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Pushdown games with unboundedness and

regular conditions

A. Bouquet1, O. Serre2, I. Walukiewicz3

Abstract

We consider infinitary two-player perfect information games defined

over graphs of configurations of a pushdown automaton. We show how

to solve such games when winning conditions are Boolean combina-

tions of a Büchi condition and a new condition that we call unbound-

edness. An infinite play satisfies the unboundedness condition if there

is no bound on the size of the stack during the play. We show that the

problem of deciding a winner in such games is EXPTIME-complete.

1 Introduction

Infinite two-player games with perfect information are one of the central
notions in verification and in theory of automata on infinite words and trees.
The result on existence of finite memory strategies for games with Muller
conditions is a necessary ingredient of most automata constructions [13, 15,
17]. The other important results are those describing ways of solving a game,
i.e., finding out from which vertices a given player has a winning strategy [16,
20]. The mu-calculus model checking problem is an instance of a game solving
problem [8, 7, 9]. The construction of discrete controllers can be also reduced
to the problem of solving games [1].

In the most standard setting of verification and synthesis one uses just
finite games. Still the model of pushdown games has attracted some atten-
tion [12, 2, 10, 11, 4, 5, 14, 18]. In this model a graph of a game is given
by a configuration graph of a pushdown automaton. Such games are more
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2LIAFA, Université Paris VII, 2 place Jussieu, Paris, France. serre@liafa.jussieu.fr
3LaBRI, CNRS, 351 cours de la Libération, 33405 Talence Cedex, France. Correspond-

ing author, igw@labri.fr

1



suitable to model phenomena like procedure invocation as stack is explicitly
present in the model.

Standard, Muller or parity winning conditions, are very useful and natural
for the applications mentioned above. Their expressiveness is also satisfac-
tory as any game with S1S definable (i.e. regular) winning conditions can
be reduced to a game with Muller or parity conditions. As noted in [6] for
pushdown games the situation changes and there exists “natural winning
conditions exploiting the infinity of pushdown transition graphs”.

We propose a new winning condition for pushdown games that we call un-
boundedness: an infinite play satisfies the unboundedness condition if there
is no bound on the size of the stack during the play. We consider Boolean
combinations of this condition and the parity condition, for example, a con-
dition saying that a stack is unbounded and some state appears infinitely
often. We characterize conditions for which there is a strategy with finite
memory for both players. We show that the problem of deciding a winner
in pushdown games with Boolean combinations of Büchi and unboundedness
conditions is EXPTIME-complete (in the size of the automaton defining the
game graph).

This research reported here was motivated by the paper of Cachat, Du-
parc and Thomas [6]. They consider the same class of games as we do here,
but only a single winning condition: some configuration repeats infinitely
often on the play. The negation of this condition is “strict stack unbound-
edness”: every configuration appears only finitely often on the play. While
“strict unboundedness” is a more restrictive condition than unboundedness,
we show that the two are equivalent if considered in disjunction with a parity
condition. In particular, in a pushdown game, a position is winning with un-
boundedness condition if and only if it is winning with strict unboundedness
condition.

As mentioned above, numerous verification and synthesis problems are
reducible to the problem of solving games. Hence, the algorithms that we
propose here can be used to extend the class of properties that can be model
checked or for which synthesis is possible. To give a simple example, our
algorithms can be used to solve the problem of checking that on every path
of a given pushdown system where the stack is unbounded some LTL property
holds.

In summary we show the following results:

• In section 3, for the conditions of the form “parity or unboundedness”
we have that from every configuration one of the players has a memo-
ryless winning strategy (Theorem 1).

• In section 4, for every Boolean combination of conditions “states from
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a given set appear infinitely often” and “unboundedness”, there is an
EXPTIME-algorithm deciding who is the winner in a given configura-
tion (Theorem 2). The complete proofs are given in sections 5, 6, 7,
and 8.

• For games with the condition “states from a given set appear infinitely
often” and “unboundedness” it is shown in subsection 8.1 that player
0 may need infinite memory in order to win. Hence it is a rare case
of a game which is algorithmically tractable but does not admit finite
memory strategies (Example on page 32).

The proof methods in all the cases are reductions to finite graphs of ex-
ponential size (in the size of the pushdown system) but with a linear number
of colors [18, 19]. We do not known how to adapt other methods of solving
pushdown games to the extension presented here. In particular it is not evi-
dent how to use the elegant method from [11] if only because of non-existence
of memoryless strategies as demonstrated in the example on page 32.

2 Definitions

The set of words (finite sequences) over an alphabet X is noted X∗ and
ε ∈ X∗ is the empty word. The set of infinite words (sequences of type ω) is
denoted by Xω.

Infinite two-player games An infinite two-player game on a finite or
infinite graph (V, E) is a tuple G = 〈V, V0, V1, E,Acc ⊆ V ω〉 where (V0, V1)
is a partition of V . The set of vertices V0 describes the positions for player
0, and V1 those for player 1. Whereas Acc defines the infinitary winning
condition. In figures, we will denote positions of player 0 by ovals and those
of player 1 by squares.

Two players, player 0 and player 1, play on G by moving a token between
vertices. A play from an initial position p0 ∈ V0 proceeds as follows : player
0 moves the token to a new position p1; then the player to whom p1 belongs,
makes a move reaching p2 and so on. Similarly, we define a play starting in
V1, where player 1 begins. If one of the players cannot make a move, the
other player wins. Otherwise, the play is infinite and results in an infinite
path ~p = p0p1p2 . . . ∈ V ω in the game graph. Player 0 wins if ~p ∈ Acc,
otherwise player 1 is the winner.
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Pushdown systems A pushdown system is a tuple A = 〈Q, Γ, ∆〉 where
Q is a finite set of states, Γ is a finite set of stack symbols, and

∆ : Q × Γ → P({pop(q), push(q, b) : q ∈ Q, b ∈ Γ})

is the transition relation. A configuration of A is a pair (q, u) with q ∈ Q and
u ∈ Γ∗. It denotes a global state of the pushdown system which consists of
a control state and a contents of the stack; the top of the stack is described
by the first letter of the word u.

A pushdown system A defines an infinite graph, Gr(A) called pushdown

graph whose the nodes are the configurations of A and the edges are defined
by the transitions, i.e., from a node (p, au) we have edges to:

(q, bau) whenever push(q, b) ∈ ∆(p, a);

(q, u) whenever pop(q) ∈ ∆(p, a).

Observe that any configuration with an empty stack has no successors. A
degree of every node is finite and bounded by |Q|(1 + |Γ|).

