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Scattering of random surface gravity waves by small amplitude topography in the pres-
ence of a uniform current is investigated theoretically. This problem is relevant to ocean
waves propagation on shallow continental shelves where tidal currents are often signif-
icant. A perturbation expansion of the wave action to second order in powers of the
bottom amplitude yields an evolution equation for the wave action spectrum. Based on
numerical calculations for sinusoidal bars, a mixed surface-bottom bispectrum that arises
in the lowest order evolution equation is unlikely to be significant in most oceanic con-
ditions. Neglecting that term, the present theory yields a closed wave equation with a
scattering source term that gives the rate of exchange of the wave action spectrum be-
tween wave components, with conservation of the total action at each absolute frequency.
With and without current, the scattering term yields reflection coefficients for the ampli-
tudes of waves that converge, in the limit of small bottom amplitudes and small Froude
numbers, to the results of previous theories for monochromatic waves propagating in one
dimension over sinusoidal bars. In particular, the frequency of the waves that experience
the maximum reflection is shifted by the current, as the surface wavenumber k changes
for a fixed absolute frequency. Over sandy continental shelves, tidal currents are known
to generate sandwaves with scales comparable to those of surface waves and elevation
spectra that roll-off sharply at high wavenumbers. Application of the theory to such a
real topography suggests that scattering mainly results in a broadening of the directional
wave spectrum, due to forward scattering, while the back-scattering is generally weaker.
The current may strongly influence surface gravity wave scattering by selecting different
bottom scales with widely different spectral densities due the sharp bottom spectrum
roll-off.

1. Introduction

Following the early observations of Heathershaw (1982), a considerable body of knowl-
edge has been accumulated on the scattering of small amplitude surface gravity waves by
periodic bottom topography. An asymptotic theory for small bottom amplitudes, that
reproduces the observed scattering of monochromatic waves over a few sinusoidal bars,
was put forward by Mei (1985), leading to practical phase-resolving equations that may
be used to model this phenomenon for more general bottom shapes (Kirby 1986). For
sinusoidal bottoms of wavenumber l, Mei (1985) proposed an approximate analytical
solution. In two dimensions (one horizontal and the vertical) this solution yields simple
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expressions for the wave amplitude reflection coefficient R, as a function of the mismatch
between the wavenumber of the surface waves k and the resonant value l/2, for which
R is maximum due to Bragg resonance. Beyond a cut-off value of that mismatch, it was
found that the incident and reflected wave amplitudes oscillate in space instead of de-
creasing monotonically from the incident region. In three dimensions the Bragg resonance
condition becomes k = l + k

′ and k = k′, with k, k′, and l the norms of the horizontal
wave-vectors k, k

′, and l. A uniform current was later introduced by Kirby (1988). The
resonant condition is modified in that case, with k 6= k′ if incident and reflected waves
propagate at different angles relative to the current direction. Other contributions have
shown that higher-order theories are necessary to represent the sub-harmonic resonance
observed over a bottom that is a superposition of two components of different wave-
lengths (Guazzelli, Rey & Belzons 1992). Such sub-harmonic resonance was found to
have as large an effect as the lowest order resonance for bottom amplitudes of only 25%
of the water depth, due to a general stronger reflection for relatively longer waves. How-
ever, these methods are still prohibitively expensive for investigating the propagation of
random waves over distances larger than about 100 wavelengths, and the details of the
bottom are typically not available over large areas. Besides, a consistent phase-averaged
wave energy evolution equation is also necessary for the investigation of the long waves
associated with short wave groups (Hara & Mei 1987).

The large scale behaviour of the wave field may rather be represented by the evolution
of the wave action spectrum assuming random phases. Such an approach was already
proposed by Hasselmann (1966) for wind-wave propagation, and Elter & Molyneux (1972)
for the calculation of tsunami propagation. A proper theory for the evolution of the wave
spectrum can be obtained from a solvability condition, a method similar to that of Mei
(1985) and Kirby (1988), but applied to the action spectral densities instead of the
amplitudes of monochromatic waves. In the absence of currents the correct form of that
equation was first obtained by Ardhuin & Herbers (2002, hereinafter referred to as AH)
using a two scale approach. They decomposed the water depth H −h in a slowly varying
depth H , that causes shoaling and refraction, and a rapidly varying perturbation h with
zero mean, that causes scattering. The resulting scattering was shown to be consistent
with the dramatic increase of the directional width of the wave spectra observed on
the North Carolina continental shelf. (Ardhuin et al. 2003a, 2003b). Recently, Magne
et al. (2005, hereinafter referred to as MAHR) showed that AH’s theory gives the same
damping of incident waves as a Green function solution applied to any two dimensional
topography (random or not) of small amplitude (see also Pihl, Mei & Hancock 2002; Mei
& Hancock 2003). Investigating the applicability limits of the scattering term of AH,
MAHR also performed numerical calculations, comparing AH’s theory to the accurate
matched-boundary model of Rey (1995) that uses a decomposition of the bottom in a
series of steps, including evanescent modes. The numerical results show that AH’s theory
is generally limited by the relative bottom amplitude η = max(h)/H rather than the
bottom slope.

The resulting expression of the scattered energy as a Bragg scattering term is consis-
tent with results for scattering of acoustic and electromagnetic waves obtained by the
small perturbation method, valid in the limit of small k max(h) with k the wavenumber
of the propagating waves (Rayleigh 1896, see Elfouhaily & Guerin 2004 for a review of
this and other approximations). Since there is no scattering for kH >> 1, as the waves
do not ‘feel’ the bottom, the small parameter η = max(h)/H may be used in our context,
instead of the more general k max(h). The scattering strength is thus entirely determined
by the bottom elevation variance spectrum at the bottom scales resonant with the inci-
dent waves. Based on these results, Mei’s (1985) theory should yield the same reflection
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coefficient as AH’s theory in the limit of small bottom amplitudes. Yet, AH predict that
the wave amplitude in 2D would decay monotonically, which is not compatible with the
oscillatory nature of Mei’s theory for large detunings from resonance. Further, outside
of the surf zone and the associated multiple bar systems, the application of AH’s the-
ory is most relevant in areas where the bottom topography changes significantly on the
scale of the wavelengths of swells. This often corresponds, over sand, to the presence of
sandwaves. These sandwaves are generated by currents, and particularly by tidal currents
(e.g. Dalrymple Knoght & Lambiase 1978; Idier, Erhold & Garlan 2002). It is thus logical
to seek a theory for the scattering of waves in the presence of currents. A first theory
was proposed by Kirby (1988), in the form of an extension of Mei (1985), with waves in
a uniform current over a sinusoidal bottom.

The present paper provides an extension of AH’s theory for the case of uniform currents
in § 2, and a detailed discussion of the differences between this theory and those of Mei
(1985) and Kirby (1988) in § 3. Finally the oceanographic effects of the current are
investigated in § 4 using a spectral phase-averaged numerical model, predicting the
evolution of the wave action spectrum, and detailed measurements of the topography in
the southern North Sea. Conclusions follow in § 5. Further details on the source term
derivation, and model results may be found in Magne (2005).

2. Theory

2.1. General formulation

The variation in the action spectral density due to wave-bottom scattering is derived
following the method of AH, now including the effect of a uniform current. We consider
weakly nonlinear random waves propagating over an irregular bottom with a constant
mean depth H and random small-scale topography h(x), with x the horizontal position
vector, so that the bottom elevation is given by z = −H + h(x) where z is the elevation
relative to the mean water level. The free surface is at z = ζ(x, t). Extension to current
and mean depth variations on a large scale is expected to follow from a two-scale approxi-
mation, similar to the effect of large scale depth variation (AH). When the depth varies in
the flow direction, the current should also vary so that the flows remains non-divergent.
Perturbations of the current should thus be of the order of ηU with η = max {h/H}, and
may scatter waves (Bal & Chou 2002). As far as this and other effects do not modify the
wave-bottom resonance, they should only contribute separate source terms, and shoaling
and refraction terms. Further, for a depth-varying current, U should be regarded as the
wave advection velocity (Andrews & McIntyre 1978, see Kirby & Chen 1989 for practical
approximate expressions).

