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How fast is the bandit? ∗

Damien Lamberton † Gilles Pagès ‡

Abstract

In this paper we investigate the rate of convergence of the so-called two-armed
bandit algorithm in a financial context of asset allocation. The behaviour of the
algorithm turns out to be highly non-standard: no CLT whatever the time scale,
possible existence of two rate regimes.

Key words: Two-armed bandit algorithm, Stochastic Approximation, learning automata,
asset allocation.
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Introduction

In a recent joint work with P. Tarrès (see [6]), we studied the convergence of the so-
called two-armed bandit algorithm. In the terminology of learning theory (see e.g. [9,
10]) this algorithm is a Linear Reward Inaction (LRI) scheme. Viewed as a Markovian
Stochastic Approximation (SA) recursive procedure, it appears as the simplest example
of an algorithm having two possible limits – its target and a trap – both noiseless. In
SA theory a target is a stable equilibrium of the Ordinary Differential Equation (ODE)
associated to the mean function of the algorithm, a trap being an unstable one. Various
results from SA theory show that an algorithm never “falls” into a noisy trap (see e.g. [8,
13, 2, 3, 14]. We established in [6] that the two-armed bandit algorithm can be either
infallible (i.e. converging to its target with probability one, starting from any initial value
except the trap itself) or fallible. This depends on the speed at which the (deterministic)
learning rate parameter goes to 0.

Our aim on this paper is to investigate the rate of convergence of the algorithm,
toward either of its limits. In fact, the algorithm behaves in a highly non standard way
among SA procedures. In particular, this rate is never ruled by a Central Limit Theorem
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Vallée, Cité Descartes, 5 Bld Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée Cedex 2.

damien.lamberton@univ-mlv.fr
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(CLT). Furthermore, this study will provide some new insight on the infallibility problem
as it will be seen further on. However our motivations are not only theoretical but also
practical in connection with the financial context in which the algorithm was presented
in [6], namely a procedure for the optimal allocation of a fund between the two traders who
manage it. Imagine that the owner of a fund can share his wealth between two traders,
say A and B, and that, every day, he can evaluate the results of one of the traders and,
subsequently, modify the percentage of the fund managed by both traders. Denote by Xn

the percentage managed by trader A at time n. We assume that the owner selects the
trader to be evaluated at random, in such a way that the probability that A is evaluated
at time n is Xn, in order to select preferably the trader in charge of the greater part of the
fund. In the LRI scheme, if the evaluated trader performs well, its share is increased by a
fraction γn∈ (0, 1) of the share of the other trader, and nothing happens if the evaluated
trader performs badly. Therefore, the dynamics of the sequence (Xn)n≥0 can be modelled
as follows:

Xn+1 = Xn + γn+1

(

1I{Un+1≤Xn}∩An+1
(1 − Xn) − 1I{Un+1>Xn}∩Bn+1

Xn

)

, X0 = x∈ [0, 1],

where (Un)n≥1 is an i.i.d. sequence of uniform random variables on the interval [0, 1], An

(resp. Bn) is the event “trader A (resp. trader B) performs well at time n”. We assume
P(An) = p

A
, P(Bn) = p

B
, for n ≥ 1, with p

A
, p

B
∈ (0, 1), and independence between

these events and the sequence (Un)n≥1. The point is that the owner of the fund does not
know the parameters p

A
, p

B
. Note that this procedure is [0, 1]-valued and that 0 and 1

are absorbing states. The γn parameter is the learning rate of the procedure (we will say
from now on reward to take into account the modelling context).

This recursive learning procedure has been designed in order to assign progressively
the whole fund to the best trader when p

A
6= p

B
. From now on we will assume without

loss of generality that p
A

> p
B
. This means that Xn is expected to converge toward its

target 1 with probability 1 provided X0 ∈ (0, 1) (and consequently never to get trapped
in 0). However this “infallibility” property needs some very stringent assumption on the

reward parameter γn: thus, if γn =
(

C
C+n

)α
, n ≥ 1, with 0 < α ≤ 1 and C > 0, it is shown

in [6] (see Corollary 1(b)) that the algorithm is infallible if and only if α = 1 and C ≤ 1
p

B

.

In a standard SA framework, when an algorithm is converging to its target – i.e. a
zero x∗ of its mean function h(x) = E(Xn+1−Xn |Xn=x)

γn
, stable for the ODE ẋ = h(x) –

its rate is ruled by a CLT at a
√

γn-rate with an asymptotic variance σ2
x∗ related to the

asymptotic excitation of x∗ by the noise (see [1, 5, 12]).
As concerns the two-armed bandit algorithm, there is no exciting noise at 1 (nor at

0 indeed). This is made impossible simply because both equilibrium points lie at the
boundary of the state space [0, 1] of the algorithm (otherwise the algorithm would leave
the unit interval when getting too close to its boundary). This same feature which causes
the fallibility of the algorithm when γn goes to 0 too slowly also induces its non-standard
rate of convergence.

