# Continuum limit of the Volterra model, separation of variables and non standard realizations of the Virasoro Poisson bracket. 

Olivier Babelon

## - To cite this version:

Olivier Babelon. Continuum limit of the Volterra model, separation of variables and non standard realizations of the Virasoro Poisson bracket.. 2005. hal-00012185v1

## HAL Id: hal-00012185 <br> https://hal.science/hal-00012185v1

Preprint submitted on 17 Oct 2005 (v1), last revised 21 Mar 2006 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Continuum limit of the Volterra model, separation of variables and non standard realizations of the Virasoro Poisson bracket. 

O. Babelon ${ }^{1}$<br>Laboratoire de Physique Théorique et Hautes Energies. ${ }^{2}$


#### Abstract

The classical Volterra model, equipped with the Faddeev-Takhtadjan Poisson bracket provides a lattice version of the Virasoro algebra. The Volterra model being integrable, we can express the dynamical variables in terms of the so called separated variables. Taking the continuum limit of these formulae, we obtain the Virasoro generators written as determinants of infinite matrices, the elements of which are constructed with a set of points lying on an infinite genus Riemann surface. The coordinates of these points are separated variables for an infinite set of Poisson commuting quantities including $L_{0}$. The scaling limit of the eigenvector can also be calculated explicitly, so that the associated Schroedinger equation is in fact exactly solvable.


[^0]
## 1 Introduction.

The relation between integrable systems and conformal field theory has long been recognized [1], 2]. Although the emphasis has been put rightfully on Baxter $Q$ operator and therefore on Sklyanin's separated variables [3], to the best of our knowledge there is no explicit expressions of the Virasoro generators in terms of these variables.

We make here a first step in this direction by considering the classical version of this problem. Our strategy will be to start with the Volterra model on the lattice (4, 6] equipped with the FaddeevTakhtadjan [7, 8] Poisson bracket. Since the Volterra model is integrable, we can rewrite everything in terms of separated variables. Now, the Faddeev-Takhtadjan bracket goes directly to the Virasoro Poisson bracket in the continuum limit, and therefore by taking this limit in the separated variables formulae we will obtain the Virasoro generators expressed in terms of separated variables.

This leads to the following rather new type of formula for the Virasoro generators:

$$
u(x)=\sum L_{n} e^{2 i n \pi x}=p_{0}^{2}+2 \partial_{x}^{2} \log \operatorname{det} \Theta(x)+\left(L_{0}-p_{0}^{2}\right) \delta(x)
$$

Here $p_{0}$ is the zero mode and Poisson commutes with everything, the term $\left(L_{0}-p_{0}^{2}\right) \delta(x)$ will be explained later and the formula for $L_{0}$ is given in eq. (59). The infinite matrix $\Theta(x)$ reads $(k, m \in\{1, \cdots, \infty\}):$

$$
\begin{equation*}
\Theta_{k m}(x)=\frac{W_{k}(x) \partial_{x} E_{m}(x)-\partial_{x} W_{k}(x) E_{m}(x)}{Z_{k}^{2}-m^{2} \pi^{2}}, \quad 0 \leq x \leq 1 \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
W_{k}(x)=\frac{\sin Z_{k} x}{Z_{k}}+\mu_{k} \frac{\sin Z_{k}(1-x)}{Z_{k}}, \quad E_{m}(x)=2 m \pi \sin m \pi x \tag{2}
\end{equation*}
$$

The above formula for $u(x)$ is valid on the interval $0 \leq x \leq 1$, and should be extended outside this interval by periodicity (in particular the $\delta(x)$ term in a Dirac comb).

The result of this paper is that if the variables $Z_{k}, \mu_{k}$ have Poisson bracket ${ }^{3}$

$$
\begin{equation*}
\left\{Z_{k}, Z_{k^{\prime}}\right\}=0, \quad\left\{Z_{k}, \mu_{k^{\prime}}\right\}=2\left(Z_{k}-p_{0}^{2} Z_{k}^{-1}\right) \mu_{k} \delta_{k k^{\prime}}, \quad\left\{\mu_{k}, \mu_{k^{\prime}}\right\}=0 \tag{3}
\end{equation*}
$$

then $u(x)$ does satisfies the Virasoro Poisson bracket.

$$
\begin{equation*}
\{u(x), u(y)\}=4(u(x)+u(y)) \delta^{\prime}(x-y)+2 \delta^{\prime \prime \prime}(x-y) \tag{4}
\end{equation*}
$$

Morever, the variables $Z_{k}, \mu_{k}$ are separated variables for an infinite set of higher commuting quantities, including $L_{0}$.

Since the separated variables are also the ones which solve the classical inverse problem, the Schroedinger equation with the potential $u(x)$

$$
\left.\left(-\partial_{x}^{2}-u(x)\right) \psi(x, \Lambda)=\Lambda^{2} \psi(x, \Lambda)\right)
$$

[^1]is exactly solvable, that is we have explicit formulae for both the potential $u(x)$ and a basis of solutions $\psi(x, \Lambda)$. Constructing the linear combination which is quasi periodic (the so called Bloch waves) introduces an infinite genus Riemann surface. The coefficients in the expression of this curve define a complete set of Poisson commuting Hamiltonians including $L_{0}$. The separated variables are points on this curve.

The paper is organised as follows. In the first three sections we recall some known facts about the Volterra model on the lattice. In particular we recall the formulae expressing the dynamical degrees of freedom in terms of the separated variables.

In section 5 we compute the continuum (scaling) limit of the spectral curve. The result is eq.(41). We then show that the Hamiltonians $H_{m}$ in this formula are in involution. Moreover we show that the scaling limit of the dynamical divisor still belongs to that curve, and hence define separated variables for these Hamiltonians.

In sections 6, 7 and 8, we compute the scaling limit of the eigenvector of the Lax matrix at each point of the spectral curve. The result is rather simple and is given in eq.(47). We then show that the obtained expression does satisfy a second order Schroedinger equation and we compute its potential $u(x)$. Finally, we construct the two quasi periodic solutions of that equation, the Bloch waves, and recover in this way exactly the same spectral curve as the one obtained previously.

In sections 9 and 10 we make a pause devoted to performing a few checks in a certain perturbative scheme, and to preparing the ground for the serious calculations coming next.

In sections 11 and 12 we prove that the potential $u(x)$ does satisfy the Virasoro Poisson bracket. An essential use is made of Hirota-Sato bilinear identities indicating once more, if needed, that all this construction is deeply rooted to integrability.

## 2 The Volterra model.

In this and the following two sections we recall some well known facts about the Volterra model. The Volterra model, as an integrable system, was introduced in [4]. It is a restricted version of the Toda lattice. We consider a periodic lattice with $N+1$ sites. On each lattice site, we attach a dynamical variable $a_{i}$ on which we impose the Faddeev-Takhtadjan Poisson bracket [7]:

$$
\begin{equation*}
\left\{a_{i}, a_{j}\right\}=a_{i} a_{j}\left[\left(4-a_{i}-a_{j}\right)\left(\delta_{i, j+1}-\delta_{j, i+1}\right)-a_{j+1} \delta_{i, j+2}+a_{i+1} \delta_{j, i+2}\right] \tag{5}
\end{equation*}
$$

This bracket ${ }^{4}$ is interesting because taking the continuum limit as

$$
a_{i} \simeq 1+\Delta^{2} u(x), \quad \Delta=\frac{1}{(N+1)}
$$

it becomes the Virasoro Poisson bracket eq.(7). For precisely this reason, and in this perspective, the lattice model has been extensively studied both at the classical level $[8,8]$, and at the quantum level [9, 10, 11, 13, 12]. The present paper is one more contribution this series of works.

[^2]The Lax matrix for the Volterra model is defined by:

$$
L(\mu)=\left(\begin{array}{cccccc}
0 & \sqrt{a_{1}} & 0 & \cdots & & \mu^{-1} \sqrt{a_{N+1}}  \tag{6}\\
\sqrt{a_{1}} & 0 & \sqrt{a_{2}} & \cdots & & 0 \\
\vdots & & \ddots & & & \vdots \\
0 & & \sqrt{a_{i-1}} & 0 & \sqrt{a_{i}} & \\
\vdots & & & \ddots & & \vdots \\
0 & & \cdots & \sqrt{a_{N-1}} & 0 & \sqrt{a_{N}} \\
\mu \sqrt{a_{N+1}} & & \cdots & 0 & \sqrt{a_{N}} & 0
\end{array}\right)
$$

It is well known that $\operatorname{Tr} L^{n}(\mu)$ are in involution with respect to the Poisson bracket eq.(司). Hence we have an integrable system on the lattice whose continuum limit is directly related to conformal field theory.

The spectral curve $\Gamma$ is defined as usual:

$$
\begin{equation*}
\Gamma \quad: \quad \operatorname{det}(L(\mu)-\lambda)=0 \tag{7}
\end{equation*}
$$

Expanding the determinant we see that it is of the form:

$$
\begin{equation*}
\mu+\mu^{-1}-t(\lambda)=0 \tag{8}
\end{equation*}
$$

where $t(\lambda)$ is polynomial of degree $N+1$.

$$
\begin{equation*}
t(\lambda)=\mathcal{A}^{-1} \lambda^{N+1}-\mathcal{A}^{-1}\left(\sum_{i} a_{i}\right) \lambda^{N-1}+\cdots \tag{9}
\end{equation*}
$$

where

$$
\mathcal{A}=\sqrt{a_{1} a_{2} \cdots a_{N+1}}
$$

Assuming $N=2 n$ even, $t(\lambda)$ is an odd polynomial $t(-\lambda)=-t(\lambda)$ and has exactly $n+1$ independent coefficients. However, in that case, there is one Casimir function $K=t(2)$ :

$$
\left\{t(2), a_{i}\right\}=0, \quad \forall i
$$

Hence, the dimension of phase space is $N=2 n$ and we have $n$ commuting quantities. The genus of the curve $\Gamma$ is $g=N$.

At each point $(\lambda, \mu)$ of the spectral curve, we can attach an eigenvector $\Psi(\lambda, \mu)=\left(\psi_{i}(x)\right), i=$ $1, \cdots, N+1$, corresponding to the eigenvalue $\lambda$ of $L(\mu)$. Explicitly, the equation $(L(\mu)-\lambda) \Psi=0$ reads

$$
\begin{align*}
\sqrt{a_{1}} \psi_{2}+\mu^{-1} \sqrt{a_{N+1}} \psi_{N+1} & =\lambda \psi_{1} \\
\sqrt{a_{i-1}} \psi_{i-1}+\sqrt{a_{i}} \psi_{i+1} & =\lambda \psi_{i}  \tag{10}\\
\mu \sqrt{a_{N+1}} \psi_{1}+\sqrt{a_{N}} \psi_{N} & =\lambda \psi_{N+1}
\end{align*}
$$

We extend the definition of the coefficients $a_{i}$ by periodicity $a_{i+N+1}=a_{i}$, and introduce a second order difference operator $\mathcal{D}$ :

$$
(\mathcal{D} \Psi)_{i} \equiv \sqrt{a_{i-1}} \psi_{i-1}+\sqrt{a_{i}} \psi_{i+1}
$$

This operator is a discrete version of a Schroedinger operator with periodic potential. Eqs.(10) are then equivalent to:

$$
\begin{equation*}
(\mathcal{D} \Psi)_{i}=\lambda \psi_{i}, \quad \text { with } \quad \psi_{i+N+1}=\mu \psi_{i} \tag{11}
\end{equation*}
$$

Thus, $\Psi$ is a Bloch wave for the difference operator $\mathcal{D}$ with a Bloch momentum $\mu$.

In the continuum limit, eq.(11) becomes the Schroedinger equation.

$$
\left(-\partial_{x}^{2}-u(x)\right) \psi(x)=\Lambda^{2} \psi(x), \quad \lambda \simeq 2-\Delta^{2} \Lambda^{2}
$$

## 3 The free case.

Since in the continuum limit $a_{i} \rightarrow 1$, it is useful to first recall some formulae in the trivial case $a_{i}=1$. They will be generalized to the full case in the next section. To introduce the zero mode from the start, we consider the slightly more general case $a_{i}=a$ :

$$
\begin{aligned}
\sqrt{a}\left(\psi_{2}+\mu^{-1} \psi_{N+1}\right) & =\lambda \psi_{1} \\
\sqrt{a}\left(\psi_{i-1}+\psi_{i+1}\right) & =\lambda \psi_{i} \\
\sqrt{a}\left(\mu \psi_{1}+\psi_{N}\right) & =\lambda \psi_{N+1}
\end{aligned}
$$

The solution of the bulk equations is $\psi_{i}=\alpha x_{+}^{i}+\beta x_{-}^{i}$ where $x_{ \pm}$are solutions of the equation

$$
x^{2}-z x+1=0, \quad x_{ \pm}(\lambda)=\frac{1}{2}\left(z \pm \sqrt{z^{2}-4}\right), \quad z=\frac{\lambda}{\sqrt{a}}
$$

Imposing the two boundary equations, we get

$$
\begin{array}{r}
\left(x_{+}^{N+1}-\mu\right) \alpha+\left(x_{-}^{N+1}-\mu\right) \beta=0 \\
\left(x_{+}^{N+1}-\mu\right) x_{+} \alpha+\left(x_{-}^{N+1}-\mu\right) x_{-} \beta=0
\end{array}
$$

The compatibility of this system yields the spectral curve

$$
\begin{equation*}
\mu+\mu^{-1}=x_{+}^{N+1}+x_{-}^{N+1} \equiv t(\lambda) \tag{12}
\end{equation*}
$$

We now impose that the curve passes through the point $\left(\lambda=2, \mu=\mu_{0}\right)$ where $\mu_{0}$ is related to the value of the Casimir function

$$
\begin{equation*}
K=\mu_{0}+\mu_{0}^{-1} \tag{13}
\end{equation*}
$$

Setting

$$
x_{ \pm}(2)=\frac{1}{\sqrt{a}} \pm \sqrt{\frac{1}{a}-1}=e^{ \pm \alpha}, \quad \mu_{0}=e^{i p_{0}}
$$

eq.(12) gives $\alpha=i \frac{p_{0}}{N+1}$. Hence the constant $a$ is related to the value of the zero mode $p_{0}$ by:

$$
\sqrt{a}=\frac{1}{\cos \frac{p_{0}}{N+1}}
$$

The components of the eigenvector, properly normalized, are meromorphic functions on the spectral curve eq.(12). Choosing the normalisation $\psi_{N+1}=\mu$, they read

$$
\begin{equation*}
\psi_{i}(\lambda, \mu)=\frac{P_{N+1-i}(z)+\mu P_{i}(z)}{P_{N+1}(z)}, \quad z=\frac{\lambda}{\sqrt{a}} \tag{14}
\end{equation*}
$$

We have introduced the polynomials of degree $j-1$ :

$$
\begin{equation*}
P_{j}(z)=\frac{x_{+}^{j}-x_{-}^{j}}{x_{+}-x_{-}} \tag{15}
\end{equation*}
$$

One has $P_{j}(z)=z^{j-1}+O\left(z^{j-3}\right)$. The first few polynomials are

$$
P_{0}=0, \quad P_{1}=1, \quad P_{2}=z, \quad P_{3}=z^{2}-1, \quad P_{4}=z^{3}-2 z
$$

They are essentially the Tchebitchev polynomials of the second kind.
As we will see, eq.(14) is the general form of the meromorphic function $\psi_{i}(\lambda, \mu)$ even when $a_{i} \neq a$. In particular, in order to take the continuum limit, the poles of the eigenvector ${ }^{5}$ will have to be close to the roots of the equation $P_{N+1}\left(\frac{\lambda}{\sqrt{a}}\right)=0$, that is

$$
\begin{equation*}
\lambda_{k}^{(0)}=2 \sqrt{a} \cos \frac{Z_{k}^{(0)}}{N+1}, \quad Z_{k}^{(0)}=k \pi \quad k=1, \cdots, N \tag{16}
\end{equation*}
$$

For these special values $\lambda_{k}^{(0)}$, we have $x_{ \pm}=e^{ \pm i \frac{k \pi}{N+1}}$ and eq.(12) gives $\mu_{k}^{(0)}=(-1)^{k}$. The set of points $\left(\lambda_{k}^{(0)}, \mu_{k}^{(0)}\right), k=1, \cdots, N$ will be called the free configuration and will play an important role below.

It is simple to take the continuum limit in this free case. We set

$$
\lambda \simeq 2-\Delta^{2} \Lambda^{2}, \quad z \simeq 2-\Delta^{2} Z^{2}, \quad \psi_{i \pm 1}=\psi(x \pm \Delta), \quad \Delta=\frac{1}{N+1}
$$

where we have introduced the variable

$$
\begin{equation*}
Z=\sqrt{\Lambda^{2}+p_{0}^{2}} \tag{17}
\end{equation*}
$$

The eigenvector equation becomes the Schroedinger equation

$$
\begin{equation*}
-\psi^{\prime \prime}(x)-p_{0}^{2} \psi(x)=\Lambda^{2} \psi(x), \quad x=\Delta j \tag{18}
\end{equation*}
$$

In this limit, we also have $x_{ \pm}=1 \pm i \Delta Z$ and the equation of the spectral curve reads:

$$
\mu+\mu^{-1}=(1+i \Delta Z)^{1 / \Delta}+(1-i \Delta Z)^{-1 / \Delta}
$$

In the limit $\Delta \rightarrow 0$, it becomes

$$
\begin{equation*}
\mu+\mu^{-1}=2 \cos Z, \quad \mu_{ \pm}=e^{ \pm i Z} \tag{19}
\end{equation*}
$$

[^3]Similarly, the eigenvector becomes a Baker-Akhiezer function

$$
\begin{equation*}
\psi(x)=\frac{\sin Z(1-x)+\mu \sin Z x}{\sin Z} \tag{20}
\end{equation*}
$$

When $\mu=e^{ \pm i Z}$ we get $\psi(x)=e^{ \pm i Z x}$ as it should be. Notice that when $\mu$ is kept as a free parameter, the above formula gives two independent solutions of eq.(18), but when $\mu$ belongs to the spectral curve eq.(19) one has

$$
\psi(x+1)=\mu \psi(x)
$$

Eq. (20) presents the two Bloch waves as a single function on the hyperelliptic spectral curve.

Another example important to us will be the Dirac comb.

$$
\left[-\partial^{2}-H_{0} \delta(x)\right] \psi(x)=\Lambda^{2} \psi(x), \quad \delta(x+1)=\delta(x)
$$

On each interval $x_{j}=j<x<x_{j+1}=j+1$, one has

$$
\psi(x)=\alpha_{j} e^{i \Lambda x}+\beta_{j} e^{-i \Lambda x}, \quad x_{j}<x<x_{j+1}
$$

The Bloch condition

$$
\psi\left(x+x_{j}\right)=\mu^{j} \psi(x), \quad 0<x<1
$$

gives $\alpha_{j}=\left(\mu e^{-i \Lambda}\right)^{j} \alpha_{0}, \beta_{j}=\left(\mu e^{i \Lambda}\right)^{j} \beta_{0}$. The continuity of $\psi(x)$ gives $\alpha_{0}=-\frac{\left(\mu-e^{-i \Lambda}\right)}{\left(\mu-e^{i \Lambda}\right)} \beta_{0}$, while the gap equation on the first derivative, $-\psi^{\prime}\left(x_{j}+0\right)+\psi^{\prime}\left(x_{j}-0\right)-H_{0} \psi\left(x_{j}\right)=0$, gives the spectral curve

$$
\begin{equation*}
\mu+\mu^{-1}=2 \cos \Lambda-H_{0} \frac{\sin \Lambda}{\Lambda} \tag{21}
\end{equation*}
$$

The Bloch wave itself is $\psi(x)=\mu^{j} \psi_{v a c}\left(x-x_{j}\right), x_{j}<x<x_{j+1}$, where $\psi_{v a c}(x)$ is given by eq. (20) (with $p_{0}=0$ ) but $\Lambda, \mu$ now belonging to eq.(21).