Pushdown games We have mentioned above that a pushdown system
A = 〈Q, Γ, ∆〉 defines a pushdown graph Gr(A) = 〈V, E〉. Now suppose that
we have a partition (Q0, Q1) of Q and an acceptance condition Acc ⊆ V ω.
These allow to define a pushdown game 〈V, V0, V1, E,Acc〉 where:

V0 = {(p, u) : p ∈ Q0, u ∈ Γ∗} V1 = {(p, u) : p ∈ Q1, u ∈ Γ∗}

Strategies, winning positions and determinacy A strategy for player
0 is a function σ : V ∗V0 → V assigning to every partial play ~p = p0p1 . . . pn

ending in a vertex pn from V0 a vertex σ(~p) ∈ V such that E(pn, σ(~p)) holds.
A strategy for player 0 is called memoryless if it depends only on the current
position, i.e.: for every v ∈ V0, and every ~p, ~q ∈ V ∗ we have σ(~pv) = σ(~qv).
A play ~p = p0p1 . . . respects a strategy σ for player 0 if whenever pi ∈ V0,
then pi+1 = σ(p0p1 . . . pi). In this case player 0 is said to follow the strategy
σ, during the play ~p. A strategy σ is winning for player 0 from a position p0

if all the plays beginning in p0 and respecting σ are winning. A position p0

is winning for player 0 if he has a winning strategy from p0. By W0(G) we
denote the set of winning positions for player 0 in the game G. Similarly we
define strategies and the set W1(G) of the winning positions for player 1.

Let σ be a memoryless strategy for player 0 in an infinite two-player game
G = 〈V, V0, V1, E, Acc〉. Strategy σ defines a game where only player 1 plays:

G(σ) = 〈V ′, V ′
0 , V

′
1 , E

′, Acc〉
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with V ′ being the set of positions where σ is winning, V ′
0 = V0 ∩ V ′, V ′

1 =
V1 ∩ V ′ and

E ′ =
(
E ∩ (V1 × V0)

)
∪ {(v, v′) : v ∈ V0, v

′ = σ(v)}

Note that all the plays in G(σ) are winning for player 0.

Strategies with memory A strategy with a memory M is a tuple σ =
〈ϕ, up, m0〉 such that :

ϕ : M × V → V up : M × V → M m0 ∈ M

where m0 is an initial state of the memory, up is a function that updates the
memory according to the moves played, and ϕ is a function giving the next
move depending on the memory of the play so far and the current position.

The memory update function is extended to sequences of positions:

up∗(m, ǫ) = m up∗(m, ~ppi) = up(up∗(m, ~p), pi)

Thus a strategy with memory σ is defined by :

σ(~ppi) = ϕ(up∗(m0, ~ppi), pi)

Winning conditions Throughout the paper, the winning conditions will
be Boolean combinations of parity and unboundedness conditions. A parity

winning condition is given by a coloring function Ω : Q → {0 . . . d} extended
to positions of pushdown games by Ω((q, u)) = Ω(q). An infinite path ~v is
winning for player 0 if in the sequence Ω(~v) = Ω(v0)Ω(v1) . . . the smallest
color appearing infinitely often is even. Formally, we have :

AccΩ = {~p = (p0, u0)(p1, u1) . . . ∈ V ω : lim inf
i→∞

Ω(pi) is even}

The unboundedness winning condition is

AccU = {~p = (p0, u0)(p1, u1) . . . ∈ V ω : lim sup
i→∞

|ui| = ∞}

It says that there is no bound on the size of the stack during the play.

Conditional pushdown games From a pushdown game G we can define
for any subset R ⊆ Q a conditional game G(R) where the winning plays for
player 0 and player 1 are the same as those in G, except for the plays reaching
a configuration of the form (q, ε) (i.e. a configuration with the empty stack).
A play reaching (q, ε) is declared winning for player 0 in G(R) iff q ∈ R.
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Attractors and traps An attractor for player 0 of a set of vertices S,
Attr 0(S), is the set of vertices from which player 0 has a strategy to reach
a vertex from S. The set Trap1(S) = V \ Attr 0(V \ S) is called an S trap

for player 1. This is the set of vertices where player 1 can prevent player 0
from leaving S. It is well known that from every vertex of Attr 0(S) player 0
has a memoryless strategy to reach S. Similarly, player 1 has a memoryless
strategy to keep the play in Trap1(S)

3 Memoryless strategies: parity union un-

boundedness

In this section we consider games with the winning condition that is a union
of unboundedness and parity conditions. In other words player 0 wins if he
manages to make the stack arbitrary large or to satisfy the parity condition.
We show that for conditions of this type both players have a memoryless
winning strategy from their respective winning sets of vertices. Moreover for
these conditions unboundedness is equivalent to strict unboundedness, i.e.,
to the requirement that every configuration is visited only finitely often.

Theorem 1

In a game with “unboundedness union parity” winning conditions, from each

position one of the players has a memoryless winning strategy. Moreover, the

winning memoryless strategy for player 0 guarantees that no configuration

appears infinitely often on the play or the parity condition is satisfied.

Proof

Let U0 be the set of positions from where player 0 can reach arbitrary large
stack size:

U0 =
⋂

i≥0

Attr 0(Q × Γ>i)

where Γ>i stands for the strings over Γ (i.e. stacks) of size bigger than i. The
complement of this set is

U1 =
⋃

j≥0

Attr 0(Q × Γ>j) =
⋃

j≥0

Trap1(Q × Γ≤j) =
⋃

j≥0

Aj

Observe that Aj = Trap1(Q × Γ≤j) is the set of configurations from which
player 1 can manage to keep the stack’s size bounded by j. By G|Aj

we denote
the game G restricted to Aj . On G|Aj

we have a parity winning condition
inherited from G. Let A0

j be the set of winning vertices for player 0 in G|Aj
.
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Similarly for A1
j . Finally, we consider the following set of positions:

P0 = {v | ∃k.∀j ≥ k. v ∈ A0
j}

Intuitively, the set P0 consists of positions v where player 0 can win the
parity game induced in any Aj (provided j is large enough). We claim that
W0 = U0 ∪ P0 is the set of winning positions for player 0 in G.

Let us first show that positions in U0 are winning for player 0 and that
he has a memoryless strategy for them. For any integer i, player 0 has a
memoryless winning strategy σi to reach the set Q×Γ>i from any position in
U0. From the sequence (σi)i≥0, we show how to extract a memoryless strategy
σU which is winning on U0 with respect to the unboundedness condition.

The main idea is the following: each node v has a finite number of succes-
sors, hence there must be a successor that corresponds to an infinite number
of strategies σi. It will be the value of σU(v). Nevertheless one must take
care in constructing such a strategy to keep it being winning in an infinite
number of subarenas Aj and therefore the construction must go by induction.
For this let us take any linear order over vertices of the game. We proceed
by induction on this ordering.

