quite general two and three dimensional meshes (see the review papers [33, 19],
the book [38], and the references therein, among which we recall in particular [35, 9, 6, 39,
7, 16, 14], but has not been widely investigated for the p and hp version yet. On the other
hand, electromagnetic devices very often involve complicated geometries, which in particular
may be neither smooth nor convex. The analysis of the singularities arising from reentrant
corners or edges and from material discontinuities (see [18, 20]) shows that such situations
are to be handled with care. When using edge elements, one might want to locally adapt
the meshsize h and the approximation order p, which can possibly vary from one element
to another within the same mesh. Such an hp strategy is an excellent way to get accurate
results (an exponential convergence is expected and observed) when even severe singularities
are present (see [42, 23] for examples of hp finite element implementations).

In [8], the analysis of the discrete compactness property for triangular hp finite elements
has been tackled, but the proof of the main result relied on a conjectured L2 estimate which
had only been demonstrated numerically. Even for the pure p method, there is no result
in this direction available in the literature. In [37] the p version of edge elements has been
considered, but the proved results do not apply to eigenvalue approximations.

In this paper, we consider the two dimensional case of rectangular elements. A rigorous
proof of the discrete compactness property is provided for edge elements of the first Nédélec
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family. Our hypotheses allow for a complete hp refinement, including the presence of hanging
nodes. The pure p version of edge elements, being a subset of our setting, is naturally
covered by our analysis. The same proof applies to meshes of quadrilaterals obtained by
affine transformation from the reference square (i.e., parallelograms) and, more generally, to
meshes obtained using the so called algebraic mesh generators.

The case of unstructured quadrilateral meshes presents some issues: It is known that
the h version of standard edge elements do not provide optimal results in this case, and,
even, in the lowest order case there is no convergence at all, see [3]. Nevertheless, the
results of [31] show that the Discrete Compactness Property holds in the framework of the
h version for the modified family of edge elements proposed and analyzed in [3]; another,
simpler, modification has been proposed and analyzed in [11]. But the validity of the discrete
compactness property for the p and hp versions of edge elements remains an open problem
in the situation of unstructured meshes.

Our presentation starts with the pure p method on a single square element, which is
analyzed in Section 3 after the introduction of some preliminary notation in Section 2. We
consider, in particular, full tensor polynomials (the second Nédélec family of edge elements,
see [41]) and standard edge element of the first Nédélec family (see [40]). We show that
standard edge elements provide convergent approximation, while the second Nédélec family
presents several spurious eigenpairs (more precisely, some discrete eigenvalues come with
wrong multiplicity). We then present in Section 4 the general hp theory which relies on an
L2 estimate which is proved thanks to the evaluation of an inf-sup constant on the reference
element (Section 4.3). We make use of the hp edge element spaces presented in [42], which
generalize the first family of Nédélec finite elements.

We conclude our paper in Section 5, where we recall the consequences of the Discrete
Compactness Property on the eigenvalue approximation by a Galerkin method: As a result,
the k-th non-zero eigenvalue of the Galerkin discretization converges to the k-th non-zero
Maxwell eigenvalue. We discuss the possibility of proving an exponential convergence rate,
like obtained in [22] for the discretization of the Maxwell problem by the Weighted Regular-
ization Method. We then finally comment on the extension of our proofs to the situation of
general curvilinear polygons, with meshes obtained using algebraic mesh generators.

2. Preliminary notions and notation

2.1. Polynomial spaces on the reference square. The square is defined as Σ := I2

where I is the interval (−1, 1). We denote the coordinates by x = (x, y). The outward unit
normal vector on the boundary ∂Σ is n.

Everywhere p denotes an integer p ≥ 1. The space of polynomials of degree ≤ p on I is
denoted by Pp(I), its subspace of polynomials ϕ with zero traces, ϕ(±1) = 0, is denoted by
P

p
0(I).
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On the square, let Qp,q(Σ) be the space of polynomials of separate degrees p and q in x
and y, respectively. This can be expressed as

Qp,q(Σ) = Pp(I) ⊗ Pq(I).

Symbol Qp will be used for isotropic spaces, Qp = Qp,p, and Q
p
0 will denote the polynomials

with zero traces, Q
p
0 = P

p
0 ⊗ P

p
0.

We will study in the following two families of polynomial spaces for the electric field
u = (u1, u2) on the square Σ. We postpone to Section 5 the introduction and the investigation
of a third family, namely the augmented ABF family [3].

2.1.1. Full tensor product spaces: Qp(Σ) denotes the full space Qp(Σ) × Qp(Σ). This is the
space of Lagrange nodal elements on the square and, with appropriate degrees of freedom,
this forms also the second Nédélec family of edge elements.

We denote by Qp
N
(Σ) its subspace of the fields u satisfying the perfect electric conductor

boundary condition u × n = 0 on ∂Σ. We have

(1) Qp
N
(Σ) =

[
Pp(I) ⊗ P

p
0(I)

]
×
[
P

p
0(I) ⊗ Pp(I)

]
.

2.1.2. Classical edge elements: Np(Σ) denotes the space Qp−1,p(Σ)×Qp,p−1(Σ) which allows
the commuting diagram property with the operator grad from the space of scalar poly-
nomials Qp(Σ). This edge element spaces are also known as first Nédélec family of edge
elements. For simplicity, we shall refer to the spaces of this section as standard (Nédélec)
edge elements. We denote by Np

N
(Σ) the subspace of fields satisfying the electric boundary

condition:

(2) Np
N
(Σ) =

[
Pp−1(I) ⊗ P

p
0(I)

]
×
[
P

p
0(I) ⊗ Pp−1(I)

]
.

2.2. Maxwell spectrum in the square. In Section 3 we shall describe in terms of 1D
problems the Maxwell spectrum computed with the spaces Qp

N
(Σ) and Np

N
(Σ).

We first recall the definition of the standard continuous spaces associated with Maxwell
equations on a domain Ω: H(curl,Ω) is the space of L2(Ω) fields with curl in L2(Ω), while
H0(curl,Ω) is the subspace of H(curl,Ω) with perfect electric boundary conditions; H(div,Ω)
is the space of L2(Ω) fields with divergence in L2(Ω).

Let us describe the Maxwell spectrum in the continuous space

XN(Σ) := H0(curl,Σ) ∩ H(div,Σ) ,

i.e., the eigenpairs (λ, u) with u 6= 0 such that

(3) u ∈ XN(Σ) :

∫

Σ

curl u curl v dx = λ

∫

Σ

u · v dx, ∀v ∈ XN(Σ).

2.2.1. The kernel: for λ = 0, we have the whole space gradH1
0 (Σ) of kernel elements.
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2.2.2. The genuine Maxwell spectrum: the whole non-zero spectrum corresponds to eigen-
vectors of the form u = curlϕ with ϕ non-constant eigenvector of the Neumann problem
on Σ. Let (ψj)j≥0 be the basis of the Neumann eigenvectors on the interval I, they are

associated with the eigenvalues j2π2/4. Then, the Maxwell spectrum on Σ is

(4) λj,k = (j2 + k2)π2/4, uj,k(x, y) =
(
ψj(x)ψ

′
k(y),−ψ′

j(x)ψk(y)
)
, j + k ≥ 1.

For comparison purposes, it is convenient to split the whole spectrum into the three
following parts.

(a) The kernel.
(b) The non-zero Neumann eigenvalues j2π2/4 associated with the two eigenvectors

(
0,−ψ′

j(x)
)

and
(
ψ′

j(y), 0
)
.

(c) The sum of two non-zero Neumann eigenvalues (j2 + k2)π2/4 with the eigenvectors
uj,k (and uk,j if j 6= k).