The maximum surface slope is caracterized by ε and we shall assume that ε3 ≪ η2

so that the bottom scattering contributions to the wave energy to order η2 are much
larger than the resonant non-linear four wave interactions (Hasselmann 1962) and may
be neglected. For shallow water waves (kH << 1) a stricter inequality is needed to
prevent triad wave-wave interactions to enter the energy evolution equation at the same
order as bottom scattering.

The solution is obtained in a frame of reference moving with the current, so that the
current only introduces a modification of the bottom boundary condition. The governing
wave equations are thus given by Laplace’s equation for the wave potential, the bottom
kinematic boundary conditions and a combination of Bernouilli’s equation with the free
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Figure 1. Definition sketch of the mean water depth H , and relative bottom elevation h, in
the particular case of the sinusoidal bottom used in § 3.

surface kinematic boundary condition,

∇
2Φ +

∂2Φ

∂z2
= 0 for − H + h 6 z 6 ζ, (2.1)

∂Φ

∂z
=

∂h

∂t
+ ∇Φ · ∇h at z = −H + h, (2.2)

∂2φ

∂t2
+ g

∂φ

∂z
= g∇φ · ∇ζ − ∇φ ·

∂∇φ

∂t
−

∂φ

∂z

∂2φ

∂t∂z
at z = ζ. (2.3)

The symbol ∇ represents the usual gradient operator restricted to the two horizontal
dimensions.

Following Hasselmann (1962) we shall approximate h and φ with discrete sums, and
take the limit to continuous integrals after deriving expressions for the evolution of the
phase-averaged wave energy. The current U introduced a transformation of the horizontal
coordinates x

′ = x + U t, where x and x
′ are the coordinates in the moving and fixed

frames, respectively. The bottom elevation thus becomes

h(x) =
∑

l

Gle
il·[x+Ut]. (2.4)

We look for a velocity potential solution in the form

φ(x, z, t) =
∑

k,s

Φs
k
(z, αt)ei[k·x−sσt], (2.5)

where σ and ω are the radian frequencies in the moving and fixed frame, respectively. l

and k are the bottom and surface wavenumber, respectively, s is a sign index equal to 1
or −1, and sσ = sω − k · U . In the moving frame of reference, components with s = 1
propagate in the direction of the vector k, while components with s = −1 propagate in
the opposite direction. The amplitudes Φs

k
are slowly modulated in time, with a slowness

defined by the small parameter α. Because φ is a real quantity we also have Φs
k

= Φ−s
−k

.
Numerical calculations by MAHR showed that the reflection coefficient predicted by

AH were accurate for any bottom slope, but appeared to be limited by the relative
bottom amplitude η = h/H . We thus chose to expand the bottom boundary condition
and wave potential in powers of η,

φ = φ0 + ηφ1 + η2φ2 + · · · (2.6)

The boundary conditions (2.3) and (2.2) are expressed at z = 0 and z = −H , respectively,
using Taylor series of φ about z = −H and z = 0.

The spectral statistics of free wave components can be expressed in terms of covariances
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FΦ
i,j,k of the velocity potential amplitudes,

FΦ
i,j,k = 〈Φ+

i,kΦ−
j,−k

+ Φ−
i,−k

Φ+
j,k〉. (2.7)

The contribution of the complex conjugate pairs of components (k, +) and (−k,−) are
combined in (2.7) so that FΦ

i,j,k is the covariance of all waves with wavenumber magnitude
k propagating in the direction of k. In the limit of small wavenumber separation, a
continuous slowly-varying cross-spectrum can be defined (e.g. Priestley 1981, ch.11; see
also AH),

FΦ
i,j(k) = lim

|∆k|→0

FΦ
i,j,k

∆kx∆ky
. (2.8)

The definition of all spectral densities are chosen so that the integral over the entire
wavenumber plane yields the total covariance of φi and φj . The bottom elevation spec-
trum in discrete form is given by FG

l
= 〈GlG−l〉 and in continuous form by

FB(l) = lim
|∆l|→0

FG
l

∆lx∆ly
, (2.9)

and verifies,

∫ ∞

−∞

∫ ∞

−∞

FB(l)dlxdly = lim
L→∞

1

L2

∫ L/2

−L/2

∫ L/2

−L/2

h2(x, y)dxdy (2.10)

Ni,j(k) is defined as the (i + j)th order depth-integrated wave action contribution
from correlation between ith and jth order components with wavenumber k. For freely
propagating waves, and following the common usage in non-accelerated reference frames,
the gravity g is left out, so that the action has units of meters squared times second.
Accurate to second order in ε and η (Andrews & McIntyre 1978), Ni,j is given from the
velocity potential by the linear relation,

Ni,j(k) =
k

gσ
FΦ

i,j(k) tanh(kH). (2.11)

The spectral wave action is thus,

N(k) =
∑

i

Ni(k) =
∑

i

∑

j

Ni,i−j(k). (2.12)

We shall now solve for the velocity potential in the frame of reference moving with the
current.

2.2. Zeroth-order solution

In the moving frame of reference, the governing equations for φ0 are unchanged from the
case with a current. The solution is thus

φ0 =
∑

k,s

cosh(k(z + H))

cosh(kH)
Φs

0,kei[k·x−sσt], (2.13)

where intrinsic frequency σ is the positive root of the linear dispersion relation,

σ2 = gk tanh(kH). (2.14)
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2.3. First-order solution

The equations at order η are

∇
2φ1 +

∂2φ1

∂z2
= 0 for − H 6 z 6 0, (2.15)

∂φ1

∂z
= −h

∂2φ0

∂z2
+

∂h

∂t
+ ∇φ0 · ∇h at z = −H, (2.16)

and
∂2φ1

∂t2
+ g

∂φ1

∂z
= NL1 at z = 0, (2.17)

where the non-linear terms NL1 force a bound wave solution φnl
1 (Hasselmann 1962) that

will be neglected here because it does not modify our second order wave energy balance.
The small-scale variation h that causes scattering now appears in the bottom boundary
condition. A general solution for the (unchanged) Laplace equation (2.15) is given by the
following superposition of free and bound wave components, with amplitudes Φs3

2,k and

Φsi,s3

1,k respectively,

φ1 =
∑

k,s3=−1,0,1

[

cosh [k(z + H)]

cosh(kH)
Φs3

1,k(t) +
sinh [k(z + H)]

cosh(kH)
Φsi,s3

1,k (t)

]

eik·x (2.18)

Substitution of (2.18) in the bottom boundary condition (2.16) yields

k

cosh(kH)
Φsi,s

1,k (t) = −
∑

k
′

k
′
· k

cosh(k′H)
Φs

1,k′Gk−k
′ei[(k−k

′)·U−sσ′]t, (2.19)

for s = ±1. The amplitude of the s3 = 0 term forced by the ∂h/∂t term in (2.16) is given
by

Φsi,0
1,k (t) = ik · U

cosh(kH)

k
Gkeik·Ut. (2.20)

Replacing now (2.18) in the surface boundary condition (2.17), yields an equation for
Φs3

1,k,

(

d2

dt2
+ σ2

)

Φs
1,k(t) =

∑

k
′

M s(k, k′)Φ1,k′Gk−k
′ei[(k−k

′)·U−sσ′]t, (2.21)

for s = ±1, with

M s(k, k′) =
{

gk − [(k − k
′) · U − sσ′]

2
tanh(kH)

}

k
′
· k

k

cosh(kH)

cosh(k′H)
. (2.22)

For the s3 = 0 component we have,
(

d2

dt2
+ σ2

)

Φ0
1,k(t) = C(k)Gkeik·Ut (2.23)

with

C(k) = ik · U

[

(k · U)2

k
sinh(kH) − g cosh(kH)

]

. (2.24)

The forced harmonic oscillator equation (2.21) leads to

Φs
1,k(t) =

∑

k
′

M s(k, k′)Φs
0,k′Gk−k

′f1(σ, l · U − sσ′), (2.25)
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with the function f1 defined in Appendix A, and

Φ0
1,k(t) = C(k)Gkf1(σ, k · U). (2.26)

The components of amplitude Φ0
1,k and Φsi,0

1,k correspond to stationary waves such as
generated by the bottom topography in rivers (e.g. Fredsøe, 1974). These components
do not give rise to resonant interaction except at the critical Froude number, when the
current is equal to the phase speed of the waves. This solution is identical to equation
(2.9) in Kirby (1988) for monochromatic waves. The second term gives rise to scattered
waves and reduces to the form given by AH when U goes to zero.