To illustrate this behaviour and consider again the steps γn = C
C+n

, n ≥ 1, with C > 0.
As a consequence of our main results, one obtains:
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• If C > 1
p

B
the algorithm is fallible with positive probability from any x∈ [0, 1) and,

when failing, it goes to 0 at a n−Cp
B -rate. The rate of convergence to 1 may vary

according to the parameters, see Section 4.

• If 1
p

A
−p

B

≤ C ≤ 1
p

B

(this case requires that 2 p
B
≤ p

A
), the algorithm is infallible

from any x∈ (0, 1] and goes to 1 at a n−Cp
A -rate.

• If 1
p

A

< C < 1
p

A
−p

B

then the algorithm is infallible (from any x ∈ (0, 1]) and two

rates of convergence to 1 may occur with positive Px-probability: a “slow” one –
n−C(p

A
−p

B
) – and a “fast” one – n−Cp

A .

• If C ≤ 1
p

A

then the algorithm is still infallible from any x∈ (0, 1] but only the slowest

rate of convergence “survives” i.e. n−C(p
A
−p

B
).

In fact the following rule holds true: the greater the real constant C is, the faster the
algorithm (Xn) converges, except that when C is too great, then the algorithm becomes
fallible which makes the two-armed bandit a very “moral” procedure. Furthermore, note
that the “blind” choice – C = 1 – which ensures infallibility induces a slow rate of conver-
gence n−C(p

A
−p

B
) since then C ≤ 1

p
A

(by contrast with the fast rate n−Cp
A ). Also note

that this rate is precisely that of the mean algorithm xn+1 = xn + γn(p
A
− p

B
)xn(1− xn).

A last feature to be noticed is that the switching between rate regimes takes place “pro-
gressively” as the parameter C grows since it happens that two different rates coexist with
positive probability.

For more exhaustive results, we refer to Section 4. If one thinks again of a practical
implementation of the algorithm, the only reasonable choice for the reward parameter is
γn = 1

n+1 : it ensures infallibility regardless of the (unknown) values of p
A

and p
B
. But

when these two parameters become too close, the rate of convergence becomes too poor
to remain really efficient. Unfortunately, this is more or less the standard situations: the
daily performances of the traders are usually close and this can be extended to other fields
where this procedure can be used (experimental psychology, clinical trials, industrial reli-
ability, . . . ). One clue to get rid of this dependency is to introduce a “fading” penalization
in the procedure when an evaluated trader has unsatisfactory performances. (By fading
we mean negligible with respect to the reward in order to preserve traders’ motivation).
This variant of the two-armed bandit algorithm which satisfies a pseudo-CLT at a (weak)

n− 1
2 -rate whatever the parameter p

A
and p

B
is described and investigated in [7].

The paper is organized as follows: Section 1 is devoted to some preliminary results
and technical tools. Section 2 is devoted to the rate of convergence when the algorithm
converges to its trap 0 whereas Section 3 deals with the rate of convergence toward its
target 1. Section 4 proposes a summing up of the results for a natural parameterized
family of reward parameter γn.

Notations: • Let (an)n≥0 and (bn)n≥0 be two sequences of positive real numbers. The
symbol an ∼ bn means an = bn + o(bn).

• The notation Px is used in reference to X0 = x.
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1 Preliminary results

We first recall the definition of the algorithm. We are interested in the asymptotic behavior
of the sequence (Xn)n∈N, where X0 = x, with x ∈ (0, 1) and

Xn+1 = Xn + γn+1

(

1I{Un+1≤Xn}∩An+1
(1 − Xn) − 1I{Un+1>Xn}∩Bn+1

Xn

)

, n ∈ N.

Here (γn)n≥1 is a sequence of nonnegative numbers satisfying

γn < 1 and Γn =
n
∑

k=1

γk → +∞ as n → ∞,

(Un)n≥1 is a sequence of independent random variables which are uniformly distributed
on the interval [0, 1], the events An, Bn satisfy

P(An) = p
A
, P(Bn) = p

B
, n ∈ N,

where 0 < p
B

< p
A

< 1, and the sequences (Un)n≥1 and (1IAn , 1IBn)n≥1 are independent.
The natural filtration of the sequence (Un, 1IAn , 1IBn)n≥1 is denoted by (Fn)n≥0 and we set

π = p
A
− p

B
> 0.

With this notation, we have, for n ≥ 0,

Xn+1 = Xn + γn+1πXn(1 − Xn) + γn+1∆Mn+1, (1)

where ∆Mn+1 = Mn+1 − Mn, and the sequence (Mn)n≥0 is the martingale defined by
M0 = 0 and

∆Mn+1 = 1I{Un+1≤Xn}∩An+1
(1 − Xn) − 1I{Un+1>Xn}∩Bn+1

Xn − πXn(1 − Xn).

One derives from (1) that (Xn) is a [0, 1]-valued super-martingale. Hence it converges a.s.
and in L1 to a limit X∞ . Consequently

∑

n

γnXn(1 − Xn) < +∞ a.s.

which in turn shows that X∞ = 0 or 1 with probability 1. One easily checks (see [6]) that
1 is a stable equilibrium of the so-called mean ODE ≡ ẋ = π x(1 − x) with attracting
basin (0, 1] and 0 is a repulsive equilibrium of this ODE (whence the terminology: 1 is a
target and 0 is a trap, see [6] for more details).