Remark 1. For all non-constant Neumann eigenvectors ψj (i.e., for j ≥ 1), ψ′
j is a Dirich-

let eigenvector associated with the eigenvalue j2π2/4. Let us denote ϕj := −ψ′
j . Then

(j2π2/4)ψj = −ψ′′
j = ϕ′

j, and we can see that eigenvectors associated with part (c) of the
spectrum can be written as

(5)
( 1

j2
ϕ′

j(x)ϕk(y),−
1

k2
ϕj(x)ϕ

′
k(y)

)

.

3. Approximation of Maxwell’s spectrum in a square by the p method

In this section we characterize explicitly the Maxwell spectrum on the square computed
with the full polynomial space Qp

N
(Σ) and with the Nédélec edge element space Np

N
(Σ).

In contrast with (4), where the 1D generators are the Neumann eigenvectors on the in-
terval, at the discrete level we will show that the 1D generators are the Dirichlet discrete
eigenvectors: for p ≥ 2, we consider the eigenpairs (λ, β) with β 6= 0 such that

(6) β ∈ P
p
0(I) :

∫

I

β ′w′ dx = λ

∫

I

βw dx, ∀w ∈ P
p
0(I).

The dimension of P
p
0(I) is p− 1; for j = 1, . . . , p− 1, let

(
λ

[p]
j , β

[p]
j

)
be an eigenpair basis of

(6) satisfying

λ
[p]
1 < λ

[p]
2 < . . . < λ

[p]
p−1.

For each j, λ
[p]
j tends exponentially to j2π2/4 as p → ∞. This follows from the standard

convergence analysis for elliptic eigenvalue problems [5], and best approximation properties
of the p-version of the FEM, see [43, Chapter 3].
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We are going to describe the Maxwell spectrum in Qp
N
(Σ), i.e., the eigenpairs (λ, u) such

that

(7) u ∈ Qp
N
(Σ) :

∫

Σ

curl u curl v dx = λ

∫

Σ

u · v dx, ∀v ∈ Qp
N
(Σ).

Theorem 1. The whole Maxwell spectrum (7) in Qp
N
(Σ) can be split into four parts.

(a) The kernel: λ = 0 and u ∈ grad(Pp
0 ⊗ P

p
0).

(b) The Dirichlet discrete eigenvalues λ
[p]
j associated with the two eigenvectors

(8)
(
0,−β [p]

j (x)
)

and
(
β

[p]
j (y), 0

)
, j = 1, . . . , p− 1.

(c) The sum of two Dirichlet discrete eigenvalues λ
[p]
j + λ

[p]
k with the eigenvectors

(9)
(
λ

[p]
j β

[p]
k

′(x)β
[p]
j (y),−λ[p]

k β
[p]
k (x)β

[p]
j

′(y)
)
, 1 ≤ j, k ≤ p− 1.

(d) The Dirichlet discrete eigenvalues λ
[p]
j associated with two spurious eigenvectors

(10)
(
0,−β [p]

j (x)Lp(y)
)

and
(
Lp(x)β

[p]
j (y), 0

)
,

where Lp denotes the Legendre polynomial of degree p.

Remark 2. Note that formula (5) transforms into
(
j2ϕ′

k(x)ϕj(y),−k2ϕk(x)ϕ
′
j(y)

)
by swap-

ping j and k and multiplying by j2k2. The similarity with formula (9) is now obvious.

Remark 3. The previous theorem shows that the space Qp
N
(Σ) is not suited for the compu-

tation of Maxwell’s eigenvalues. Indeed, the discrete eigenvalues described in part (d) are
redundant, providing a wrong multiplicity to the correct eigenvalues described in part (b).
Moreover, the discrete eigenvectors of part (d) do not approximate any physical eigenfunc-
tion. The fact that the second Nédélec family produces spurious modes in the h-version of
the FEM, has been documented in the literature, see e.g. [29, 30].

Proof. Let us first check the dimensions of the spaces described in the four above cases:

(a) (p− 1)2

(b) 2(p− 1)
(c) (p− 1)2

(d) 2(p− 1).

The sum is 2(p− 1)(p+ 1), which is the dimension of Qp
N
(Σ) (see (1)).

It remains to check that the proposed pairs are eigenpairs of (7).
Case (a). The scalar polynomial space P

p
0 ⊗ P

p
0 is contained in H1

0 (Σ), therefore all
elements of grad(Pp

0 ⊗ P
p
0) belong to the kernel.

For the remaining part of the proof, since p is fixed, let us drop the exponent [p] in the
notation of the discrete 1D Dirichlet eigenpairs. By integration by parts we note that the
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discrete eigenpairs (λj, βj) satisfy

(11)

∫

I

(β ′′
j + λjβj)w dx = 0, ∀w ∈ P

p
0(I).

On the other hand, again by integration by parts, we obtain that (λ, u) is an eigenpair in
Qp

N
(Σ), if and only if

(12) u ∈ Qp
N
(Σ) :

∫

Σ

(curl curl u − λu) · v dx = 0, ∀v ∈ Qp
N
(Σ).

It is clear that all proposed eigenvectors in (b), (c) and (d) belong to Qp
N
(Σ). It remains to

compute curl curl u − λu in each case and to check (12).
Case (b). For λ = λj and u =

(
0,−βj(x)

)
, the two components of curl curl u − λu are

0 and β ′′
j (x) + λjβj(x).

Then relation (11) yields (12), and the same argument applies to the other vector
(
βj(y), 0

)
.

Case (c). For λ = λj + λk and u given by (9), we have

curl u = (λj + λk)β
′
k(x)β

′
j(y)

and the two components of curl curl u − λu are

−(λj + λk)β
′
k(x)β

′′
j (y) − (λj + λk)λjβ

′
k(x)βj(y)

+(λj + λk)β
′′
k(x)β ′

j(y) + (λj + λk)λkβk(x)β
′
j(y)

which can be written as

−(λj + λk)β
′
k(x)

{
β ′′

j (y) + λjβj(y)
}

(λj + λk)β
′
j(y)

{
β ′′

k(x) + λkβk(x)
}
.

Then relation (11) yields (12).
Case (d). For λ = λj and u =

(
0,−βj(x)Lp(y)

)
, the two components of curl curl u − λu

are
−β ′

j(x)L
′
p(y) and β ′′

j (x)Lp(y) + λjβj(x)Lp(y).

The second component is orthogonal to any element of P
p
0(I) ⊗ Pp(I) (see (1) and (11)). It

remains to check that the first component is orthogonal to Pp(I) ⊗ P
p
0(I), i.e.,

(13)

∫

Σ

v′j(x)L
′
p(y)w(x)v(y) dxdy = 0, ∀w ∈ Pp(I), ∀v ∈ P

p
0(I).

It it sufficient to prove that
∫

I
L′

p(y)v(y) dy = 0 for all v ∈ P
p
0(I): such a v is given by

(1 − y2)ϕ(y) with ϕ ∈ Pp−2(I). Since the polynomials L′
k are orthogonal on I with respect

to the measure (1 − y2) dy and since the degree of L′
j is j − 1, we obtain that

∫

I

L′
p(y)ϕ(y)(1− y2) dy = 0, ∀ϕ ∈ Pp−2(I),
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hence (13). �

The next theorem characterizes the Maxwell spectrum in Np
N
(Σ), i.e., the eigenpairs (λ, u)

such that

(14) u ∈ Np
N
(Σ) :

∫

Σ

curl u curl v dx = λ

∫

Σ

u · v dx, ∀v ∈ Np
N
(Σ).

Theorem 2. The three first parts (a), (b), and (c) of the discrete spectrum described in
Theorem 1 are the whole discrete Maxwell spectrum computed by the edge element space
Np

N
(Σ).