## 4 Separated variables.

In this section, we generalise the previous analysis when $a_{i} \neq a$ and express the dynamical variables of the Volterra model in terms of the separated variables. Equivalent formulae where already obtained a long time ago in [4, 5]. A quantum version for the Toda chain can be found in (19].

We have to reconstruct the eigenvectors $\Psi$ of $L(\mu)$. Let us set $\Psi=\left(\psi_{i}\right), i=1, \cdots, N+1$. We normalize the last component $\psi_{N+1}=\mu$. Notice that due to eq.(8), $\mu$ does not vanish for finite $\lambda$. The components $\psi_{i}$ are meromorphic functions on the spectral curve and are uniquely characterised by their poles and behavior at infinity which we now describe.

We will call $P^{+}(\lambda=\infty, \mu=\infty)$ and $P^{-}(\lambda=\infty, \mu=0)$ the two points above $\lambda=\infty$. In the neighbourhood of $P^{ \pm}$the local parameter is $\lambda^{-1}$ and we have by direct expansion of eq.(8)):

$$
\begin{align*}
& P^{+}: \quad \mu=\mathcal{A}^{-1} \lambda^{N+1}\left(1+O\left(\lambda^{-2}\right)\right)  \tag{22}\\
& P^{-} \quad: \quad \mu=\mathcal{A} \lambda^{-N-1}\left(1+O\left(\lambda^{-2}\right)\right) \tag{23}
\end{align*}
$$

At the points $P^{+}$and $P^{-}$, the eigenvector $\Psi(P)$ behaves as:

$$
\begin{align*}
& \psi_{i}(P)=\frac{1}{\sqrt{a_{N+1} a_{1} a_{2} \cdots a_{i-1}}} \lambda^{i}\left(1+O\left(\lambda^{-2}\right)\right), \quad P \sim P^{+}  \tag{24}\\
& \psi_{i}(P)=\sqrt{a_{N+1} a_{1} a_{2} \cdots a_{i-1}} \lambda^{-i}\left(1+O\left(\lambda^{-2}\right)\right), \quad P \sim P^{-} \tag{25}
\end{align*}
$$

This is easily deduced by inspection of eqs.(10).

From the general results of the classical inverse scattering theory, we expect $g+(N+1)-1=2 N$ poles for the eigenvector (see e.g. [6, (15]). From eq.(24), we see that we have a fixed pole of order $N$ at $P^{+}$(on the component $\psi_{N}$ ), and there remains $g=N$ poles at finite distance, the so called dynamical poles. But we notice the symmetry property

$$
\psi_{i}(-\lambda,-\mu)=(-1)^{i} \psi_{i}(\lambda, \mu)
$$

so that the dynamical poles come in pairs

$$
\lambda_{N+1-k}=-\lambda_{k}, \quad \mu_{N+1-k}=-\mu_{k}
$$

and only $\left(\lambda_{k}, \mu_{k}\right), k=1 \cdots n$ are independent parameters.
Everything can be expressed in terms of these $2 n=N$ quantities ( $\lambda_{k}, \mu_{k}$ ), $k=1 \cdots n$. In fact, they can be viewed as coordinates on (an open set of) phase space.

First, the commuting Hamiltonians are easy to reconstruct. Indeed the spectral curve is determined by requiring that it passes through the points $\left(\lambda_{k}, \mu_{k}\right), k=1 \cdots n$ and the point $\left(2, \mu_{0}\right)$, where $\mu_{0}$ is related to the Casimir function as in eq.(13).

The equation of the curve itself can be written as a determinant

$$
\operatorname{det}\left(\begin{array}{ccccc}
\lambda & \lambda^{3} & \cdots & \lambda^{N+1} & \mu+\mu^{-1}  \tag{26}\\
2 & 2^{3} & \cdots & 2^{N+1} & \mu_{0}+\mu_{0}^{-1} \\
\lambda_{1} & \lambda_{1}^{3} & \cdots & \lambda_{1}^{N+1} & \mu_{1}+\mu_{1}^{-1} \\
\vdots & & & & \vdots \\
\lambda_{n} & \lambda_{n}^{3} & \cdots & \lambda_{n}^{N+1} & \mu_{n}+\mu_{n}^{-1}
\end{array}\right)=0
$$

Expanding over the first row, we obtain a curve of the form eq.(8), and we can read directly the Hamiltonians as the coefficients of $t(\lambda)$. They appear as functions of the $\left(\lambda_{k}, \mu_{k}\right)$ and can be shown to Poisson commute (see [16, 17, 18] for a proof and for the quantum generalization of this fact).

Eqs. (24,25) and the data of the $N$ dynamical poles also determine the functions $\psi_{i}$ uniquely. Being meromorphic functions on a hyperelliptic curve, we can write quite generally

$$
\begin{equation*}
\psi_{i}=\frac{Q^{(i)}(\lambda)+\mu R^{(i)}(\lambda)}{\prod_{k=1}^{n}\left(\lambda^{2}-\lambda_{k}^{2}\right)} \tag{27}
\end{equation*}
$$

where $Q^{(i)}$ and $R^{(i)}$ are polynomials such that

$$
Q^{(i)}(-\lambda)=(-1)^{i} Q^{(i)}(\lambda), \quad R^{(i)}(-\lambda)=(-1)^{i+1} R^{(i)}(\lambda)
$$

Above $\lambda_{k}$, we have two points on the curve: $\left(\lambda_{k}, \mu_{k}\right)$ and $\left(\lambda_{k}, \mu_{k}^{-1}\right)$. We want the poles to be at $\left(\lambda_{k}, \mu_{k}\right)$ only so that the numerator in eq.(27) should vanish at the points $\left(\lambda_{k}, \mu_{k}^{-1}\right)$. This gives $n$ conditions

$$
\begin{equation*}
Q^{(i)}\left(\lambda_{k}\right)+\mu_{k}^{-1} R^{(i)}\left(\lambda_{k}\right)=0, \quad k=1 \cdots n \tag{28}
\end{equation*}
$$

To have a pole of order $i$ at $P^{+}$and a zero of order $i$ at $P^{-}$we must choose

$$
\text { degree } Q^{(i)}=N-i, \quad \text { degree } R^{(i)}=i-1
$$

Hence these two polynomials depend altogether on $n+1$ coefficients which are determined by imposing the $n$ conditions eq. (28) and requiring that the normalizations coefficients are inverse to each other at $P^{ \pm}$as in eqs.(24,25).

It is convenient to use the basis of polynomials $P_{j}(\lambda)$ eq.(15). We write the formulae for $\psi_{i}$ in the case $i$ odd, the case $i$ even is similar.

The polynomial $Q^{(i)}(\lambda)$ can be expanded over

$$
Q^{(i)}(\lambda): \quad P_{2}(\lambda), P_{4}(\lambda), \cdots P_{N+1-i}
$$

and the polynomial $R^{(i)}(\lambda)$ can be expanded over

$$
R^{(i)}(\lambda): \quad P_{1}(\lambda), P_{3}(\lambda), \cdots P_{i}(\lambda)
$$

Solving the linear system eq.(28), the eigenvector can be written as

$$
\psi_{i}=\frac{K_{i}}{\prod\left(\lambda^{2}-\lambda_{k}^{2}\right)} \operatorname{det}\left(\begin{array}{cccccc}
\mu P_{1}(\lambda) & \cdots & \mu P_{i}(\lambda) & -P_{N+1-i}(\lambda) & \cdots & -P_{2}(\lambda)  \tag{29}\\
P_{1}\left(\lambda_{1}\right) & \cdots & P_{i}\left(\lambda_{1}\right) & -\mu_{1} P_{N+1-i}\left(\lambda_{1}\right) & \cdots & -\mu_{1} P_{2}\left(\lambda_{1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P_{1}\left(\lambda_{k}\right) & \cdots & P_{i}\left(\lambda_{k}\right) & -\mu_{k} P_{N+1-i}\left(\lambda_{k}\right) & \cdots & -\mu_{k} P_{2}\left(\lambda_{k}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P_{1}\left(\lambda_{n}\right) & \cdots & P_{i}\left(\lambda_{n}\right) & -\mu_{n} P_{N+1-i}\left(\lambda_{n}\right) & \cdots & -\mu_{n} P_{2}\left(\lambda_{n}\right)
\end{array}\right)
$$

where $K_{i}$ are constants independant of $\lambda, \mu$. Defining

$$
\Theta_{i}=\left(\begin{array}{cccccc}
P_{1}\left(\lambda_{1}\right) & \cdots & P_{i-2}\left(\lambda_{1}\right) & -\mu_{1} P_{N+1-i}\left(\lambda_{1}\right) & \cdots & -\mu_{1} P_{2}\left(\lambda_{1}\right)  \tag{30}\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P_{1}\left(\lambda_{k}\right) & \cdots & P_{i-2}\left(\lambda_{k}\right) & -\mu_{k} P_{N+1-i}\left(\lambda_{k}\right) & \cdots & -\mu_{k} P_{2}\left(\lambda_{k}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P_{1}\left(\lambda_{n}\right) & \cdots & P_{i-2}\left(\lambda_{n}\right) & -\mu_{n} P_{N+1-i}\left(\lambda_{n}\right) & \cdots & -\mu_{n} P_{2}\left(\lambda_{n}\right)
\end{array}\right)
$$

We can compute the leading terms in eq.(29) when $\lambda \rightarrow \infty$. At $P^{(+)}$the leading term comes from $\mu P_{i}(\lambda)$, while at $P^{(-)}$it comes from $P_{N+1-i}(\lambda)$.

$$
\begin{aligned}
& \psi_{i} \simeq(-1)^{\frac{i-1}{2}} \mathcal{A}^{-1} K_{i} \operatorname{det} \Theta_{i} \lambda^{i}, \\
& \psi_{i} \simeq(-1)^{\frac{i-1}{2}} K_{i} \operatorname{det} \Theta_{i+2} \lambda^{-i},
\end{aligned} \quad P^{-}
$$

hence, imposing that the two coefficients of $\lambda^{i}$ and $\lambda^{-i}$ are inverse to each other, we get

$$
K_{i}^{2}=\frac{\mathcal{A}}{\operatorname{det} \Theta_{i} \operatorname{det} \Theta_{i+2}}
$$

Comparing with eqs. (24, 25), we finally obtain

$$
\begin{equation*}
a_{i}=\frac{\operatorname{det} \Theta_{i} \operatorname{det} \Theta_{i+3}}{\operatorname{det} \Theta_{i+1} \operatorname{det} \Theta_{i+2}}, \quad a_{N}=\frac{\operatorname{det} \Theta_{N}}{\operatorname{det} \Theta_{N+2}} \mathcal{A}, \quad a_{N+1}=\frac{\operatorname{det} \Theta_{3}}{\operatorname{det} \Theta_{1}} \mathcal{A} \tag{31}
\end{equation*}
$$

Here $\mathcal{A}^{-1}$ is the coefficient of $\lambda^{N+1}$ in $t(\lambda)$ eq.(99), computed from eq.(26).
We impose the Poisson bracket on the variables $\lambda_{k}, \mu_{k}$

$$
\begin{equation*}
\left\{\lambda_{k}, \lambda_{k^{\prime}}\right\}=0, \quad\left\{\lambda_{k}, \mu_{k^{\prime}}\right\}=-\frac{1}{2} \delta_{k k^{\prime}}\left(4 \lambda_{k}-\lambda_{k}^{3}\right) \mu_{k}, \quad\left\{\mu_{k}, \mu_{k^{\prime}}\right\}=0 \tag{32}
\end{equation*}
$$

One can then check that the Hamiltonians defined by eq.(26) are all in involution (this is a general result), and that the $a_{i}$ defined above do satisfy the Faddeev-Takhtadjan Poisson bracket. The fact that the expressions for $a_{N}, a_{N+1}$ are different from the ones in the bulk is due to the choice of normalisation of the eigenvector. However, the Poisson bracket of the $a_{i}$ is periodic. All this can be proved using techniques similar to the ones in (19].

## 5 Continuum limit of the spectral curve.

We now take the continuum limit of the spectral curve eq.(26). The result is eq.(41). We set

$$
\lambda=\sqrt{a} z, \quad \lambda_{k}=\sqrt{a} z_{k}, \quad \frac{2}{\sqrt{a}}=2 \cos \frac{p_{0}}{N+1}=z_{0}
$$

From these, the scaled variables are defined like this:

$$
\begin{equation*}
Z=\sqrt{\Lambda^{2}+p_{0}^{2}}, \quad z=2 \cos \frac{Z}{N+1}, \quad z_{k}=2 \cos \frac{Z_{k}}{N+1} \tag{33}
\end{equation*}
$$

In the following, we will refer to the terminology "perturbation theory" when the points ( $Z_{k}, \mu_{k}$ ) are small deviations from the free configuration. The formulae we will write will make sense in this perturbative setting. This however does not exclude the possibility to have a finite number of points which are large deviation. We will also be interested in the deviation from the zero mode configuration. That is we make the substitution $\sqrt{a_{i}} \rightarrow \sqrt{a} \sqrt{\tilde{a}_{i}}$ everywhere on the lattice. Alternatively this amounts to using the variable $z=\lambda / \sqrt{a}$.

Using the basis of polynomials $P_{j}(z)$ defined in eq. (15) instead of the $z^{j}$, we can write the spectral curve as (it has the right form and passes through the right points)

$$
\operatorname{det}\left(\begin{array}{ccccc}
\mu+\mu^{-1} & P_{N+2}(z) & \cdots & P_{4}(z) & P_{2}(z) \\
\mu_{0}+\mu_{0}^{-1} & P_{N+2}\left(z_{0}\right) & \cdots & P_{4}\left(z_{0}\right) & P_{2}\left(z_{0}\right) \\
\mu_{1}+\mu_{1}^{-1} & P_{N+2}\left(z_{1}\right) & \cdots & P_{4}\left(z_{1}\right) & P_{2}\left(z_{1}\right) \\
\vdots & & & & \vdots \\
\mu_{n}+\mu_{n}^{-1} & P_{N+2}\left(z_{n}\right) & \cdots & P_{4}\left(z_{n}\right) & P_{2}\left(z_{n}\right)
\end{array}\right)=0
$$

Without changing the determinant, we can subtract to the first column the linear combination of the next two columns:

$$
P_{N+2}\left(z_{k}\right)-P_{N}\left(z_{k}\right)=2 \cos Z_{k}
$$

The first column becomes

$$
\left(\begin{array}{c}
\mu+\mu^{-1}-2 \cos Z \\
\gamma_{0} \\
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right)
$$

where we set

$$
\begin{equation*}
\gamma_{k}=\mu_{k}+\mu_{k}^{-1}-2 \cos Z_{k} \tag{34}
\end{equation*}
$$

Notice that $\gamma_{0}=0$. The reason for this subtraction is that for the free configuration we also have $\gamma_{k}^{(0)}=0$, so that the spectral curve becomes simply $\mu+\mu^{-1}=2 \cos Z$ as it should be. The subtraction gives sense to the spectral curve in perturbation theory. Expanding the determinant over the first row, we can write

$$
\mu+\mu^{-1}-2 \cos Z=\sum_{j=1}^{n+1} H_{2 j} P_{2 j}(z)
$$

The $H_{2 j}$ are given by

$$
H=N^{-1} V
$$

where we defined

$$
H=\left(\begin{array}{c}
H_{N+2} \\
H_{N} \\
\vdots \\
H_{2}
\end{array}\right), \quad N=\left(\begin{array}{cccc}
P_{N+2}\left(z_{0}\right) & \cdots & P_{4}\left(z_{0}\right) & P_{2}\left(z_{0}\right) \\
P_{N+2}\left(z_{1}\right) & \cdots & P_{4}\left(z_{1}\right) & P_{2}\left(z_{1}\right) \\
\vdots & & & \vdots \\
P_{N+2}\left(z_{n}\right) & \cdots & P_{4}\left(z_{n}\right) & P_{2}\left(z_{n}\right)
\end{array}\right), \quad V=\left(\begin{array}{c}
\gamma_{0} \\
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right)
$$

We will need to treat separately the first row and column in the matrix $N$. Let us write it as

$$
N=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where

$$
\begin{gathered}
A=P_{N+2}\left(z_{0}\right), \quad B=\left(\begin{array}{llll}
P_{N}\left(z_{0}\right) & \cdots & P_{4}\left(z_{0}\right) & P_{2}\left(z_{0}\right)
\end{array}\right) \\
C=\left(\begin{array}{c}
P_{N+2}\left(z_{1}\right) \\
\vdots \\
P_{N+2}\left(z_{n}\right)
\end{array}\right), \quad D=\left(\begin{array}{cccc}
P_{N}\left(z_{1}\right) & \cdots & P_{4}\left(z_{1}\right) & P_{2}\left(z_{1}\right) \\
\vdots & & \vdots \\
P_{N}\left(z_{n}\right) & \cdots & P_{4}\left(z_{n}\right) & P_{2}\left(z_{n}\right)
\end{array}\right)
\end{gathered}
$$

To zero-th order in perturbation theory, we denote $N=N^{(0)}$ and similarly $A^{(0)}, B^{(0)}, C^{(0)}, D^{(0)}$. To take the continuum limit we have to consider the matrix $N N^{(0)-1}$.

Lemma 1 In the continuum limit, we have

$$
N N^{(0)-1}=\left(\begin{array}{c}
1  \tag{35}\\
\frac{\sin Z_{k}}{Z_{k}} \frac{p_{0}}{\sin p_{0}}
\end{array} \frac{\sin Z_{k}}{Z_{k}}\left\{\frac{1}{Z_{k}^{2}-m^{2} \pi^{2}}-\frac{1}{p_{0}^{2}-m^{2} \pi^{2}}\right\} 2(-1)^{m} m^{2} \pi^{2}\right), \quad k, m=1, \cdots, \infty
$$

Proof. Since $P_{N+2}(z)=z P_{N+1}(z)-P_{N}(z)$ and $P_{N+1}\left(z_{k}^{(0)}\right)=0$, we have

$$
C_{k}^{(0)}=-D_{k 1}^{(0)} \Longrightarrow\left(D^{(0)-1} C^{(0)}\right)_{k}=-\delta_{k 1}
$$

so that

$$
N^{(0)-1}=\frac{1}{A+B_{1}}\left(\begin{array}{cc}
1 & -B D^{(0)-1} \\
F & \left(A+B_{1}\right) D^{(0)-1}-F \otimes B D^{(0)-1}
\end{array}\right)
$$

where $F$ is the column vector

$$
F=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Let us compute

$$
N N^{(0)-1}=\left(\begin{array}{c}
1 \\
\frac{1}{A+B_{1}}(C+D F)
\end{array} \quad D D^{(0)-1}-\frac{1}{A+B_{1}}(C+D F) \otimes B D^{(0)-1}\right)
$$

Now

$$
\begin{gathered}
A+B_{1}=P_{N+2}\left(z_{0}\right)+P_{N}\left(z_{0}\right) \\
(C+D F)_{k}=P_{N+2}\left(z_{k}\right)+P_{N}\left(z_{k}\right)
\end{gathered}
$$

so that in the continuum limit we get

$$
\frac{1}{A+B_{1}}(C+D F)_{k} \rightarrow \frac{\sin Z_{k}}{Z_{k}} \frac{p_{0}}{\sin p_{0}}
$$

The main trick to proceed is an explicit formula for the inverse of the matrix $D^{(0)}$. It is not difficult to check that

$$
\left(D^{(0)-1}\right)_{j k}=\frac{4}{N+1} \sin ^{2} \frac{k \pi}{N+1} P_{2 j}\left(z_{k}^{(0)}\right)
$$

With this, we find

$$
\begin{aligned}
\left(B D^{(0)-1}\right)_{m} & =\frac{4}{N+1} \sin ^{2} \frac{m \pi}{N+1} \sum_{j=1}^{n} P_{2 j}\left(z_{0}\right) P_{2 j}\left(z_{k}^{(0)}\right) \\
& =\frac{\sin ^{2} \frac{m \pi}{N+1}}{\sin \frac{p_{0}}{N+1} \sin \frac{m \pi}{N+1}} \frac{4}{N+1} \sum_{j=1}^{n} \sin \frac{2 j p_{0}}{N+1} \sin \frac{2 j m \pi}{N+1} \rightarrow 2 \frac{m \pi}{p_{0}} \int_{0}^{1} d x \sin p_{0} x \sin m \pi x
\end{aligned}
$$

and the last integral is easily evaluated with the result

$$
\left(B D^{(0)-1}\right)_{m} \rightarrow(-1)^{m} \frac{2 m^{2} \pi^{2} \sin p_{0}}{p_{0}\left(p_{0}^{2}-m^{2} \pi^{2}\right)}
$$

Similarly we compute

$$
\left(D D^{(0)-1}\right)_{k m}=\frac{\sin Z_{k}}{Z_{k}} \frac{(-1)^{m} 2 m^{2} \pi^{2}}{Z_{k}^{2}-m^{2} \pi^{2}}
$$

From all this we get eq.(35).