The conditional variance process of the martingale (Mn) will play a crucial role in our
analysis, and we will often use the following estimates.

Proposition 1 We have, for n ≥ 0,

p
B
Xn(1 − Xn) ≤ E

(

∆M2
n+1 | Fn

)

≤ p
A
Xn(1 − Xn).
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Proof: We have

E

(

∆M2
n+1 | Fn

)

= p
A
Xn(1 − Xn)2 + p

B
(1 − Xn)X2

n − π2X2
n(1 − Xn)2

= Xn(1 − Xn)
(

p
A
(1 − Xn) + p

B
Xn − π2Xn(1 − Xn)

)

≤ Xn(1 − Xn) (p
A
(1 − Xn) + p

B
Xn)

≤ p
A
Xn(1 − Xn),

where the last inequality follows from p
B
≤ p

A
. For the lower bound, note that

p
A
(1 − Xn) + p

B
Xn − π2Xn(1 − Xn) = (1 − Xn)(p

A
− π2Xn) + p

B
Xn

≥ (1 − Xn)(p
A
− π) + p

B
Xn = p

B
,

where we have used πXn ≤ 1. ♦

2 Convergence to the trap

We first prove that, under rather general conditions, as soon as the sequence converges to
the trapping state 0, it goes to it very fast in the sense that the series

∑

n Xn is convergent.

Proposition 2 If

lim inf
n

1

γn+1
− 1

γn
> −π (2)

then
∀x ∈ (0, 1), {X∞ = 0} = {

∑

n

Xn < +∞} Px-a.s.

Note that (2) is satisfied if the sequence (γn)n≥1 is nonincreasing (for large enough n).

Proof of Proposition 2: Denote by E the event {X∞ = 0} ∩ {∑n Xn = +∞}. We
want to prove that Px(E) = 0. We first show that on E,

lim inf
n→∞

Xn

γn

∑n
k=1 Xk−1

> 0. (3)

We deduce from (1) that

Xn+1

γn+1
=

Xn

γn+1
+ πXn(1 − Xn) + ∆Mn+1

=
Xn

γn
+ Xn

(

1

γn+1
− 1

γn
+ π(1 − Xn)

)

+ ∆Mn+1.

By summing up and setting γ0 = γ1, we derive

Xn

γn
=

x

γ1
+

n
∑

k=1

(

1

γk
− 1

γk−1
+ π(1 − Xk−1)

)

Xk−1 + Mn.
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From Proposition 1, we know that the conditional variance process of (Mn) satisfies

p
B

n
∑

k=1

Xk−1(1 − Xk−1) ≤ <M >n ≤ p
A

n
∑

k=1

Xk−1(1 − Xk−1).

Therefore, on E, we have < M >∞= +∞ a.s., and using the law of large numbers for
martingales, we deduce that

lim
n→∞

Mn
∑n

k=1 Xk−1
= 0, a.s. on E.

The estimate (3) then follows easily from the assumption (2).
Now let Sn =

∑n
k=1 Xk. Note that, on E, Sn ∼∑n

k=1 Xk−1, so that, using (3),

∃C > 0, ∀n ≥ 1, γn ≤ C
Xn

Sn
.

This implies
∑

n

γ2
n ≤ C2

∑

n

X2
n

S2
n

≤ C2
∑

n

Xn

S2
n

< +∞,

where we have used Xn ≤ 1. We also know from Proposition 9 of [6] (see (29) in particular)
that, on the set {Xn → 0},

lim sup
n→∞

Xn
∑

k≥n γ2
k+1

< +∞ a.s.

Hence Xn ≤ C
∑

k≥n γ2
k+1 for some C > 0, and, by plugging in the estimate γk+1 ≤

CXk+1/Sk+1 we derive

Xn ≤ C
∑

k≥n

X2
k+1

S2
k+1

≤ C

(

sup
k≥n

Xk+1

)

∑

k≥n

Xk+1

S2
k+1

≤ C
supk≥n Xk+1

Sn
.

On the set E, we have lim
n→∞

Sn = +∞, so, for n large enough, say n ≥ N , we have

Xn ≤ supk≥n Xk+1

2
.

Now, by taking n to be the largest integer such that Xn ≥ XN (which exists on {Xn → 0}
because XN > 0), we reach a contradiction, which proves that Px(E) = 0. ♦

Our next result shows that under (3), there is essentially only one way for (Xn) to go
to 0.
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Proposition 3 Assume (2).

(a) Let x∈ (0, 1). Then

Px(X∞ = 0) > 0 ⇐⇒ P(
∑

n≥1

n
∏

k=1

(1 − 1Bk
γk) < +∞) > 0 (4)

and, on the event {X∞ = 0}, there exists a (random) integer n0 ≥ 1 such that

∀n ≥ n0, Xn = Xn0

n
∏

k=n0+1

(1 − 1Bk
γk). a.s. (5)

Note that, as a special case of (4),

∑

n≥1

n
∏

k=1

(1 − p
B
γk) < +∞ =⇒ Px(X∞ = 0) > 0. (6)

(b) Furthermore, if
∑

n≥1

γ2
n < +∞, (4) reads

Px(X∞ = 0) > 0 ⇐⇒
∑

n≥1

n
∏

k=1

(1 − p
B
γk) < +∞

and moreover there is a random variable Ξx > 0 such that

Xn ∼ Ξx

n
∏

k=1

(1 − p
B
γk) a.s. on {X∞ = 0}.