Proof. We can see that the eigenvectors of parts (a), (b), and (c) all belong to the smaller
space Np

N
(Σ). Therefore they are also eigenvectors in this space. We see that the sum of the

dimensions of the corresponding eigenspaces is (p− 1)2 + 2(p− 1) + (p− 1)2, which is equal
to 2(p− 1)p, the dimension of Np

N
(Σ) (see (2)). �

The conclusion arising from Theorems 1 and 2 is that the space Np
N
(Σ) is to be preferred

with respect to Qp
N
(Σ) for the computation of Maxwell’s eigenpairs. Indeed, the latter space

does not provide correct approximation of the spectrum (see Remark 3).

4. Approximation of Maxwell’s spectrum by hp rectangular finite elements

In this section we extend the results about the space Np
N
(Σ) to the more involved situation

of hp refinements, which provides realistic applications to a class of polygonal domains. The
structure of this section is as follows. First of all, we define the finite element spaces we are
dealing with, and make precise the assumptions on the mesh. Then, after establishing an L2

stability result (see Section 4.3), we prove the discrete compactness property which implies
the convergence of eigenvalues/eigenvectors. Our proof clearly implies that the discrete
compactness property holds true also for the pure p method on a conforming rectangular
mesh (i.e., without hanging node) with the standard edge elements of the first Nédélec family.

4.1. De Rham diagram for a variable order quad element. Let Σ = I × I be the
master square element. A feature of edge elements is their embedding in a commuting de
Rham diagram of type (15) relating two exact sequences of spaces, on both continuous and
discrete levels. We refer to [33, 14] for a systematic description of the standard discrete de
Rham diagram of any degree, where the interpolation operators are based on nodal values,
edge and volume moments. In view of the construction hp finite elements, another class of
commuting de Rham diagram has been introduced [26], relying on the so called projection-
based interpolants, which allow variable orders on distinct elements of the same mesh, while
preserving the commuting property.
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We start by introducing this latter version of the de Rham diagram, involving discrete
spaces and interpolation operators on Σ, according to

(15)

R −→ H1+ε(Σ)
grad−→ Hε(Σ) ∩ H(curl,Σ)

curl−→ L2(Σ) −→ 0


yid



yΠ



yΠcurl



yP

R −→ Qp| pe(Σ)
grad−→ Np| pe−1(Σ)

curl−→ Qp−1(Σ) −→ 0

Index p specifies the order in both variables which, for the sake of simplicity of this presen-
tation, we assume to be identical, Qp(Σ) = Qp,p(Σ) = Pp(I) ⊗ Pp(I), and with every edge e
of the master element, we associate the corresponding order pe, e = 1, . . . , 4 (with standard,
counterclockwise enumeration of edges) that satisfies the condition:

(16) pe ≤ p, e = 1, . . . , 4.

The polynomial spaces present in the diagram are defined as follows.

• Qp| pe(Σ) - the subspace of Qp(Σ), consisting of polynomials whose traces on edges e
reduce to (possibly lower) order pe, e = 1, . . . , 4.

• Np| pe(Σ) - the subspace of Np(Σ), cf §2.1.2, of vector-valued polynomials with traces
of their tangential components on edges e of (possibly lower) order pe:

(17) Np| pe(Σ) = {u ∈ Np(Σ) : ut|e := (n × u)|e ∈ Ppe(e), ∀e},
where n is the outward unit normal vector.

In particular, Qp| −1 provides an alternative notation for the subspace Q
p
0 of polynomials

vanishing on the boundary of the element, and Np| −1 = Np
N

stands for the subspace of
vector-valued polynomials from the first Nédélec family whose tangential component traces
on the boundary are equal to zero. The assumption that edge orders pe should not exceed
corresponding components of order p, is realized in practice by implementing the minimum
rule that sets an edge order pe to the minimum of orders p corresponding to the adjacent
elements.

4.1.1. H1-conforming projection-based interpolation. Let P
p
0(I) denote the space of

polynomials of degree ≤ p, defined on the interval I = (−1, 1) with zero traces at the end-
points. Let φ1(x) = (1− x)/2, φ2(x) = (x+ 1)/2 be the standard 1D linear shape functions.
Space Qp| pe(Σ) admits a natural decomposition into vertex bilinear shape functions, edge
bubbles and element bubbles

Qp| pe(Σ) =
{
P1(I) ⊗ P1(I)

}
⊕

{
(Pp1

0 (I) ⊗ Rφ1) ⊕ (Rφ2 ⊗ P
p2

0 (I)) ⊕ (Pp3

0 (I) ⊗ Rφ2) ⊕ (Rφ1 ⊗ P
p4

0 (I))
}
⊕

{
P

p
0(I) ⊗ P

p
0(I)

}
.

(18)
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We will alternatively speak of edge bubbles for functions defined on a particular edge (and
zero at its ends) or for their extensions to the whole element (and zero on the other edges).
The linear extensions are natural but not essential in the forthcoming discussion. For a
particular edge, the corresponding edge bubbles must vanish on the remaining edges and
must “live” in the FE space. Similarly, the shape function for a vertex node must vanish at
the remaining vertices and it must be in the FE space; the fact that it is constructed using
bilinear functions, is secondary.

Given a function u ∈ H1+ε(Σ), we define its interpolant up = Πu, as a sum of three
contributions,

(19) up = u1 +
∑

e

u2,e,p

︸ ︷︷ ︸

u2,p

+u3,p .

Interpolation at vertices. Vertex interpolant u1 interpolates function u at vertices,

u1(a) = u(a) for each vertex a.

The simplest choice of an extension of the vertex values is provided by the bilinear function
but the ultimate value of the interpolant is independent of the choice of the extension as
long as the extension “lives” in the FE space.

Projection on edges. We subtract the vertex interpolant u1 from u and project the dif-
ference u− u1, over each edge e, onto the space of edge bubbles,

|u− u1 − u2,e,p|1/2,e → min .

The projection is done in an H1/2(e) seminorm, and it is equivalent to the solution of a small
linear system,

Find edge bubble u2,e,p ∈ P
pe

0 (e) such that

(u− u1 − u2,e,p , φ)1/2,e = 0, for each edge bubble φ ∈ P
pe

0 (e),

where (·, ·)1/2,e denotes the inner product corresponding to edge seminorm | · |1/2,e

Projection on the element. We extend each edge bubble u2,e,p to the whole element.
Again, the most natural extension is provided by the element shape functions and corre-
sponds to decomposition (19). We subtract then the total edge interpolant u2,p =

∑

e u2,e,p

from the difference u− u1 and project the resulting difference on the element bubbles,

|u− u1 − u2,p − u3,p|1,Σ → min .

Again, the projection is equivalent to a local Dirichlet problem on the element,

Find element bubble u3,p ∈ Q
p
0(Σ) such that

(u− u1 − u2,p − u3,p , φ)1,Σ = 0, for each element bubble φ ∈ Q
p
0(Σ),
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where (·, ·)1,Σ denotes the H1
0 - inner product.

The interpolation is thus equivalent to the solution of a sequence of local (approximate)
Dirichlet problems. We first interpolate at the vertices, and then, with the vertex values
providing Dirichlet conditions, solve the edge Dirichlet problems. Finally, we use the vertex
and edge interpolants to set up the Dirichlet boundary conditions and solve the final Dirichlet
problem on the whole element. Remember that it does not matter in which way we construct
lifts of the approximate Dirichlet data, the ultimate interpolant is unique. In each of the
three steps, we determine a part of the interpolant corresponding to the decomposition (18).

4.1.2. H(curl)-conforming projection-based interpolation. A similar decomposition in-

to edge functions and element bubbles can be constructed for the space Np| pe−1(Σ),

Np| pe−1(Σ) =
{ [

(Pp1−1(I) ⊗ Rφ1) × {0}
]
⊕
[
{0} × (Rφ2 ⊗ Pp2−1(I))

]
⊕

[
(Pp3−1(I) ⊗ Rφ2) × {0}

]
⊕
[
{0} × (Rφ1 ⊗ Pp4−1(I))

] }

⊕
{ [

(Pp−1 ⊗ P
p
0)(Σ) × {0}

]
⊕
[
{0} × (Pp

0 ⊗ Pp−1)(Σ)
] }

.