We introduce the important infinite matrix

$$
\begin{equation*}
M_{k m}=\frac{1}{Z_{k}^{2}-m^{2} \pi^{2}}, \quad k, m=1, \cdots, \infty \tag{36}
\end{equation*}
$$

and the important vector $|\eta\rangle$

$$
|\eta\rangle=M^{-1}\left(\begin{array}{c}
1  \tag{37}\\
\vdots \\
1
\end{array}\right)
$$

With these notations we can write the inverse of the matrix $N N^{(0)-1}$

## Lemma 2

$$
\left(N N^{(0)-1}\right)^{-1}=\left(\frac{p_{0}}{\sin p_{0}}\left(\frac{1}{1-\left\langle\chi\left(p_{0}\right) \mid \eta\right\rangle}\right) \frac{(-1)^{m+1}}{2 m^{2} \pi^{2}} \eta_{m} \quad \frac{(-1)^{m}}{2 m^{2} \pi^{2}}\left\{\left(1+\frac{|\eta\rangle\left\langle\chi\left(p_{0}\right)\right|}{1-\left\langle\chi\left(p_{0}\right) \mid \eta\right\rangle}\right) M^{-1}\right\}_{m k} \frac{Z_{k}}{\sin Z_{k}}\right)
$$

where we have defined the vector $\left\langle\left.\chi\left(p_{0}\right)\right|_{m}=\frac{1}{p_{0}^{2}-\pi^{2} m^{2}}\right.$.

Proof. With the above notations we can write

$$
N N^{(0)-1}=\left(\begin{array}{cc}
1 & 0 \\
\frac{\sin Z_{k}}{Z_{k}} \frac{p_{0}}{\sin p_{0}} & \frac{\sin Z_{k}}{Z_{k}} M_{k l}\left(\delta_{l m}-\eta_{l} \chi_{m}\left(p_{0}\right)\right) 2(-1)^{m} m^{2} \pi^{2}
\end{array}\right)
$$

Letting

$$
N N^{(0)-1}=\left(\begin{array}{cc}
1 & 0 \\
Y & X
\end{array}\right) \Longrightarrow\left(N N^{(0)-1}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-X^{-1} Y & X^{-1}
\end{array}\right)
$$

we find

$$
\begin{equation*}
\left(X^{-1}\right)_{m k}=\frac{(-1)^{m}}{2 m^{2} \pi^{2}}\left\{\left(1+\frac{|\eta\rangle\left\langle\chi\left(p_{0}\right)\right|}{1-\left\langle\chi\left(p_{0}\right) \mid \eta\right\rangle}\right) M^{-1}\right\}_{m k} \frac{Z_{k}}{\sin Z_{k}} \tag{38}
\end{equation*}
$$

and

$$
\left(-X^{-1} Y\right)_{m}=\frac{p_{0}}{\sin p_{0}}\left(\frac{1}{1-\left\langle\chi\left(p_{0}\right) \mid \eta\right\rangle}\right) \frac{(-1)^{m+1}}{2 m^{2} \pi^{2}} \eta_{m}
$$

Let us return to the formula for the spectral curve. Denote

$$
\begin{equation*}
\eta(Z)=1-\sum_{m=1}^{\infty} \frac{\eta_{m}}{Z^{2}-m^{2} \pi^{2}} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Gamma\rangle_{m}=\sum_{k} M_{m k}^{-1} \frac{Z_{k}}{\sin Z_{k}} \gamma_{k} \tag{40}
\end{equation*}
$$

One has

Proposition 1 In the continuum limit, the equation of the spectral curve becomes:

$$
\begin{equation*}
\mu+\mu^{-1}=2 \cos Z+\frac{\sin Z}{Z}\left(-H_{0}+\sum_{m} \frac{H_{m}}{Z^{2}-m^{2} \pi^{2}}\right) \tag{41}
\end{equation*}
$$

where the conserved quantities $H_{m}$ can be taken as

$$
\begin{equation*}
H_{m}=\Gamma_{m}+\frac{1}{\eta\left(p_{0}\right)}\left\langle\chi\left(p_{0}\right) \mid \Gamma\right\rangle \eta_{m}, \quad H_{0}=\sum_{m} \frac{H_{m}}{p_{0}^{2}-\pi^{2} m^{2}}=\frac{1}{\eta\left(p_{0}\right)} \sum_{m} \frac{\Gamma_{m}}{p_{0}^{2}-\pi^{2} m^{2}} \tag{42}
\end{equation*}
$$

Proof. We have

$$
\mu+\mu^{-1}-2 \cos Z=\sum_{i=0}^{n} P_{N+2-2 i}(z) H_{N+2-2 i}=\sum_{i=0}^{n} P_{N+2-2 i}(z)\left(N^{-1} V\right)_{i}
$$

we rewrite by inserting $1=N^{(0)-1} N^{(0)}$

$$
\begin{equation*}
\mu+\mu^{-1}-2 \cos Z=\sum_{i, j, k} P_{N+2-2 i}(z)\left(N^{(0)-1}\right)_{i k}\left(N^{(0)}\right)_{k j}\left(N^{-1} V\right)_{j} \tag{43}
\end{equation*}
$$

Hence, we need to compute

$$
\begin{aligned}
& \sum_{i} P_{N+2-2 i}(z)\left(N^{(0)-1}\right)_{i m}= \\
& \quad\left(\frac{P_{N+2}(z)+P_{N}(z)}{P_{N+2}\left(z_{0}\right)+P_{N}\left(z_{0}\right)},-\frac{P_{N+2}(z)+P_{N}(z)}{P_{N+2}\left(z_{0}\right)+P_{N}\left(z_{0}\right)} B D^{(0)-1}+\sum_{i} P_{N+2-2 i}(z)\left(D^{(0)-1}\right)_{i m}\right)
\end{aligned}
$$

The limit $N \rightarrow \infty$ is easy to take

$$
\sum_{i} P_{N+2-2 i}(z)\left(N^{(0)-1}\right)_{i m} \rightarrow \frac{\sin Z}{Z}\left(\frac{p_{0}}{\sin p_{0}}, 2(-1)^{m} m^{2} \pi^{2}\left\{\frac{1}{Z^{2}-m^{2} \pi^{2}}-\frac{1}{p_{0}^{2}-m^{2} \pi^{2}}\right\}\right)
$$

We are now ready to take the limit $N \rightarrow \infty$ in eq.(43)

$$
\mu+\mu^{-1}-2 \cos Z=\frac{\sin Z}{Z}\left(\frac{p_{0}}{\sin p_{0}} \widetilde{H}_{0}+\sum_{m=1}^{\infty} 2(-1)^{m} m^{2} \pi^{2}\left\{\frac{1}{Z^{2}-m^{2} \pi^{2}}-\frac{1}{p_{0}^{2}-m^{2} \pi^{2}}\right\} \widetilde{H}_{m}\right)
$$

where

$$
\widetilde{H}_{m}=\left(N N^{(0)-1}\right)^{-1}\left(\begin{array}{c}
\gamma_{0} \\
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right)=\left(X^{-1}\left(\begin{array}{c}
0 \\
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right)\right)
$$

where $X^{-1}$ is given in eq.(38) and we remembered that $\gamma_{0}=0$. Since $1-\left\langle\chi\left(p_{0}\right) \mid \eta\right\rangle=\eta\left(p_{0}\right)$ the equation of the spectral curve becomes

$$
\mu+\mu^{-1}-2 \cos Z=\frac{\sin Z}{Z}\left(\sum_{m}\left(\frac{1}{Z^{2}-m^{2} \pi^{2}}-\frac{1}{p_{0}^{2}-m^{2} \pi^{2}}\right)\left(\Gamma_{m}+\frac{1}{\eta\left(p_{0}\right)} \eta_{m}\left\langle\chi\left(p_{0}\right) \mid \Gamma\right\rangle\right)\right)
$$

Another useful expression of this result is:

$$
\begin{equation*}
\mu+\mu^{-1}=2 \cos Z+\frac{\sin Z}{Z}\left(\sum_{m} \frac{\Gamma_{m}}{Z^{2}-m^{2} \pi^{2}}-\frac{\eta(Z)}{\eta\left(p_{0}\right)} \frac{\Gamma_{m}}{p_{0}^{2}-m^{2} \pi^{2}}\right) \tag{44}
\end{equation*}
$$

The next proposition performs a few consistency checks.

Proposition 2 The points $Z=p_{0}, \mu_{0}^{ \pm 1}$, and $Z=Z_{k}, \mu_{k}^{ \pm 1}$, all belong to the curve eq.(44).

Proof. When $Z=p_{0}$, we find $\mu+\mu^{-1}=2 \cos p_{0}$, hence the curve passes through the point $\Lambda=0, \mu_{0}^{ \pm 1}$, as it should be. When $Z=Z_{k}$, and recalling that $\eta\left(Z_{k}\right)=0$, we find

$$
\begin{aligned}
\mu+\mu^{-1} & =2 \cos Z_{k}+\frac{\sin Z_{k}}{Z_{k}} \sum_{m} \frac{1}{Z_{k}^{2}-m^{2} \pi^{2}} M_{m l}^{-1} \frac{Z_{l}}{\sin Z_{l}}\left(\mu_{l}+\mu_{l}^{-1}-2 \cos Z_{l}\right) \\
& =2 \cos Z_{k}+\frac{\sin Z_{k}}{Z_{k}} \sum_{m} M_{k m} M_{m l}^{-1} \frac{Z_{l}}{\sin Z_{l}}\left(\mu_{l}+\mu_{l}^{-1}-2 \cos Z_{l}\right)=\mu_{k}+\mu_{k}^{-1}
\end{aligned}
$$

Hence the curve passes through the points $Z_{k}, \mu_{k}^{ \pm 1}$.

We now show that the $H_{m}$ Poisson commute. We need the following result:

## Lemma 3 One has

$$
\begin{aligned}
\left\{\Gamma_{n}, \Gamma_{m}\right\} & =0 \\
\left\{\Gamma_{n}, \eta_{m}\right\} & =\left\{\Gamma_{m}, \eta_{n}\right\} \\
\left\{\eta_{n}, \eta_{m}\right\} & =0
\end{aligned}
$$

Proof. The last relation is obvious because the $\eta_{m}$ depend only on the $Z_{k}$. Consider the second relation. We have

$$
\eta_{m}=M_{m k}^{-1}|1\rangle_{k}, \quad \Gamma_{m}=M_{m k}^{-1}|\tilde{\gamma}\rangle_{k}
$$

Hence

$$
\begin{aligned}
\left\{\eta_{n}, \Gamma_{m}\right\} & =\left\{M_{n k}^{-1} 1_{k}, M_{m l}^{-1} \tilde{\gamma}_{l}\right\}=M_{m, l}^{-1}\left\{M_{n k}^{-1}, \tilde{\gamma}_{l}\right\} 1_{k} \\
& =-M_{m, l}^{-1} M_{n, k^{\prime}}^{-1}\left\{M_{k^{\prime} p}, \tilde{\gamma}_{l}\right\} M_{p k}^{-1}|1\rangle_{k}=-M_{m, l}^{-1} M_{n, l}^{-1}\left\{M_{l p}, \tilde{\gamma}_{l}\right\} \eta_{p}
\end{aligned}
$$

where in the last step we used that $\left\{M_{k^{\prime} p}, \tilde{\gamma}_{l}\right\}=0$ if $k^{\prime} \neq l$. The result is obviously symmetric in $m$ and $n$. Finally the first statement is simple. Recalling the definition of $\Gamma_{m}$ in eq.(40), we denote $\xi_{k}=\frac{Z_{k}}{\sin Z_{k}} \gamma_{k}$. One has

$$
\left\{\Gamma_{m}, \Gamma_{n}\right\}=\left\{M_{m k}^{-1} \xi_{k}, M_{n l}^{-1} \xi_{l}\right\}=-M_{m r}^{-1} M_{n l}^{-1}\left[\left\{M_{r s}, \xi_{l}\right\}-\left\{M_{l s}, \xi_{r}\right\}\right] M_{s k}^{-1} \xi_{k}
$$

but because of the structure of $M$, we have $\left\{M_{r s}, \xi_{l}\right\}=0$ if $r \neq l$ and for $r=l$ the term in the square bracket obviously vanishes. This is a special case of a general theorem [17, 18].

We are now ready to prove

Proposition 3 The quantities $H_{0}, H_{m}$, Poisson commute

$$
\left\{H_{0}, H_{n}\right\}=0, \quad\left\{H_{n}, H_{m}\right\}=0
$$

Proof. Using eq.(42), one has

$$
\left\{H_{n}, H_{m}\right\}=\eta_{n}\left(\left\{C, \Gamma_{m}\right\}+C\left\{C, \eta_{m}\right\}\right)-\eta_{m}\left(\left\{C, \Gamma_{n}\right\}+C\left\{C, \eta_{n}\right\}\right)
$$

where we denoted

$$
C=\frac{1}{\eta\left(p_{0}\right)}\left\langle\chi\left(p_{0}\right) \mid \Gamma\right\rangle=\frac{1}{\eta\left(p_{0}\right)} \sum_{l} \frac{\Gamma_{l}}{p_{0}^{2}-\pi^{2} l^{2}}
$$

One has

$$
\left\{\Gamma_{m}, C\right\}=\frac{1}{\eta\left(p_{0}\right)} C \sum_{l} \frac{\left\{\Gamma_{m}, \eta_{l}\right\}}{p_{0}^{2}-\pi^{2} l^{2}}, \quad\left\{\eta_{m}, C\right\}=\frac{1}{\eta\left(p_{0}\right)} \sum_{l} \frac{\left\{\eta_{m}, \Gamma_{l}\right\}}{p_{0}^{2}-\pi^{2} l^{2}}
$$

hence

$$
\left\{C, \Gamma_{m}\right\}+C\left\{C, \eta_{m}\right\}=-\frac{1}{\eta\left(p_{0}\right)} C \sum_{l} \frac{\left\{\Gamma_{m}, \eta_{l}\right\}+\left\{\eta_{m}, \Gamma_{l}\right\}}{p_{0}^{2}-\pi^{2} l^{2}}=0
$$

All this means that $\left(Z_{k}, \mu_{k}\right)$ are separated coordinates for the Hamiltonians $H_{m}$.

## 6 Continuum limit of the eigenvector.

Having found the continuum limit of the spectral curve, we now consider the limit of the eigenvector. Again, the continuum limit can be computed, the result being eq.(47).

As seen from eq.(29), the eigenvector can be written as (for $i$ odd)

$$
\psi_{i}=\frac{\sqrt{\mathcal{A}}}{\prod\left(z^{2}-z_{j}^{2}\right)} \frac{\operatorname{det} N_{i}}{\sqrt{\operatorname{det} \Theta_{i} \operatorname{det} \Theta_{i+2}}}
$$

where

$$
N_{i}=\left(\begin{array}{cccccc}
\mu P_{i}(z)+P_{N+1-i}(z) & \mu P_{1}(z) & \cdots & -P_{N+1-i}(z) & \cdots & -P_{2}(z)  \tag{45}\\
P_{i}\left(z_{1}\right)+\mu_{1} P_{N+1-i}\left(z_{1}\right) & P_{1}\left(z_{1}\right) & \cdots & -\mu_{1} P_{N+1-i}\left(z_{1}\right) & \cdots & -\mu_{1} P_{2}\left(z_{1}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P_{i}\left(z_{k}\right)+\mu_{j} P_{N+1-i}\left(z_{k}\right) & P_{1}\left(z_{k}\right) & \cdots & -\mu_{k} P_{N+1-i}\left(z_{k}\right) & \cdots & -\mu_{k} P_{2}\left(z_{k}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
P_{i}\left(z_{n}\right)+\mu_{n} P_{N+1-i}\left(z_{n}\right) & P_{1}\left(z_{n}\right) & \cdots & -\mu_{n} P_{N+1-i}\left(z_{n}\right) & \cdots & -\mu_{n} P_{2}\left(z_{n}\right)
\end{array}\right)
$$

Compared to eq.(2g) we have subtracted the $i$-th column to the first one for the same reason than in the previous section. Also we have used the variable $z, z_{k}$ instead of $\lambda, \lambda_{k}$. Let us decompose the matrix $N_{i}$ in blocs

$$
N_{i}=\left(\begin{array}{cc}
U_{i} & V_{i} \\
W_{i} & \Theta_{i}
\end{array}\right)
$$

where

$$
\begin{aligned}
& U_{i} \equiv \mu P_{i}(z)+P_{N+1-i}(z) \\
&\left(W_{i}\right)_{k} \equiv \mu_{k} P_{i}\left(z_{k}\right)+P_{N+1-i}\left(z_{k}\right) \\
&\left(V_{i}\right)_{j}=\mu P_{j}(z) \theta(i-j)-P_{N+1-j}(z) \theta(j-i), \quad i, j \quad \text { odd }
\end{aligned}
$$

To order zero, we have $-(-1)^{k} P_{j}\left(z_{k}^{(0)}\right)=P_{N+1-j}\left(z_{k}^{(0)}\right)$ so that

$$
N_{i}^{(0)}=\left(\begin{array}{cc}
U_{i} & V_{i} \\
0 & \Theta_{i}^{(0)}
\end{array}\right)
$$

where $\Theta_{i}^{(0)}$ is the matrix eq. (30) evaluated on the free configuration. It is in fact independent of $i$ and we will denote it by $\Theta^{(0)}$. The appearance of zero in the lower left corner was the reason for the subtraction in eq.(45) and makes things bettter behaved in perturbation.