Remark 1 If
∑

n≥1

γ2
n = +∞, a weaker (but still tractable) sufficient condition for Px(X∞ =

0) is given by

∃ ρ∈ (0, p
B
(1 − p

B
)/2),

∑

n≥1

e−ρΓ
(2)
n

n
∏

k=1

(1 − p
B
γk) < +∞

where Γ
(2)
n =

∑

1≤k≤n γ2
k (see the proof of Proposition 3). Then, on the set {Xn → 0}, for

every η∈ (0, p
B
(1 − p

B
)/2),

Xn = o

(

e−(
p
B

(1−p
B

)

2
−η)Γ

(2)
n

n
∏

k=1

(1 − p
B
γk)

)

.

Remark 2 Note that the condition in (4) which characterizes fallibility does not depend
on x: if the algorithm is fallible for one x∈ (0, 1) then it is for any such x.
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Proof of Proposition 3: (a) It follows from Proposition 2 and the conditional Borel-
Cantelli Lemma that Px-a.s.

{Xn → 0} = {
∑

n≥0

1{Un+1≤Xn} < +∞} =
⋃

n≥0

⋂

k≥n

{Uk+1 > Xk} . (7)

The sequence of events
(

⋂

k≥n {Uk+1 > Xk}
)

n≥1
being non-decreasing, we have

Px(Xn → 0) = lim
n→∞

Px





⋂

k≥n

{Uk+1 > Xk}


 ,

and the left-hand side is positive if and only if, for some integer n ≥ 1,

Px





⋂

k≥n

{Uk+1 > Xk}


 > 0.

From the definition of the sequence (Xn), we get (with the convention
∏

∅ = 1),

⋂

k≥n

{Uk+1 > Xk} =
⋂

k≥n







Uk+1 > Xk and Xk = Xn

k
∏

ℓ=n+1

(1 − 1Bℓ
γℓ)







(8)

=
⋂

k≥n







Uk+1 > Xn

k
∏

ℓ=n+1

(1 − 1Bℓ
γℓ)







. (9)

Note that (5) follows from (7) and (8). Now, denote by Bn the σ-field generated by the
random variable Xn and the events, Bk, k ≥ n. We have

Px





⋂

k≥n







Uk+1 > Xn

k
∏

ℓ=n+1

(1 − 1Bℓ
γℓ)







| Bn



 =
∞
∏

k=n



1 − Xn

k
∏

l=n+1

(1 − 1Bℓ
γℓ)



 ,

and the infinite product is positive if and only if

∑

k

k
∏

l=n+1

(1 − 1Bℓ
γℓ) < +∞.

This clearly implies (4). The sufficient condition (6) follows from the equality

E





∑

n≥1

∏

1≤k≤n

(1 − 1
Bk

γk)



 =
∑

n≥1

∏

1≤k≤n

(1 − p
B
γk).

(b) (and proof of the remark) If
∑

n≥1

γ2
n < +∞, then, a straightforward argument (see [6],

proof of Lemma 2) shows that

n
∏

k=1

(

1 − 1
Bk

γk

1 − p
B
γk

)

−→ ξ > 0 a.s. n → +∞.
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This proves claim (b).
When

∑

n≥1

γ2
n = +∞, one checks that

log
n
∏

k=1

(

1 − 1
Bk

γk

1 − p
B
γk

)

= MB
n −

n
∑

k=1

(
1

2
p

B
(1 − p

B
) + εk)γ

2
k .

where εk is random variable bounded by cγk (c real constant) and

MB
n =

n
∑

k=1

(1
Bk

− p
B
)γk(1 − γk/2)

is a martingale with bounded increments satisfying < MB >n∼ p
B
(1 − p

B
)Γ

(2)
n → +∞.

Then
MB

n = o
(

Γ(2)
n

)

since MB
n

<MB>n
→ 0 as n → ∞. Consequently, P-a.s., there exists a finite random variable ξ

such that

n
∏

k=1

(1 − 1
Bk

γk) ≤ ξ exp

(

−(
1

2
p

B
(1 − p

B
) + o(1))Γ(2)

n

) n
∏

k=1

(1 − p
B
γk)

where o(1) denotes a random variable P-a.s. going to 0 as n → ∞. The sufficient condition
given in the remark follows straightforwardly as well as the rate of convergence of Xn. ♦

3 Convergence to the target

In order to study the rate of convergence to 1, we first rewrite (1) as follows:

1 − Xn+1 = (1 − Xn) (1 − γn+1πXn) − γn+1∆Mn+1. (10)

Now let

θn =
n
∏

k=1

(1 − γkπXk−1), Yn = (1 − Xn)/θn, n ∈ N.