(20)

Given a vector-valued function u ∈ Hε(curl,Σ), we define its interpolant up = Πcurlu as a
sum of two contributions,

up =
∑

e

u2,e,p

︸ ︷︷ ︸

u2,p

+u3,p.

Edge projections. For each edge e, let vt = n × v denote the (scalar-valued) tangential
component1 of a field v on e. We project the tangential component ut of function u onto the
scalar edge functions,

‖ut − u2,e,p,t‖−1/2,e → min .

Here the norm ‖ · ‖−1/2,e denotes the norm in the dual space

H−1/2(e) = (H
1/2
00 (e))′,

see, e.g. [36]. We define then the vector edge function u2,e,p as the tangent vector field on e
such that u2,e,p,t = n×u2,e,p. The projection problem is equivalent to the variational problem

Find the tangential component u2,e,p,t ∈ Ppe−1(e) of the edge function u2,e,p s. t.

(ut − u2,e,p,t, φ)−1/2,e = 0, for each edge function φ ∈ Ppe−1(e),

1More precisely, using the 3D notation, we have vt = (n × v) · ez, where ez is the unit vector orthogonal
to the 2D plane.
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with (·, ·)−1/2,e denoting the inner product corresponding to norm ‖ · ‖−1/2,e. Notice that
for a constant function φ, the inner product reduces to L2-product, and the equation above
incorporates in particular the edge average condition

∫

e

(ut − u2,e,p,t) ds = 0.

Element projection. We extend each individual edge function u2,e,p to the whole element
using the edge shape functions according to the splitting (20), sum it up, u2,p =

∑

e u2,e,p,
and subtract the difference from function u. We solve then a local projection problem,

‖ curl(u − u2,p − u3,p)‖0,Σ → min,

subjected to the additional constraint,

(u − u2,p − u3,p, gradφ) = 0, for each element scalar bubble φ.

The constrained projection problem is equivalent to a Dirichlet mixed problem
Find element bubble u3,p and Lagrange multiplier ψ such that

(21)

{
(curl(u − u2,p − u3,p), curl v) + (gradψ, v) = 0 for every element vector bubble v

(u − u2,p − u3,p, gradφ) = 0 for every element scalar bubble φ.

Here, the Lagrange multiplier ψ lives in the space of scalar bubbles. Since gradψ is a vector
bubble, the multiplier is identically equal zero and, for this reason, it is sometimes called the
hidden variable.

Remark 4. In [24], the edge contributions u2,e,p were split into the Whitney interpolant with
constant tangential component, and a higher order edge bubble. Also, the choice of “edge”
norms in the presentation above is consistent with the latest 3D results, see [25], and it is
slightly different from those used in [24].

Finally P is the L2 projection from L2(Σ) onto Qp−1(Σ). With this, we have:

Theorem 3. If the edge seminorm |u|1/2,e is selected in such a way that

|u|1/2,e =

∥
∥
∥
∥

∂u

∂s

∥
∥
∥
∥
−1/2,e

then the de Rham diagram (15) commutes.

Proof. The tangential derivative ∂s is an isomorphism from H1/2(e)/R onto H−1/2(e), see
[32, p. 31]). By the Bramble-Hilbert Lemma, the norm in the quotient space H1/2(e)/R is
equivalent to the standard |u|1/2,e-seminorm. Consequently, ‖∂su‖−1/2,e defines a seminorm

on H1/2(e), equivalent to the standard seminorm.
The commuting projection-based interpolation operators considered in [26] use different

projections on edges based on H1-seminorm for operator Π and L2-norm for operator Πcurl.
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The proof from [26] carries over to the case being presented without any modification, pro-
vided the H1-seminorm is traded for the H1/2-seminorm, and the L2-norm is traded for
H−1/2-norm. �

4.2. De Rham diagram for hp meshes. In this section we consider a polygonal domain
Ω with sides parallel to the axes, covered by rectangular meshes aligned along the same axes.
Of course, by a global affine transformation, our result generalizes to the situation of non
perpendicular axes.

If we fix a conforming mesh (i.e., such that the intersection of any two distinct elements
K is either empty or a vertex or a full edge), and consider on each K the mapped spaces

Qp| p(K), Np| p−1(K), and Qp−1(K) with the same p, we can define on the whole domain
Ω the corresponding H1-, H(curl)-, and L2-conforming discrete spaces Qp, Xp and Sp, and
the projection-based interpolation is done element by element. The elements are said un-
constrained in this case. Then it is clear that the commutativity properties (15) of the
projection-based interpolation operators are still valid on the whole domain Ω. Besides, we
note that in this case the discrete spaces coincide with those of the standard p-extension of
the edge elements [40, 37].

The adaptation to hp meshes containing local refinements, therefore hanging nodes, and
variable degrees is by no means obvious.

For the sake of simplicity of the presentation, we shall restrict ourselves to 1-irregular
hp meshes corresponding to isotropic refinements only, and consisting of square elements.
Beginning with a standard regular mesh consisting of square elements of the same size,
we allow for breaking each element into four elements with the restriction that an element
cannot share an edge with more than two small neighbors - the classical “two to one” rule.
In other words, the generation level for two neighboring elements cannot differ by more than
one. The order of elements can be modified locally, element by element, with the minimum
rule being enforced - the order for an edge is set to the minimum of orders for all adjacent
elements. Finally, since for meshes with hanging nodes the projections cannot be done on an
element level - the resulting interpolants will no longer be conforming, the global conformity
is maintained by means of the constrained approximation, see [42, 23].

Figure 1. Constrained approximation
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The situation is illustrated in Fig.1. For a function u defined on “big” edge e, the cor-
responding “big edge” interpolant is a polynomial defined on the whole edge, whereas the
interpolants determined on the small edges e1, e2 result in a piecewise interpolant that, in
general, is different.

A natural idea is to utilize the constrained approximation concepts. First do the pro-
jections on the big edges and, then, define the corresponding small edges interpolants by
enforcing the global conformity requirements. The resulting interpolants will be indeed
globally conforming, but we loose then the commutativity properties. This can be seen
by considering the lowest order elements. The last space in the diagram reduces then to
piecewise constants and the commutativity property requires that

∫

∂K

(up,t − ut) ds =

∫

K

curl(up − u) dx = 0,

for each element K in the mesh. For regular meshes, the condition follows from the edge
averaging. In presence of hanging nodes, however, the condition may not be satisfied. Going
back to the situation illustrated in Fig. 1, enforcing the averaging condition on “big” edge
e does not imply the same condition for the restrictions of the original function and its
projection on the small edge e1. Consequently, the condition above is violated for the small
element, and the commutativity fails.

A remedy to the problem is to perform the interpolation on groups of elements. The
whole mesh is split into polygonal patches consisting of single elements or element clusters
(of minimum size) in such a way that all vertices of the polygonal patches are unconstrained.
The decomposition is illustrated with the classical example of the L-shaped domain and
h-refinements aimed at resolving the corner singularity shown in Fig 2.

Figure 2. Decomposition of an 1-irregular mesh into clusters
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All clusters in this example coincide with either a single element (the white elements) or
three elements forming an L-shaped patch (such clusters are indicated in the picture with
a grey or black shading). In general, the 1-irregularity rule limits the number of possible
cluster shapes to four cases only: clusters of a single, two, three or four small elements. Our
convention is to call patch, denoted by P , the union of the cluster elements K together with
the interior edges. In our example, the L-shaped patches are the union of three squares and
two interior edges, see Fig 3. Such patches have six distinct (exterior) edges. Edges of a
patch always coincide with either a single element edge or two “small” edges adjacent to a
big one.