Take the first vertex v0. It has a finite number of possible successors, so
it has a successor w0 such that σi(v0) = w0 for an infinite number of indexes
i ∈ N. Let set I0 to be this (infinite) subset of indexes, and let σU(v0) = w0.
We thus have that σU equals σi on v0 for all index i ∈ I0. For the induction
step suppose we have defined the strategy for vertices v0, . . . , vi and we have
defined the sets I0, . . . , Ii at the same time. For the vertex vi+1 we consider
a successor wi+1 such that σj(vi+1) = wi+1 for infinitely many j ∈ Ii. We
set σU(vi+1) = wi+1 and set Ii+1 = {j ∈ Ii : σj(vi+1) = wi+1}. We thus have
that for all k ∈ Ii+1, strategies σU and σk are the same on {v0, v1 . . . , vi+1}.

To show that σU is winning, assume by contradiction that there is a play
Λ in which the stack’s size is bounded by some integer n. Let i be the smallest
index such that all the positions with a stack’s size smaller than n+1 appear
before i in our fixed linear ordering. Now, consider some k ∈ Ii, such that
k ≥ n+1 (such a k exists as Ii is infinite). As σU(vj) = σk(vj) for all 0 ≤ j ≤ i,
and as all the positions visited in Λ belong to Q× Γ≤n ⊂ {vj | 0 ≤ j < i}, it
follows that Λ can be seen as a play where player 0 follows her memoryless
winning strategy σk in the reachability game to Q × Γ>k. Therefore, in Λ,
a node of stack’s size k ≥ n + 1 is eventually reached, a contradiction. This
proves that σU is a memoryless winning strategy for player 0 from positions
in U0.

Using the same techniques, one defines a memoryless strategy on P0.
For this, one considers a sequence of memoryless strategies (σi)i≥1 where σi
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is a winning strategy in G|Ai
from A0

i . (Memoryless strategies exist as the
games considered have parity winning conditions). As for the unboundedness
condition, we construct a memoryless strategy σP and a decreasing sequence
of infinite sets (Ii)i≥0, such that for every integer k and every i ∈ Ik we have
σP (vj) = σi(vj) for all j ≤ k. Then we show that on every loop staying in
U1 and consistent with σP the smallest priority is even.

Finally, we define a strategy σ for player 0 on W0 by setting σ(v) = σU (v)
if v ∈ U0 and σ(v) = σP (v) if v ∈ P0. It is clear that this strategy is winning
on U0. A play from a vertex in P0 can either stay in P0 (and be winning for
player 0) or player 1 can decide to move to U0 but then he will lose too.

We note that W1 = (Q × Γ∗) \ W0 is the set of winning positions for
player 1. Indeed, for a node v ∈ W1 there is some j such that v belongs
to A1

j . Set Aj
1 is a trap for player 0, in which player 1 has a memoryless

winning strategy. We can merge all these strategies to obtain one memoryless
strategy on W1. Indeed, consider a sequence (ϕi)i≥0 of memoryless strategies
for player 1 where each ϕi is winning in G|Ai

from A1
i . Define a memoryless

strategy ϕ on W1 by setting ϕ(v) = ϕi(v) where i is the smallest index such
that v ∈ A1

i .
Finally, as player 0 has a memoryless winning strategy, one concludes

that on all the plays respecting this strategy where the parity condition does
not hold each configuration appears only finitely often. This follows from
the fact that if a memoryless winning strategy makes a loop and returns
to an already visited configuration then the smallest priority between two
occurrences of this configuration must be even (otherwise the strategy would
be loosing.) �

4 Solving games: Boolean combinations of

Büchi and unboundedness

Consider a pushdown game G defined by a pushdown system 〈Q, Γ, ∆〉 and a
partition of states (Q0, Q1). We assume here that we have a priority function
Ω : Q → {0, 1}. The conditions we are interested in are in one of the four
forms:

AccΩ ∪ AccU AccΩ ∪ AccU AccΩ ∩ AccU AccΩ ∩ AccU (1)

where AccΩ stands for the complement of AccΩ and similarly for AccU . These
four cases cover all possible Boolean combinations of AccΩ and AccU as, for
example, the condition AccΩ ∩ AccU = AccΩ ∪ AccU is just the winning
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condition for player 1 in the game with condition AccΩ ∪ AccU . The main
result of the paper is:

Theorem 2

The problem of deciding a winner from a given position in a given pushdown

game with conditions as in (1) is EXPTIME-complete.

The EXPTIME-hardness follows by the same reduction as for the push-
down games with regular winning conditions (cf. [18, 19]). This is because
the EXPTIME lower bound is obtained with reachability conditions. The ex-
istence of EXPTIME algorithms for the problem follow from Theorems 30,
42, 43, 3, and 17. Unfortunately, each case requires slightly different reduc-
tion. They can be unified but at the expense of substantial complication of
the notation. Complication of the notation is also the reason why we restrict
to Büchi conditions and do not state the result for all parity conditions.

5 Büchi union unboundedness

From the pushdown game G over priorities 0, 1 we construct a finite-state
Büchi game G̃ with coloring on edges as follows :

(p, a, R0, R1)

CS(p, a, R0, R1, q, b)

CM(p, a, R0, R1, q, b, S0, S1)

(q, b, S0, SΩ(q)) (s0, a, R0, R0) (s1, a, R0, R1)

tt ff

0
0

1

The positions of the game are as in the picture for every p, q ∈ Q, a, b ∈
G and R0, R1, S0, S1 ⊆ Q. From (p, a, R0, R1) the edge to tt is when we
have pop(q) ∈ ∆(p, a) and q ∈ RΩ(q). The edge to ff is when we have
pop(q) ∈ ∆(p, a) and q 6∈ RΩ(q). The edge to CS(p, a, R0, R1, q, b) is when
we have push(q, b) ∈ ∆(p, a). From a position CS(p, a, R0, R1, q, b) there
is an edge to CM(p, a, R0, R1, q, b, S0, S1) for every S0, S1 ⊆ Q. From a
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position CM(p, a, R0, R1, q, b, S0, S1) there is an edge, called push edge to
(q, b, S0, SΩ(q)), and edges to (s0, a, R0, R0) and (s1, a, R0, R1) for every s0 ∈
S0 and every s1 ∈ S1, respectively.

The positions for player 0 are all the (p, a, R0, R1) where p ∈ Q0, all the
positions of the form CS(. . .) and the position ff . The other positions are
for player 1.