Proposition 4 (a) The sequence (Yn)n∈N is a non-negative martingale.

(b) On the set {X∞ = 1}, we have

lim
n→∞

1 − Xn
∏n

k=1(1 − πγk)
= ξY∞

almost surely, where ξ is a finite positive random variable and Y∞ = limn→∞ Yn.

Proof: The first assertion follows from the equality

Yn+1 = Yn − γn+1

θn+1
∆Mn+1,

9



and the fact that the sequence (θn)n∈N is predictable.
As a non-negative martingale, the sequence (Yn)n∈N has a limit Y∞, which satisfies

Y∞ ≥ 0 a.s. and E(Y∞) < +∞.
Recall that

∑

n γnXn−1(1 − Xn−1) < +∞ almost surely. Therefore, on {X∞ = 1}, we

have
∑

n γn(1−Xn−1) < +∞ a.s., which implies that the sequence
∏n

k=1
1−πγkXk−1

1−πγk
has a

positive and finite limit and the second assertion of the Proposition follows easily. ♦

Remark 3 Note that, with the notation Γn =
∑n

k=1 γk, we have
∏n

k=1(1−πγk) ≤ e−πΓn .
Therefore, we deduce from Proposition 4 that, on the set {X∞ = 1}, 1 − Xn = O(e−πΓn)

almost surely. If we have
∑

n γ2
n < +∞, the sequence

(

eπΓn
∏n

k=1(1 − πγk)
)

converges to

a positive limit, so that, on the set {X∞ = 1}, we have lim
n→∞

eπΓn(1 − Xn) = ξ′Y∞, with

ξ′ ∈ (0,+∞) almost surely.
On the other hand, on {X∞ = 0}, the sequence (θn)n∈N itself converges to an almost

surely positive limit, so that {Y∞ = 0} ⊂ {X∞ = 1}.

Proposition 5 (a) If
∑

n γ2
neπΓn < +∞, the martingale (Yn)n∈N is bounded in L2 and its

limit satisfies E(X∞Y∞) > 0. Moreover, on the set {Y∞ = 0}, we have

lim sup
n→∞

Yn
∑

k≥n γ2
k+1e

πΓk+1
< +∞ (11)

almost surely.

(b) If
∑

n

γ2
n eπΓn = +∞ and sup

n≥1
γneπΓn < +∞, (12)

then, for every x∈ (0, 1),

{X∞ = 1} = {Y∞ = 0} Px-a.s.

Remark 4 It follows from Proposition 5 and Remark 3 that, if
∑

n γ2
neπΓn < +∞, on the

set {X∞ = 1}∩{Y∞ > 0} (which has positive probability) the sequence ((1−Xn)eπΓn)n∈N

converges to a positive limit almost surely.

Remark 5 We also derive from the inequality (1−Xn+1) ≥ (1−Xn)
(

1 − γn+11I{Un+1≤Xn}∩An+1

)

that

1 − Xn ≥ (1 − x)
n
∏

k=1

(1 − γk1IAk
) ≥ Ce−p

A
Γn ,

for some real constant C > 0, if
∑

n γ2
n < +∞. Therefore, we deduce from Proposition 5

that if lim
n→∞



ep
B

Γn
∑

k≥n

γ2
k+1e

πΓk+1



 = 0, then P(Y∞ = 0) = 0. On the other hand, the

second part of Proposition 5 shows that, in some cases, we may have 1−Xn = o(e−πΓn), and
we need to investigate what the real rate of convergence is in such cases: see Proposition 7.

10



Proof of Proposition 5: (a) Assume
∑

n γ2
neπΓn < +∞. In order to prove L2-

boundedness, we estimate the conditional variance process. Using Proposition 1, we have

E

(

(Yn+1 − Yn)2 | Fn

)

=
γ2

n+1

θ2
n+1

E

(

∆M2
n+1 | Fn

)

≤ γ2
n+1

θ2
n+1

p
A
Xn(1 − Xn)

=
γ2

n+1

θ2
n+1

p
A
XnθnYn

≤ p
A

γ2
n+1

θn(1 − πγn+1)2
Yn

≤ p
A

γ2
n+1

(1 − πγn+1)2
∏n

k=1(1 − πγk)
Yn

≤ C p
A
γ2

n+1e
πΓn+1Yn, (13)

where we have used the inequality θn ≥ ∏n
k=1(1 − πγk) and the fact that, since we have

∑

n≥1 γ2
n < +∞,

∏n
k=1(1 − πγk) ≥ e−πΓn/C for some C > 0. Note that sup

n∈N

EYn < +∞.

Therefore, the convergence of the series
∑

n γ2
neπΓn implies that (Yn)n∈N is bounded in L2.

In order to prove E(X∞Y∞) > 0, we consider the conditional covariance

Ex ((1 − Xn)Xn | Fn−1) = Xn−1(1 − Xn−1)
(

1 + π γn(1 − 2Xn−1) + π γ2
nXn−1 − p

A
γ2

n

)

≥ Xn−1(1 − Xn−1)
(

1 − π γnXn−1 − p
A
γ2

n

)

so that Ex (XnYn | Fn−1) ≥ Xn−1Yn−1

(

1 − p
A
γ2

n

1 − πγnXn−1

)

≥ Xn−1Yn−1

(

1 − p
A
γ2

n

1 − πγn

)

.