Figure 3. L-shaped cluster and patch

The space Qp| pe(P ) on the patch is the subspace of continuous functions on P , which
are Qp on each element K of the cluster, and whose restriction on e belongs to Qpe(e) for

each edge of the patch. The space Np| pe−1(P ) is defined correspondingly as the subspace of
H(curl) fields on P , which are in Np on each element K, and whose tangential restriction on
e belongs to Qpe(e).

The definition of projection-based interpolation extends now naturally to the patch P :
We only list the main steps. The vertices are the corners of P and we check that there exists
a continuous piecewise bilinear vertex interpolant u1 ∈ Q1| 1(P ). The edge bubbles u2,e,p

are related with patch edges (and no more with element edges) and are polynomial on the
whole patch edge. These bubbles can be extended inside P as elements of Qp| pe(P ). The
patch bubbles u3,p are the functions in the FE space Qp| pe(P ) with zero traces on the patch
boundary ∂P .

Similarly we define the edge functions u2,e,p as vector polynomials on the whole patch

edge, tangential to the edge. They can be extended in Np| pe−1(P ). The patch bubbles u3,p

are the elements of Qp| pe(P ) with zero tangential traces on the patch boundary ∂P . The
patch bubbles are, therefore, no longer polynomials but piecewise polynomials only.

Thus, by the same procedure as before we define the projection operators

(22) Π = ΠP , Πcurl = Πcurl
P and P = PP

and obtain a commutative scheme like (15).
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Once the interpolation is done on the patches, we regain both the global conformity and
commutativity of the interpolation operators on the whole hp mesh:

R −→ H1+ε(Ω)
grad−→ Hε(Ω) ∩H(curl,Ω)

curl−→ L2(Ω) −→ 0


yid



yΠ



yΠcurl



yP

R −→ Qhp
grad−→ Xhp

curl−→ Shp −→ 0

Here Qhp, Xhp, Shp denote FE spaces defined on the common domain Ω, corresponding to
the H1-, H(curl)-, and L2-conforming discretizations, done patch by patch.

4.3. A stability result in L2. We begin by recalling the inclusion of polynomial spaces,

Q
p
0(Σ)

grad−→ Np
N
(Σ).

Here,

Q
p
0(Σ) = P

p
0(I) ⊗ P

p
0(I)

Np
N
(Σ) = [Pp−1(I) ⊗ P

p
0(I)] × [Pp

0(I) ⊗ Pp−1(I)].

In this section, we will omit the mention of Σ and I for the spaces Qp, Np, and Pp, respectively.
We shall denote the L2-norm on I or Σ, by ‖ · ‖, with the corresponding L2-product denoted
by (·, ·). We hope that the similarity of the latter with the notation for vector components
will not lead to confusion.

Theorem 4. The following stability condition holds:

(23) inf
q ∈ Np

N

sup
s ∈ gradQ

p
0
⊕ curl curlNp

N

(q, s)

‖q‖ ‖s‖ = Cp,

where

(24) Cp =

(
2(2p+ 1)

(p+ 1)(p+ 2)

)1/2

= O(p−1/2).

The proof of Theorem 4 relies on two lemmas.

Lemma 5. Let ai > 0, bi > 0, i = 1, . . . , n. Then for any real v1, . . . , vn

sup
u1, . . . , un

|
∑n

i=1 aiuivi|
(
∑n

i=1 biu
2
i )

1/2
=

(
n∑

i=1

a2
i

bi
v2

i

)1/2

.
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Proof. Use Cauchy-Schwarz inequality for the discrete l2 product and the representation,
n∑

i=1

aiuivi =
n∑

i=1

ai

b
1/2
i

vi b
1/2
i ui.

�

We recall that (λi, βi), i = 1, . . . , p− 1, denote the discrete eigenpairs of the 1D Laplace
operator defined in equation (6) (we omit the exponent [p] for simplicity). The eigenvectors
are normalized to satisfy (βi, βj) = δij.

Lemma 6. The following inequality holds.
(

p−1
∑

i=1

λ2
i v

2
i

)1/2

≥ Cp‖
p−1
∑

i=1

viβ
′′
i ‖, ∀v = (v1, . . . , vp−1) ∈ Rp−1,

where Cp is defined in (24).

Proof. It was proved in [8] that the constant

Cp = inf
u ∈ P

p
0

sup
f ∈ Pp−2

(u, f)

‖u‖‖f‖ = inf
u ∈ P

p
0

sup
v∈ P

p
0

(u, v′′)

‖u‖‖v′′‖

= inf
u ∈ P

p
0

sup
v∈ P

p
0

(u′, v′)

‖u‖‖v′′‖ = inf
v∈ P

p
0

sup
u ∈ P

p
0

(u′, v′)

‖u‖‖v′′‖

is given by formula (24). Consequently,

sup
u ∈ P

p
0

(u′, v′)

‖u‖ ≥ Cp‖v′′‖, ∀v ∈ P
p
0.

If we now define

u =

p−1
∑

i=1

uiβi, v =

p−1
∑

i=1

viβi,

then

(u′, v′) =

p−1
∑

i=1

λiuivi and ‖u‖ =

(
p−1
∑

i=1

u2
i

)1/2

.

Apply Lemma 5 to finish the proof. �

Proof of Theorem 4.
Step 1: let αi, i = 0, . . . , p− 1 be a basis for Pp−1 defined as follows

αi =

{

1/
√

2 i = 0
β ′

i i = 1, . . . , p− 1.
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Polynomials αi are orthogonal and satisfy

‖α0‖2 = 1, ‖αi‖2 = λi, i = 1, . . . , p− 1.

Any element q ∈ Np
N

can be represented in the form,

(25) q =

(
p−1
∑

i=0

p−1
∑

j=1

q1,ijαiβj ,

p−1
∑

i=1

p−1
∑

j=0

q2,ijβiαj

)

.

Here and in what follows, we assume that in a tensor product αβ, the first function is always
a function of x, and the second is a function of y, i.e., αβ = α(x)β(y).

A direct calculation shows that,

curl curl q =

(
p−1
∑

i=1

p−1
∑

j=0

q2,ijβ
′
iα

′
j −

p−1
∑

i=0

p−1
∑

j=1

q1,ijαiβ
′′
j ,−

p−1
∑

i=1

p−1
∑

j=0

q2,ijβ
′′
i αj +

p−1
∑

i=0

p−1
∑

j=1

q1,ijα
′
iβ

′
j

)

=

(
p−1∑

i=1

p−1∑

j=1

q2,ijβ
′
iβ

′′
j −

p−1∑

i=0

p−1∑

j=1

q1,ijαiβ
′′
j ,−

p−1∑

i=1

p−1∑

j=0

q2,ijβ
′′
i αj +

p−1∑

i=1

p−1∑

j=1

q1,ijβ
′′
i β

′
j

)

=

(

−
p−1
∑

j=1

q1,0jα0β
′′
j +

p−1
∑

i=1

p−1
∑

j=1

(q2,ij − q1,ij)β
′
iβ

′′
j ,−

p−1
∑

i=1

q2,i0β
′′
i α0 −

p−1
∑

i=1

p−1
∑

j=1

(q2,ij − q1,ij)β
′′
i β

′
j

)

.

Hence, any element s ∈ curl curlNp
N

can be represented in the form,

s =

(
p−1
∑

j=1

s0jα0β
′′
j +

p−1
∑

i=1

p−1
∑

j=1

sijβ
′
iβ

′′
j ,

p−1
∑

i=1

si0β
′′
i α0 −

p−1
∑

i=1

p−1
∑

j=1

sijβ
′′
i β

′
j

)

.

Let q ∈ Np
N

be discrete divergence free, i.e.,

(q, gradw) = 0, ∀w ∈ Q
p
0.

Selecting w = βkβl, k, l = 1, . . . , p−1, we conclude that coefficients q1,ij , q2,ij in representation
(25) must satisfy the identity

q1,klλk + q2,klλl = 0.