2.3.1. First order energy

The lowest order perturbation of the wave energy by scattering involves φ1, and because
it is a quadratic term, it is found in the first order covariance

FΦ
1,0,k + FΦ

0,1,k = 4Re
(

〈Φ+
0,kΦ−

1,−k
〉
)

, (2.27)

with Re denoting the real part. Including only the non-bounded terms, we get

FΦ
1,0,k + FΦ

0,1,k = 4Re

[

∑

k
′

M+(k, k′)〈Φ+
0,k′Φ

−
0,−k

Gk−k
′〉f1(σ, l · U − σ′)eiσt

]

. (2.28)

Although this term was assumed to be zero in AH, it is not zero for sinusoidal bottoms
with partially standing waves, and may become significant at resonance due to the func-
tion f1. At this order, another term is needed to balance this energy transfer. In uniform
conditions, the time evolution of the wave field requires that the non-stationarity must
come into play so that α ≈ η, the non-stationary term is given by AH (their appendix
D),

∂
[

Nns
1,0(k) + Nns

0,1(k)
]

∂t
= −

∂N0(k)

∂t
. (2.29)

In order to simplify the discussion, we shall briefly assume that there is no current and
that the waves are unidirectional. In that case, k

′ = −k and M(k, k′) = gk2/ cosh2(kH).
Replacing (2.28) in (2.11) and combining it with (2.29) yields the action balance

∂N0,k

∂t
=

∂

∂t

[

k

σ
tanh(kH)

(

FΦ
1,0,k + FΦ

0,1,k

)

]

= Im

(

4kσ2

g2 sinh(2kH)
〈Φ+

0,kΦ−
0,kG−2k〉

)

,

(2.30)
with Im denoting the imaginary part.

For a real bottom (e.g. random or consisting of a finite series of sinusoidal bars), the
evaluation of (2.28) is not simple. Indeed, for directionally spread random waves and with
a current, using N(k) = N0(k) [1 + O(η)] and taking the limit to continuous surface and
bottom spectra yields

∂N(k)

∂t
= S1(k) =

∫ ∞

−∞

∫ ∞

−∞

4k · k
′

2g cosh(kH) cosh(k′H)
Im [Z(k, k′)] dk′

xdk′
y, (2.31)

with the mixed surface bottom bispectrum Z defined by

Z(k, k′) = lim
∆k→∞

〈
Φ+

1,kΦ−
1,−k

′G−k−k′

(∆k)
2 〉, (2.32)

with k = k(cos θ, sin θ) and k
′ = k(cos θ′, sin θ′). Z is identical to a classical bispectrum

(e.g. Herbers et al. 2003) with one surface wave amplitude replaced by a bottom ampli-
tude, and a similar expression is fond for a non-zero current. Since we have neglected
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non-linear effects, only the waves that have the same absolute frequency interact. Thus
the phase coupling of all other wave component pairs is random, and the bispectrum is
zero for σ′ 6= σ + l ·U . The energy balance (2.31) is not closed, and requires a knowledge
of the wave phases that are not available in a phase-averaged model. This contribution
of the mixed bispectrum will thus be evaluated below, in order to investigate in which
cases it may be neglected or parameterized. It is expected that S1 is generally negligible
because MAHR have neglected S1, and still found a good agreement of the second order
energy balance, with an exact numerical solution.

2.3.2. Second order energy

At the next order, one of the contributions from the covariance of the velocity potential
amplitudes is given by

FΦ
1,1,k = 2〈Φ+

1,kΦ−
1,−k

〉. (2.33)

Using (2.25), (2.33) can be re-written as

FΦ
1,1,k

∆k
= 2

∑

k
′

∣

∣M+(k, k′)
∣

∣

2
〈
∣

∣

∣
Φ+

0,k′

∣

∣

∣

2

〉

∆k
′

〈
∣

∣Gk−k
′G−k+k

′

∣

∣

2
〉

∆k
|f1(σ, l · U − σ′)|

2
∆k

′,

(2.34)
in which

〈f1(σ, l · U − σ′)f1(σ,−l · U + σ′)〉 =
πt

2σ2
δ [σ′ − (σ + l · U)] + O(1). (2.35)

δ is the one-dimension Dirac distribution, infinite where the argument is zero. Taking
the limit of (2.34) when ∆k → 0, and changing variables from (k′

x, k′
y) to (σ′, θ′) yields

FΦ
1,1(t, k) =

πt

2σ2

∫

θ′

∫

σ′

∣

∣M+(k, k′)
∣

∣

2
FΦ

1,1(k
′)FB(k − k

′)
k′

C′
g

δ [σ′ − (σ + l · U)] dσ′dθ′

+O(1). (2.36)

Only the terms for which σ′ = σ + l · U contribute to the integral. Thus M s(k, k′) =
M(k, k′), with

M(k, k′) =
[

gk − σ2 tanh(kH)
] k

′
· k

k

cosh(kH)

cosh(k′H)
,

=
gk · k

′

cosh(kH) cosh(k′H)
. (2.37)

Using the relation between velocity potential and action given by (2.11), and evaluating
the integral over σ′, one obtains

N1,1(t, k) =
πt

2

∫

θ′

M2(k, k′)
N0,0(k

′)

σσ′
FB(k − k

′)
k′

C′
g

dθ′ + O(1). (2.38)

2.4. Second order solution

Because we have computed one second order energy term, we now have to compute
all other second order terms in (2.12) to obtain the solvability condition. This requires
solving for the second order potential φ2, that is a solution of

∇
2φ2 +

∂2φ2

∂z2
= 0 for − H 6 z 6 0, (2.39)

∂φ2

∂z
= −h

∂2φ1

∂z2
−

h2

2

∂3φ0

∂z3
+ ∇φ1 · ∇h + ∇(h

∂φ0

∂z
) · ∇h at z = −H, (2.40)
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that simplifies because odd vertical derivatives of φ0 are zero at z = −H ,

∂φ2

∂z
= −h

∂2φ1

∂z2
+ ∇φ1 · ∇h at z = −H, (2.41)

and

∂2φ2

∂t2
+ g

∂φ2

∂z
= i
∑

k,s

2sσ
∂Φs

0,k

∂t
ei(k·x−sωt) + NL2 at z = 0. (2.42)

Ignoring the non-linear contributions NL2, the solution φ2 is given by the following form,

φ2 = φns
2 +

∑

k,s3=−1,0,1

[

cosh(k(z + H))

cosh(kH)
Φs3

2,k(t) +
sinh(k(z + H))

cosh(kH)
Φsi,s3

2,k (t)

]

eik·x. (2.43)

The non-stationarity term φns
2 is defined as the solution of the second order equations

forced by only the first term on the right-hand side of (2.41) and is given by AH. Following
the method used at first order, substitution of (2.43) in the bottom boundary condition
(2.41) leads to, for s = ±1,

Φsi,s
2,k (t) = −

∑

k′

k
′ · k

k

cosh(kH)

cosh(k′H)
Φs

1,k′(t)Gk−k′eil·Ut. (2.44)

After calculations detailed in Appendix B (see Magne 2005 for further details), φ2

yields the following contribution to the wave action,

N2,0(k) + N0,2(k) = −
πt

4σ

∫ 2π

0

M2(k, k′)FB(k − k
′)

N0(k)

σσ′

k′

Cg

Cg + k · U

C′
g + k

′
· U

dθ′ + O(1),

(2.45)
in which σ′ = σ − l · U , σ′2 = gk′ tanh(kH) and C′

g = σ′(1/2 + k′H/ sinh(2k′H))/k′.