The matrix $N_{i}^{(0)}$ being bloc triangular we can compute its inverse

$$
N_{i}^{(0)-1}=\left(\begin{array}{cc}
U_{i}^{-1} & -U_{i}^{-1} V_{i} \Theta^{(0)-1} \\
0 & \Theta^{(0)-1}
\end{array}\right)
$$

so that

$$
N_{i} N_{i}^{(0)-1}=\left(\begin{array}{cc}
1 & 0 \\
U_{i}^{-1} W_{i} & \Theta_{i} \Theta^{(0)-1}-U_{i}^{-1} W_{i} \otimes V_{i} \Theta^{(0)-1}
\end{array}\right)
$$

Returning to the formula for $\psi_{i}$, we multiply all the matrices by $\Theta^{(0)-1}$. The factors $\operatorname{det} \Theta^{(0)-1}$ cancel between the numerator and denominator. We arrive at

$$
\psi_{i}=\frac{\sqrt{\mathcal{A}} U_{i}}{\prod_{k} z^{2}-z_{k}^{2}} \frac{\operatorname{det}\left(\Theta_{i} \Theta^{(0)-1}-U_{i}^{-1} W_{i} \otimes V_{i} \Theta^{(0)-1}\right)}{\sqrt{\operatorname{det}\left(\Theta_{i} \Theta^{(0)-1}\right) \operatorname{det}\left(\Theta_{i+2} \Theta^{(0)-1}\right)}}
$$

We want to take the scaling limit of this expression. Again, the main trick is an explicit formula for the inverse of $\Theta^{(0)}$. It is not difficult to check that

$$
\left(\Theta^{(0)-1}\right)_{j k}=\frac{4}{N+1} \sin ^{2} \frac{k \pi}{N+1} P_{j}\left(z_{k}^{(0)}\right)
$$

Let us compute $\Theta_{i} \Theta^{(0)-1}$. Using the parametrisation eq.(33) we find (recall that $i$ is assumed to be odd)

$$
\left(\Theta_{i} \Theta^{(0)-1}\right)_{k m}=\frac{4}{N+1} \frac{\sin \frac{m \pi}{N+1}}{\sin \frac{Z_{k}}{N+1}}\left\{\sum_{j=1, \text { odd }}^{i-2} \sin \frac{j Z_{k}}{N+1} \sin \frac{j m \pi}{N+1}\right.
$$

$$
\left.-\mu_{k} \sum_{j=i, \text { odd }}^{N-1} \sin \frac{(N+1-j) Z_{k}}{N+1} \sin \frac{j m \pi}{N+1}\right\}
$$

Defining $\Theta(x)$ as the scaling limit of $\Theta_{i} \Theta^{(0)-1}$, we find (there is a factor $1 / 2$ because the sum is over $j$ odd only)

$$
(\Theta(x))_{k m}=2 \frac{m \pi}{Z_{k}}\left\{\int_{0}^{x} d y \sin Z_{k} y \sin m \pi y-\mu_{k} \int_{x}^{1} d y \sin Z_{k}(1-y) \sin m \pi y\right\}
$$

Similarly we define $U(x)$ and $W_{k}(x)$ by

$$
U_{i}=(N+1) U(x), \quad\left(W_{i}\right)_{k}=(N+1) W_{k}(x)
$$

We find

$$
U(x)=\mu \frac{\sin x Z}{Z}+\frac{\sin (1-x) Z}{Z}
$$

and

$$
W_{k}(x)=\frac{\sin Z_{k} x}{Z_{k}}+\mu_{k} \frac{\sin Z_{k}(1-x)}{Z_{k}}
$$

Finally, we have (again there is a factor $1 / 2$ because the sum is over $j$ odd only)

$$
\left(V_{i} \Theta^{(0)-1}\right)_{m}=V_{m}(x)
$$

where

$$
\begin{equation*}
V_{m}(x)=2 m \pi\left\{\int_{0}^{x} d y \mu \frac{\sin y Z}{Z} \sin m \pi y-\int_{x}^{1} \frac{\sin (1-y) Z}{Z} \sin m \pi y\right\} \tag{46}
\end{equation*}
$$

Putting everything together, we arrive at (up to a factor independent of $x^{6}$ )

## Proposition 4

$$
\begin{equation*}
\psi(x)=U(x)-\langle V(x)| \Theta^{-1}(x)|W(x)\rangle \tag{47}
\end{equation*}
$$

where we denoted by $\langle V(x)|$ the row vector with components $V_{m}(x)$ and by $|W(x)\rangle$ the column vector with components $W_{k}(x)$.

Eq.(47) is the generalization of eq.(20). Here, the $Z$ and $\mu$ dependence is hidden in the function $U(x)$ and the vector $V(x)$. For the moment they are free complex parameters.

We now want to specialize to $Z=p_{0}, \mu_{0}=e^{ \pm i p_{0}}$. We have

$$
\left.U(x)\right|_{p_{0}, e^{ \pm i p_{0}}}=\frac{\sin p_{0}}{p_{0}} e^{ \pm i p_{0} x},\left.\quad V_{m}(x)\right|_{p_{0}, e^{ \pm i p_{0}}}=\left.U(x)\right|_{p_{0}, e^{ \pm i p_{0}}} \widetilde{V}_{m}^{( \pm)}(x)
$$

[^4]where
$$
\widetilde{V}_{m}^{( \pm)}(x)=-m \pi\left[\frac{e^{i m \pi x}}{m \pi \pm p_{0}}+\frac{e^{-i m \pi x}}{m \pi \mp p_{0}}\right]
$$

Hence, up to a constant

$$
\psi^{( \pm)}(x)=e^{ \pm i p_{0} x}\left[1-\left\langle\widetilde{V}^{( \pm)}(x)\right| \Theta^{-1}(x)|W(x)\rangle\right]
$$

These are the primary fields of CFT. Their logarithmic derivatives are the free fields of the Coulomb gaz representation. Notice that we have two such fields playing a completely symmetrical role: we go from one to the other by changing $p_{0} \rightarrow-p_{0}$. This circumstance was recognized and used with great profit in [14]. The separated variables make this symmetry explicit and built in.

## 7 Schroedinger equation.

Having found a formula for the wave function $\psi(x)$, the next question is to find the potential in the Schroedinger equation that $\psi(x)$ is expected to satisfy. At this point it is simpler to forget the lattice model and work directly with eq.(47).

Let us denote by $|E(x)\rangle$ the vector with components

$$
E_{m}(x)=2 m \pi \sin m \pi x
$$

Calculating explicitly the integrals in eq.(46), we find (' denotes the derivative with respect to $x$ )

$$
\begin{equation*}
V_{m}(x)=\frac{U(x) E_{m}^{\prime}(x)-U^{\prime}(x) E_{m}(x)}{Z^{2}-m^{2} \pi^{2}} \tag{48}
\end{equation*}
$$

and similarly for $\Theta(x)$, we find

$$
\begin{equation*}
\Theta_{k m}(x)=\frac{W_{k}(x) E_{m}^{\prime}(x)-W_{k}^{\prime}(x) E_{m}(x)}{Z_{k}^{2}-m^{2} \pi^{2}} \tag{49}
\end{equation*}
$$

Notice the important formulae

$$
\left\langle V^{\prime}(x)\right|=U(x)\langle E(x)|, \quad \Theta^{\prime}(x)=|W(x)\rangle\langle E(x)|
$$

The derivative of the matrix $\Theta(x)$ is a rank one projector. The matrix $\Theta(x)$ has a form familiar in the theory of integrable systems, and we know that it leads to non linear differential equations. Indeed, let us define the vector $|\Phi(x)\rangle$ by

$$
\begin{equation*}
|\Phi(x)\rangle=\Theta^{-1}(x)|W(x)\rangle \tag{50}
\end{equation*}
$$

and let $K$ be the diagonal matrix

$$
K_{m m^{\prime}}=m \pi \delta_{m m^{\prime}}
$$

Proposition 5 The vector $|\Phi(x)\rangle$ satisfies the set of coupled non linear second order differential equations

$$
\begin{equation*}
\left|\Phi^{\prime \prime}\right\rangle+2(\langle\Phi \mid E\rangle)^{\prime}|\Phi\rangle+K^{2}|\Phi\rangle=0 \tag{51}
\end{equation*}
$$

where

$$
\langle\Phi \mid E\rangle(x)=\sum_{m} \Phi_{m}(x) E_{m}(x)
$$

Proof. By derivation, and using the formula for $\Theta^{\prime}$, we get

$$
\begin{aligned}
|W\rangle & =\Theta|\Phi\rangle \\
\left|W^{\prime}\right\rangle & =\Theta^{\prime}|\Phi\rangle+\Theta\left|\Phi^{\prime}\right\rangle=\langle\Phi \mid E\rangle|W\rangle+\Theta\left|\Phi^{\prime}\right\rangle \\
\left|W^{\prime \prime}\right\rangle & =\langle\Phi \mid E\rangle\left|W^{\prime}\right\rangle+\Theta\left|\Phi^{\prime \prime}\right\rangle+\left(\langle\Phi \mid E\rangle^{\prime}+\left\langle\Phi^{\prime} \mid E\right\rangle\right)|W\rangle
\end{aligned}
$$

But we also have

$$
\begin{equation*}
\mathcal{Z}^{2} \Theta-\Theta K^{2}=|W\rangle\left\langle E^{\prime}\right|-\left|W^{\prime}\right\rangle\langle E| \tag{52}
\end{equation*}
$$

where we defined the diagonal matrix $\mathcal{L}$

$$
\mathcal{Z}_{k k^{\prime}}=Z_{k} \delta_{k k^{\prime}}
$$

Applying this identity to $|\Phi\rangle$, we get

$$
\mathcal{Z}^{2} \Theta|\Phi\rangle-\Theta K^{2}|\Phi\rangle=\left\langle E^{\prime} \mid \Phi\right\rangle|W\rangle-\langle E \mid \Phi\rangle\left|W^{\prime}\right\rangle
$$

But

$$
\mathcal{Z}^{2} \Theta|\Phi\rangle=\mathcal{L}^{2}|W\rangle=-\left|W^{\prime \prime}\right\rangle
$$

and therefore

$$
\left|W^{\prime \prime}\right\rangle=\langle E \mid \Phi\rangle\left|W^{\prime}\right\rangle-\left\langle E^{\prime} \mid \Phi\right\rangle|W\rangle-\Theta K^{2}|\Phi\rangle
$$

Comparing these two expressions of $\left|W^{\prime \prime}\right\rangle$, we find

$$
\Theta\left|\Phi^{\prime \prime}\right\rangle+\left(\langle\Phi \mid E\rangle^{\prime}+\left\langle\Phi^{\prime} \mid E\right\rangle\right)|W\rangle=-\left\langle E^{\prime} \mid \Phi\right\rangle|W\rangle-\Theta K^{2}|\Phi\rangle
$$

Multiplying by $\Theta^{-1}$ yields eq.(51).

We are now ready to find the Schroedinger equation satisfied by $\psi$.

Proposition 6 The function $\psi(x)$ defined by eq.(4才) satisfies the linear second order differential equation

$$
\begin{equation*}
-\psi^{\prime \prime}(x)-\left[p_{0}^{2}+2(\langle E \mid \Phi\rangle)^{\prime}\right] \psi(x)=\Lambda^{2} \psi(x) \tag{53}
\end{equation*}
$$

Proof. We have

$$
\psi(x)=U(x)-\langle V(x)| \Theta^{-1}|W(x)\rangle=U(x)-\langle V(x) \mid \Phi(x)\rangle
$$

Using the formula for $\langle V(x)|$, we get

$$
\psi(x)=U\left(1-\left\langle E^{\prime}\right| \frac{1}{Z^{2}-K^{2}}|\Phi\rangle\right)+U^{\prime}\langle E| \frac{1}{Z^{2}-K^{2}}|\Phi\rangle
$$

Next, remembering that $U^{\prime \prime}(x)=-Z^{2} U(x),\left|E^{\prime \prime}(x)\right\rangle=-K^{2}|E(x)\rangle$, we obtain

$$
\psi^{\prime}(x)=-U\left(\langle E \mid \Phi\rangle+\left\langle E^{\prime}\right| \frac{1}{Z^{2}-K^{2}}\left|\Phi^{\prime}\right\rangle\right)+U^{\prime}\left(1+\langle E| \frac{1}{Z^{2}-K^{2}}\left|\Phi^{\prime}\right\rangle\right)
$$

and

$$
\begin{aligned}
\psi^{\prime \prime}(x)= & -U\left(Z^{2}+\left\langle E \mid \Phi^{\prime}\right\rangle+(\langle E \mid \Phi\rangle)^{\prime}+\left\langle E^{\prime}\right| \frac{1}{Z^{2}-K^{2}}\left|\Phi^{\prime \prime}\right\rangle\right) \\
& +U^{\prime}\left(-\langle E \mid \Phi\rangle+\langle E| \frac{1}{Z^{2}-K^{2}}\left|\Phi^{\prime \prime}\right\rangle\right)
\end{aligned}
$$

Using now the equation for $\left|\Phi^{\prime \prime}\right\rangle$, we get eq.(53).

The potential $T(x)=2(\langle E \mid \Phi\rangle)^{\prime}$ can also be written directly in terms of $\Theta$. In fact, we have

$$
\partial_{x}^{2} \log \operatorname{det} \Theta=\partial_{x} \operatorname{Tr} \Theta^{-1} \Theta^{\prime}=\partial_{x}\left\langle E \mid \Theta^{-1} W\right\rangle=\partial_{x}\langle E \mid \Phi\rangle
$$

hence

$$
T(x)=2 \partial_{x}\langle E \mid \Phi\rangle=2 \partial_{x}^{2} \log \operatorname{det} \Theta(x)
$$

The Schroedinger equation therefore also reads

$$
\begin{equation*}
\psi^{\prime \prime}(x)+\left[p_{0}^{2}+2 \partial_{x}^{2} \log \operatorname{det} \Theta\right] \psi(x)=-\Lambda^{2} \psi(x) \tag{54}
\end{equation*}
$$

In this formula both the potential and the function $\psi(x)$ are known. The potential therefore belongs to the class of exactly solvable potentials. It is strongly reminiscent of the formula for finite zones potentials [20, 21, 22, 23]. It can probably also be obtained by an infinite sequence of Darboux transformations [24].

The parameter $\mu$ which enters the function $U(x)$ and the vector $\langle V(x)|$ was, up to now, a free parameter. Eq.(47) therefore provides two linearly independent solutions of eq.(53). We now introduce the spectral curve by imposing the quasiperiodicity of $\psi(x)$.

## 8 Bloch Waves and Spectral Curve.

So far, $\psi(x)$ was defined on the interval $[0,1]$. We extends its definition by imposing

$$
\psi(x+1)=\mu \psi(x)
$$

This extension is continuous as we now show.

## Proposition 7

$$
\psi(1)-\mu \psi(0)=0
$$

Proof. This follows immediately from

$$
W_{k}(1)=\mu_{k}^{-1} W_{k}(0), \quad \Theta_{k m}(1)=\mu_{k}^{-1} \Theta_{k m}(0)(-1)^{m} \quad U(1)=\mu U(0)
$$

It is worth computing explicitly $\psi(0)$. In terms of the matrix $M$ introduced in eq.(36), we have

$$
\Theta_{k m}(0)=W_{k}(0) M_{k m} E_{m}^{\prime}(0), \quad U(0)=\frac{\sin Z}{Z}, \quad V_{m}(0)=U(0) \frac{1}{Z^{2}-m^{2} \pi^{2}} E_{m}^{\prime}(0)
$$

It follows that

$$
\begin{equation*}
\psi(0)=\frac{\sin Z}{Z}\left(1-\sum_{m} \frac{\eta_{m}}{Z^{2}-m^{2} \pi^{2}}\right)=\frac{\sin Z}{Z} \eta(Z) \tag{55}
\end{equation*}
$$

where $\eta_{m}$ and $\eta(Z)$ are defined in eqs. (37, 39). Notice that when $Z^{2}=Z_{k}^{2}$, we have $\psi(0)=0$.
We now turn to the derivative of $\psi(x)$.

Lemma 4 One has

$$
\begin{gather*}
\psi^{\prime}(1)-\mu \psi^{\prime}(0)=\mu \widetilde{\Gamma}(\Lambda, \mu) \\
\widetilde{\Gamma}(\Lambda, \mu)=\mu+\mu^{-1}-2 \cos Z-\frac{\sin Z}{Z} \sum_{m=1}^{\infty} \frac{E_{m}^{\prime}(0) \Phi_{m}^{\prime}(0)-E_{m}^{\prime}(1) \Phi_{m}^{\prime}(1)}{Z^{2}-m^{2} \pi^{2}} \tag{56}
\end{gather*}
$$

Proof. We have

$$
U(1)=\mu \frac{\sin Z}{Z}, \quad U(0)=\frac{\sin Z}{Z}
$$

and

$$
U^{\prime}(1)=\mu \cos Z-1, \quad U^{\prime}(0)=\mu-\cos Z
$$

Using $E_{k}(1)=E_{k}(0)=0$, we get

$$
\begin{aligned}
& \psi^{\prime}(1)=-U(1)\left\langle E^{\prime}(1)\right| \frac{1}{Z^{2}-K^{2}}\left|\Phi^{\prime}(1)\right\rangle+U^{\prime}(1) \\
& \psi^{\prime}(0)=-U(0)\left\langle E^{\prime}(0)\right| \frac{1}{Z^{2}-K^{2}}\left|\Phi^{\prime}(0)\right\rangle+U^{\prime}(0)
\end{aligned}
$$

From this the result follows.

At this point it is tempting to choose for the spectral curve $\widetilde{\Gamma}(\Lambda, \mu)=0$. However, this cannot be correct because the point $Z=p_{0}, \mu=\mu_{0}$ does not belong to it.

We have to change the Schroedinger equation. The only possible modification is at the edges. We consider the equation

$$
\begin{equation*}
\psi^{\prime \prime}(x)+\left[p_{0}^{2}+2\langle E \Phi\rangle^{\prime}+H_{0} \delta(x)\right] \psi(x)=-\Lambda^{2} \psi(x) \tag{57}
\end{equation*}
$$

The bulk formula for $\psi(x)$ does not change. The continuity of $\psi(x)$ at $x=1$ is still valid, but the derivative now has a discontinuity

$$
\int_{1-}^{1+} \psi^{\prime \prime}+H_{0} \psi(1)=0
$$

Using

$$
\psi(1)=\mu \eta(Z) \frac{\sin Z}{Z}
$$

the Bloch condition becomes

$$
\psi^{\prime}(1)-\mu \psi^{\prime}(0)-H_{0} \mu \eta(Z)=0
$$

that is

$$
\mu+\mu^{-1}=2 \cos Z+\frac{\sin Z}{Z}\left(\sum_{m} \frac{\Gamma_{m}}{Z^{2}-m^{2} \pi^{2}}-H_{0} \eta(Z)\right)
$$

where we have set

$$
\begin{equation*}
\Gamma_{m}=E_{m}^{\prime}(0) \Phi_{m}^{\prime}(0)-E_{m}^{\prime}(1) \Phi_{m}^{\prime}(1) \tag{58}
\end{equation*}
$$

We now determine the coefficient $H_{0}$ by requiring that the curve passes through the points $p_{0}, \mu_{0}^{ \pm 1}$. We find

$$
H_{0}=\frac{1}{\eta\left(p_{0}\right)} \sum_{m} \frac{\Gamma_{m}}{p_{0}^{2}-m^{2} \pi^{2}}
$$

Hence the curve takes the form

$$
\mu+\mu^{-1}=2 \cos Z+\frac{\sin Z}{Z}\left(\sum_{m} \frac{\Gamma_{m}}{Z^{2}-m^{2} \pi^{2}}-\frac{\eta(Z)}{\eta\left(Z_{0}\right)} \frac{\Gamma_{m}}{p_{0}^{2}-m^{2} \pi^{2}}\right)
$$

In order to compare with eq.(44), we must compute $\Gamma_{m}$. We have

$$
W_{k}(0)=\mu_{k} \frac{\sin Z_{k}}{Z_{k}}, \quad W_{k}(1)=\frac{\sin Z_{k}}{Z_{k}}, \quad W_{k}^{\prime}(0)=1-\mu_{k} \cos Z_{k}, \quad W_{k}^{\prime}(1)=\cos Z_{k}-\mu_{k}
$$

and

$$
\Theta_{k m}(0)=\frac{W_{k}(0) E_{m}^{\prime}(0)}{Z_{k}^{2}-\pi^{2} m^{2}}=W_{k}(0) M_{k m} E_{m}^{\prime}(0), \quad \Theta_{k m}(1)=\frac{W_{k}(1) E_{m}^{\prime}(1)}{Z_{k}^{2}-\pi^{2} m^{2}}=W_{k}(1) M_{k m} E_{m}^{\prime}(1)
$$

where $M$ is the matrix introduced in eq.(36). Since $\left|\Phi^{\prime}(0)\right\rangle=\Theta^{-1}(0)\left|W^{\prime}(0)\right\rangle$ and $\left|\Phi^{\prime}(1)\right\rangle=$ $\Theta^{-1}(1)\left|W^{\prime}(1)\right\rangle$, one has

$$
E_{m}^{\prime}(0) \Phi_{m}^{\prime}(0)=\sum_{k} M_{m k}^{-1}\left(\mu_{k}^{-1}-\cos Z_{k}\right) \frac{Z_{k}}{\sin Z_{k}}, \quad E_{m}^{\prime}(1) \Phi_{m}^{\prime}(1)=\sum_{k} M_{m k}^{-1}\left(\cos Z_{k}-\mu_{k}\right) \frac{Z_{k}}{\sin Z_{k}}
$$

hence

$$
\Gamma_{m}=E_{m}^{\prime}(0) \Phi_{m}^{\prime}(0)-E_{m}^{\prime}(1) \Phi_{m}^{\prime}(1)=\sum_{k} M_{m k}^{-1} \frac{Z_{k}}{\sin Z_{k}} \gamma_{k}
$$

where we recall that $\gamma_{k}=\mu_{k}+\mu_{k}^{-1}-2 \cos Z_{k}$. This is exactly eq.(40) and shows that we have recovered the spectral curve eq.(44).