Theorem 3

For an unboundedness union Büchi winning condition, for every a ∈ Γ, q ∈ Q
and R ⊆ Q:

(q, a) ∈ W0(G(R)) iff (q, a, R, R) ∈ W0(G̃)

The proof will follow from Lemmas 9 and 16. We will start with the left
to right implication. For it we take a memoryless strategy σ̃1 for player 1 in
G̃. We assume that σ̃1 is winning from all the positions winning for player
1. We translate σ̃1 into a strategy for player 1 in G.

Recall that G̃(σ̃1) be the game restricted to positions from where σ̃1 is
winning and to edges permitted by σ̃1.

5.1 Direct implication

Let σ̃1 be a memoryless strategy for player 1 in G̃. We assume that σ̃1 is
winning from all the positions winning for player 1. We translate σ̃1 into a
strategy for player 1 in G.

Every path in G̃(σ̃1) is winning for player 1, hence for every position π
in it, there is a finite number of positions of priority 0 that can be reached.
Let h(π) be this number.

Definition 4 For a position π = (p, a, R0, R1) in G̃ we define two sets:

T0(π) ={q : h((q, a, R0, R0)) < h(π)}

T1(π) ={q : h((q, a, R0, R1)) ≤ h(π)}

Definition 5 We define a strategy σ1 using σ̃1 as follows. Suppose that the
current position of the play in G is (qn, anu) and the current state of memory
is m = πn . . . π1 where πi = (qi, ai, R

i
0, R

i
1) for i = 1 . . . n.

• If the move from πn to CS(qn, an, R
n
0 , Rn

1 , p, c) is possible in G̃(σ̃1) then
we set

up(m, (p, cbu)) = (p, c, S0, SΩ(p))πn . . . π1

where S0 = Q \ T0(πn) and S1 = Q \ T1(πn). Note that Ω(p) ∈ {0, 1}.
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If qn ∈ Q1 then additionally we define:

σ1(m, (qn, anu)) = (p, canu)

• If the move from πn to ff is possible in G̃(σ̃1) then for p such that
p 6∈ Rn

Ω(p) and pop(p) ∈ δ(qn, an) we set:

up(m, (p, u)) = (p, an−1, R
n−1
0 , R)πn−2 . . . π1

where R = Rn−1
0 if p ∈ T0(πn−1), and R = Rn−1

1 otherwise.

If qn ∈ Q1 then we take p with π′
n−1 of the first kind if possible, if not

then of the second kind and define

σ1(m, (qn, bu)) = (p, u)

For all other cases the update function and the strategy function are not
defined.

Definition 6 Consider a memory m = πn . . . π1 where πi = (qi, ai, R
i
0, R

i
1)

for i = 1 . . . n. We say that m is consistent if all πi are positions of G̃(σ̃1)
and Ri+1

0 = Q \ T0(πi) and Ri+1
1 = Q \ T0(πi) or Ri+1

1 = Q \ T1(πi) for
i = 1, . . . , n − 1. We say that m is glued if Rn

0 = Rn
1 . The height of m is

h(m) = h(πn). The size of m, denoted |m| is n, i.e., the number of elements
in m. We denote by tail(m) the memory πn−1 . . . π1.

Lemma 7 Suppose that while playing according to strategy σ1 a position
(qn, an . . . a1) is reached with a consistent memory m = πn . . . π1 where πi =
(qi, ai, R

i
0, R

i
1), for i = 1 . . . n. The next move in G(σ1) is to one of the

following positions:

(p, can . . . a1). The updated memory is m′ = (p, c, S0, SΩ(p))πn . . . π1 and it is
consistent. We have that h(m′) < h(m). In addition, if Ω(p) = 0 then
m′ is glued.

(p, an−1 . . . a1). We have that the updated memory is of the form m′ =
(p, an−1, R

n−1
0 , R)πn−2 . . . π1 and it is consistent. Moreover, if m is glued

or Ω(p) = 0, then h(m′) < h(tail(m)) and m′ is glued. Otherwise, we
have that h(m′) ≤ h(tail(m)).

Proof

Consider the first clause. As m is consistent then πn is winning. If there
is a move from (qn, an . . . a1) to (p, can . . . a1) in G(σ1) then push(p, c) ∈
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δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1 and the move is suggested by
the strategy σ1. In both cases we have some path πn → CS(πn, p, c) →

CM(πn, p, c, S0, S1) →0 (p, c, S0, SΩ(p)) in G̃(σ̃1). Therefore (p, c, S0, SΩ(p))
is a winning position for player 1. From the definition of the strategy
σ1 we have that m′ = up(m, (p, can . . . a1)) = (p, c, S0, SΩ(p))πn . . . π1 with
S0 = Q \ T0(πn−1) and SΩ(p) = Q \ TΩ(p)(πn−1). Thus m′ is consistent. More-
over, since the edge CM(πn, p, c, S0, S1) →0 (p, c, S0, SΩ(p)) is 0-labeled we
have h(m′) < h(πn) = h(m) and if Ω(p) = 0 then m′ is glued by definition.

Consider the second clause. If there is a move from (qn, an . . . a1) to
(p, an−1 . . . a1) in G(σ1) then pop(p) ∈ δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1

and the move to ff is suggested by the strategy σ1. In both cases we have by
definition of σ1 that m′ = up(m, (p, an−1 . . . a1)) = (p, an−1, R

n−1
0 , R)πn−2 . . . π1

where R is either Rn−1
0 or Rn−1

1 , and p 6∈ Rn
Ω(p). By consistency of m we have

that p ∈ T0(πn−1) if Ω(p) = 0 , otherwise p belongs either to T0(πn−1) or

T1(πn−1). Therefore (p, an−1, R
n−1
0 , R) is a position of G̃(σ̃1) (since h is de-

fined on it) and h(m′) ≤ h(πn−1) = h(tail(m)). By consistency of m we have
also that Rn−1

0 = Q \ T0(πn−2) and Rn−1
1 equals either to Q \ T0(πn−2) or

Q\T1(πn−2). Thus m′ is consistent. Moreover if m is glued or Ω(p) = 0 then
p ∈ T0(πn−1). By definition of σ1 we get m′ = (p, an−1, R

n−1
0 , Rn−1

0 )πn−2 . . . π1

and it follows that h(m′) < h(πn−1) = h(tail(m)) and m′ is glued. �

Lemma 8 Consider two positions i < j such that |mi| = |mj| and such that
|mk| ≥ |mi| for all i ≤ k ≤ j. We have that h(mi) ≥ h(mj). Moreover if a
state of priority 0 appears between i + 1 and j then h(mi) > h(mj) and mj

is glued.

Proof

Let k1 = i ≤ k2 ≤ . . . ≤ kn = j indexes such that |mkl
| = |mi| for l = 1 . . . n.