2.5. Action and momentum balances

The solvability condition for the spectral wave action at second order imposes that all
secular terms cancel. Neglecting the first order energy contribution S1 given by (2.31),
and using N(k) = N0(k) [1 + O(η)] one has,

dN(k)

dt
= Sbscat(k), (2.46)

with the spectral action source term,

Sbscat(k) =
π

2

∫

θ′

M2(k, k′)

σσ′
FB(k − k

′)

[

N(k′)
k′

C′
g

− N(k)
k′2 (kCg + k · U)

kCg

(

k′C′
g + k

′
· U
)

]

dθ′,

(2.47)
where σ′ = σ+l·U and k = k

′+l. This interaction rule was already given by Kirby (1988).
The only waves that can interact share the same absolute frequency ω = σ + k · U =
σ′ + k

′
· U . For a given k and without current, the resonant k

′ and l lie on circles in the
wavenumber plane (see AH). The current slightly modifies this geometric property. For
U << Cg the circles become ellipses (Appendix C).

For a given value of ω, one may obtain the source term integrated over all directions,

Sbscat(ω) =

∫

θ

kSbscat(k)
∂k

∂ω
dθ (2.48)

=

∫

θ

∫

θ′

π

2

M2(k, k′)

σσ′
FB(k − k

′)

[

k′k

C′
g

∂k

∂ω
N(k′) −

k′k

Cg

∂k′

∂ω
N(k)

]

dθ′dθ.
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This expression is fully symmetric, and is thus unchanged when θ and θ′ are exchanged.
Thus Sbscat(ω) is a substraction of two equal terms, so that for any bottom and wave
spectra Sbscat(ω) = 0. In other words, the ‘source term’ is rather an ‘exchange term’, and
conserves the wave action at each absolute frequency. This conservation is consistent with
the general wave action conservation theorem proved by Andrews & McIntyre (1978),
which states that there is no flux of action through an unperturbed boundary (here the
bottom).

Sbscat may be re-written in a form close to that in AH,

Sbscat(k) =

∫

θ′

K(k, k′, H)FB(k− k
′)

[

N(k′) − N(k)
k′C′

g (kCg + k · U)

kCg

(

k′C′
g + k

′
· U
)

]

dθ′, (2.49)

with

K(k, k′, H) =
4πσkk′3 cos2(θ − θ′)

sinh(2kH)[2k′H + sinh(2k′H)]
. (2.50)

Finally, we may also write the evolution equation for the wave pseudo-momentum
Mw = ρwg

∫

kN(k)dk (see Andrews & McIntyre 1978), where ρw is the density of sea
water. For slow medium and wave field variations, that do not interfere with the scattering
process, except by probably reducing the surface-bottom bispectrum Z, one obtains an
extension of the equation of Phillips (1977)

∂Mw
α

∂t
+

∂

∂xβ
[(Uβ + Cgβ)Mw

α ] = T bscat
α − Mw

β

∂Uβ

∂xα
−

Mw
α

kα

kσ

sinh 2kD

∂D

∂xα
, (2.51)

with the dummy indices α and β denoting dummy horizontal components, and the scat-
tering stress vector,

Tbscat = ρwg

∫

kSbscatdk. (2.52)

This stress has dimensions of force per unit length and corresponds to the force necessary
to compensate for the divergence of the wave pseudo-momentum flux. Based on the
results of Longuet-Higgins (1967) and Hara & Mei (1987), this force does not contribute
to the mean flow equilibrium with a balance of the radiation stresses divergence by long
waves (or wave set-up in stationary conditions), contrary to the initial proposition of Mei
(1985). This force is thus provided by a mean non-hydrostatic pressure on the bottom
that correlates with the bottom slope, and must arise from the pressure under partial
standing waves locked in phase with the bottom undulations.

3. Wave scattering in two dimensions

Before considering the full complexity of the 3D wave-bottom scattering in the presence
of a current, we first examine the behavior of the source term in the case of 2D sinusoidal
seabeds. MAHR have investigated the applicability limits of the source term with U = 0,
using 2D test cases. They showed that for small bottom amplitudes the source term
yields accurate reflection estimates, even for localized scatterers. It is thus expected that
this also holds for U 6= 0, and that the present theory should conform to Kirby’s (1988)
theory in the limit of small reflection coefficients.

3.1. Wave evolution equation in 2D

We consider here a steady wave field in two dimension with incident and reflected waves
propagating along the x-axis. We shall consider in particular the case of m sinusoidal
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bars of amplitude b and height 2b, defined by,

h(x) = b sin(ml0x) for 0 < x < L (3.1)

h(x) = 0 otherwise.

This form is identical to that of the bottom profile chosen by Kirby (1988) but differs,
for 0 < x < L, by a π/2 phase shift from the bottom profile chosen by Mei (1985). The
bottom spectrum is thus

FB(lx, ly) = FB2D(lx)δ(ly), (3.2)

For this particular bottom

FB2D(l) =

(

1

2π

∫ ∞

−∞

h(x)e−ilxdx

)2

=
2b2l20
πL

sin2(lL/2)

(l20 − l2)2
, (3.3)

with

FB2D(l0) =
mb2

4l0
=

b2L

8π

. (3.4)

Please note that this is a double-sided spectrum, with only half of the bottom variance
contained in the range l > 0. For a generic bottom, for which h(x) does not go to zero at
infinity, the spectrum is obtained using standard spectral analysis method, for example,
from the Fourier transform of the bottom auto-covariance function (see MAHR).

First, replacing (3.2) in (2.46) removes the angular integral in the source term. Taking
k = (k, 0), we have ly = −k′

y, and

Sbscat (k, x) = K(k′, k, H)
FB2D(k − k

′)

k′

[

N(k′) − N(k)
k′C′

g

kCg

kCg + k · U

k′C′
g + k

′
· U

]

. (3.5)

Second, assuming now that waves propagate only along the x-axis, the wave spectral
densities are of the form

N(kx, ky) = N2D(kx)δ(ky). (3.6)

Integrating over ky removes the singularities on ky, and assuming a steady state one
obtains

[

kx

k
Cg + Ux

]

∂N

∂x
(kx, x) = Sbscat2D (kx, x) , (3.7)

with

S2D
bscat (kx, x) = K(k′, k, H)FB2D(k−k

′)

[

N2D(k′
x, x)

k′
− N2D(kx, x)

C′
g

kCg

kCg + k · U

k′C′
g + k

′
· U

]

.

(3.8)
Although the present theory is formulated for random waves, the wave spectrum does

not need to be continuous because there is no possible coupling between waves of different
frequencies. We may thus express the result for monochromatic incident waves, such that,
N2D(k, x) = N(x)δ(k − k0) + N ′(x)δ(k′ − k′

0) with k0 > 0 and k′
0 < 0. The resulting

evolution equation is, omitting the 0 subscripts on k and k′,
[

kx

k
Cg + Ux

]

∂N

∂x

= K(k′, k, H)
FB2D(k − k

′)

k′

[

N ′ k

k′

k′C′
g + k

′
· U

kCg + k · U
− N

k′C′
g

kCg

kCg + k · U

k′C′
g + k

′
· U

]

,

(3.9)
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with a similar equation for N ′ obtained by exchanging Cg and C′
g, and k′ and k, from

which it is easy to verify that the total action is conserved.
The stationary evolution equation only couples two wave components N(k) and N(k′).