Proposition 8 The function $\Psi$ has no pole at the point $Z=Z_{k}, \mu_{k}^{-1}$

Proof. Here we restaure the factor $\frac{1}{\Pi_{k}\left(1-Z_{k}^{2} / Z^{2}\right)}$.

$$
\begin{gathered}
\left.U(x)\right|_{Z_{k}, \mu_{k}^{-1}}=\mu_{k}^{-1} W_{k}(x),\left.\Longrightarrow V_{k^{\prime}}(x)\right|_{Z_{k}, \mu_{k}^{-1}}=\mu_{k}^{-1} \Theta_{k k^{\prime}}(x) \\
\left.\psi(x)\right|_{Z_{k}, \mu_{k}^{-1}} \simeq \frac{1}{\prod_{k}\left(Z^{2}-Z_{k}^{2}\right)} \mu_{k}^{-1}\left[W_{k}(x)-\Theta_{k k^{\prime}}(x) \Theta_{k^{\prime} k^{\prime \prime}}^{-1}(x) W_{k^{\prime \prime}}(x)\right]=\text { regular }
\end{gathered}
$$

## 9 Perturbation theory.

Now that we have found an expression for the potential $u(x)$ in terms of a countable set of variables $Z_{k}, \mu_{k}$, we would like to check the Virasoro Poisson bracket directly. Recall that

$$
u(x)=p_{0}^{2}+T(x)+H_{0} \delta(x), \quad T(x)=2 \partial_{x}\langle E \mid \Phi\rangle
$$

Notice first that $T(x)$ has no Fourier component $T_{0}$ :

$$
T_{0}=\int_{0}^{1} d x T(x)=2 \int_{0}^{1} d x(\langle E \mid \Phi\rangle)^{\prime}=2(\langle E(1) \mid \Phi(1)\rangle-\langle E(0) \mid \Phi(0)\rangle)=0
$$

The Fourier expansion of the potential $u(x)$ reads

$$
u(x)=\sum_{n} L_{n} e^{2 i \pi n x}=p_{0}^{2}+\sum_{n}\left(T_{n}+H_{0}\right) e^{2 i \pi n x}
$$

we must therefore identify

$$
\begin{equation*}
L_{0}=p_{0}^{2}+H_{0}=p_{0}^{2}+\frac{1}{\eta\left(Z_{0}\right)} \sum_{m} \frac{\Gamma_{m}}{p_{0}^{2}-m^{2} \pi^{2}} \tag{59}
\end{equation*}
$$

and

$$
L_{n}=T_{n}+H_{0}, \quad \Longrightarrow T_{n}=L_{n}-L_{0}+p_{0}^{2}, \quad n \neq 0
$$

If $u(x)$ has Poisson bracket eq.(岛), the algebra of the $L_{n}$ reads

$$
\left\{L_{n}, L_{m}\right\}=8 i \pi(n-m) L_{n+m}-16 i \pi^{3} n^{3} \delta_{n+m, 0}
$$

The Poisson algebra for the $T_{n}$ is then closed:

$$
\left\{T_{n}, T_{m}\right\}=8 i \pi(n-m) T_{n+m}-8 i \pi n T_{n}+8 i \pi m T_{m}-16 i\left(\pi^{3} n^{3}-\pi p_{0}^{2} n\right) \delta_{n+m, 0}
$$

or, in a form that will be useful later

$$
\begin{equation*}
\{T(x), T(y)\}=2 \delta^{\prime \prime \prime}(x-y)+4\left(2 p_{0}^{2}+T(x)+T(y)\right) \delta^{\prime}(x-y)-4 T^{\prime}(x) \delta(y)+4 T^{\prime}(y) \delta(x) \tag{60}
\end{equation*}
$$

In this section, we consider the situation where the variables $\left(Z_{k}, \mu_{k}\right)$ are close to the free configuration eq.(16). We set

$$
\begin{equation*}
Z_{k}=k \pi\left(1-\delta \lambda_{k}\right), \quad \mu_{k}=(-1)^{k} e^{\delta \mu_{k}} \tag{61}
\end{equation*}
$$

and perform a perturbation theory in $\delta \lambda_{k}, \delta \mu_{k}$. If $Z_{k}=k \pi, \mu_{k}=(-1)^{k}$, we have $\Theta^{(0)}(x)=\operatorname{Id}$ by construction. So, we can write the expansion

$$
\begin{aligned}
\Theta(x) & =\mathrm{Id}+\Theta^{(1)}(x)+\Theta^{(2)}(x)+\cdots \\
|W(x)\rangle & =\left|W^{(1)}(x)\right\rangle+\left|W^{(2)}(x)\right\rangle+\cdots
\end{aligned}
$$

where we have taken into account that $\left|W^{(0)}(x)\right\rangle=0$. It follows that

$$
|\Phi(x)\rangle=\left|\Phi^{(1)}(x)\right\rangle+\left|\Phi^{(2)}(x)\right\rangle+\cdots
$$

where

$$
\left|\Phi^{(1)}\right\rangle=\left|W^{(1)}\right\rangle, \quad\left|\Phi^{(2)}\right\rangle=\left|W^{(2)}\right\rangle-\Theta^{(1)}\left|W^{(1)}\right\rangle, \cdots
$$

To lowest order, we find easily

$$
T^{(1)}(x)=2\left\langle E \mid \Phi^{(1)}\right\rangle^{\prime}=-4 \sum_{k} \delta \lambda_{k} k^{2} \pi^{2} \cos 2 k \pi x+\delta \mu_{k} k \pi \sin 2 k \pi x
$$

This shows in particular that $\delta \lambda_{k}$ and $\delta \mu_{k}$ are just the Fourier components of the potential in this first approximation. The Poisson bracket eq.(3) becomes to leading order

$$
\left\{\delta \lambda_{k}, \delta \mu_{k}\right\}=-2\left(1-\frac{p_{0}^{2}}{k^{2} \pi^{2}}\right)
$$

To define modes independent of the zero mode $p_{0}$ we introduce

$$
a_{k}=\alpha_{k}\left(\delta \mu_{k}+i k \pi \delta \lambda_{k}\right), \quad a_{k}^{\dagger}=\bar{\alpha}_{k}\left(\delta \mu_{k}-i k \pi \delta \lambda_{k}\right)
$$

where the coefficients $\alpha_{k}, \bar{\alpha}_{k}$ satisfy ${ }^{7}$

$$
\alpha_{k} \bar{\alpha}_{k}=\frac{1}{4 \pi} \frac{k^{2} \pi^{2}}{p_{0}^{2}-k^{2} \pi^{2}}
$$

With this choice, one has

$$
\left\{a_{k}, a_{k}^{\dagger}\right\}=i k
$$

we can then rewrite

$$
T^{(1)}(x)=2 i \sum_{k} k \pi\left(\frac{a_{k}}{\alpha_{k}} e^{2 i k \pi x}-\frac{a_{k}^{\dagger}}{\bar{\alpha}_{k}} e^{-2 i k \pi x}\right)
$$

It is now straightforward to compute the Poisson bracket

$$
\left\{T^{(1)}(x), T^{(1)}(y)\right\}=2 \delta^{\prime \prime \prime}(x-y)+8 p_{0}^{2} \delta^{\prime}(x-y)
$$

This is the correct result for the Virasoro Poisson bracket in this approximation. Notice that the term $\delta^{\prime \prime \prime}(x-y)$ is exact already at this level.

[^5]Next, we look at the conserved quantities. The leading terms in the expansions of $\eta_{m}$ and $H_{m}$ are easy to find:

$$
\eta_{m} \simeq-2 m^{2} \pi^{2} \delta \lambda_{m}, \quad \Gamma_{m} \simeq 2 m^{2} \pi^{2}\left(\delta \mu_{m}^{2}+m^{2} \pi^{2} \delta \lambda_{m}^{2}\right)
$$

To see it, consider the defining relations of $\eta_{m}$

$$
\sum_{m} \frac{\eta_{m}}{Z_{k}^{2}-\pi^{2} m^{2}}=1, \forall k
$$

When $Z_{k}$ is given by eq.(61), the dominant term in the above sum is $m=k$. The equation becomes $\eta_{k} /\left(-2 k^{2} \pi^{2} \delta \lambda_{k}\right)=1$. The same argument starting with the equation of the spectral curve, eq.(41), taken at the point $Z_{k}, \mu_{k}$ which belongs to it, yields the formula for $H_{m}$. Written with the oscillators $a_{m}, a_{m}^{\dagger}$, we find

$$
H_{m}=8 \pi\left(p_{0}^{2}-\pi^{2} m^{2}\right) a_{m}^{\dagger} a_{m}, \quad H_{0}=8 \pi \sum_{m} a_{m}^{\dagger} a_{m}
$$

It is clear that the $H_{m}$ are in involution at this order. As we see, in first approximation, the dynamical system reduces to a set of decoupled harmonic oscillators. The generator $L_{0}$ is given by

$$
L_{0}=p_{0}^{2}+8 \pi \sum_{m} a_{m}^{\dagger} a_{m}
$$

It is easy to verify that

$$
\left\{L_{0}, T^{(1)}(x)\right\}_{0}=-4 \partial_{x} T^{(1)}(x)
$$

These perturbative arguments are a good indication that $u(x)$ indeed satisfies the Virasoro Poisson bracket. Clearly we will not go very far in perturbation and we now look for a formal proof of this fact. For that purpose, we need some preparation.

## 10 Some identities.

Before computing Poisson brackets to check the Virasoro algebra, we collect a number of useful identities. We start with a formula for the inverse matrix $\Theta^{-1}(x)$. It has the same form as $\Theta(x)$.

Proposition 9 Let us define

$$
\begin{equation*}
\langle F|=\langle E| \Theta^{-1} \tag{62}
\end{equation*}
$$

Then, we can write

$$
\begin{equation*}
\Theta_{m k}^{-1}=\frac{\Phi_{m} F_{k}^{\prime}-\Phi_{m}^{\prime} F_{k}}{Z_{k}^{2}-\pi^{2} m^{2}} \tag{63}
\end{equation*}
$$

Proof. Multiplying eq.(52) on both sides by $\Theta^{-1}$, we get

$$
\Theta^{-1} \mathcal{Z}^{2}-K^{2} \Theta^{-1}=\Theta^{-1}|W\rangle\left\langle E^{\prime}\right| \Theta^{-1}-\Theta^{-1}\left|W^{\prime}\right\rangle\langle E| \Theta^{-1}
$$

and so

$$
\Theta_{m k}^{-1}=\frac{\left(\Theta^{-1}\left|W^{\prime}\right\rangle\right)_{m}\left(\langle E| \Theta^{-1}\right)_{k}-\left(\Theta^{-1}|W\rangle\right)_{m}\left(\left\langle E^{\prime}\right| \Theta^{-1}\right)_{k}}{\pi^{2} m^{2}-Z_{k}^{2}}
$$

But

$$
\Theta^{-1}\left|W^{\prime}\right\rangle=\left|\Phi^{\prime}\right\rangle+\langle E \mid \Phi\rangle|\Phi\rangle, \quad\left\langle E^{\prime}\right| \Theta^{-1}=\left\langle F^{\prime}\right|+\langle E \mid \Phi\rangle\langle F|
$$

Plugging into the above formula, we obtain eq.(63).

Proposition 10 The vector $\langle F|$ satisfies a set of differential equations.

$$
\begin{equation*}
\left\langle F^{\prime \prime}\right|+2(\langle E \mid \Phi\rangle)^{\prime}\langle F|+\langle F| \mathcal{Z}^{2}=0 \tag{64}
\end{equation*}
$$

Proof. The proof is the same as for $|\Phi\rangle$.
From this we easily deduce

$$
\left(\Theta^{-1}\right)^{\prime}=-|\Phi\rangle\langle F|
$$

which can also be proved using the similar property of $\Theta$. Let us define

$$
\begin{aligned}
A_{k}(x)=\sum_{m} \frac{E_{m}(x) \Phi_{m}(x)}{Z_{k}^{2}-m^{2} \pi^{2}}, & B_{k}(x)=\sum_{m} \frac{E_{m}^{\prime}(x) \Phi_{m}(x)}{Z_{k}^{2}-m^{2} \pi^{2}} \\
C_{k}(x)=\sum_{m} \frac{E_{m}(x) \Phi_{m}(x)}{\left(Z_{k}^{2}-m^{2} \pi^{2}\right)^{2}}, & D_{k}(x)=\sum_{m} \frac{E_{m}^{\prime}(x) \Phi_{m}(x)}{\left(Z_{k}^{2}-m^{2} \pi^{2}\right)^{2}}
\end{aligned}
$$

Proposition 11 We have the identity

$$
\begin{equation*}
\left(1-B_{k}\right) W_{k}+A_{k} W_{k}^{\prime}=0 \tag{65}
\end{equation*}
$$

Proof. This is just a rewriting of $|W\rangle=\Theta|\Phi\rangle$ using eq.(49) for $\Theta(x)$.
Similarly, one has

Proposition 12 The following two identities hold

$$
\begin{align*}
\left(1-B_{k}+A_{k}^{\prime}\right) F_{k}-A_{k} F_{k}^{\prime} & =0  \tag{66}\\
\left(B_{k}^{\prime}+Z_{k}^{2} A_{k}\right) F_{k}+\left(1-B_{k}\right) F_{k}^{\prime} & =0 \tag{67}
\end{align*}
$$

Proof. The first identity is a rewriting of $\langle F|=\langle E| \Theta^{-1}$ using eq. (63) for $\Theta^{-1}(x)$. The second identity is just a rewriting of $\left\langle F^{\prime}\right|=\left\langle E^{\prime}\right| \Theta^{-1}-\langle E \mid \Phi\rangle\langle F|$.
The above two identities form a linear system for $F_{k}$ and $F_{k}^{\prime}$. Its compatibility implies the following:

Proposition 13

$$
\begin{equation*}
\left(1-B_{k}\right)^{2}+A_{k} B_{k}^{\prime}-A_{k}^{\prime} B_{k}+A_{k}^{\prime}+Z_{k}^{2} A_{k}^{2}=0 \tag{68}
\end{equation*}
$$

Let us define

$$
\begin{equation*}
\widetilde{F}_{k}=W_{k}^{\prime}\left(1-B_{k}\right)+W_{k}^{\prime \prime} A_{k} \tag{69}
\end{equation*}
$$

An important consequence of eqs. (66. 67) is

Proposition 14 The functions $F_{k}(x)$ and $\widetilde{F}_{k}$ are proportional.

$$
\begin{equation*}
F_{k}(x)=-\frac{\zeta_{k}}{\mu_{k} \gamma_{k}} \widetilde{F}_{k}(x) \tag{70}
\end{equation*}
$$

The proportionality coefficient is written in this specific way for later convenience. The quantity $\gamma_{k}$ is the one defined in eq.(34).

Proof. Let us compute the Wronskian

$$
\begin{aligned}
W r\left(F_{k}, \widetilde{F}_{k}\right) & =F_{k}\left(W_{k}^{\prime \prime}\left(1-B_{k}\right)-W_{k}^{\prime} B_{k}^{\prime}+W_{k}^{\prime \prime \prime} A_{k}+W_{k}^{\prime \prime} A_{k}^{\prime}\right)-F_{k}^{\prime}\left(W_{k}^{\prime}\left(1-B_{k}\right)+W_{k}^{\prime \prime} A_{k}\right) \\
& =-\Lambda_{k}^{2} W_{k}\left(\left(1-B_{k}+A_{k}^{\prime}\right) F_{k}-A_{k} F_{k}^{\prime}\right)-W_{k}^{\prime}\left(\left(B_{k}^{\prime}+Z_{k}^{2} A_{k}\right) F_{k}+\left(1-B_{k}\right) F_{k}^{\prime}\right)=0
\end{aligned}
$$

Proposition 15 The following quantities are constants independent of $x$

$$
\begin{equation*}
\eta_{m}=\Phi_{m} E_{m}^{\prime}-\Phi_{m}^{\prime} E_{m}-<E \Phi>\Phi_{m} E_{m}-\sum_{p \neq m} \frac{1}{\pi^{2}\left(p^{2}-m^{2}\right)}\left(\Phi_{m} \Phi_{p}^{\prime}-\Phi_{m}^{\prime} \Phi_{p}\right)\left(E_{m}^{\prime} E_{p}-E_{m} E_{p}^{\prime}\right) \tag{71}
\end{equation*}
$$

The quantities $\eta_{m}$ defined in eq.(71) are in fact the same as the ones introduced in eq.(37).

Proof. To prove the first statement, just take the derivative with respect to $x$ and use eq.(51). To prove the second statement, use the $\eta_{m}$ defined in eq.(71) to rewrite eq.(68) as

$$
\begin{equation*}
\sum_{m} \frac{\eta_{m}}{\left(Z_{k}^{2}-m^{2} \pi^{2}\right)}=1, \quad \forall k \tag{72}
\end{equation*}
$$

which is exactly the same as eq.(37).
A straightforward consequence is the "trace" formula that will be useful later:

$$
\begin{equation*}
\left\langle E \Phi^{\prime}\right\rangle-\left\langle E^{\prime} \Phi\right\rangle+\langle E \Phi\rangle^{2}=-\sum_{m} \eta_{m} \tag{73}
\end{equation*}
$$

We now compute the coefficients $\zeta_{k}$ appearing in eq.(70)

Proposition 16 The coefficients $\zeta_{k}$ in eq.(76) are determined by the set of equations

$$
\begin{equation*}
\sum_{k} \frac{\zeta_{k}}{Z_{k}^{2}-m^{2} \pi^{2}}=1, \quad \forall m \tag{74}
\end{equation*}
$$

These equations are dual to eq.(74).