By hypothesis and from Lemma 7 we have for every l = 2 . . . n that mkl−1

is of the form πmk(l−1)
, for some π. By Lemma 7 we have that h(mkl

) ≤
h(tail(mkl−1)) = h(mk(l−1)

). By induction we get h(mj) ≤ h(mi).
To show the second claim, first observe that by easy induction using

Lemma 7 we have that if mk is glued for some i ≤ k ≤ j then mj is also
glued.

We proceed with the proof of the second claim by induction on the dis-
tance between i and j. If j = i + 2 and 0 appears between i + 1 and i + 2
then either Ω(qi+1) = 0 and by Lemma 7 we have mi+1 = πmi is glued; or
Ω(qj) = 1. Whatever the case, Lemma 7 provides h(mi) > h(mj) and mj is
glued. Suppose now that the distance is bigger. If there is i < k < j with
|mk| = |mi| then we get the lemma by induction assumption applied to (i, k)
and (k, j). If not then we know that all the memories between i + 1 and

12



j − 1 are of size at least |mi+1|. Hence, we can use the induction assumption
there. We conclude with the help of Lemma 7. �

Lemma 9 Strategy σ1 is winning.

Proof

To show that σ1 is winning consider a play (q1, u1), (q2, u2), . . . respecting σ1

and let m1, m2, . . . , be the associated memories. Using Lemma 7 it follows
that for every i ≥ 1, if there is some j > i such that |mi| < |mj| then
h(mi) < h(mj). As by Lemma 7 the size of the stack at a position is the
same as the size of memory at this position we conclude that the size of the
stack is bounded; and there is a size of memory that is infinitely repeated. Let
N be the smallest size infinitely repeated. Therefore, there is a sequence of
positions i1, i2, . . . such that |mij | = N for all index ij and such that |mk| ≥ N
for all k ≥ i1. From Lemma 8 for every k ≥ 1, if 0 appears between ik +1 and
i(k+1) then h(mik) > h(mi(k+1)

), and we have h(mik) ≥ h(mi(k+1)
) otherwise.

Therefore 0 cannot appear infinitely often during the play respecting σ1.
�

5.2 Reciprocal implication

For the implication in the other direction we take a memoryless winning
strategy σ̃0 for player 0 in G̃. We assume that the strategy is winning from
every winning vertex for player 0. We will construct a winning strategy for
player 0 in G.

Let G̃(σ̃0) be the game restricted to positions from where σ̃0 is winning
and to edges permitted by σ̃0.

Every path in G̃(σ̃0) is winning. Hence for a position π there is a finite
number of edges of priority 1 that can be reached from π without crossing
an edge labeled by 0. Let h(π) be this number.

Definition 10 We say that a pair of sets of states (S0, S1) is selected for a
position π = (p, a, R0, R1) and q ∈ Q, b ∈ Γ, denoted (S0, S1) ∈ sel(π, q, b) if

there exist q′ ∈ Q, S ′
1, S

′′
1 ⊆ Q such that in G̃(σ̃0) there is a sequence:

π → CS(p, a, R0, R1, q
′, b) → CM(p, a, R0, R1, q

′, b, S0, S
′
1) → (q′, b, S0, S

′′
1 )

and (q, b, S0, S1) is reachable from (q′, b, S0, S
′′
1 ) without passing through a

push edge.

Definition 11 We say that a pair of sets of states (S0, S1) is 1-selected for a
position π = (p, a, R0, R1) and q ∈ Q, b ∈ Γ, denoted (S0, S1) ∈ sel1(π, q, b)

13



if there exist q′ ∈ Q, S ′
1 ⊆ Q such that Ω(q′) = 1 and in G̃(σ̃0) there is a

sequence:

π → CS(p, a, R0, R1, q
′, b) → CM(p, a, R0, R1, q

′, b, S0, S
′
1) → (q′, b, S0, S

′
1)

and (q, b, S0, S1) is reachable from (q′, b, S0, S
′
1) without passing through a

0-labeled edge.

Definition 12 We define a strategy σ0 using σ̃0 as follows. Suppose that
the current position in the play in G is (qn, an . . . a1) and the current memory
is m = πn . . . π1 where πi = (qi, ai, R

i
0, R

i
1) for i = 1 . . . n.

• If in G̃(σ̃0) there is a sequence:

πn → CS(qn, an, R
n
0 , Rn

1 , p, c) → CM(qn, an, R
n
0 , Rn

1 , p, c, S0, S1)

then we define

up(m, (p, can . . . a1)) = (p, c, S0, SΩ(p))πn . . . π1

Moreover if qn ∈ Q0 then we put:

σ0(m, (qn, an . . . a1)) = (p, can . . . a1)

• If in G̃(σ̃0) there is edge πn → tt then, for every p ∈ Rn
Ω(p) such that

pop(p) ∈ δ(qn, an) we have

up(m, (p, an−1 . . . a1)) = π′
n−1 . . . π1

where we set π′
n−1 = (p, an−1, R

n−1
0 , Rn−1

1 ) if Ω(p) = 1 and (Rn
0 , Rn

1 ) ∈
sel1(πn−1, qn, an). Otherwise we put π′

n−1 = (p, an−1, R
n−1
0 , Rn−1

0 ). More-
over if qn ∈ Q0 then we take some p ∈ Rn

Ω(p) with Ω(p) = 0 if possible,
and define:

σ0(m, (qn, an . . . a1)) = (p, an−1 . . . a1)

For all other cases the update function and the strategy function are unde-
fined.

Definition 13 Consider a memory m = πn . . . π1 where πi = (qi, ai, R
i
0, R

i
1),

for i = 1 . . . n. We say that m is consistent if all πi are positions of G̃(σ̃0)
and for all i = 1, . . . , n − 1 we have (Ri+1

0 , Ri+1
1 ) ∈ sel(πi, qi+1, ai+1). We

say that m is proper if (Rn
0 , Rn

1 ) ∈ sel1(πn−1, qn, an). The height of m is
h(m) = h(πn). The size of m, denoted |m| is n, i.e., the number of elements
in m. We denote by tail(m) the memory πn−1 . . . π1.

14



Lemma 14 Suppose that while playing according to strategy σ0 a position
(qn, an . . . a1) is reached with a consistent memory m = πn . . . π1 where πi =
(qi, ai, R

i
0, R

i
1) for i = 1 . . . n. The next move in G(σ0) is to one of the

following positions:

(p, can . . . a1). The updated memory is m′ = (p, c, S0, SΩ(p))πn . . . π1 and it is
consistent. Moreover if Ω(p) = 1 then m′ is proper.