For a uniform mean depth H , and uniform bottom spectrum FB, as considered here, we
thus have a linear system of two differential equations, that may be written in matrix
form for any k > 0,

d

dx

(

N(k)
N(k′)

)

= Q

(

N(k)
N(k′)

)

. (3.10)

The general solution is thus
(

N(k, x)
N(k′, x)

)

= eQx

(

N(k, 0)
N(k′, 0)

)

, (3.11)

and the reflection coefficient for the wave action is found using the boundary condition
expressing the absence of incoming waves from beyond the bars, N(k′, L) = 0, giving,

RN =
N(k′, 0)

N(k, 0)
= −

(

eQx
)

2,1
/
(

eQx
)

2,2
. (3.12)

A reflection coefficient for the modulus of the wave amplitude predicted by the source
term is thus,

RS =

[

σ′N(−k′, 0)

σN(k, 0)

]1/2

= −
{

σ′
(

eQx
)

2,1
/
[

σ
(

eQx
)

2,2

]}1/2

(3.13)

3.2. Analytical solution for U = 0

If U = 0 then k′ = −k, and

q = −Q1,1 = Q1,2 = −Q2,1 = Q1,1 = K(k, H)
FB(2k)

Cgk
, (3.14)

with Qi,j the (i, j) component of Q. Q is not diagonalizable, which would allow a simple
way of evaluating the matrix exponential eQ . However Q2 = 0 so that eQx = (I + Q) x,
where I is the identity matrix. The solution is thus simply,

N(k, x) = N(k, 0)

[

−q (x − L) + 1

1 + qL

]

(3.15)

N(−k, x) = N(k, 0)

[

−q (x − L)

1 + qL

]

. (3.16)

An example of spatial variation of the wave spectrum from x = 0 to x = L is shown in
Figure 2, for U = 0, and a uniform (white) incident spectrum. The reflected wave energy
(at k < 0 in figure 2.a) compensates the loss of energy in the transmitted spectrum (at
k > 0 in figure 2.b).

At resonance, in the limit of small bar amplitudes (3.4) yields

RS = (qL)
1/2

+ O(qL) =
k2bL

2kH + sinh(2kH)
+ O(qL) (3.17)

which is identical to Mei’s (1985) equation (3.21)–(3.22) for exact resonance, in the limit
of qL ≪ 1, and also converges to the result of Davies & Heathershaw (1984) for that
same limit. For large bar amplitudes, the reflection is significant if the bars occupy a
length L longer than the localization length 1/q. However, the reflection coefficient for

the wave amplitude only increases with L as [qL/(1 + qL)]
1/2

, which is slower than the
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Figure 2. Bottom spectrum and evolution of a surface wave spectrum along a field of sinusoidal
bars for U = 0, b = 0.05 m, H = 0.156 m, so that b/H = 0.32, and l0 = 2π, n = 4, so that
L = 4 m (bottom shown in figure 1). (a) square root of the bottom spectrum, (b) and (c)
normalized square root wave spectrum upwave (at x < 0) and downwave (at x > L) of the
bars, respectively. The incident spectrum (k > 0 at x = 0) is specified to be white (unform in
wavenumbers).

exponential asymptote given by Mei (1985) for sinusoidal bars, and predicted by (Belzons
et al. 1988) from the lowest-order theory applied to a random bottom. Our use of higher-
order correction may be thought as the representation of multiple reflections that tend
to increase the penetration length in the random medium.

A deeper understanding of this question is provided by the comparison of numerical
estimations of the reflection coefficients for the wave amplitudes R. A benchmark esti-
mation for linear waves is provided by the step-wise model of Rey (1995) using integral
matching conditions for the free propagating waves and three evanescent modes at the
step boundaries. This model is known to converge to the reflection coefficents given by
an exact solution of Laplace’s equation and the boundary conditions, in the limite of
an infinite number of steps and evanescent modes. Calculations are performed here with
70 steps. This number is chosen because a larger number of steps gives indistinguishable
results in figure 3. An analytical expression RMei is given by Mei (1985). R for the present
second order theory is given by RS (3.13).

We further compare these estimates to the reflection coefficient RS1,Mei that is deduced
from the energy evolution given by Hara & Mei (1987) using the approximate solutions of
Mei (1985, his equations 3.8–3.23). One may prefer to reformulate the energy evolution
from the amplitude evolution equations of Kirby (1988) because he used a continuous
water depth h = sin(ml0), instead of Mei’s h = cos(ml0) which is discontinuous at
x = 0 and x = L†. Yet both Mei’s and Kirby’s equations lead to the same energy
exchange between the incident and reflected components. Using Mei’s (1985) notations,
the amplitudes of the incident waves, reflected waves, and bottom undulations are A =

† Such a discontinuous bottom has a markedly different spectrum at low and high frequencies.
The present theory, confirmed by calculations with Rey’s (1995) numerical model, yield very
different reflection coefficients for waves much shorter and much longer than the resonant waves
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2σΦ+
0,k/g, B = 2σΦ−

0,k/g, and D = −2iG−2k, and the ‘cut-off’ frequency is

Ω0 =
σkD

2 sinh(2kH)
. (3.18)

The energy evolution of waves propagating over sinusoidal bars along the x-axis is given
by Hara & Mei (1987). The reflected wave energy BB⋆/2 should be a solution of

∂

∂t

(

BB⋆

2

)

− Cg
∂

∂x

(

BB⋆

2

)

= S1,Mei = Re (iΩ0B
⋆A) , (3.19)

where B⋆ denotes the complex conjugate of B. This is identical to (2.30) for a monochro-

matic bottom except that the imaginary part replaced by a real part.
Equation (3.19) yields a corresponding energy reflection coefficient, given by the frac-

tion of energy lost by the incoming waves,

RE,S1Mei = −
1

Cg

∫ L

0

S1,Mei(x)dx. (3.20)

Simple analytical expressions can be obtained at resonance, where Mei’s (1985) eq. (3.20)–
(3.21) give,

AB⋆

A2(0)
=

−i sinh (2τ(1 − x/L))

2 cosh2 τ
(3.21)

so that

RE,S1Mei =
cosh 2τ − 1

4 cosh2 τ
=

1

2
tanh2 τ =

1

2
R2

Mei, (3.22)

and

RS1,Mei = 2−1/2RMei. (3.23)

It is not surprising that the energy transfer thus computed differs from the energy com-
puted from the amplitude evolution equations. This is typical of small perturbation
methods, and was discussed by Hasselmann (1962), among others. Yet, it is remarkable
that the ratio of the two is exactly one half. The transfer of energy given by iΩ0B

⋆A in
(3.19) thus correspond to an amplitude reflection coefficient RS1,Mei that is smaller by
a factor 2−1/2, at resonance, compared to RMei (figure 3). This underprediction of the
the reflexion of the energy by (3.22) also has consequences for the analysis and calcula-
tion of wave set-up due to wave group propagation over a reflecting bottom. Indeed, the
estimation of the scattering stress (2.52), that contribute to the driving of long waves,
was analyzed by Hara & Mei (1987) using (3.22), which is a factor 2 too small. This
may explain, in part, their under-prediction of the observed elevation of the long wave
travelling with the incident wave group.

3.3. Effects of wave and bottom relative phases

The energy exchange coefficient given by the source term always gives energy to the
least energetic components (in the absence of currents), and thus the energy evolution is
monotonic. However, the first order term that was neglected so far may have any sign, and
thus lead to oscillatory evolutions for the wave amplitudes, as predicted by Mei (1985)
and observed by Hara & Mei (1987). At resonance, and for U = 0, it can be seen that
the first-order energy product Φ+

0,kΦ−
0,kG−2k in (2.30) is equal to iAB⋆D/8, in the limit

of a large number of bars. Based on Mei’s (1985) approximate solution, in the absence of
waves coming from across the bars, this quantity is purely real so that its imaginary part
is zero and the corresponding reflection coefficient RS1 is zero. For U 6= 0 this property
remains as can be seen by replacing Mei’s (1985) solution with Kirby’s (1988). However,
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similar correlation terms were also neglected in the second order energy, so that the
oscillatory behaviour may occur due to terms of the same order as the scattering source
term, including interactions of the sub-harmonic kind (Guazzelli et al. 1992). Further,
the bottom-surface bispectrum may become significant in the first order term if there is
a large amount of wave energy coming from beyond the bars. This kind of situation, e.g.
due to reflection over a beach, was discussed by Yu & Mei (2000).