For n large enough (say n ≥ n0), we have 1 >
p

A
γ2

n

1−πγn
and, by induction, for n ≥ n0,

Ex(XnYn) ≥ ExXn0Yn0

n
∏

k=n0+1

(

1 − p
A
γ2

k

1 − πγk

)

.

Now, using that Yn → Y∞ and Xn → X∞ in L2(P), and
∑

n γ2
n < +∞, one finally gets

Ex(X∞Y∞) > 0. Note that this implies that Px(X∞ = 1, Y∞ > 0) > 0 since X∞ =
1{X∞=1}.

The first step to establish (11) is to apply to the martingale (Yn)n≥1 an approach
originally developed in [6] to establish the infallibility property for (Xn): for every n ≥ 1,

P(Y∞ = 0 | Fn) =
1

Y 2
n

Ex(1{Y∞=0}(Y∞ − Yn)2 | Fn)

≤ 1

Y 2
n

∑

k≥n+1

Ex((Yk − Yk−1)
2 | Fn).

11



Plugging (13) in the above inequality and using that Ex(Yk | Fn) = Yn for every k ≥ n
yield,

Px(Y∞ = 0 | Fn) ≤ Cp
A

Yn

∑

k≥n+1

γ2
keπΓk .

On the other hand the martingale Px(Y∞ = 0 | Fn) converges Px-a.s. toward 1{Y∞=0}.
The announced result follows easily.

(b) We now assume
∑

n γ2
neπΓn = +∞ and sup

n
γneπΓn < +∞. Note that the latter

condition implies γ2
n ≤ Cγne−πΓn for some C > 0, so that

∑

n γ2
n < +∞. On the other

hand, we have

|Yn − Yn−1| =
γn

θn
|∆Mn|

≤ γn
∏n

k=1(1 − πγk)
|∆Mn| ≤ CγneπΓn |∆Mn|,

so that the martingale (Yn)n≥1 has bounded increments. Consequently the Law of Iterated
Logarithm (cf. [4]) implies that lim inf

n
Yn = −∞ on the event {<Y >∞= +∞}, and, since

Yn ≥ 0, we deduce thereof that {< Y >∞< +∞} almost surely. On the other hand, we
have, using Proposition 1 and the inequality θn ≤ e−πΓn ,

∆<Y >n =
γ2

n

θ2
n

E

(

∆M2
n | Fn−1

)

≥ γ2
n

θn(1 − πγn)
p

B
Xn−1Yn−1

≥ CXn−1Yn−1γ
2
neπΓn .

Therefore, the assumption (12) implies that Y∞ = 0 on the event {X∞ = 1}. ♦

In order to clarify what happens when Y∞ = 0, we first observe that we have, up to
null events,

{

∑

n

(1 − Xn) < +∞
}

=

{

∑

n

1I{Un>Xn} < +∞
}

⊂
⋃

m≥1

⋂

n≥m







1 − Xn = (1 − Xm)
n
∏

k=m+1

(1 − 1IAk
γk)







,

so that, on the set {∑n(1 − Xn) < +∞}, we have

1 − Xn ∼ ξ
n
∏

k=1

(1 − 1IAk
γk) a.s.,

where ξ is a positive random variable. Recall that, if
∑

n γ2
n < +∞,

∏n
k=1(1 − 1IAk

γk) ∼
ξ′e−p

A
Γn , for some (random) ξ′ > 0. We thus see that, on the set {∑n(1 − Xn) < +∞},

we have a “fast” rate of convergence. The possibility of occurrence of this fast rate is
characterized in the following Proposition.
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Proposition 6 We have, for all x ∈ (0, 1),

Px(
∑

n

(1 − Xn) < +∞) > 0 ⇐⇒ P(
∑

n≥1

n
∏

k=1

(1 − 1Ak
γk) < +∞) > 0.

Note that the condition
∑

n≥1

n
∏

k=1

(1−p
A
γk) < +∞ implies P(

∑

n≥1

n
∏

k=1

(1−1Ak
γk) < +∞) = 1

and that if
∑

n γ2
n < +∞, we have

Px(
∑

n

(1 − Xn) < +∞) > 0 ⇐⇒
∑

n≥1

e−p
A

Γn < +∞.

The proof of Proposition 6 and of these comments is similar to that of the analogous
statements concerning convergence to 0.

In the following Proposition, we give a sufficient condition for the fast rate to be
achieved with probability one and a sufficient condition under which we have at most two
rates with positive probability: e−πΓn and the fast rate e−p

A
Γn .

Proposition 7 Let εn = 1
γn+1

− 1
γn

− π for n ≥ 1.

(a) If
∑

n γnε+
n < +∞, we have

∑

n(1 − Xn) < +∞ almost surely on the set {X∞ = 1}.
(b) If lim inf

n
εn > 0, then

∑

n γ2
neπΓn < +∞, and, on the event {Y∞ = 0}, we have

∑

n(1 − Xn) < +∞ almost surely.