(p, an−1 . . . a1). We have that the updated memory is of the form m′ =
(p, an−1, R

n−1
0 , R)πn−2 . . . π1 , and m′ is consistent. Moreover we have

h(m′) ≤ h(tail(m)). If m is proper and Ω(p) = 1 then h(m′) <
h(tail(m)), in addition if tail(m) is proper then m′ is proper.

Proof

Consider the first clause. As m is consistent then πn is winning. If there
is a move from (qn, an . . . a1) to (p, can . . . a1) in G(σ0) then push(p, c) ∈
δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1 and the move is suggested by
the strategy σ0. In both cases we have some path πn → CS(πn, p, c) →

CM(πn, p, c, S0, S1) → (p, c, S0, SΩ(p)) in G̃(σ̃0). Therefore (p, c, S0, SΩ(p)) is
a winning position for player 0 and (S0, SΩ(p)) ∈ sel(πn, p, c). In addition, if
Ω(p) = 1 then (S0, SΩ(p)) ∈ sel1(πn, p, c). From the definition of the strategy
σ0 we have that m′ = up(m, (p, can . . . a1)) = (p, c, S0, SΩ(p))πn . . . π1. Thus
m′ is consistent. In addition, if Ω(p) = 1 then m′ is proper.

Consider the second clause. As m is consistent, the position πn−1 is
winning, and (Rn

0 , Rn
1 ) ∈ sel(πn−1, qn, an), that is, there is in G̃(s̃0) some

path πn−1 → CS(πn−1, q, an) → CM(πn−1, q, an, S0, S1) → (q, an, S0, S
′
1) and

a path from (q, an, S0, S
′
1) to (qn, an, R

n
0 , Rn

1 ) without passing through a push

edge. By definition of G̃ we get that Rn
0 = S0 and Rn

1 equals either S1 (if
m is proper, by definition of sel1) or S0. By definition of σ0 we have m′ =
up(m, (p, an−1 . . . a1)) = (p, an−1, R

n−1
0 , R)πn−2 . . . π1, and p ∈ Rn

Ω(p). Thus

p belongs either to Rn
0 or S1 and we can deduce that (p, an−1, R

n−1
0 , R) is a

successor of CM(πn−1, qn, an, Rn
0 , S1). Therefore (p, an−1, R

n−1
0 , R) is winning

for player 0 and since by consistency of m we also have that (Rn−1
0 , Rn−1

1 ) ∈
sel(πn−2, qn−1, an−1) we deduce that (Rn−1

0 , R) ∈ sel(πn−2, qn−1, an−1). Thus
m′ is consistent. Moreover, we deduce that h(m′) ≤ h(πn−1) = h(tail(m)). If
m is proper and Ω(p) = 1 then p ∈ Rn

1 = S1, R = Rn
1 , and it follows that the

edge CM(πn−1, qn, an, S0, S1) → (p, an−1, R
n−1
1 , Rn−1

1 ) is labeled by 1, thus
we have h(m′) < h(πn−1) = h(tail(m)). In addition if tail(m) is proper
then by definition of sel1(πn−2, qn−1, an−1) and since (p, an−1, R

n−1
0 , Rn−1

1 ) is
a successor (through a 1-labeled edge) of CM(πn−1, qn, an, R

n
0 , Rn

1 ) we have
that m′ is proper.
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�

Lemma 15 Consider two positions i < j such that |mi| = |mj| and such
that |mk| ≥ |mi| for all i ≤ k ≤ j. We have that h(mi) ≥ h(mj). If only
states of priority 1 appear between i and j then we have that h(mi) > h(mj).

Proof

Let k1 = i ≤ k2 ≤ . . . ≤ kn = j indexes such that |mkl
| = |mi| for

l = 1 . . . n. By hypothesis and from Lemma 14 we have for every l = 2 . . . n
that mkl−1 is of the form πmk(l−1)

, for some π. From Lemma 14, we deduce
that h(mi) ≤ h(mj).

If there is only states of priority 1 between i and j then using Lemma 14
we have for every i < k < j that mk is proper. Therefore, for every l =
2 . . . n we have that mkl−1 is proper and Ω(qkl

) = 1, thus by Lemma 14
we get h(mkl

) < h(tail(mkl−1)) = h(mk(l−1)
). By induction it follows that

h(mj) < h(mi). �

Lemma 16 The strategy σ0 is winning.

Proof

To show that σ0 is winning, consider a play (q1, u1), (q2, u2), . . . respecting
σ0 and let m1, m2, . . . , be the associated memories.

Assume that the stack is bounded. As, by Lemma 14, the size of memory
at a position is the same as the size of stack at this position, we have that
there is a size of memory that is infinitely repeated. Let N be the smallest size
infinitely repeated. Therefore, there is a sequence of positions i1, i2, . . . such
that |mij | = N for all index ij and such that |mk| ≥ N for all k ≥ i1. By
contradiction assume that only states of priority 1 appear infinitely often.
Therefore, there is some k such that after ik only states colored by 1 are
visited. By Lemma 15, we have that h(mij ) > h(mi(j+1)

) for all j ≥ k. As <
is well-founded, it is not possible. Therefore the Büchi condition is satisfied.
�

6 co-Büchi union unboundedness

From the pushdown game G over priorities 1, 2 we construct a finite-state
parity game G̃ with coloring on edges as follows :
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(p, a, R1, R2)

CS(p, a, R1, R2, q, b)

CM(p, a, R1, R2, q, b, S1, S2)

(q, b, S1, SΩ(q)) (s1, a, R1, R1) (s2, a, R1, R2)

tt ff

0
1

2

The positions of the game are as in the picture for every p, q ∈ Q, a, b ∈
G and R1, R2, S1, S2 ⊆ Q. From (p, a, R1, R2) the edge to tt is when we
have pop(q) ∈ ∆(p, a) and q ∈ RΩ(q). The edge to ff is when we have
pop(q) ∈ ∆(p, a) and q 6∈ RΩ(q). The edge to CS(p, a, R1, R2, q, b) is when
we have push(q, b) ∈ ∆(p, a). From a position CS(p, a, R1, R2, q, b) there
is an edge to CM(p, a, R1, R2, q, b, S1, S2) for every S1, S2 ⊆ Q. From a
position CM(p, a, R1, R2, q, b, S1, S2) there is an edge, called push edge to
(q, b, S1, SΩ(q)), and edges to (s1, a, R1, R1) and (s2, a, R1, R2) for every s1 ∈
S1 and every s2 ∈ S2, respectively.

The positions for player 0 are all the (p, a, R1, R2) where p ∈ Q0, all the
positions of the form CS(. . .) and the position ff . The other positions are
for player 1.