In the absence of such a reflection, and away from resonance but for small values
of the scattering strength parameter τ = (qL)1/2 = Ω0L/Cg, the imaginary part of
Φ+

0,kΦ−
0,kG−2k is an order (qL)1/2 smaller than the real part and thus contributes a

negligible amount to the reflection.

3.4. Source term and deterministic results for sinusoidal bars

For large bar amplitudes, such as b/H = 0.32 (figure 3.a), all theories with linearized
bottom boundary conditions fail to capture the shift of the reflection pattern to lower
wavenumbers. This effect was discussed by Rey (1992), and attributed to the non-linear
nature of the dispersion relation and the rapid changes in the water depth. However
reflection coefficients are still relatively well estimated. For these large amplitudes Mei’s
(1985) approximate solution is found to be more accurate at resonance compared to
the source term. As expected from MAHR, RMei and RS become identical as η = b/H
goes to zero (figure 3.b). This fact provides a verification that the first order term S1 is
different from Hara and Mei’s (1987) energy transfer term, and only accounts for a small
fraction of the reflection, a fraction that goes to zero as η → 0. It is also found that for
all bottom amplitudes, but away from resonance, the source term expression provides a
simple solution that is more accurate than Mei’s (1985) approximate solutions (see the
sidelobes in figure 3).

3.5. Effects of currents

The basic feature of the solutions with currents is the modification of the resonant condi-
tion from k = k′ and l = 2k, to σ′ = σ+ lU and l = k+k′ . Notations here assume that k

is in the direction of the current and k
′ is opposite to the current. Yet, the introduction

of the current makes the solution much more complex. It is striking that Kirby’s (1988)
equations involve a modified cut-off parameter Ωc = Ω0c + Ω1c, which is analytically
similar to our source term result except for the rather complicated Ω1c term. At reso-
nance, Kirby (1988) found that the transmission losses 1−T differ from the case without

current. In the long-wave limit this difference is increased by a factor
(

1 − Fr2
)−1

(his
equation 5.29). However, the present theory predicts an increase by a factor 1+Fr . Thus
both theories only agree in the limit Fr → 0. To our knowledge there is unfortunately no
simple numerical method to arrive at an independent solutions. Besides, observations of
that effect require to test relatively large Froude numbers. Some first observations of the
shift in resonant frequencies in the presence of currents were only performed at relatively
low Froude numbers, and are not accurate enough to test these predictions (Magne, Rey
& Ardhuin manuscript submitted to Physics of Fluids).

We now compare reflection coefficients for monochromatic waves, as obtained with the
source term using (3.9), and with Kirby’s (1988) analytical approximate solutions for
near-resonant waves. An approximation to the reflection coefficient (3.13) corresponding
to the solution of (3.9) is obtained with a fourth order Taylor expansion of the matrix
exponential. Anticipating oceanographic conditions with a water depth of 20 m, a strong
2 m s−1 current corresponds to a Froude number of 0.17 only. For such a low value of Fr

in the context of the Davies & Heathershaw (1984) laboratory experiments, the difference
in peak reflection for b/H = 0.065 is of 8% only between the source term and Kirby’s
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Figure 3. Reflection coefficients for the wave amplitudes for U = 0, H = 0.156 m, l0 = 2π,
n = 4. In (a) b = 0.05 so that b/H = 0.32, corresponding to one of the experiments of Davies &
Heathershaw (1984), and in (b), b = 0.01, so that b/H = 0.064.

(1988) solution, while the reflection coefficient is largely increased due to the general
conservation of the wave action flux. R can thus be larger than 1 for currents following

the incident waves because it is enhanced by the factor {σ(Cg + U)/ [σ′(Cg′ − U)]}
1/2

,
compared to the transmission losses 1− T . The overall increase in R for following waves
amounts to about 60% at Fr = 0.17, for the laboratory sinusoidal bars of Davies &
Heathershaw (1984) shown before (figure 4). The horizontal density of reflected wave
energy is thus multiplied by a factor 2.5 in this case, for a Froude number of only 0.17.

Both solutions agree reasonably well, and we thus expect the source term to represent
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Figure 4. Amplitude reflection coefficients for monochromatic waves over sinusoidal bars for
the same settings as in figure 3 with U = 0.2 m s−1. For reference the reflection coefficient
without current, as given by the exact model of Rey (1995), is also shown.

accurately the scattering of waves over bottom topographies in cases of uniform currents.
For four sinusoidal bars the energy reflection coefficients was found to be within 20% of
the exact solution for η < 0.2 and Fr = 0, and this conclusion is expected to hold for
Fr < 0.2, given the agreement with Kirby’s (1988) approximate solution. This accuracy is
a factor two better than what was found for a rectangular step with Fr = 0 (MAHR). The
present method has the advantage of a large economy in computing power. This method
is also well adapted for natural sea beds, for which continuous bathymetric coverage is
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only available in restricted areas, and thus only the statistical properties of the bottom
topography are accessible, assuming homogeneity.

4. Scattering with current on a realistic topography

4.1. Sandwaves in the North Sea

A real ocean topography, at least on the continental shelf, generally presents a continuous
and broad bottom elevation spectrum. Given this bottom spectrum, simple solutions are
available for uniform conditions, because the scattering source term is a linear function
of the directional spectrum at a given value of the absolute frequency ω (see AH for
numerical methods). However, practical situations rather correspond to quasi-stationary
conditions with spatial gradients in at least one dimension. In this situation the simple
steady solutions found above for 2D topography are not physical. Indeed, a 3D bottom
causes scattering along the transversal direction y, and the energy propagating in that
direction builds up slowly up to the point where it becomes as large as the incident wave
energy. This process can take a time much longer than the typical duration of a storm
or swell arrival, and dissipative processes are likely to be important as the wave energy
increases (e.g. Ardhuin et al. 2003).

Therefore the source term Sbscat was introduced in the version 2.22 of the wave model
WAVEWATCH-III (Tolman 2002), based on the wave action evolution equation (2.46) in
which the time derivative on the left hand side is now a Lagrangian derivative following
a wave packet in physical and spectral space. Bottom scattering is the only source term
introduced in the present calculation. There is thus no transfer of wave action between
frequencies. However, the model uses a spectrum is discretized with components at fixed
intrinsic frequencies σ and directions θ, which is most appropriate for other processes.
Thus, the model was run with a typical grid of 25 frequencies ranging from 0.08 to
0.788 Hz and a high directional resolution of 3◦.

The effects of a mean current on wave scattering are now examined using a real
bathymetry spectrum that is estimated from a detailed bathymetric survey of an area
centered on the crest of a sand dune, in the southern North Sea (figure 5). In this re-
gion, tidal currents are known to generate a wide array of bedforms, from large scale
tidal Banks to sand dunes and sand waves (e.g. Dyer & Huntley 1999; Hulscher & van
den Brink 2001). Although sand dunes present a threat to navigation and are closely
monitored (Idier et al. 2002), dunes are much larger than typical wind seas and swells
wavelengths. These dunes, however, are generally covered with shorter sandwaves. In the
surveyed area the sandwaves have a peak wavelength of 250 m, and a variance of 1.7 m2,
which should lead to strong oblique scattering of waves with periods of 10 s and longer.
Over areas of 3 by 3 km the variance can be as large as 3.3 m2 with a better defined
spectral peak, so that our chosen spectrum is expected to be representative of the en-
tire region, including high and low variances on dunes crests and troughs, respectively.
The southern North Sea is also known for the attenuation of long swells, generated in
the Norwegian Sea. This attenuation has been generally attributed to the dissipation of
wave energy by bottom friction (Weber 1991).