Note that the condition
∑

n γnε+
n < +∞ implies lim inf

n
ε+
n = 0 and is satisfied in the

following cases:

• the sequence (γn) is constant,

• γn = λn−α (for large enough n), with λ a positive constant and 0 < α < 1,

• γn = C/(C + n), where the constant C satisfies πC ≥ 1.

On the other hand, if γn = C/(C + n), with πC < 1, we have lim inf
n

εn > 0.

Before proving Proposition 7, we state and prove a lemma which will be useful for the
proof of the second statement.

Lemma 1 Assume that, for some positive integer n0, ∀n ≥ n0, εn ≥ 0. Then, the
sequence (Zn)n≥n0, with Zn = (1−Xn)/γn is a submartingale, and we have

∑

n(1−Xn) <
+∞ a.s., on the set {X∞ = 1} ∩ {supn

1−Xn

γn+1
< +∞}.

Remark 6 If inf
n

γneπΓn > 0, we have (on the event {X∞ = 1}) 1 − Xn ≤ Ce−πΓn and

(1 − Xn)/γn+1 ≤ Ce−πΓn+1/γn+1. Then one can slightly relax the assumption in claim
(b) since it follows from Lemma 1 that if εn ≥ 0 for n large enough,

∑

n(1 − Xn) < +∞
almost surely on {X∞ = 1}.

13



Proof of Lemma 1: Starting from (10), we have

1 − Xn+1

γn+1
=

1 − Xn

γn+1
− πXn(1 − Xn) − ∆Mn+1

= (1 − Xn)

(

1

γn
+ εn + π − πXn

)

− ∆Mn+1

=
1 − Xn

γn
(1 + εnγn + πγn(1 − Xn)) − ∆Mn+1, (14)

so that, for n ≥ n0, Zn+1 ≥ Zn −∆Mn+1, which proves that (Zn)n≥n0 is a submartingale.
Now set τ

L
:= min{n ≥ n0 : 1 − Xn > Lγn+1}, L > 0. Then the stopped submartingale

(Z
τ
L

n )n≥n0 satisfies

(∆Z
τ
L

n+1)+ ≤ 1{τ
L
≥n+1}(∆Zn+1)+ ≤ L + sup

n
‖∆Mn‖∞.

Consequently the sub-martingale (Z
τ
L

n )n≥n0 is bounded with bounded increments. Hence
it converges (Px-a.s. and in L1(Px)) toward an integrable random variable ζL

∞
. Further-

more (see [11]) the conditional variance increment process of its martingale part also
converges to a finite random variable as n → +∞. This reads

τ
L
∑

n=n0+1

E((∆Mn)2 | Fn−1) < +∞ Px-a.s..

But, we know from Proposition 1 that

E((∆Mn)2 | Fn−1) ≥ p
B
Xn−1(1 − Xn−1).

Consequently,

{X∞ = 1} ∩
(

∪p∈N{τp = +∞}
)

⊂ {
∑

n

1 − Xn < +∞}.

We conclude by observing that ∪p∈N{τp = +∞} = {supn
1−Xn

γn+1
< +∞}. ♦

Proof of Proposition 7: We first assume that
∑

n γnε+
n < +∞. The proof is based,

as in Lemma 1, on the study of the sequence ((1 − Xn)/γn). We deduce from (14) that

1 − Xn+1

γn+1
≤ 1 − Xn

γn

(

1 + ε+
n γn + πγn(1 − Xn)

)

− ∆Mn+1. (15)

Hence

E

(

1 − Xn+1

γn+1
| Fn

)

≤ 1 − Xn

γn

(

1 + ε+
n γn + πγn(1 − Xn)

)

. (16)

We know from Proposition 4 that, on the set {X∞ = 1}, we have sup
n

(1−Xn)eπΓn < +∞,

so that γn(1 − Xn) ≤ Cγne−πΓn ≤ C for some C > 0, and
∑

n γn(1 − Xn) < +∞. We
now deduce from (16) and a supermartingale argument that, on {X∞ = 1}, the sequence
((1 − Xn)/γn)n∈N is almost surely convergent.
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On the other hand, with the notation Zn = (1 − Xn)/γn, we know from (15) that

∆Mn+1 ≤ Zn − Zn+1 + Zn

(

ε+
n γn + πγn(1 − Xn)

)

.

Therefore, on {X∞ = 1} the martingale Mn is bounded from above, and, since it has
bounded jumps, we must have <M >∞< +∞ almost surely. We know from Proposition 1
that <M >∞≥ p

B

∑

n Xn−1(1 − Xn−1). Hence
∑

n(1 − Xn) < +∞ a.s. on {X∞ = 1}.
We now assume that lim inf εn > 0, so that for n large enough (say n ≥ n0), we have

1

γn+1
− 1

γn
− π ≥ ε, (17)

for some ε > 0. In particular the sequence (γn)n≥n0 is non-increasing and, for n ≥ n0,

γn − γn+1 ≥ (π + ε)γnγn+1,

which implies
∑

n γ2
n < +∞. We also have, for n ≥ n0,

γn+1 ≤ γn(1 − (π + ε)γn+1) ≤ e−(π+ε)γn+1 .