Theorem 17

For an unboundedness union co-Büchi winning condition, for every a ∈ Γ,

q ∈ Q and R ⊆ Q:

(q, a) ∈ W0(G(R)) iff (q, a, R, R) ∈ W0(G̃)

The proof will follow from Lemmas 23 and 29. We will start with the left
to right implication.

Recall that G̃(σ̃) is the game restricted to positions from where σ̃ is
winning and to edges permitted by σ̃.

6.1 Direct implication

We take a memoryless strategy σ̃1 for player 1 in G̃. We assume that σ̃1 is
winning from all the positions winning for player 1. We translate σ̃1 into a
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strategy for player 1 in G.
Every path in G̃(σ̃1) is winning for player 1, hence for every position π

in it, there is a finite number of positions of priority 0 that can be reached.
Let τ0(π) be this number. There is also a finite number of positions of
priority 2 that can be reached before going through a position of priority 1
or 0. Denote by τ2(π) this number. Let the height of a position π be a pair
h(π) = (τ0(π), τ2(π)). We will compare heights using lexicographic ordering
4 on pairs. We also use the relation (τ0, τ2) 40 (τ ′

0, τ
′
2) which holds if τ0 ≤ τ ′

0.

Definition 18 For a position π = (p, a, R1, R2) in G̃ we define two sets:

T1(π) ={s : ∃q ∈ Q, b ∈ Γ, S1, S2 ⊆ Q.

π → CS(π, q, b) → CM(π, q, b, S1, S2) →
1 (s, a, R1, R1)

is a path inG̃(σ̃1)}

T2(π) ={s : ∃q ∈ Q, b ∈ Γ, S1, S2 ⊆ Q.

π → CS(π, q, b) → CM(π, q, b, S1, S2) →
2 (s, a, R1, R2)

is a path inG̃(σ̃1)}

Definition 19 We define a strategy σ1 using σ̃1 as follows. Suppose that
the current position of the play in G is (qn, anu) and the current state of
memory is m = πn . . . π1 where πi = (qi, ai, R

i
1, R

i
2) for i = 1 . . . n.

• If the move from πn to CS(qn, an, R
n
1 , Rn

2 , p, c) is possible in G̃(σ̃1) then
we set

up(m, (p, cbu)) = (p, c, S1, SΩ(p))πn . . . π1

where S1 = Q \ T1(πn) and S2 = Q \ T2(πn). Note that Ω(p) ∈ {1, 2}.

If qn ∈ Q1 then additionally we define:

σ1(m, (qn, anu)) = (p, canu)

• If the move from πn to ff is possible in G̃(σ̃1) then for p such that
p 6∈ Rn

Ω(p) and pop(p) ∈ δ(qn, an) we set:

up(m, (p, u)) = π′
n−1πn−2 . . . π1

where π′
n−1 = (p, an−1, R

n−1
1 , Rn−1

2 ) if Rn
2 = Q \ T2(πn−1) and Ω(p) = 2.

Otherwise we have π′
n−1 = (p, an−1, R

n−1
1 , Rn−1

1 ).

If qn ∈ Q1 then we take p with π′
n−1 of the first kind if possible, if not

then of the second kind and define:

σ1(m, (qn, bu)) = (p, u)

18



For all other cases the update function and the strategy function are not
defined.

Definition 20 Consider a memory m = πn . . . π1 where πi = (qi, ai, R
i
1, R

i
2).

We say that m is consistent if all πi are positions of G̃(σ̃1) and Ri+1
1 =

Q\T1(πi) and Ri+1
2 = Q\T1(πi) or Ri+1

2 = Q\T2(πi) for all i = 1, . . . , n−1. We
say that m is proper if Rn

2 = Q \T2(πn−1). The height of m is h(m) = h(πn).
The size of m, denoted |m| is n, i.e., the number of elements in m. We denote
by tail(m) the memory πn−1 . . . π1.

Lemma 21 Suppose that while playing according to strategy σ1 a position
(qn, an . . . a1) is reached with a consistent memory m = πn . . . π1 where πi =
(qi, ai, R

i
1, R

i
2). The next move in G(σ1) is to one of the following positions:

(p, can . . . a1). The updated memory is m′ = (p, c, S1, SΩ(p))πn . . . π1 and it
is consistent. We have that h(m′) ≺0 h(m). In addition, if Ω(p) = 2,
then m′ is proper.

(p, an−1 . . . a1). We have that the updated memory is of the form m′ =
(p, an−1, R

n−1
1 , R)πn−2 . . . π1 and it is consistent. Also, we have that

h(m′) 40 h(πn−1). Moreover, if m is proper and Ω(p) = 2, then
h(m′) ≺ h(πn−1). In addition, if tail(m) is proper then m′ is proper.

Proof

Consider the first clause. As m is consistent then πn is winning. If there
is a move from (qn, an . . . a1) to (p, can . . . a1) in G(σ1) then push(p, c) ∈
δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1 and the move is suggested by
the strategy σ1. In both cases we have some path πn → CS(πn, p, c) →

CM(πn, p, c, S1, S2) →0 (p, c, S1, SΩ(p)) in G̃(σ̃1). Therefore (p, c, S1, SΩ(p))
is a winning position for player 1. From the definition of the strategy
σ1 we have that m′ = up(m, (p, can . . . a1)) = (p, c, S1, SΩ(p))πn . . . π1 with
S1 = Q \ T1(πn−1) and SΩ(p) = Q \ TΩ(p)(πn−1). Thus m′ is consistent. More-
over, since the edge CM(πn, p, c, S1, S2) →0 (p, c, S1, SΩ(p)) is 0-labeled we
have h(m′) ≺0 h(πn) = h(m) and if Ω(p) = 2 then m′ is proper by definition.

Consider the second clause. If there is a move from (qn, an . . . a1) to
(p, an−1 . . . a1) in G(σ1) then pop(p) ∈ δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1

and the move to ff is suggested by the strategy σ1. In both cases we have
by definition of σ1 that m′ = (p, an−1, R

n−1
1 , R)πn−2 . . . π1 where R is either

Rn−1
1 or Rn−1

2 , and p 6∈ Rn
Ω(p). By consistency of m we have that p ∈ T1(πn−1)

if Ω(p) = 1, otherwise p belongs either to T1(πn−1) or T2(πn−1). Therefore

(p, an−1, R
n−1
1 , R) is a position of G̃(σ̃1) and h(m′) 40 h(πn−1) = h(tail(m)).