Proof. Start with

$$
\langle F \mid W\rangle=\langle E| \Theta^{-1}|W\rangle=\langle E \mid \Phi\rangle
$$

Using eq.(65., 69. 70 ), we have

$$
\begin{equation*}
F_{k} W_{k}=-\frac{\zeta_{k}}{\mu_{k} \gamma_{k}}\left(-W_{k}^{\prime 2}+W_{k}^{\prime \prime} W_{k}\right) A_{k}=\zeta_{k} A_{k} \tag{75}
\end{equation*}
$$

hence

$$
\langle F \mid W\rangle=\sum_{k} \zeta_{k} A_{k}=\sum_{m}\left(\sum_{k} \frac{\zeta_{k}}{Z_{k}^{2}-m^{2} \pi^{2}}\right) E_{m} \Phi_{m}=\langle E \mid \Phi\rangle=\sum_{m} E_{m} \Phi_{m}
$$

Since this has to hold for all $x$, the only possibility is eq.(74).

We collect below a few more identities of the type of eq.(75) that will be important later

## Proposition 17

$$
\begin{align*}
F_{k} W_{k} & =\zeta_{k} A_{k}  \tag{76}\\
F_{k} W_{k}^{\prime} & =-\zeta_{k}\left(1-B_{k}\right)  \tag{77}\\
F_{k}^{\prime} W_{k} & =\zeta_{k}\left(1-B_{k}+A_{k}^{\prime}\right)  \tag{78}\\
F_{k}^{\prime} W_{k}^{\prime} & =\zeta_{k}\left(B_{k}^{\prime}+Z_{k}^{2} A_{k}\right) \tag{79}
\end{align*}
$$

Next, we relate the $\eta_{m}$ and $\zeta_{k}$

Proposition 18 The following relation holds:

$$
\sum_{m} \frac{\eta_{m}}{\left(Z_{k}^{2}-m^{2} \pi^{2}\right)^{2}}=\frac{1}{\zeta_{k}}
$$

Proof. We start from

$$
\sum_{m} \Theta_{k m} \Theta_{m k^{\prime}}^{-1}=\delta_{k k^{\prime}}
$$

When $k=k^{\prime}$ this gives

$$
W_{k} F_{k}^{\prime} D_{k}-W_{k} F_{k}\left(D_{k}^{\prime}-A_{k}+Z_{k}^{2} C_{k}\right)-W_{k}^{\prime} F_{k}^{\prime} C_{k}+W_{k}^{\prime} F_{k}\left(C_{k}^{\prime}-D_{k}\right)=1
$$

or using eqs. (76-79)

$$
\zeta_{k}\left\{2 D_{k}\left(1-B_{k}\right)+D_{k} A_{k}^{\prime}-D_{k}^{\prime} A_{k}+A_{k}^{2}-2 Z_{k}^{2} C_{k} A_{k}-C_{k} B_{k}^{\prime}-C_{k}^{\prime}\left(1-B_{k}\right)\right\}=1
$$

Expanding this formula using $(p \neq m)$

$$
\begin{aligned}
\frac{1}{\left(Z_{k}^{2}-\pi^{2} m^{2}\right)^{2}\left(Z_{k}^{2}-\pi^{2} p^{2}\right)}= & -\frac{1}{\pi^{2}\left(p^{2}-m^{2}\right)} \frac{1}{\left(Z_{k}^{2}-\pi^{2} m^{2}\right)^{2}} \\
& -\frac{1}{\pi^{4}\left(p^{2}-m^{2}\right)^{2}}\left\{\frac{1}{\left(Z_{k}^{2}-\pi^{2} m^{2}\right)}-\frac{1}{\left(Z_{k}^{2}-\pi^{2} p^{2}\right)}\right\}
\end{aligned}
$$

we get the result with $\eta_{m}$ represented by eq.(71).

An immediate consequence is an expansion of the function $\eta(Z)$ near $Z^{2}=Z_{k}^{2}$

$$
\begin{equation*}
\eta(Z)=\left(Z^{2}-Z_{k}^{2}\right) \frac{1}{\zeta_{k}}+\cdots \tag{80}
\end{equation*}
$$

Returning to the formula for $\psi(x)$, we can write it as

$$
\psi(x)=\frac{\mu-e^{-i Z}}{2 i Z} w(x, Z)-\frac{\mu-e^{i Z}}{2 i Z} w^{*}(x, Z)
$$

where we define

$$
\begin{align*}
w(x, Z) & =e^{i Z x}\left(1-\left\langle E^{\prime}\right| \frac{1}{Z^{2}-K^{2}}|\Phi\rangle+\langle E| \frac{i Z}{Z^{2}-K^{2}}|\Phi\rangle\right)  \tag{81}\\
w^{*}(x, Z) & =e^{-i Z x}\left(1-\left\langle E^{\prime}\right| \frac{1}{Z^{2}-K^{2}}|\Phi\rangle-\langle E| \frac{i Z}{Z^{2}-K^{2}}|\Phi\rangle\right) \tag{82}
\end{align*}
$$

The functions $w$ and $w^{*}$ are defiend on the Riemann sphere with a puncture at $\infty$. One can compute the Wronskian

$$
w^{\prime} w^{*}-w^{* \prime} w=2 i Z \eta(Z)
$$

This Wronskian vanishes precisely when $Z^{2}=Z_{k}^{2}$. Hence, when $Z=Z_{k}, w\left(x, Z_{k}\right)$ becomes proportional to $w^{*}\left(x, Z_{k}\right)$. Indeed

$$
\begin{aligned}
w\left(x, Z_{k}\right) & =e^{i Z_{k} x}\left(1-B_{k}+i Z_{k} A_{k}\right) \\
w^{*}\left(x, Z_{k}\right) & =e^{-i Z_{k} x}\left(1-B_{k}-i Z_{k} A_{k}\right)
\end{aligned}
$$

Then eq.(65) becomes

$$
\begin{equation*}
w\left(x, Z_{k}\right)=\frac{\alpha_{k}^{(+)}}{\alpha_{k}^{(-)}} w^{*}\left(x, Z_{k}\right) \tag{83}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k}^{( \pm)}=1-\mu_{k} e^{ \pm i Z_{k}}, \quad \alpha_{k}^{(+)} \alpha_{k}^{(-)}=\mu_{k} \gamma_{k} \tag{84}
\end{equation*}
$$

The function $\widetilde{F}_{k}$ is solution of eq.(64). It is not difficult to see that the other solution of this equation is

$$
\widetilde{G}_{k}=A_{k} W_{k}^{\prime}+2 Z_{k}\left(W_{k} D_{k}-W_{k}^{\prime} C_{k}\right)+x \widetilde{F}_{k}
$$

In terms of $w, w^{*}$ defined in eqs. (81.82), we have

$$
\begin{align*}
\widetilde{F}_{k} & =\frac{1}{2}\left(\left.\alpha_{k}^{(-)} w\right|_{Z_{k}}+\left.\alpha_{k}^{(+)} w^{*}\right|_{Z_{k}}\right)=\left.\alpha_{k}^{(-)} w\right|_{Z_{k}}=\left.\alpha_{k}^{(+)} w^{*}\right|_{Z_{k}}  \tag{85}\\
\widetilde{G}_{k} & =-\frac{i}{2}\left(\left.\alpha_{k}^{(-)} \partial_{Z} w\right|_{Z_{k}}-\left.\alpha_{k}^{(+)} \partial_{Z} w^{*}\right|_{Z_{k}}\right) \tag{86}
\end{align*}
$$

This will play an important role below.

## 11 Virasoro algebra.

We are now ready to compute the Poisson bracket $\{T(x), T(y)\}$. The result is precisely the algebra of the $T_{n}=L_{n}-L_{0}$, eq.(60).

Proposition 19 Let $T(x)=2 \partial_{x}\langle E(x) \mid \Phi(x)\rangle$, then we have

$$
\begin{align*}
\left\{\int_{0}^{1} d x X(x) T(x),\right. & \left.\int_{0}^{1} d y Y(y) T(y)\right\}=-\int_{0}^{1} d x\left(X^{\prime \prime \prime} Y-X Y^{\prime \prime \prime}\right)-4 \int_{0}^{1} d x\left(X^{\prime} Y-X Y^{\prime}\right)\left(p_{0}^{2}+T\right) \\
& +4 \int_{0}^{1} d x X(x) \delta(x) \int_{0}^{1} d y Y(y) T^{\prime}(y)-4 \int_{0}^{1} d x X(x) T^{\prime}(x) \int_{0}^{1} d y Y(y) \delta(y) \tag{87}
\end{align*}
$$

The proof is rather long and we will split it in several lemmas. Since $|\Phi\rangle=\Theta^{-1}|W\rangle$, we have

$$
\left\{|\Phi\rangle_{1},|\Phi\rangle_{2}\right\}=\Theta_{1}^{-1} \Theta_{2}^{-1}\left[\left\{\Theta_{1}, \Theta_{2}\right\}\left|\Phi_{1}\right\rangle\left|\Phi_{2}\right\rangle-\left\{\Theta_{1}, W_{2}\right\}\left|\Phi_{1}\right\rangle-\left\{W_{1}, \Theta_{2}\right\}\left|\Phi_{2}\right\rangle+\left\{W_{1}, W_{2}\right\}\right]
$$

In this expression, all Poisson brackets can be computed explicitely. Using only eq.(65), we arrive at

$$
\begin{equation*}
\left\{\Phi_{m}(x), \Phi_{n}(y)\right\}=-2 \sum_{k} \Theta_{m k}^{-1}(x) \Theta_{n k}^{-1}(y) \frac{\sin Z_{k}}{Z_{k} \gamma_{k}}\left(1-\frac{p_{0}^{2}}{Z_{k}^{2}}\right)\left[\widetilde{F}_{k}(x) \widetilde{G}_{k}(y)-\widetilde{F}_{k}(y) \widetilde{G}_{k}(x)\right] \tag{88}
\end{equation*}
$$

where $\gamma_{k}$ are defined in eq.(34). Multypliying by $E_{m}(x) E_{n}(y)$ and remembering that $\langle E| \Theta^{-1}=\langle F|$ we get

$$
\begin{equation*}
\{\langle E(x) \mid \Phi(x)\rangle,\langle E(y) \mid \Phi(y)\rangle\}=2 \sum_{k} \frac{\zeta_{k}^{2} \sin Z_{k}}{Z_{k} \gamma_{k}^{3} \mu_{k}^{2}}\left(1-\frac{p_{0}^{2}}{Z_{k}^{2}}\right) \times\left(\mathcal{A}_{k}(y) \mathcal{B}_{k}(x)-\mathcal{A}_{k}(x) \mathcal{B}_{k}(y)\right) \tag{89}
\end{equation*}
$$

where

$$
\mathcal{A}_{k}(x)=\widetilde{F}_{k}^{2}(x), \quad \mathcal{B}_{k}(x)=\widetilde{F}_{k}(x) \widetilde{G}_{k}(x)
$$

Using eqs.(81,82), we can write

$$
\begin{aligned}
\mathcal{A}_{k}(x) & =\left.\mu_{k} \gamma_{k} w(x, Z) w^{*}(x, Z)\right|_{Z=Z_{k}} \\
\mathcal{B}_{k}(x) & =\left.\frac{\mu_{k} \gamma_{k}}{2 i}\left(w^{*}(x, Z) \partial_{Z} w(x, Z)-w(x, Z) \partial_{Z} w^{*}(x, Z)\right)\right|_{Z=Z_{k}}
\end{aligned}
$$

The strategy to evaluate the right hand side of eq. (89) is to rewrite it as a sum over the residues of certain poles of a function on the Riemann $Z$-sphere. This sum can then be transformed as a sum over the residues of the other poles (there will be none in our case) plus a integral over a small circle at infinity surrounding an essential singularity. This last integral can then be evaluated using the known asymptotics of the function. Let us define

$$
\begin{equation*}
a(Z)=\frac{Z}{2 i \sin Z} e^{-i Z}, \quad b(Z)=-\frac{Z}{2 i \sin Z} \cos Z, \quad c(Z)=\frac{Z}{2 i \sin Z} e^{i Z} \tag{90}
\end{equation*}
$$

and introduce the functions

$$
\begin{aligned}
\Omega_{1}= & w(x, Z) w^{*}(y, Z)-w^{*}(x, Z) w(y, Z) \\
\Omega_{2}= & a(Z) w(x, Z) w(y, Z) \\
& +b(Z)\left(w(x, Z) w^{*}(y, Z)+w^{*}(x, Z) w(y, Z)\right) \\
& +c(Z) w^{*}(x, Z) w^{*}(y, Z)
\end{aligned}
$$

These functions are defined on the Riemann $Z$-sphere have poles at the points $\pm m \pi$ and have an essential singularity at infinity. Let

$$
\Omega=\Omega_{1} \Omega_{2}
$$

and we recall the definition of $\eta(Z)$ eq.(39).

## Lemma 5

$$
\begin{equation*}
\sum_{ \pm Z_{k}} \operatorname{Res} \frac{\Omega}{\eta^{2}(Z)}\left(1-\frac{p_{0}^{2}}{Z^{2}}\right)=-2 \sum_{k} \frac{\zeta_{k}^{2} \sin Z_{k}}{Z_{k} \gamma_{k}^{3} \mu_{k}^{2}}\left(1-\frac{p_{0}^{2}}{Z_{k}^{2}}\right) \times\left(\mathcal{A}_{k}(y) \mathcal{B}_{k}(x)-\mathcal{A}_{k}(x) \mathcal{B}_{k}(y)\right) \tag{91}
\end{equation*}
$$

Proof. The factor $\eta^{2}(Z)$ introduces double poles at $\pm Z_{k}$ because $\eta\left(Z_{k}\right)=0$. However using eq.(83), we see immediately that $\left.\Omega_{1}\right|_{ \pm Z_{k}}=0$, so that the poles are in fact simple. Remembering eq.(80), we have

$$
\sum_{ \pm Z_{k}} \operatorname{Res} \frac{\Omega}{\eta^{2}(Z)}\left(1-\frac{p_{0}^{2}}{Z^{2}}\right)=\sum_{k} \frac{\zeta_{k}^{2}}{4 Z_{k}^{2}}\left(1-\frac{p_{0}^{2}}{Z_{k}^{2}}\right)\left(\left.\partial_{Z} \Omega\right|_{Z_{k}}+\left.\partial_{Z} \Omega\right|_{-Z_{k}}\right)
$$

We need to compute $\left.\partial_{Z} \Omega\right|_{ \pm Z_{k}}=\left.\left.\partial_{Z} \Omega_{1}\right|_{ \pm Z_{k}} \Omega_{2}\right|_{ \pm Z_{k}}$. Evaluating at $Z_{k}$ gives

$$
\left.\partial_{Z} \Omega\right|_{Z_{k}}=\frac{2 i}{\mu_{k}^{2} \gamma_{k}^{2}}\left(a\left(Z_{k}\right) \frac{\alpha_{k}^{+}}{\alpha_{k}^{-}}+2 b\left(Z_{k}\right)+c\left(Z_{k}\right) \frac{\alpha_{k}^{-}}{\alpha_{k}^{+}}\right)\left(\mathcal{A}_{k}(y) \mathcal{B}_{k}(x)-\mathcal{A}_{k}(x) \mathcal{B}_{k}(y)\right)
$$

while using $w\left(-Z_{k}\right)=w^{*}\left(Z_{k}\right),\left.\partial_{Z} w\right|_{-Z_{k}}=-\left.\partial_{Z} w^{*}\right|_{Z_{k}}$, we also have

$$
\left.\partial_{Z} \Omega\right|_{-Z_{k}}=\frac{2 i}{\mu_{k}^{2} \gamma_{k}^{2}}\left(c\left(-Z_{k}\right) \frac{\alpha_{k}^{+}}{\alpha_{k}^{-}}+2 b\left(-Z_{k}\right)+a\left(-Z_{k}\right) \frac{\alpha_{k}^{-}}{\alpha_{k}^{+}}\right)\left(\mathcal{A}_{k}(y) \mathcal{B}_{k}(x)-\mathcal{A}_{k}(x) \mathcal{B}_{k}(y)\right)
$$

The result follows from the identities

$$
\begin{aligned}
a\left(Z_{k}\right) \frac{\alpha_{k}^{+}}{\alpha_{k}^{-}}+2 b\left(Z_{k}\right)+c\left(Z_{k}\right) \frac{\alpha_{k}^{-}}{\alpha_{k}^{+}} & =2 i \frac{Z_{k} \sin Z_{k}}{\gamma_{k}} \\
c\left(-Z_{k}\right) \frac{\alpha_{k}^{+}}{\alpha_{k}^{-}}+2 b\left(-Z_{k}\right)+a\left(-Z_{k}\right) \frac{\alpha_{k}^{-}}{\alpha_{k}^{+}} & =2 i \frac{Z_{k} \sin Z_{k}}{\gamma_{k}}
\end{aligned}
$$

Next we have to examine the poles at $\pm m \pi$ in the expression

$$
\frac{\Omega}{\eta^{2}(Z)}\left(1-\frac{p_{0}^{2}}{Z^{2}}\right)
$$

We rewrite $\Omega_{1}$ and $\Omega_{2}$ as

$$
\begin{aligned}
\Omega_{1}= & \left(w(x)-w^{*}(x)\right) w^{*}(y)-\left(w(y)-w^{*}(y)\right) w^{*}(x) \\
\Omega_{2}= & \frac{Z}{4 i \sin Z} \times\left\{\left(w^{*}(x)-w(x)\right)\left(e^{i Z} w^{*}(y)-e^{-i Z} w(y)\right)+\right. \\
& \left.\quad+\left(w^{*}(y)-w(y)\right)\left(e^{i Z} w^{*}(x)-e^{-i Z} w(x)\right)\right\}
\end{aligned}
$$

Recalling the formula eq. (81, 82) for $w(x, Z)$ and $w^{*}(x, Z)$, we see that when $Z=0$, we have $w=w^{*}$ so that $\Omega_{1}=0(Z)$ and $\Omega_{2}=0\left(Z^{2}\right)$. Hence we have no pole at $Z=0$. When $Z= \pm \pi m+\epsilon$

$$
w=\frac{1}{\epsilon} w_{ \pm m}^{(-1)}+w_{ \pm m}^{(0)}+\cdots, \quad w^{*}=\frac{1}{\epsilon} w_{ \pm m}^{*(-1)}+w_{ \pm m}^{*(0)}+\cdots
$$

with

$$
w_{ \pm m}^{(-1)}(x)=w_{ \pm m}^{*(-1)}(x)=\mp \pi m \Phi_{m}(x)
$$

Because the two leading terms are the same, both $w^{*}(x, Z)-w(x, Z)$ and $e^{i Z} w^{*}(x, Z)-e^{-i Z} w(x, Z)$ are regular. So $\Omega_{1}$ and $\Omega_{2}$ both behaves like $1 / \epsilon$. Since $1 / \eta^{2}(Z)$ behaves like $\epsilon^{2}$, the whole thing is in fact regular.