This leads to the following formulas for the norm of a discrete divergence free vector, and
the L2-product of such a vector with s ∈ curl curlNp

N

‖q‖2 =

p−1
∑

j=1

q2
1,0j +

p−1
∑

i=1

q2
2.i0 +

p−1
∑

i=1

p−1
∑

j=1

(
λ2

i

λj
+ λi

)

q2
1,ij

(q, s) = −
p−1
∑

j=1

q1,0js0jλj −
p−1
∑

i=1

q2,i0si0λi −
p−1
∑

i=1

p−1
∑

j=1

q1,ijsij(λiλj + λ2
i ).
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Applying Lemma 5 we get,

sup
q ∈ Np

N

(q,gradw) = 0, ∀w ∈ Q
p
0

(q, s)

‖q‖ =

p−1
∑

j=1

λ2
js

2
0j +

p−1
∑

i=1

λ2
i s

2
i0 +

p−1
∑

i=1

p−1
∑

j=1

(λ2
iλj + λiλ

2
j )s

2
ij.

Finally, the norm of s ∈ curl curlNp
N

can be represented in the form,

‖s‖2 =

∥
∥
∥
∥
∥

p−1
∑

j=1

s0jβ
′′
j

∥
∥
∥
∥
∥

2

+

∥
∥
∥
∥
∥

p−1
∑

i=1

si0β
′′
i

∥
∥
∥
∥
∥

2

+

p−1
∑

i=1

λi

∥
∥
∥
∥
∥

p−1
∑

j=1

sijβ
′′
j

∥
∥
∥
∥
∥

2

+

p−1
∑

j=1

λj

∥
∥
∥
∥
∥

p−1
∑

i=1

sijβ
′′
i

∥
∥
∥
∥
∥

2

.

By Lemma 6 we have,

p−1
∑

j=1

λ2
js

2
0j ≥ C2

p

∥
∥
∥
∥
∥

p−1
∑

j=1

s0jβ
′′
j

∥
∥
∥
∥
∥

2

p−1
∑

i=1

λ2
i s

2
i0 ≥ C2

p

∥
∥
∥
∥
∥

p−1
∑

i=1

si0β
′′
i

∥
∥
∥
∥
∥

2

λi

p−1
∑

j=1

λ2
js

2
ij ≥ λiC

2
p

∥
∥
∥
∥
∥

p−1
∑

j=1

sijβ
′′
j

∥
∥
∥
∥
∥

2

λj

p−1
∑

i=1

λ2
i s

2
ij ≥ λjC

2
p

∥
∥
∥
∥
∥

p−1
∑

i=1

sijβ
′′
i

∥
∥
∥
∥
∥

2

.

Summing up all the inequalities, we get,

sup
q ∈ Np

N

(q,grad w) = 0, ∀w ∈ Q
p
0

(q, s)

‖q‖ ≥ Cp‖s‖,

or, equivalently, using the equality of inf-sup constants for a bilinear form and its adjoint,

(26) inf
q ∈ Np

N

(q,grad w) = 0, ∀w ∈ Q
p
0

sup
s ∈ curl curlNp

N

(q, s)

‖q‖‖s‖ ≥ Cp.

Step 2: use discrete Helmholtz decomposition,

q = q0 + gradφ, (q0, gradw) = 0 ∀w ∈ Q
p
0, φ ∈ Q

p
0.

to extend inequality (26) to arbitrary q ∈ Np
N

and s ∈ gradQ
p
0 ⊕ curl curl Np

N
.
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Step 3: The equality in (23) follows, e.g., from the fact that for q coinciding with eigenvectors
from part (b) of the spectrum (see (8)), the two-dimensional inf-sup condition reduces to its
one-dimensional counterpart. �

The consequence of Theorem 4 is the following L2 stability result in p-version:

Theorem 7. Let u3 ∈ Hε(Σ) ∩ H0(curl,Σ) be a divergence free bubble function on Σ. Let
u3,p be the projection Πcurlu3. Then u3,p is discrete divergence free and there holds

(27) ‖u3 − u3,p‖0,Σ ≤ Cp1/2 inf
qp∈ Np

N

‖u3 − qp‖0,Σ.

Proof. Let qp be any element of Np
N
. Since

(Πcurlu3, gradqp) = (u3,Π
curl gradqp) = (u3, gradΠqp),

we obtain that u3,p is discrete divergence-free.
By Theorem 4, there exists s ∈ grad Q

p
0 ⊕ curl curlNp

N
so that

Cp‖u3,p − qp‖ ‖s‖ ≤ (u3,p − qp, s).

Any s ∈ grad Q
p
0 ⊕ curl curlNp

N
being orthogonal to u3 − u3,p we get

Cp‖u3,p − qp‖ ‖s‖ ≤ (u3 − qp, s) ≤ ‖u3 − qp‖ ‖s‖.
By the triangle inequality we deduce (27). �

The best approximation error in the L2 norm by polynomials in Np
N

behaves as p−1 for
fields in H1 satisfying the boundary conditions of H0(curl):

Lemma 8. Let u3 ∈ H1(Σ) ∩ H0(curl,Σ) be a general bubble function on Σ. There exists
qp ∈ Np

N
(Σ) such that

(28) ‖u3 − qp‖0,Σ ≤ Cp−1‖u3‖1,Σ.

Proof. Let ux and uy be the two components of u3. We note that ux belongs to L2(I,H1
0(I))∩

H1(I, L2(I)). We take as interpolant for ux the function πp−1,0
x ⊗ πp,1

y (ux) where πp,0 and

πp,1 are the 1D standard projection operators used in spectral and p methods: πp,0 is the L2

orthogonal projection on Pp(I) and πp,1 is defined as

πp,1(u)(t) =

∫ t

−1

πp−1,0(u′)(s) ds.

Both πp,0 and πp,1 satisfy the L2-H1 error estimate with a factor p−1, see [43, Ch.3] for
instance. Moreover πp,0 is stable in L2 and πp,1 in H1. The proof of the estimate for
‖ux−πp−1,0

x ⊗πp,1
y (ux)‖0,Σ then follows. The situation for the second component is similar. �
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4.4. Discrete compactness. In this section we prove the discrete compactness property
for edge finite elements on 1-irregular hp square meshes. The discrete compactness prop-
erty, stated in Theorem 11, is known to be sufficient and in a sense necessary for the good
approximation of eigenvalues/eigenvectors (see [33, 7, 16, 39], for instance).

For our proof we need L2 estimates for u − Πcurlu for divergence free fields u on any
unconstrained element K (Lemma 9) or any patch P (Lemma 10).

Lemma 9. Let K be an unconstrained square element of size h = hK , and let p be the
minimum among pK and {pe, e = 1, . . . , 4}. Let u ∈ Hr(K), 0 < r < 1/2, curl u ∈ L2(K),
div u = 0. For every ε > 0, there exists a constant C > 0, dependent upon ε but independent
of the element and function u, such that

‖u − Πcurl
K u‖ ≤ C

(
h

p

)(r−ε)

(‖u‖r,K + ‖ curl u‖0,K).

Here Πcurl
K is the projection-based interpolation on K transported from Πcurl in (15).

Proof. Step 1: p-estimate on the master element. Assume first that K = Σ is the
master square element. It follows from the integration by parts formula

∫

K

(curl u)φ dx =

∫

K

u · curlφ dx +

∫

∂K

utφ ds

that the tangential component ut lives in H−1/2+r(∂K) and

‖ut‖−1/2+r,∂K ≤ C(‖u‖r,K + ‖ curl u‖0,K),

with C denoting a generic constant depending upon the master element only. We decompose
function u into three contributions

(29) u = u1 + grad q + u3.

The terms are constructed as follows.

• u1 is the lowest degree Whitney interpolant, which means that u1 ∈ N1| 0(K), div u1 =
0 and the tangential traces of u1 are the mean values of those of u on each edge of
K.