The bottom spectrum of the area that we chose, like the spectra that were obtained
by AH from the North Carolina shelf, roll off sharply at high wavenumbers, typically like
l−4 for the two-dimensional spectrum. Here the maximum variance is found for bottom
wavelengths of the order or larger than 250 m (figure 5). For a typical swell period of
10 s, this corresponds to 2 times the wavelength in 20 m depth, and thus a rather small
scattering angle, 30◦ off from the incident direction. Swells propagating from a distant
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Figure 5. (a) high-resolution bathymetry of a sand wave field in the southern North Sea with
depths relative to chart datum, and (b) corresponding bottom elevation spectrum with contour
values representing log

10

(

4π
2F B

)

. The locus of the interacting bottom and surface wave com-
ponents are indicated for a 12.5 s waves from the North-East in 25 m depth, with U = 0 (middle
circle), U = 2 m s−1 (smaller ellipse), and U = −2 m s−1 (larger ellipse), U is positive from
the North-East. (c) Direction-integrated bottom variance spectra from the North Carolina shelf
and the southern North Sea. Vertical lines indicate k/l ratios and incident resonant directions
θI , assuming an incident wave field of 12.5 s period in 25 m depth and bedforms parallel to the
y-axis. For such bedforms, the angle between incident and scattered waves is 180◦ − 2θI .

storm, with fixed absolute frequency ω = σ + k · U , should be reflected by bottom
undulations with widely different variances as the current changes.

4.2. Scattering of waves normally incident on the sandwaves

To simplify the interpretation of the results, and the processing of the boundary con-
ditions, a one dimensional (East/West) propagation grid is used for the computations,
assuming that the wave field, still fully directional, is uniform in the North-South di-
rection. The waves are propagated over a model grid 100 km long, with a mean depth
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Figure 6. (a) Schematic of the model grid and (b) incident wave spectrum specified at point
F . Model output is shown below for point O. Please note that waves are represented with their
arrival direction (direction from, contrary to the standard wind sea convention). The frequency
is the relative frequency σ/2π.

of 20m, and a spatial grid step of 5 km (figure 6.a). As a result, scattering is probably
stronger than in real conditions where the mean water depth is typically larger than 20
m. The following results should still provide some understanding of the likely real effects,
at least for larger wave periods with similar values of kH .

A Gaussian incident surface wave spectrum is imposed, with a mean direction from
the North-East, a narrow peak directional spread of 12◦, and a peak frequency of 0.01 Hz
(figure 6.b). The source term is integrated with a time step of 120 s, and the advection
in space uses a third order scheme with a time step of 120 s.

The scattering source term acts as a diffusion operator with a typical 3-lobe structure,
negative at the peak of the wave spectrum, and positive in directions of about 30◦ on both
sides of the peak. This is identical, but with a larger magnitude, to the effect described
by AH. In general the scattering effects are relatively stronger at the lowest frequencies,
at least in the range of frequencies used here. For still lower frequencies the scattering
coefficient K decreases (see also AH) so that, on these spatial scales, very little scattering
occurs for infra-gravity waves (f < 0.05 Hz). In addition to this grazing-angle forward
scattering the present case shows a significant back-scattering, in particular in the case
of following currents.

For a wave frequency of 0.08 Hz, the curves followed by the bottom resonant wavenum-
bers are overlaid on the bottom spectrum (figure 5.b). The wavenumbers l along these
curves satisfy both the relations k

′ + l = k and σ′ = σ + l ·U . Without current the curve
is exactly a circle, and transforms to an ellipse for weak currents (Appendix C). This
approximation is used in the model to compute the source term. The current shifts sig-
nificantly the resonant configuration for the bottom and surface wavenumbers. A current
opposed to the waves enlarges the ellipse towards higher wavenumbers, while a following
current will lead to a ‘sampling’ of shorter wave numbers and longer bottom features.
Since the bottom topography has the lowest variance at the largest wavenumbers, the
scattering is strongest for following currents (figure 7). With our choice of parameters,
there is about a factor 10 reduction in the bottom variance that causes backscatter as
U is changed from 2 m s−1 to −2 m s−1. Besides, as in the 2D case discussed above,
the coupling coefficient K(k′, k, H) is increased in the case of a following current. Fur-
thermore, a current opposed to the waves decreases the surface waves wavelength and
favours resonant configuration such as 2k/l > 1 corresponding to forward-scattering, so
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Figure 7. Computed source terms at the boundary forcing point F , (a) for U = 0, (b) for a
following current U = 2 m s−1, (c) for an opposing current U = −2 m s−1. The frequency is the
relative frequency σ/2π.

that the 3 lobes in the source term occupy a broader range of directions in the case of
opposing currents.

The resulting wave spectra are further modified due to the conservation of the wave
action flux. For U > 0 the reflected wave energies are enhanced (figure 8). This effect is
similar to what was found in the 2D cases considered above, due to the different energy
flux velocities U + Cg for the incident waves, and U − C′

g for the reflected waves. In
all cases investigated here, the narrow incident wave spectrum is significantly broadened
in directions, and that effect is most pronounced at the lowest frequencies. Without
current or with following currents, spectra at the beginning of the model domain (figure
8) contain a large back-scattered energy, which increases the significant wave height and
the directional spread on the up-wave side of the sandwave field. This effect should not be
very sensitive to the directional spread of the incident wave field and should thus occur
for a wide range of sea states. In contrast, it should be noted the initial spectral peak in
figure (figure 8) is not much modified, because of the relatively short propagation distance
from the forcing point (figure 6.a). Nevertheless, a significant broadening is predicted at
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Figure 8. Computed wave spectra at point O, 10 km inside of the model domain, after 5 hours
of propagation, (a) for U = 0, (b) for a following current U = 2 m s−1, (c) for an opposing
current U = −2 m s−1. The frequency is the relative frequency σ/2π.

the down-wave end of the model domain, with values of the directional spreads σ
theta

larger than 35◦ in all cases considered here. That broadening effect is small for relatively
broad incident spectra (i.e. directional spreads σ

theta > 30◦), as found by Ardhuin et
al. (2003a) and Ardhuin and Herbers (2005). It was also found that this broadening of
the main spectral peak is largest for waves propagating along the main sandwave crest
directions (i.e. from the North-West in our case) due to the larger bottom variance at
l = k − k

′ with k ≃ k
′ (Magne 2005), with a significant modification of the mean

direction.
Finally, a wave height decrease along the grid is observed, indicating an attenuation

due to wave-bottom scattering. In reality, bottom friction would likely induce a stronger
decay, and that decay would be stronger than in the absence of scattering. Essentially
the scattering increases the average time taken by wave energy to cross the domain, and
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bottom friction together with scattering would lead to a larger dissipation than friction
alone because of that longer time (Ardhuin et al. 2003).

5. Conclusion

The effect of a uniform current on the wave-bottom Bragg scattering was investi-
gated theoretically, extending the derivations of Ardhuin & Herbers (2002). After Magne
et al. (2005) showed that the source term was applicable to non-random topography
and accurate in the limit of small bottom amplitudes, it is found here that the source
term is also applicable to monochromatic waves. Indeed, there is no process capable of
coupling waves with different frequencies. For small bottom amplitudes the source term
may only be inaccurate for non-stationary conditions, in which case the generation of the
local bound waves requires some energy not explicitly evaluated by the present theory.
The two scale approximation was found to hold reasonably well, even for a relatively
fast evolution of the wave amplitudes over two wavelengths (figure 3). For a sinusoidal
bottom and monochromatic waves, the source term converges to Mei’s (1985) theory in
absence of current and in the limit of the small bottom amplitudes. In the presence of
a current, monochromatic wave results generally agree with Kirby’s (1988) theory, but
only converge in the limit of small Froude numbers. In two dimensions, the main effect
of a current is a Doppler-like shift of the resonant wave frequencies that undergo maxi-
mum reflection. For a given bottom topography this leads to a modification of the wave
reflection coefficient that is sensitive to the current strength and direction.