We come to the conclusion that everything happens at infinity. We want to compute

$$
\begin{equation*}
\left\{\int d x X(x) T(x), \int d y Y(y) T(y)\right\}=4 \int_{0}^{1} d x X(x) \int_{0}^{1} d y Y(y) \int_{C_{\infty}} d Z\left(1-\frac{p_{0}^{2}}{Z^{2}}\right) \frac{1}{\eta^{2}(Z)} \partial_{x} \partial_{y} \Omega \tag{92}
\end{equation*}
$$

Let

$$
\begin{aligned}
\widetilde{w}(x, Z) & =\eta^{-1 / 2}(Z) w(x, Z) \\
\widetilde{w}^{*}(x, Z) & =\eta^{-1 / 2}(Z) w^{*}(x, Z)
\end{aligned}
$$

The wronskian of $\widetilde{w}$ and $\widetilde{w}^{*}$ is $2 i Z$ and therefore these functions coincide with the Baker-Akhiezer functions which are usually introduced in the pseudo-differential appproach to the KdV hierarchy (see e.g. 15]). At infinity, we have

$$
\begin{aligned}
\widetilde{w}(x) & =e^{i Z x}\left(1-\frac{\omega(x)}{i Z}+\frac{\omega^{\prime}(x)+\omega^{2}(x)}{2(i Z)^{2}}+\cdots\right) \\
\widetilde{w}^{*}(x) & =e^{-i Z x}\left(1+\frac{\omega(x)}{i Z}+\frac{\omega^{\prime}(x)+\omega^{2}(x)}{2(i Z)^{2}}+\cdots\right)
\end{aligned}
$$

where we set

$$
\omega(x)=\langle E \Phi\rangle(x)
$$

Eq.(73) is needed to verify this formula. Using theses asymptotic forms, we find

$$
\begin{aligned}
\partial_{x}\left(\widetilde{w}^{2}(x)\right) & =\left(\sum_{n=-\infty}^{1} A_{n}(x)(i Z)^{n}\right) e^{2 i Z x} \\
\partial_{x}\left(\widetilde{w}^{* 2}(x)\right) & =\left(\sum_{n=-\infty}^{1}(-1)^{n} A_{n}(x)(i Z)^{n}\right) e^{-2 i Z x} \\
\partial_{x}\left(\widetilde{w}(x) \widetilde{w}^{*}(x)\right) & =\sum_{n=-\infty}^{-1} C_{2 n}(x)(i Z)^{2 n}
\end{aligned}
$$

where

$$
\begin{aligned}
A_{1}=2, \quad A_{0}=-4 \omega(x), \quad A_{-1}=4 \omega^{2}(x), \quad A_{-2} & =-\frac{8}{3} \omega^{3}-2 \int^{x} \omega^{\prime 2}, \quad A_{-3}=\frac{4}{3} \omega^{4}+4 \omega \int^{x} \omega^{\prime 2} \\
C_{-2}(x) & =\omega^{\prime \prime}(x)
\end{aligned}
$$

Consider the term proportional to $b(Z)$ in eq.(92):

$$
4 \int_{C_{\infty}} \frac{d Z}{2 i \pi} b(Z)\left(1-\frac{p_{0}^{2}}{Z^{2}}\right) \int d x d y(X(x) Y(y)-X(y) Y(x)) \partial_{x} \widetilde{w}^{2}(x) \partial_{y} \widetilde{w}^{* 2}(y)
$$

Lemma 6 Let us define

$$
I_{p}(z)=\int_{C_{\infty}} \frac{d Z}{2 i \pi} b(Z)(i Z)^{p} e^{2 i Z z}
$$

We have

$$
\begin{gathered}
I_{-1}(z)=-\frac{1}{2} \delta(z), \quad I_{0}(z)=-\frac{1}{4} \delta^{\prime}(z), \quad I_{1}(z)=-\frac{1}{8} \delta^{\prime \prime}(z), \quad I_{2}(z)=-\frac{1}{16} \delta^{\prime \prime \prime}(z) \\
I_{-n}(z)=-\frac{2^{n-3}}{(n-2)!} \epsilon(z) z^{n-2}, \quad n \geq 2
\end{gathered}
$$

Proof. It is clear that

$$
\partial_{z} I_{p}(z)=2 I_{p+1}(z)
$$

hence we can determine all the $I_{p}(z)$ recursively. For $p \geq 0$ this is done by successively differentiating $I_{-1}(z)$ which is easy to calculate

$$
I_{-1}(z)=\int_{C_{\infty}} \frac{d Z}{2 i \pi} b(Z) \frac{1}{i Z} e^{2 i Z z}=\frac{1}{2} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{\cos Z}{\sin Z} e^{2 i Z z}=-\frac{1}{2} \sum_{n \in Z} e^{2 i n \pi z}=-\frac{1}{2} \delta(z)
$$

For $p \leq-2$ we have to successively integrate $I_{-1}(z)$. For this we need boundary conditions which are provided by

$$
\begin{equation*}
\int_{C_{\infty}} \frac{d Z}{2 i \pi} b(Z) Z^{-p}=0, \quad p \geq 2 \tag{93}
\end{equation*}
$$

This is because

$$
\begin{aligned}
& \int_{C_{\infty}} \frac{d Z}{2 i \pi} b(Z) \sum_{p=2}^{\infty} \zeta^{p} Z^{-p}=-\frac{\zeta}{2 i} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{\cos Z}{\sin Z} \sum_{p=2}^{\infty} \zeta^{p-1} Z^{-p+1} \\
&=-\frac{\zeta^{2}}{2 i} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{\cos Z}{\sin Z} \frac{1}{Z-\zeta}=\frac{\zeta^{2}}{2 i}\left(\cot \zeta-\frac{1}{\zeta}-\sum_{n=0}^{\infty} \frac{2 \zeta}{\zeta^{2}-n^{2} \pi^{2}}\right)=0
\end{aligned}
$$

Denoting

$$
F_{p}(x, y)=\sum_{m+n=p}(-1)^{m} A_{n}(x) A_{m}(y)
$$

we get

$$
4 \int_{0}^{1} d x \int_{0}^{1} d y(X(x) Y(y)-X(y) Y(x)) \sum_{-\infty}^{p=2} F_{p}(x, y)\left(I_{p}(x-y)+p_{0}^{2} I_{p-2}(x-y)\right)
$$

In this expression, we separate the terms with a $\delta(x-y)$ function or its derivative which will lead to local terms $\left(L_{b}\right)$ and the non local terms $\left(N L_{b}\right)$ with are proportional to $\epsilon(x-y)$.

$$
\begin{align*}
L_{b} & =4 \int d x d y(X(x) Y(y)-X(y) Y(x))\left(F_{2} I_{2}+F_{1} I_{1}+\left(F_{0}+p_{0}^{2} F_{2}\right) I_{0}+\left(F_{-1}+p_{0}^{2} F_{1}\right) I_{-1}\right) \\
N L_{b} & =4 \int d x d y(X(x) Y(y)-X(y) Y(x)) \sum_{n=0}^{\infty}\left(F_{-2-n}+p_{0}^{2} F_{-n}\right) I_{-n-2} \tag{94}
\end{align*}
$$

We have

$$
\begin{gathered}
F_{2}(x, y)=-4, \quad F_{1}(x, y)=8(\omega(x)-\omega(y)) \\
F_{0}(x, y)=-8(\omega(x)-\omega(y))^{2}, \quad F_{-1}(x, y)=\frac{16}{3}(\omega(x)-\omega(y))^{3}+4 \int_{y}^{x} \omega^{\prime 2}
\end{gathered}
$$

The local terms are

$$
\begin{aligned}
L_{b}= & 4 \int_{0}^{1} d x \int_{0}^{1} d y(X(x) Y(y)-X(y) Y(x))\left\{\frac{1}{4} \delta^{\prime \prime \prime}(x-y)+p_{0}^{2} \delta^{\prime}(x-y)+\right. \\
& \left.-(\omega(x)-\omega(y)) \delta^{\prime \prime}(x-y)-2(\omega(x)-\omega(y))^{2} \delta^{\prime}(x-y)-\frac{1}{2} F_{-1}(x, y) \delta(x-y)\right\}
\end{aligned}
$$

The last two terms obviously vanish and what remains is

$$
L_{b}=\int_{0}^{1} d x\left\{-\left(X^{\prime \prime \prime} Y-X Y^{\prime \prime \prime}\right)-4\left(\left(X^{\prime} Y-X Y^{\prime}\right)\left(p_{0}^{2}+2 \omega^{\prime}\right)\right\}\right.
$$

Lemma 7 The non local term eq.(94) is identically zero.

Proof. The non local term reads

$$
\begin{aligned}
& N L_{b}=-2 \int_{0}^{1} d x \int_{0}^{1} d y(X(x) Y(y)-X(y) Y(x)) \epsilon(x-y) \\
& \quad\left[\sum_{n=0}^{\infty}\left(F_{-2-n}(x, y)+p_{0}^{2} F_{-n}(x, y)\right) \frac{2^{n}}{(n)!}(x-y)^{n}\right]
\end{aligned}
$$

The first sum is just the coefficient of $(i Z)^{-2}$ in the formal expansion of $\partial \widetilde{w}^{2}(x) \partial \widetilde{w}^{* 2}(y)$ while the second sum is the coefficient of $(i Z)^{0}$. Hence we have

$$
N L_{b}=2 \int_{0}^{1} d x \int_{0}^{1} d y(X(x) Y(y)-X(y) Y(x)) \epsilon(x-y) \int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(Z-p_{0}^{2} Z^{-1}\right) \partial \widetilde{w}^{2}(x) \partial \widetilde{w}^{* 2}(y)
$$

The above expression is zero in the following sense. Let us write

$$
\int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(Z-p_{0}^{2} Z^{-1}\right) \partial \widetilde{w}^{2}(x) \partial \widetilde{w}^{* 2}(y)=\sum_{i=1}^{\infty} \frac{(y-x)^{i}}{i!} \int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(Z-p_{0}^{2} Z^{-1}\right) \partial \widetilde{w}^{2}(x) \partial^{i+1} \widetilde{w}^{* 2}(x)
$$

We will show that all the integrals around $C_{\infty}$ in the right hand side are identically zero.
Since the function $\widetilde{w}$ satisfies the Schroedinger equation, its square $\widetilde{w}^{2}$ satisfies a third order differential equation

$$
\mathcal{D} \widetilde{w}^{2}=-4 Z^{2} \partial \widetilde{w}^{2}, \quad \mathcal{D}=\partial^{3}+8 \omega^{\prime} \partial+4 \omega^{\prime \prime}
$$

Let us introduce a pseudo differential operator $\Phi$ such that

$$
\widetilde{w}^{2}=\Phi e^{2 i Z x}
$$

Then

$$
\mathcal{D}=\partial \Phi \partial^{2} \Phi^{-1}
$$

Since $\mathcal{D}$ is anti self-adjoint, we also have

$$
\mathcal{D}=-\mathcal{D}^{*}=\Phi^{*-1} \partial^{2} \Phi^{*} \partial
$$

it follows that $\widetilde{w}^{* 2}$ which is solution of

$$
\left(-\mathcal{D}^{*}\right) \widetilde{w}^{* 2}=-4 Z^{2} \partial \widetilde{w}^{* 2}
$$

can be written as

$$
\widetilde{w}^{* 2}=\partial^{-1} \Phi^{*-1} \partial e^{-2 i Z x}
$$

Hence

$$
\partial \widetilde{w}^{2}=\partial \Phi e^{2 i Z x}, \quad \partial^{i+1} \widetilde{w}^{* 2}=\partial^{i} \Phi^{*-1} \partial e^{-2 i Z x}
$$

Finally, we have to compute

$$
\begin{aligned}
\int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(Z-p_{0}^{2} Z^{-1}\right)\left(\partial \widetilde{w}^{2}\right) \partial^{i+1} \widetilde{w}^{* 2} & =\int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(Z-p_{0}^{2} Z^{-1}\right)\left(\partial \Phi e^{2 i Z x}\right) \partial^{i} \Phi^{*-1} \partial e^{-2 i Z x} \\
& =\frac{-1}{2 i} \int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(\partial \Phi e^{2 i Z x}\right) \partial^{i} \Phi^{*-1}\left(\partial^{2}+4 p_{0}^{2}\right) e^{-2 i Z x}
\end{aligned}
$$

We recall the formula (see e.g. [15])

$$
\int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(D e^{i Z x}\right)\left(F e^{-i Z x}\right)=\operatorname{Res}_{\partial}\left(D F^{*}\right)
$$

where $\operatorname{Res}_{\partial}$ is Adler's residue (25]. So our expression is equal to

$$
\operatorname{Res}_{\partial}\left(\partial \Phi\left(\partial^{2}+4 p_{0}^{2}\right) \Phi^{-1} \partial^{i}\right)=\operatorname{Res}_{\partial}\left(\left(\mathcal{D}+4 p_{0}^{2} \partial\right) \partial^{i}\right)=0
$$

because $\left(\mathcal{D}+4 p_{0}^{2} \partial\right) \partial^{i}$ is a differential operator.

Consider next the term proportional to $a(Z)$ in eq.(92).

$$
4 \int_{0}^{1} d x \int_{0}^{1} d y(X(x) Y(y)-X(y) Y(x)) \int_{C_{\infty}} \frac{d Z}{2 i \pi} a(Z)\left(1-\frac{p_{0}^{2}}{Z^{2}}\right) \partial_{x} \widetilde{w}^{2}(x) \partial_{y}\left(\widetilde{w}(y) \widetilde{w}^{*}(y)\right)
$$

Lemma 8 Let us define

$$
J_{p}(x)=\int_{C_{\infty}} \frac{d Z}{2 i \pi} a(Z)(i Z)^{p} e^{2 i Z x}, \quad p=-1,-2, \cdots
$$

One has

$$
J_{-1}(x)=\frac{1}{2} \delta(x), \quad J_{-p}(x)=2^{p-2} \frac{x^{p-2}}{(p-2)!}(\epsilon(x)-1), \quad p \geq 2
$$

Proof. One has

$$
\partial_{x} J_{p}(x)=2 J_{p+1}(x)
$$

The calculation of $J_{-1}(x)$ is easy. Next, we need boundary conditions to determine the other $J_{p}$ by integration

$$
\begin{aligned}
\sum_{n=2}^{\infty}(i \zeta)^{n} J_{-n}(0) & =\frac{\zeta^{2}}{2 i} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{e^{-i Z}}{\sin Z} \frac{1}{Z-\zeta} \\
& =\frac{\zeta^{2}}{2 i}\left[-\frac{e^{-i \zeta}}{\sin \zeta}+\sum_{n \in Z} \frac{1}{\zeta-n \pi}\right]=\frac{\zeta^{2}}{2 i}\left[-\frac{e^{-i \zeta}}{\sin \zeta}+\cot \zeta\right]=\frac{\zeta^{2}}{2}
\end{aligned}
$$

It follows that all the non local terms containing $J_{p}(x)$ for $p \leq-2$ vanish when $0<x<1$. The $a(Z)$ term is

$$
L_{a}=4 \int_{0}^{1} d x \int_{0}^{1} d y(X(x) Y(y)-X(y) Y(x)) A_{1}(x) C_{-2}(y) J_{-1}(x)
$$

or

$$
L_{a}=4 \int_{0}^{1} d x X(x) \delta(x) \int_{0}^{1} d y Y(y) \omega^{\prime \prime}(y)-4 \int_{0}^{1} d x Y(x) \delta(x) \int_{0}^{1} d y X(y) \omega^{\prime \prime}(y)
$$

Finally, the term in $c(Z)$ is just equal to the $a(Z)$ one and double it.

Putting everything together, we arrive at eq.(87).

## 12 Poisson bracket $\left\{L_{0}, u(y)\right\}$.

In the previous section, we have obtained the correct Poisson bracket for the generators $T_{n}=$ $L_{n}-L_{0}$. We now have to reintroduce $L_{0}$ and check that it has the correct Poisson brackets. The candidate for $L_{0}$ was given in eq.(59). Let us recall it:

$$
L_{0}=p_{0}^{2}+\frac{1}{\eta\left(p_{0}\right)} \sum_{k} \frac{\Gamma_{k}}{p_{0}^{2}-k^{2} \pi^{2}}
$$

where

$$
\left.\Gamma_{k}=E_{k}^{\prime}(0) \Phi_{k}^{\prime}(0)-E_{k}^{\prime}(1) \Phi_{k}^{\prime}(1)\right)
$$

and

$$
\eta(Z)=1-\sum_{m} \frac{\eta_{m}}{Z^{2}-m^{2} \pi^{2}}=1-\sum_{m} \frac{E_{m}^{\prime}(0) \Phi_{m}(0)}{Z^{2}-m^{2} \pi^{2}}
$$

where we have used eq.(71), evaluated at $x=0$, to express $\eta_{m}$. We will show that

## Proposition 20

$$
\begin{equation*}
\left\{L_{0}, \int_{0}^{1} d y Y(y) u(y)\right\}=-4 \int_{0}^{1} d y Y(y)\left[\left(L_{0}-p_{0}^{2}\right) \delta^{\prime}(y)+T^{\prime}(y)\right] \tag{95}
\end{equation*}
$$

This shows that $\left\{L_{0}, \cdot\right\}$ acts on $u(y)$ as $\partial_{y}$ as it should be.

Again, the proof is long and we will split it in several lemmas. We need to compute $\left\{\Phi_{m}(x), T(y)\right\}$. and $\left\{\Phi_{m}^{\prime}(x), T(y)\right\}$ for $x=0$ and $x=1$.