Therefore, for k ≥ n ≥ n0,
γk ≤ γne−(π+ε)(Γk−Γn),

and
∑

k≥n

γ2
keπΓk ≤

∑

k≥n

γkγne−(π+ε)(Γk−Γn)eπΓk

= γne(π+ε)Γn
∑

k≥n

γke
−εΓk

≤ γne(π+ε)Γn

∫ ∞

Γn−1

e−εxdx

≤ γn
eεγn

ε
eπΓn .

We have thus proved not only that
∑

n γ2
neπΓn < +∞, but also that

∑

k≥n

γ2
keπΓk ≤ CγneπΓn

for some C > 0. It then follows from Proposition 5 that, on the set {Y∞ = 0}, (1−Xn) ≤
CθnγneπΓn , and, using Remark 3, we get sup

n
(1 − Xn)/γn < +∞ a.s. on {Y∞ = 0}. We

complete the proof by applying Lemma 1. ♦

Remark 7 Assume, with the notation of Proposition 7, that lim inf ε+
n > 0 and

∑

n e−p
A

Γn <
+∞. This is the case if γn = C/(n + C), with πC < 1 < p

A
C. Then, we deduce from

Propositions 7 and 6 that 0 < P(Y∞ = 0) < 1 and that, on {Y∞ = 0} the sequence
(1−Xn)ep

A
Γn converges to a positive limit, whereas on {Y∞ > 0}, (1−Xn)eπΓn converges

to a positive limit almost surely.
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4 A parametric guide to the rates

In this section we will call fast a rate of the algorithm which induces that the error series
converges i.e.

∑

n 1 − Xn < +∞ when Xn → 1 and
∑

n Xn < +∞ when Xn → 0. Other
rates will be considered as slow.

Assume (at least for large enough n) that

γn =

(

C

C ′ + n

)α

, α∈ (0, 1], C, C ′ > 0.

Then, the algorithm behaves as follows:

• If (α ∈ (0, 1)) or (α = 1 & Cp
B

> 1) then the algorithm is fallible with positive
probability from any x∈ [0, 1) (note that this probability is lower than 1 if x∈ (0, 1)).
When failing, it always goes to 0 at a fast rate, (n−Cp

B if α = 1). This follows from
Proposition 2.

• If α = 1 and C ≤ 1
p

B

, the algorithm is infallible from any x ∈ (0, 1]. This follows

from Proposition 3(b).

As concerns rates one has

• If α = 1 and C ≥ 1
π

then the – fast – rate of convergence is n−Cp
A on {Xn → 1}.

This follows from Proposition 7(a).

• If α = 1 and 1
p

A
< C < 1

π
then exactly two rates of convergence occur with positive

Px-probability on {Xn → 1}: a slow one – n−Cπ – and a fast one – n−Cp
A . This

follows from Proposition 6 and 7(b) (see remark 7).

• If α = 1 and C ≤ 1
p

A
then (the algorithm is infallible from any x∈ (0, 1]) but only

the slow rate of convergence survives i.e. n−Cπ on {Xn → 1}. This follows from
Proposition 6.

Note as corollaries that,

– when 2 p
B

≤ p
A

(then 1
π

≤ 1
p

B

): it is possible to choose C ∈ [ 1
π
, 1

p
B

] so that the

algorithm is simultaneously infallible and converging with a fast rate. This is possible

because in some sense p
A

and p
B

are remote enough. The fastest achievable rate is n
−

p
A

p
B

(with C = 1
p

B

). Of course such a specification is purely theoretical since p
A

and p
B

are

supposed to be unknown.

– when p
B

< p
A

< 2 p
B

(then 1
p

B

< 1
π
): there is no access to fast converging rates

within infallibility, because p
A

and p
B

are too close to each other .

– in any case, when no information is available on the parameters p
A

and p
B
, the

“blind” choice C = 1 ≤ 1
p

A
which ensures infallibility induces a slow rate of convergence,

namely n−π. In fact this rate can be very poor when p
A

and p
B

get close to each other.

16



At this point the conclusion can be the following: the higher the parameter C is, the
faster the algorithm goes. But if C is too high, it may go wrong.

– One further point to be noticed is that what we called the slow rate – e−π Γn – for the
algorithm is but the rate of its mean deterministic version (see [6] for details). So, even
when it is infallible (that is converges to the same limit as its mean version), it always
converges at least as fast as this deterministic procedure (which is of no practical interest
since its implementation would require p

A
and p

B
to be known). When no information is

available on the parameters p
A

and p
B
, this is the rate which is actually obtained.

As a conclusion, the convergence rate behaviour of this stochastic approximation algo-
rithm is completely non-standard. Thus, from a mathematical viewpoint, one last feature
to be noticed is the unusual “spectrum” of the rates since the switching from one rate to
another takes place “progressively” with a range of values of the parameter C for the gain
parameter for which two different rates are achieved with positive probability.
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