In three dimension and over the shallow areas of the southern North Sea, where large
sand waves are found with strong tidal currents, wave scattering is expected to be signifi-
cant, and largely influenced by currents. Over natural topographies, the bottom typically
de-correlates over scales shorter than the scattering-induced attenuation scales, so that
a modification of the reflection due to a phase locking of the incident and reflected waves
with the bottom may be neglected. The wave scattering theory presented in this paper is
thus one more piece in the puzzle of wave propagation over shallow continental shelves,
and this process may account for a significant part of the observed attenuation of swells
in the southern North Sea. Our representation of this phenomenon with a source term
in the wave action balance equation is expected to be accurate in many conditions of
interest. It is consistent with the wide use of phase-averaged models for engineering and
scientific purposes when such large scales are involved. The alternative use of phase-
resolving elliptic refraction-diffraction models (e.g. Berkhoff 1972 or Belibassakis et al.
2001), is much more expensive in terms of computer resources, due to the necessity to
resolve the wave phase, and may not be much more accurate.

This research was supported by a joint grant from CNRS and DGA. Bathymetric data
was acquired by the French Hydrographic and Oceanographic Service (SHOM). Discus-
sions with Michael McIntyre, Kostas Belibassakis, Vincent Rey, and Thierry Garlan and
gratefully acknowledged.

Appendix A. Harmonic oscillator equation for the first order

potential

The harmonic oscillator equation (2.21) can be written as a linear superposition of
equations of the type

d2f1

dt2
+ ω2f1 = eiω′t. (A 1)
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In order to specify a unique solution to (A 1), initial conditions must be prescribed. In
the limit of the large propagations distances, the initial conditions contribute a negligible
bounded term to the solution. Following Hasselmann (1962), we choose f1(0) = 0 and
df1/dt(0) = 0, giving the solution

f1(ω, ω′; t) =
eiω′t − eiωt + i(ω − ω′) sin(ωt)/ω

ω2 − ω′2
for ω′2 6= ω2, (A 2)

f1(ω, ω′; t) =
teiω′t

2iω′
−

sin′ ωt)

2iω′ω
for ω′ = ±ω (A 3)

Appendix B. Harmonic oscillator equation and energy for the second

order potential

Replacing φ1 (2.18) in the surface boundary condition (2.42),

(

d2

dt2
+ σ2

)

Φs
2,k(t) = −gkΦsi,s

2,k − tanh(kH)
∂2Φsi,s

2,k

∂t2
, (B 1)

and conserving only the non-bounded terms of Φs
1,k′ , one obtains

∂2Φsi,s
2,k

∂t2
=

−
∑

k
′,k′′

k
′ · k

k

cosh(kH)

cosh(k′H)
M(k′, k′′)Gk−k

′Gk
′−k′′Φ0,k′′

∂2

∂t2
(

f1(σ
′, k′

· U − sω′′)eil·Ut
)

.

(B 2)

The amplitude Φs
2,k satisfies a forced harmonic oscillator equation. Anticipating that

only k′′ = k will give a non-zero contribution due to the correlation Gk−k
′Gk

′−k′′ , we
may simplify the notations in that equation as,

(

∂2

∂t2
+ σ2

)

Φs
2,k(t)

=
∑

k
′

∑

k′′

MM(k′, k′′)Gk−k
′Gk

′−k′′Φ1,k′′f1(σ
′,−l

′
· U − sσ′′)eil·Ut,(B 3)

with l
′ = (k′′ − k

′) · U , and

M ′ =
k

′ · k

k

[

gk −
(

σ′′2 − (σ′ + l · U)
2
)

tanh(kH)
] cosh(kH)

cosh(k′H)
. (B 4)

The second order potential potential amplitude must verify the equation
(

d2

dt2
+ σ2

)

Φs
2,k(t) =

∑

k
′

∑

k′′

M ′M(k′, k′′)Gk−k
′Gk

′−k′′Φ0,kf1(σ
′,−l

′
· U − sσ′′)eil·Ut,

(B 5)
thus we have to solve,

(

d2

dt2
+ σ2

)

f2 = f1(σ
′,−l

′
· U − sσ′′)eil·Ut. (B 6)

The solution f2 may be written as

f2 = f2,a + f2,b, (B 7)
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where

f2,a = −
te−isσ′′t − sin(σ′′t)/σ′′

2isσ′′
[

σ′2 − (l′ · U + sσ′′)2
] , (B 8)

f2,b = −
s

2σ′(σ′ −
[

l
′
· U + sσ′′

]

))
×

[

e−i(σ′−l
′
·U)t

σ′′2 − (σ′ − l
′
· U)2

−
1

2σ

(

eiσ′′t

σ′′ + (σ′ − l
′
· U)

+
e−iσ′′t

σ′′ − (σ′ − l
′
· U)

)]

(B 9)

The second order energy contribution from correlation between the zeroth and first
order velocity potential is given by,

FΦ
2,0,k = FΦ

0,2,k = 2〈φ+
2,kφ−

0,−k
〉. (B 10)

Then (B 3) becomes

FΦ
2,0,k

∆k
=
∑

k
′

∑

k′′

M2(k, k′)
〈Gk−k

′Gk
′−k′′〉

∆k

〈Φ+
1,kΦ−

1,−k
〉

∆k
〈f2e

iσt〉∆k, (B 11)

with

〈f2e
iσt〉 =

πt

8σσ′
δ
[

σ′ − (σ′′ − l
′′

· U)
]

+ O(1). (B 12)

Taking the limit when ∆k → 0, neglecting bounded terms, and anticipating that only
k′′ = k gives a non null contribution from the bottom variance yields

FΦ
2,0(t, k) = −

∫

k′′

πt

4σ′′
M2(k, k′)FB(k − k

′)
FΦ

0,0(k)

σ′
δ
[

σ′ − (σ′′ − l
′′

· U)
]

dk
′′. (B 13)

Changing the spectral coordinates from k
′′ to (σ′′, θ′′), one has

FΦ
2,0(t, k) = −

∫

θ′′

∫

σ′′

πt

4σ′′
M2(k, k′)FB(k−k

′)
FΦ

0,0(k)

σ′

k′′

C′′
g

δ
[

σ′ − (σ′′ − l
′′

· U)
]

dσ′′dθ′′.

(B 14)
Finally evaluating the integral over σ′′ to remove the Dirac distribution and changing
again variables from θ′′ to θ′, we find, including the bounded terms,

FΦ
2,0(t, k) = −

πt

4σ

∫

θ′

M2(k, k′)FB(k − k
′)

FΦ
0,0(k)

σ′

k′

Cg

(Cg + k · U)

(Cg′ + k
′
· U)

dθ′ + O(1). (B 15)

Appendix C. Resonant wavenumber configuration for U << Cg

Under the assumption U << Cg, and for a current in the x direction, the resonant
conditions

σ′ − σ = lxU, and (C 1)

yields the following Taylor expansion to first order in σ′ − σ,

k′ − k = (k′
x − kx)

U

Cg
+ O

[

k

(

U

Cg

)2
]

. (C 2)

We define, r = k′, r0 = k, r cos θ = k′
x, so that

r = r0 +
U

Cg
(r0 cos θ0 − r cos θ), (C 3)
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and thus

r =
P

1 + e cos θ
. (C 4)

This is the parametric equation of an ellipse of semi-major axis a, semi-minor axis b,
half the foci distance c, and eccentricity e, with P = r0 + U/Cgr0 cos θ0 = b2/a, and
e = U/Cg = c/a. The interaction between a surface wave with wavenumber k

′ and a
bottom component with wavenumber l excites a surface wave with the sum wavenumber
k = k

′ + l. For a fixed k and current U , in the limit of U << Cg the resonant k
′ and l

follow ellipses described by their polar equation (C 4), that reduce to circle for U = 0.
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