Multiplying eq.(88) by $E_{n}(y)$ and remembering that $\langle E| \Theta^{-1}=\langle F|$ and $F_{k}(x)=-\frac{\zeta_{k}}{\gamma_{k} \mu_{k}} \widetilde{F}_{k}(x)$, we get

$$
\begin{align*}
& \left\{\Phi_{m}(x),\langle E(y) \Phi(y)\rangle\right\}=  \tag{96}\\
& =-2 \Phi_{m}(x) \sum_{k} \frac{\sin Z_{k}}{Z_{k}} \frac{\zeta_{k}^{2}\left(1-p_{0}^{2} Z_{k}^{-2}\right)}{\mu_{k}^{2} \gamma_{k}^{3}\left(Z_{k}^{2}-\pi^{2} m^{2}\right)}\left[\widetilde{F}_{k}^{\prime}(x) \widetilde{F}_{k}(x) \widetilde{F}_{k}(y) \widetilde{G}_{k}(y)-\widetilde{F}_{k}^{2}(y) \widetilde{F}_{k}^{\prime}(x) \widetilde{G}_{k}(x)\right] \\
& \quad+2 \Phi_{m}^{\prime}(x) \sum_{k} \frac{\sin Z_{k}}{Z_{k}} \frac{\zeta_{k}^{2}\left(1-p_{0}^{2} Z_{k}^{-2}\right)}{\mu_{k}^{2} \gamma_{k}^{3}\left(Z_{k}^{2}-\pi^{2} m^{2}\right)}\left[\widetilde{F}_{k}^{2}(x) \widetilde{F}_{k}(y) \widetilde{G}_{k}(y)-\widetilde{F}_{k}^{2}(y) \widetilde{F}_{k}(x) \widetilde{G}_{k}(x)\right]
\end{align*}
$$

As before, this can be expressed in terms of $\Omega_{1}$ and $\Omega_{2}$. We find

$$
\left\{\Phi_{m}(x),\langle E(y) \Phi(y)\rangle\right\}=-\sum_{k} \operatorname{Res}_{ \pm Z_{k}} \frac{\left(1-p_{0}^{2} Z^{-2}\right)}{\eta^{2}(Z)\left(Z^{2}-\pi^{2} m^{2}\right)} \Omega_{1}\left(\Phi_{m}(x) \partial_{x} \Omega_{2}-\Phi_{m}^{\prime}(x) \Omega_{2}\right)
$$

We start by computing $\left\{\eta\left(p_{0}\right),\langle E(y) \Phi(y)\rangle\right\}$. Setting $x=0$ in eq. (96), the term in $\Phi_{m}^{\prime}(x)$ vanishes because $F_{k}(0)=0$. We are left with $(x=0$, but we keep it for a while)

$$
\begin{equation*}
\left\{\Phi_{m}(x),\langle E(y) \Phi(y)\rangle\right\}=-\Phi_{m}(x) \sum_{k} \operatorname{Res}_{ \pm Z_{k}} \frac{\left(1-p_{0}^{2} Z^{-2}\right)}{\eta^{2}(Z)\left(Z^{2}-\pi^{2} m^{2}\right)} \Omega_{1} \partial_{x} \Omega_{2} \tag{97}
\end{equation*}
$$

Multiplying by $\frac{E_{m}^{\prime}(0)}{\left(p_{0}^{2}-m^{2} \pi^{2}\right)}$ and summing over $m$, we get in the right hand side the sum

$$
\begin{aligned}
-\sum_{m} \frac{E_{m}^{\prime}(0) \Phi_{m}(0)}{\left(p_{0}^{2}-m^{2} \pi^{2}\right)\left(Z_{k}^{2}-\pi^{2} m^{2}\right)} & =-\sum_{m} \frac{\eta_{m}}{\left(p_{0}^{2}-\pi^{2} m^{2}\right)\left(Z_{k}^{2}-\pi^{2} m^{2}\right)} \\
& =\frac{-1}{Z_{k}^{2}-p_{0}^{2}} \sum_{m}\left(\frac{\eta_{m}}{p_{0}^{2}-m^{2} \pi^{2}}-\frac{\eta_{m}}{Z_{k}^{2}-\pi^{2} m^{2}}\right) \\
& =\frac{1}{Z_{k}^{2}-p_{0}^{2}} \eta\left(p_{0}\right)
\end{aligned}
$$

where we used that $\sum_{m} \frac{\eta_{m}}{Z_{k}^{2}-\pi^{2} m^{2}}=1, \quad \forall k$. The factor $1 /\left(Z_{k}^{2}-p_{0}^{2}\right)$ cancel with the factor $\left(1-p_{0}^{2} Z_{k}^{-2}\right)$ in eq.(97) and we are left with

$$
\left\{\eta\left(p_{0}\right),\langle E \Phi\rangle(y)\right\}=-\eta\left(p_{0}\right) \sum_{k} \operatorname{Res}_{ \pm Z_{k}} \frac{1}{\eta^{2}(Z) Z^{2}} \Omega_{1} \partial_{x} \Omega_{2}
$$

Finally

$$
\begin{equation*}
\left\{\eta\left(p_{0}\right), \int_{0}^{1} d y Y(y) T(y)\right\}=2 \eta\left(p_{0}\right) \int_{0}^{1} d y Y(y) \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{1}{Z^{2}} \partial_{y}\left(\widetilde{\Omega}_{1} \partial_{x} \widetilde{\Omega}_{2}\right) \tag{98}
\end{equation*}
$$

where we used the asymptotics expressions for $\widetilde{w}$ and $\widetilde{w}^{*}$ inside $\Omega_{1}$ and $\Omega_{2}$, hence removing the $\eta^{2}(Z)$ factor.

## Lemma 9

$$
\begin{equation*}
\left\{\eta\left(p_{0}\right), \int_{0}^{1} d y Y(y) T(y)\right\}=4 \eta\left(p_{0}\right) \int_{0}^{1} d y Y(y) \delta^{\prime}(y) \tag{99}
\end{equation*}
$$

Proof. Let us consider the integral over $C_{\infty}$ in eq.(98). The term containing $b(Z)$ can be written as

$$
\begin{array}{r}
L_{b}=\int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{b(Z)}{Z^{2}} \times\left\{\left(\widetilde{w}(x) \widetilde{w}^{* \prime}(x)-\widetilde{w}^{\prime}(x) \widetilde{w}^{*}(x)\right) \partial_{y}\left(\widetilde{w}(y) \widetilde{w}^{*}(y)\right)+\right. \\
\left.\widetilde{w}(x) \widetilde{w}^{\prime}(x) \partial_{y} \widetilde{w}^{* 2}(y)-\widetilde{w}^{*}(x) \widetilde{w}^{* \prime}(x) \partial_{y} \widetilde{w}^{2}(y)\right\}
\end{array}
$$

On the first line, we recognize the wronskian of $\widetilde{w}$ and $\widetilde{w}^{*}$, which is just equal to $-2 i Z$. Since $\partial_{y}\left(\widetilde{w}(y) \widetilde{w}^{*}(y)\right)=Z^{-2} S_{2}^{\prime}(y)+\cdots$ this term vanish by eq. (93). Hence

$$
\begin{align*}
L_{b} & =\frac{1}{2} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{b(Z)}{Z^{2}}\left\{\partial_{x} \widetilde{w}^{2}(x) \partial_{y} \widetilde{w}^{* 2}(y)-\partial_{x} \widetilde{w}^{* 2}(x) \partial_{y} \widetilde{w}^{2}(y)\right\}  \tag{100}\\
& =-\sum_{p=-2}^{\infty} F_{-p}(x, y) I_{-p-2}(x-y) \\
& =\delta^{\prime}(y-x)+\frac{1}{2} \epsilon(x-y) \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{1}{Z} \partial_{x} \widetilde{w}^{2}(x) \partial_{y} \widetilde{w}^{* 2}(y) \tag{101}
\end{align*}
$$

The $\epsilon(x-y)$ term is zero because

$$
\begin{aligned}
\int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{1}{Z} \partial^{i+1} \widetilde{w}^{2}(x) \partial \widetilde{w}^{* 2}(x) & =\int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{1}{Z}\left(\partial^{i+1} \Phi e^{2 i Z x}\right)\left(\Phi^{*-1} \partial e^{-2 i Z x}\right) \\
& =\int_{C_{\infty}} \frac{d Z}{2 i \pi}\left(\partial^{i+1} \Phi e^{2 i Z x}\right)\left(\Phi^{*-1} e^{-2 i Z x}\right) \\
& =\operatorname{Res}_{\partial}\left(\partial^{i+1} \Phi \cdot \Phi^{-1}\right)=0
\end{aligned}
$$

The $a(Z)$ term reads

$$
\begin{aligned}
L_{a}= & \partial_{y} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{a(Z)}{Z^{2}}\left(\widetilde{w}(x) \widetilde{w}^{*}(y)-\widetilde{w}^{*}(x) \widetilde{w}(y)\right) \widetilde{w}^{\prime}(x) \widetilde{w}(y) \\
= & \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{a(Z)}{Z^{2}}\left(\frac{1}{2} \partial_{x} \widetilde{w}^{2}(x) \partial_{y}\left(\widetilde{w}(y) \widetilde{w}^{*}(y)\right)\right. \\
& \left.-\frac{1}{2}\left(\widetilde{w}^{*}(x) \widetilde{w}^{\prime}(x)+\widetilde{w}^{*^{\prime}}(x) \widetilde{w}(x)\right) \partial_{y} \widetilde{w}^{2}(y)-\frac{1}{2}\left(\widetilde{w}^{*}(x) \widetilde{w}^{\prime}(x)-\widetilde{w}^{*^{\prime}}(x) \widetilde{w}(x)\right) \partial_{y} \widetilde{w}^{2}(y)\right)
\end{aligned}
$$

Again, the last term is the wronskian and so

$$
L_{a}=\int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{a(Z)}{Z^{2}}\left(-i Z \partial_{y}\left(\widetilde{w}^{2}(y)+\frac{1}{2} \partial_{x} \widetilde{w}^{2}(x) \partial_{y}\left(\widetilde{w}(y) \widetilde{w}^{*}(y)\right)-\frac{1}{2} \partial_{x}\left(\widetilde{w}^{*}(x) \widetilde{w}(x)\right) \partial_{y}\left(\widetilde{w}^{2}(y)\right)\right)\right.
$$

The first term is

$$
\begin{aligned}
\int_{C_{\infty}} \frac{d Z}{2 i \pi} a(Z)(i Z)^{-p-1} A_{-p}(y) e^{2 i Z y} & =\sum_{p=-1}^{\infty} A_{-p}(y) J_{-p-1}(y) \\
& =\frac{1}{2} \delta^{\prime}(y)-\omega(y) \delta(y)+(\epsilon(y)-1) \sum_{p=1}^{\infty} A_{-p}(y) \frac{(2 y)^{p-1}}{(p-1)!}
\end{aligned}
$$

The last sum is zero because $0<y<1$. The $\delta(y)$ term vanishes because $\omega(0)=0$. The second term is

$$
\begin{equation*}
\frac{1}{2} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{a(Z)}{Z^{2}} A_{-p}(x) C_{-q}(y)(i Z)^{-p-q} e^{2 i Z x}=-\frac{1}{2}(\epsilon(x)-1)\left(A_{1}(x) C_{-2}(y)(2 x)+\cdots\right) \tag{102}
\end{equation*}
$$

This vanishes when $x=0$. The third term is

$$
-\frac{1}{2} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{a(Z)}{Z^{2}} A_{-p}(y) C_{-q}(x)(i Z)^{-p-q} e^{2 i Z y}=\frac{1}{2}(\epsilon(y)-1)\left(A_{1}(y) C_{-2}(x)(2 y)+\cdots\right)
$$

and this vanishes when $0<y<1$.
Finally, it is easy to see that the $c(Z)$ term is equal to the $a(Z)$ one. Putting everything together, we get eq.(99).

## Lemma 10

$$
\begin{equation*}
\left\{\sum_{m} \frac{E_{m}^{\prime}(0) \Phi_{m}^{\prime}(0)-E_{m}^{\prime}(1) \Phi_{m}^{\prime}(1)}{p_{0}^{2}-\pi^{2} m^{2}}, \int_{0}^{1} d y Y(y) T(y)\right\}=-4 \eta\left(p_{0}\right) \int_{0}^{1} d y Y(y) T^{\prime}(y) \tag{103}
\end{equation*}
$$

Proof. Taking the derivative with respect to $x$ of eq.(96) and remembering that $F_{k}(0)=F_{k}(1)=0$, the remaining terms are (there is a cancellation in the $\Phi_{m}^{\prime}(x)$ term)

$$
\begin{aligned}
\left\{\Phi_{m}^{\prime}(x),\langle E(y) \Phi(y)\rangle\right\}= & -2 \Phi_{m}(x) \sum_{k} \frac{\sin Z_{k}}{Z_{k}} \frac{\zeta_{k}^{2}\left(1-p_{0}^{2} Z_{k}^{-2}\right)}{\mu_{k}^{2} \gamma_{k}^{3}\left(Z_{k}^{2}-\pi^{2} m^{2}\right)} \times \\
& \partial_{x}\left[\widetilde{F}_{k}^{\prime}(x) \widetilde{F}_{k}(x) \widetilde{F}_{k}(y) \widetilde{G}_{k}(y)-\widetilde{F}_{k}^{2}(y) \widetilde{F}_{k}^{\prime}(x) \widetilde{G}_{k}(x)\right]
\end{aligned}
$$

where it is understood that $x=0$ or $x=1$. By exactly the same argument as before

$$
\left\{\sum_{m} \frac{E_{m}^{\prime}(x) \Phi_{m}^{\prime}(x)}{p_{0}^{2}-\pi^{2} m^{2}}, \int_{0}^{1} d y Y(y) T(y)\right\}=2 \eta\left(p_{0}\right) \int_{0}^{1} d y Y(y) \partial_{y} \partial_{x} \int_{C_{\infty}} \frac{d Z}{2 i \pi} \frac{1}{Z^{2} \eta(Z)} \Omega_{1} \partial_{x} \Omega_{2}
$$

Hence, we just have to take the derivative with respect to $x$ of the previous result, before setting $x=0$ or $x=1$. At $x=0$ we get

$$
2 \eta\left(p_{0}\right) \int_{0}^{1} d y Y(y)\left[-\delta^{\prime \prime}(y)+4 \omega^{\prime \prime}(y)\right]
$$

The $\delta^{\prime \prime}(y)$ term comes from eq.(101) while the second term comes from eq.(102) doubled by the $c(Z)$ contribution. At $x=1$ only the periodic $\delta^{\prime \prime}(y)$ remains. Taking the difference we obtain eq.(103).

Putting everything together, we arrive at eq.(95).

## 13 Conclusion.

We have succeeded to take the continuum limit in the formulae expressing the dynamical variables of the Volterra model in terms of the separated variables. This yields exactly solvable potentials and formulae for the Virasoro generators of a rather unusual type. Still, we were able to check that they have the correct Poisson brackets. Of course the most interesting thing now is to try to quantize this approach. As a first step, a semiclassical analysis along the lines of [26] should be very enlightening. The full quantum theory however may reserve some surprise. The bracket eq.(3) being in fact an ordinary quadratic bracket, it is natural to quantize it with Weyl type commutation relations. This opens up the possibility of phenomena as those advocated in [9, 27].

Acknowledgements. This work was supported in part by the European Network ENIGMA, Contract number : MRTN-CT-2004-5652.

## References

[1] J.L.Gervais, Transport matrices associated with the Virasoro algebra. Phys.Lett. B160 (1985) 279.
[2] V. Bazhanov, S. Lukyanov, A. Zamolodchikov Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz. hep-th/9412229, Commun.Math.Phys. 177 (1996) 381-398. Integrable Structure of Conformal Field Theory II. Q-operator and DDV equation. hep-th/9604044, Commun.Math.Phys. 190 (1997) 247-278. Integrable Structure of Conformal Field Theory III. The Yang-Baxter Relation. hep-th/9805008, Commun.Math.Phys. 200 (1999) 297-324.
[3] E.K. Sklyanin, The quantum Toda chain. Lect. Notes in Phys., (1985) 226, 196-233. Separation of variables. Prog. Theor. Phys. (suppl), 185 (1995) p. 35.
[4] M. Kac, P. van Moerbeke, Some probabilistic aspect of scattering theory. Proceedings of the Conference on functional integration and its applications, Cumberland lodge (London) 1974. On some periodic Toda lattices, Proc. Nat. Acad. Sci., USA, 72, (4), 1627-1629 (1975). A complete solution of the periodic Toda problem, Proc. Nat. Acad. Sci., USA, 72, (8), 2879-2880 (1975).
[5] P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math. 37, 45-81 (1976).
[6] B.A. Dubrovin, I.M. Krichever, S.P. Novikov, Integrable Systems I. Encyclopedia of Mathematical Sciences, Dynamical systems IV. Springer (1990) p.173-281.
[7] L.D.Faddeev, L.Takhtajan, Liouville model on the lattice. Springer Lectures notes in Physics, 246 (1986) 66.
[8] A.Volkov, A Hamiltonian interpretation of the Volterra model. Zapiski.Nauch.Semin. LOMI 150 (1986) 17. Liouville theory and sh-Gordon model on the lattice. Zapiski.Nauch.Semin. LOMI 151 (1987) 24. Miura transformation on the lattice. Theor.Math.Phys. 74 (1988) 96.
[9] O.Babelon, Exchange formula and lattice deformation of the Virasoro algebra. Physics letters 238B (1990) 234.
[10] Volkov, A. Yu. Quantum Volterra Model. Phys. Lett. A167, 345 (1992), Noncommutative Hypergeometry. math.QA/0312084
[11] Faddeev, L. D., Volkov, A. Yu. Abelian current algebra and the Virasoro algebra on the lattice. Phys. Lett. B315, 311318 (1993)
[12] L. Faddeev, A. Yu. Volkov Shift Operator for Nonabelian Lattice Current Algebra. hepth/9606088, Publ.Res.Inst.Math.Sci.Kyoto 40 (2004) 1113-1125.
[13] L.D. Faddeev, R.M. Kashaev, A.Yu. Volkov, Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality. hep-th/0006156, Commun.Math.Phys. 219 (2001) 199-219
[14] J.L.Gervais, A.Neveu, Novel triangle relation and absence of tachyon in Liouville string field theory. Nucl.Phys. B238 (1984) 125. Oscillator representations of the twodimensional conformal algebra. Commun.Math.Phys.100:15,1985
[15] O.Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems. Cambridge University Press (2003).
[16] F. V. Atkinson, Multiparameter spectral theory. Bull. Amer. Math. Sot. 74:1-27 (1968). Multiparameter Eigenvalue Problems. Academic, 1972.
[17] B. Enriquez, V. Rubtsov, Commuting families in skew fields and quantization of Beauville's fibration. math.AG/0112276.
[18] O. Babelon, M. Talon, Riemann surfaces, separation of variables and classical and quantum integrability. hep-th/0209071. Phys. Lett. A. 312 (2003) 71-77.
[19] O. Babelon, On the Quantum Inverse Problem for the Closed Toda Chain. hepth/0304052. J. Phys A. Math. Gen. 37 (2004) pp.303-316.
[20] S.P. Novikov, The periodic problem for the Korteweg-de Vries equation. Funkt. Anal. i Ego Pril. 8 (1974) 54-66. Translation in Funct. Anal. Jan.1975, 236-246.
[21] B. Dubrovin, S.P. Novikov, Periodic and conditionally periodic analogues of multisoliton solutions of the Korteweg-de Vries equation. Dokl. Akad. Nauk. USSR 6 (1974) 21312144.
[22] A. Its, V. Matveev, On Hill operators with finitely many lacunae. Funkt. Anal. i ego Pril. 9 (1975).
[23] H.P. McKean, P. van Moerbeke, The Spectrum of Hill's Equation. Inventiones Math. 30 (1975), 217-274.
[24] V.B.Matveev and M.A.Salle, Darboux Transformations and Solitons, SpringerVerlag, (1990).
[25] M.Adler, On a trace funtional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de-Vries equations. Inventiones Mathematicae 50 (1979) 219.
[26] Feodor A. Smirnov Quasi-classical Study of Form Factors in Finite Volume. hepth/9802132. Dual Baxter equations and quantization of Affine Jacobian. mathph/0001032
[27] L. D. Faddeev, Discrete Heisenberg-Weyl Group and Modular Group. hepth/9504111, Lett.Math.Phys. 34 (1995) 249-254, Modular Double of Quantum Group. math.QA/9912078


[^0]:    ${ }^{1}$ Member of CNRS.
    ${ }^{2}$ L.P.T.H.E. Universités Paris VI-Paris VII (UMR 7589), Boîte 126, Tour 24-25, $5{ }^{\text {eme }}$ étage, 4 place Jussieu, F-75252 PARIS CEDEX 05

[^1]:    ${ }^{3}$ Notice that if we redefine $\Lambda_{k}=\sqrt{Z_{k}^{2}-p_{0}^{2}}$, the Poisson bracket becomes a standard quadratic bracket $\left\{\Lambda_{k}, \mu_{k}\right\}=$ $2 \Lambda_{k} \mu_{k}$. However $p_{0}$ will then enter the formula for $\Theta(x)$ and, in this work, we prefer to keep that formula simple at the expense of a slightly more complicated Poisson bracket.

[^2]:    ${ }^{4}$ In terms of Toda Hamiltonian structures, it is a linear combination of restrictions of the second and fourth Poisson brackets.

[^3]:    ${ }^{5}$ In fact in this simple case the eigenvector has no poles at finite distance because they are compensated by zeroes in the numerator. This degeneracy is lifted as soon as the $a_{i}$ are not all equal.

[^4]:    ${ }^{6}$ In this factor we will include in particular $\frac{1}{\Pi_{k}\left(1-Z_{k}^{2} / Z^{2}\right)}$ which produces the poles at $Z^{2}=Z_{k}^{2}$. This is important for the analyticity properties of $\psi(x)$ but plays little role for the considerations of this paper.

[^5]:    ${ }^{7}$ It is known that the poles at $p_{0}^{2}=k^{2} \pi^{2}$ are classical remnants of the zeroes of the Kac determinant.