• Potential q is obtained by integrating tangential component ut−u1t along the element
boundary, starting from any of its vertex nodes. Potential q vanishes at all vertex
nodes and

‖q‖1/2+r,∂K ≤ C‖ut − u1t‖−1/2+r,∂K .

As the Whitney interpolant depends continuously upon the tangential component ut

itself, and it lives in a finite dimensional space, by the standard finite dimensionality
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argument we conclude that the norm of potential q is controlled by the norm of u
alone

‖q‖1/2+r,∂K ≤ C‖ut‖−1/2+r,∂K

≤ C(‖u‖r,K + ‖ curlu‖0,K).

We extend then potential q to the rest of the element using a harmonic (minimum
energy) extension. Consequently,

‖q‖1+r,K ≤ (‖u‖r,K + ‖ curlu‖0,K).

• u3 is the residual bubble function: n × u3 = 0 on the boundary ∂K, and

curl u3 = curl(u − u1), div u3 = div(u − u1) = 0.

It follows that u3 ∈ H1(K) and

‖u3‖1,K ≤ C‖ curl(u − u1)‖0,K ≤ C‖ curlu‖0,K .

We use a similar decomposition for the projection-based interpolant Πcurl
K u of u,

Πcurl
K u = u1 + grad qp + up,3,

with the same Whitney interpolant u1 and qp = ΠKq. Thus qp is only a discrete harmonic
function, and up,3 is only discrete divergence-free. Obviously,

u − Πcurl
K u = grad(q − qp) + u3 − up,3.

The first term admits then the estimate (see [24])

(30)
‖ grad(q − qp)‖0,K ≤ Cp−(r−ε)‖q‖1+r,K

≤ Cp−(r−ε)(‖u‖r,K + ‖ curl u‖0,K).

The estimate of the second term is made possible by Theorem 7: there holds

‖u3 − u3,p‖0,K ≤ Cp1/2 inf
F3,p∈ Np

N

‖u3 − F3,p‖0,K .

The approximation result (28) then gives

‖u3 − u3,p‖0,K ≤ Cp−1/2‖u3‖1,K

≤ Cp−1/2(‖u‖r,K + ‖ curl u‖0,K).(31)

Combining (30) and (31), we get the final estimate for the master element,

‖u − Πcurl
K u‖0,K ≤ Cp−(r−ε)(‖u‖r,K + ‖ curlu‖0,K).

Step 2: scaling argument. Let K be an arbitrary (unconstrained) square element and let

Σ = K̂ ∋ ξ → x ∈ K



DISCRETE COMPACTNESS FOR hp EDGE ELEMENTS 23

be the homothetic transformation from the master element Σ onto K. Recalling the trans-
formation for H(curl)-conforming elements,

û(ξ) = u(x)h ,

where h = hK is the element size, we follow the standard scaling argument and Step 1 result,
to obtain,

‖u − Πcurl
K u‖0,K = ‖û − Πcurlû‖0,Σ

≤ Cp−(r−ε)(‖û‖r,Σ + ‖ curl û‖0,Σ).

However, the (projection-based) interpolation reproduces polynomials and, by the Bramble-
Hilbert argument and standard interpolation arguments, we get

‖u− up‖0,K ≤ Cp−(r−ε)(|û|r,Σ + ‖ curl û‖0,Σ)

≤ C

(
h

p

)(r−ε)

(|u|r,K + ‖ curlu‖0,K).

This finishes the proof. �

We have an analogous but slightly different result for element patches.

Lemma 10. Let P be a patch of two, three or four square elements of same size, forming
a rectangle, a L-shaped domain and a square, respectively, cf Section 4.2. Let p denote the
minimum order of all elements and edges constituting the patch. Let h denote the size of
the elements forming the patch. Let u ∈ Hr(P ), 0 < r < 1/2, curl u ∈ L2(P ), div u = 0.
There exist constant C > 0, independent of the element and function u, and constant rP ,
0 < rP < r, such that

‖u − Πcurl
P u‖0,P ≤ C

(
h

p

)r
P

(‖u‖r,P + ‖ curl u‖0,P ).

By Πcurl
P u we understand the projection-based interpolation (22) done on the patch.

Proof. The reasoning follows the same lines as for the preceding lemma. We revisit the main
steps and point out to differences.

• u1 plays on the patch P a similar (but weaker) role as the lowest degree Whitney

interpolant on K: u1 ∈ N1| 0(P ), div u1 = 0 in P and u1 compensates for the mean
value of the tangential trace of u on the whole boundary ∂P :

∫

∂P

n × (u − u1) ds = 0.

For u1 we may take a field of the form γe|P where e is any non-zero element of

N1| 0(P̂ ) on the convex hull P̂ of P , and γ is a suitable constant.
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• The potential q is still obtained by first integrating ut−u1t along ∂P . Now it does not
vanish at the corners, but we still have q ∈ H1/2+r(∂P ), so we can take its harmonic
extension in P to find q ∈ H1+r(P ).

• We still have a decomposition like (29) u = u1 + grad q + u3 with a divergence free
patch bubble function u3. But for the L-shaped patches, u3 is no longer an H1-
function, however u3 belongs to H1/2+r

P (P ), with rP > 0 (here rP is any constant
< 1

6
), [18].

• At the discrete level, we have Πcurl
P u = u1 + grad(ΠP q) + u3,p. The estimate cor-

responding to (30), of ‖ grad(q − ΠP q)‖0,P does not follow directly from element
estimates but it can be obtained extending arguments from [24]. Alternatively, the
H1 patch interpolant ΠP q can be seen as the Galerkin approximation to the solution
of Laplace equation on the patch, with Dirichlet boundary conditions and right ap-
proximation of Dirichlet data (in H1/2 norm). The corresponding estimates can be
found in [43].

• The bound on ‖u3 − u3,p‖0,P corresponding to (31) does not follow directly from the
L2- stability result for a single element. Instead, we proceed by comparing the patch
interpolant u3,p = Πcurl

P u3 with the union of interpolants Πcurl
K u3 corresponding to

elements K contributing to the patch, denoted by v3,p:

v3,p

∣
∣
K

= Πcurl
K u3, ∀K ⊂ P.

Both operators Πcurl
P and (Πcurl

K )K⊂P , acting from H0(curl, P ) ∩ Hε(P ), satisfy the
commutativity property for the de Rham diagram. The L2-projections of curl u done
on the whole patch or elementwise, are identical. Consequently,

curl u3,p = curl v3,p,

and the two functions may differ only by a gradient of potential φ that is zero on the
patch boundary ∂P and lives in the patch FE space. It follows from the fact that
u3,p is discrete divergence-free that

‖u3 − u3,p‖0,P ≤ inf
φ
‖u3 − u3,p − gradφ‖0,P

≤ ‖u3 − v3,p‖0,P .

Coming back to the definition of v3,p, we finally obtain

‖u3 − u3,p‖0,P ≤
∑

K⊂P

‖u3 − Πcurl
K u3‖0,P .

The estimation can now be done elementwise on each unconstrained element K ⊂ P
utilizing Lemma 9 for u := u3|K , noting that div u3|K = 0.

�

We are ready now to formulate and prove our final result.
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Theorem 11. Starting with a regular mesh on Ω we perform consecutive hp-refinements,
enforcing the 1-irregularity and minimum rules, constructing meshes Mhp. We assume that

(32) max
K ∈ Mhp

hK

pK
→ 0.

Let uhp ∈ Xhp be an arbitrary sequence of FE functions on Mhp, such that uhp × n = 0 on
∂Ω. We assume that the functions uhp are discrete divergence free, i.e.

(uhp, gradφhp) = 0, ∀φhp ∈ Qhp

We also assume that the uhp are uniformly bounded in the space H(curl,Ω)

‖ curluhp‖ ≤ 1.

Then there exists a subsequence uhp, (denoted with the same symbol) converging strongly in
L2(Ω) to a limit2 u

‖uhp − u‖ → 0.

Proof. Step 1. Following Kikuchi’s reasoning (see [35]), we introduce a sequence of divergen-
ce-free functions uhp, satisfying the same essential boundary conditions, such that

curl uhp = curl uhp, (uhp, gradφ) = 0 ∀φ ∈ H1
0 (Ω).

We have

(33) uhp = uhp + grad qhp,

where qhp is solution to

qhp ∈ H1
0(Ω)

(grad qhp, gradφ) = (uhp, gradφ), ∀φ ∈ H1
0 (Ω).

It follows from the regularity results of [18] that

uhp ∈ Hr(Ω), r > 0,

with a uniform bound on the Hr norm,

‖uhp‖Hr(Ω) ≤ C.

By a standard compactness argument, there exists a subsequence uhp converging strongly in
L2(Ω) to a limit u. We are going to prove that grad qhp → 0, and obtain consequently that
uhp converges to the same limit u.

Step 2. Applying the interpolation operator to both sides of the equation, and using the
commutativity of interpolation and the fact that the interpolation preserves FE spaces, we
get

(34) uhp = Πcurluhp + gradΠqhp.

2Notice that limit satisfies ‖ curlu‖ ≤ 1, and that u is divergence-free.
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Subtracting (34) from (33) we get

−grad(qhp − Πqhp) = uhp − Πcurluhp .

It follows from (33) that grad qhp is orthogonal to all discrete gradients. Consequently,

‖ grad qhp‖ = inf
qhp∈Qhp

‖ grad(qhp − qhp)‖ ≤ ‖ grad(qhp − Πqhp)‖ = ‖uhp − Πcurluhp‖.

It is sufficient, therefore, to prove that the interpolation error of functions uhp converges
uniformly to zero.

Step 3. Applying Lemmas 9 and 10, we obtain

‖uhp − Πcurluhp‖2
0,Ω =

∑

P

‖uhp − Πcurluhp‖2
0,P

≤ C
∑

P

(
hP

pP

)2r
P

(‖uhp‖r,P + ‖ curl uhp‖0,P )2.

Here r is the global regularity constant and rP < r denote the patch constants discussed in
Lemma 10 (we also consider unconstrained elements K as one-element patches and, applying
Lemma 9, take rP as any number between 0 and r in this case) As rP depends only upon the
shape of the patch and the number of different patches is finite, the L2 interpolation error
must converge to zero, if the maximum ratio of patch size and (minimum) order converges
to zero,

max
P

hP

pP

→ 0 .

Notice, finally, that the 1-irregularity and max rules imply that the last condition follows
from assumption (32). �

Remark 5. Examining our proof, we see that we have proved the following property: There
exists a sequence δhp converging to 0 such that

(35) ∀uhp ∈ Xhp, discrete divergence free,

∃uhp ∈ H0(curl,Ω) with div uhp = 0 : ‖uhp − uhp‖ ≤ Cδhp(‖uhp‖ + ‖ curl uhp‖).

Here C > 0 does not depend on uhp. Condition (35) implies the discrete compactness
property, cf. [6, 7]. It also implies the quasi-optimality of the discrete electric Maxwell
problems for any fixed frequency which is not an eigenfrequency of the continuous problem,
see [27, 10, 15].
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5. Conclusions

Relying on our main result Theorem 11 and on [16], we can conclude the convergence of
eigenvalue approximation along the following lines.

Let Ω be a simply connected polygonal domain with sides parallel to the coordinate axes.
We consider the Maxwell eigenvalue problem on Ω:

(36) Find u ∈ H(curl,Ω), u 6= 0, and λ 6= 0 :
∫

Ω

curl u curl v dx = λ

∫

Ω

u · v dx, ∀v ∈ H(curl,Ω).

The condition λ 6= 0 implies that eigenvectors u are divergence free. The converse is also
true since Ω is simply connected. The eigenvalues λ have a finite multiplicity and form
an increasing sequence of positive numbers without accumulation point. We denote by
λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · the sequence of eigenvalues with repetition according to their
multiplicities.

We choose a sequence of hp finite element spaces Xhp satisfying the assumptions of Theo-
rem 11 and define the approximated problems by.

(37) Find uhp ∈ Xhp, uhp 6= 0, and λhp 6= 0 :
∫

Ω

curl uhp curl vhp dx = λhp

∫

Ω

uhp · vhp dx, ∀vhp ∈ Xhp.

The discrete eigenvectors uhp are discrete divergence free. We denote by λ1
hp ≤ λ2

hp ≤ · · · ≤
λk

hp ≤ · · · the sequence of eigenvalues with repetition according to their multiplicities.

Assumption (32) guarantees that the conditions (CAS) (approximation in H(curl,Ω)) and
(CDK) (approximation in the kernel of the curl operator) of [16] are satisfied. Theorem
11 yields condition (DCP) of discrete compactness. Thus [16, Theorem 6.9] yields that the
sequence of problems (37) is a spurious-free spectrally correct approximation of problem (36).
As a consequence, we have

(38) ∀k ≥ 1, λk
hp −→ λk as max

K ∈ Mhp

hK

pK
→ 0.

Let us recall that the spectral correctness alone would provide a weaker statement, according
to which the correct numbering of discrete eigenvalues which ensures (38) should be done
by discarding small eigenvalues (and not only zero eigenvalues). “Small” means that the
maximal size εhp of the discarded ones tends to zero as hK/pK tends to zero. The consequence
of the spurious free property is that εhp is equal to zero.

According to [16, Theorem 6.11] the three conditions (CAS), (CDK) and (DCP) imply
condition (CHN) too. Condition (CHN) is the one which allows the application of the theory
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of [28], see also [16, Remark 4.11]. This implies, for example, that if λk is a simple eigenvalue,
there holds the estimate

(39) |λk − λk
hp| ≤ Ck

(

min
vhp ∈ Xhp

‖uk − vhp‖H(curl,Ω)

)2

.

Here uk is a normalized eigenvector associated with λk. Less sharp estimates can be deduced
by this argument in the case of multiple eigenvalues.

In [21, 22], it is proved that the regularity of the eigenvectors uk can be described in terms
of weighted analytic spaces (close to the countably normed spaced of [4]), via a decomposition
∇ϕk + wk where the potential ϕk concentrates the strongest singularities. Combining this
with the approximation result proved in [1] for Raviart-Thomas elements, it is possible to
deduce an exponential estimate in our case

(40) |λk − λk
hp| ≤ Ck e

−bkN1/3

, bk > 0.

Here N is the dimension of Xhp. Note that N1/3 is a O(p).
Our final comment concerns the validity of our result for meshes obtained using the so

called algebraic mesh generators. This is the case when the actual physical domain is parti-
tioned into a finite number of (possibly curvilinear) quadrilaterals, each of them being the
image of a reference unit square through a smooth map. The maps are compatible in the
sense that parametrizations for two quadrilaterals adjacent to a common edge, provide an
identical parametrization for the edge. The original Maxwell problem can then be restated
on a collection of reference square domains with appropriate interface conditions, and modi-
fied material properties resulting from the change of coordinates. According to the result of
Caorsi et al [16], the discrete compactness property for constant material data implies the
corresponding discrete compactness property for the case of general, possibly anisotropic,
material data. As the discretization in the original domain with parametric, exact geome-
try elements, is equivalent with the discretization of the modified problem on the reference
squares using square elements discussed in this paper, our analysis applies to such a case as
well. We emphasize that the situation is essentially different when unstructured mesh gener-
ators are used, and the geometry of individual quadrilateral elements is no longer controlled
by global (and sufficiently smooth) maps, compare [3].
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E-mail address : costabel@univ-rennes1.fr
URL: http://perso.univ-rennes1.fr/martin.costabel/
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