By consistency of m we have also that Rn−1
1 = Q\T1(πn−2), and Rn−1

2 equals
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either to Q \ T1(πn−2) or Q \ T2(πn−2) . Thus m′ is consistent. Moreover if
m is proper and Ω(p) = 2 then p ∈ T2(πn−1) and by definition of σ1 we get
m′ = (p, an−1, R

n−1
1 , Rn−1

2 )πn−2 . . . π1 and it follows that h(m′) ≺ h(πn−1) =
h(tail(m)). If additionaly tail(m) is proper then Rn−1

2 = Q\T2(πn−2), hence
m′ is proper. �

Lemma 22 Consider two positions i < j such that |mi| = |mj| and such
that |mk| ≥ |mi| for all i ≤ k ≤ j. If only states of priority 2 appear between
i and j then we have that h(mj) ≺ h(mi).

Proof

Let k1 = i ≤ k2 ≤ . . . ≤ kn = j indexes such that |mkl
| = |mi| for l = 1 . . . n.

By hypothesis and from Lemma 21 we have for every l = 2 . . . n that mkl−1

is of the form πmk(l−1)
, for some π.

If there are only states of priority 2 between i and j then using Lemma 21
we have for every i < k < j that mk is proper. Therefore, for every l = 2 . . . n
we have that mkl−1 is proper and Ω(qkl

) = 2, thus by Lemma 21 we get
h(mkl

) ≺ h(tail(mkl−1)) = h(mk(l−1)
). By induction it follows that h(mj) ≺

h(mi). �

Lemma 23 Strategy σ1 is winning.

Proof

To show that σ1 is winning consider a play (q1, u1), (q2, u2), . . . respecting
σ1 and let m1, m2, . . . , be the associated memories. Using Lemma 21 it
follows that for every i ≥ 1, if there is some j > i such that |mi| < |mj | then
h(mi) ≺0 h(mj). As by Lemma 21 the size of the stack at a position is the
same as the size of memory at this position we conclude that the size of the
stack is bounded; and there is a size of memory that is infinitely repeated.
Let N be the smallest size infinitely repeated. Therefore, there is a sequence
of positions i1, i2, . . . such that |mij | = N for all index ij and such that
|mk| ≥ N for all k ≥ i1.

Now, let us show that a state of priority 1 appears infinitely often on the
play. If not, after some position ik, only states of priority 2 are visited. Using
Lemma 22 it follows that h(mij+1

) ≺ h(mij ) for all j ≥ k. But, as 4 is well
founded, it leads to a contradiction. Hence, an infinite number of states of
priority 1 are visited. �
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6.2 Reciprocal implication

For the implication in the other direction we take a memoryless winning
strategy σ̃0 for player 0 in G̃. We assume that the strategy is winning from
every winning vertex for player 0. We will construct a winning strategy for
player 0 in G.

Every path in G̃(σ̃0) is winning. Hence for a position π there is a finite
number of edges of priority 1 that can be reached from π without crossing
an edge labeled by 0. Let h(π) be this number.

Definition 24 We say that a pair of sets of states (S1, S2) is selected for a
position π = (p, a, R1, R2) and q ∈ Q, b ∈ Γ, denoted (S1, S2) ∈ sel(π, q, b) if

there exist q′ ∈ Q, S ′
2, S

′′
2 ⊆ Q such that in G̃(σ̃0) there is a sequence:

π → CS(p, a, R1, R2, q
′, b) → CM(p, a, R1, R2, q

′, b, S1, S
′
2) → (q′, b, S1, S

′′
2 )

and (q, b, S1, S2) is reachable from (q′, b, S1, S
′′
2 ) without passing through a

push edge.

Definition 25 We define a strategy σ0 using σ̃0 as follows. Suppose that
the current position in the play in G is (qn, an . . . a1) and the current memory
is m = πn . . . π1 where πi = (qi, ai, R

i
1, R

i
2) for i = 1 . . . n.

• If in G̃(σ̃0) there is a sequence:

πn → CS(qn, an, R
n
1 , Rn

2 , p, c) → CM(qn, an, R
n
1 , Rn

2 , p, c, S1, S2)

then we define

up(m, (p, can . . . a1)) = (p, c, S1, SΩ(p))πn . . . π1

Moreover if qn ∈ Q0 then we put:

σ0(m, (qn, an . . . a1)) = (p, can . . . a1)

• If in G̃(σ̃0) there is edge πn → tt then, for every p ∈ Rn
Ω(p) such that

pop(p) ∈ δ(qn, an) we have

up(m, (p, an−1 . . . a1)) = π′
n−1 . . . π1

where π′
n−1 = (p, an−1, R

n−1
1 , Rn−1

1 ) if Ω(p) = 1 or Rn
2 = Rn

1 . Otherwise
we put π′

n−1 = (p, an−1, R
n−1
1 , Rn−1

2 ).

Moreover if qn ∈ Q0 then we take some p ∈ Rn
Ω(p) of the first kind if

possible, if not of the second kind, and define:

σ0(m, (qn, an . . . a1)) = (p, an−1 . . . a1)
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For all other cases the update function and the strategy function are unde-
fined.

Definition 26 Consider a memory m = πn . . . π1 where πi = (qi, ai, R
i
1, R

i
2).

We say that m is consistent if all πi are positions of G̃(σ̃0) and for all i =
1, . . . , n− 1 we have (Ri+1

1 , Ri+1
2 ) ∈ sel(πi, qi+1, ai+1). We say that m is glued

if Rn
1 = Rn

2 . The height of m is h(m) = h(πn). The size of m, denoted |m|
is n, i.e., the number of elements in m. We denote by tail(m) the memory
πn−1 . . . π1.

Lemma 27 Suppose that while playing according to strategy σ0 a position
(qn, an . . . a1) is reached with a consistent memory m = πn . . . π1 where πi =
(qi, ai, R

i
1, R

i
2), for i = 1 . . . n. The next move in G(σ1) is to one of the

following positions:

(p, can . . . a1). The updated memory is m′ = (p, c, S1, SΩ(p))πn . . . π1 and it is
consistent.

(p, an−1 . . . a1). We have that the updated memory is of the form m′ =
(p, an−1, R

n−1
1 , R)πn−2 . . . π1 with R equals either Rn−1

1 or Rn−1
2 , and

it is consistent. Moreover h(m′) ≤ h(tail(m)) and h(m′) < h(tail(m))
if m is glued or Ω(p) = 1.

Proof

Consider the first clause. As m is consistent then πn is winning. If there
is a move from (qn, an . . . a1) to (p, can . . . a1) in G(σ0) then push(p, c) ∈
δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1 and the move is suggested by
the strategy σ0. In both cases we have some path πn → CS(πn, p, c) →

CM(πn, p, c, S1, S2) → (p, c, S1, SΩ(p)) in G̃(σ̃0). Therefore (p, c, S1, SΩ(p)) is
a winning position for player 0 and (S1, SΩ(p)) ∈ sel(πn, p, c). From the
definition of the strategy σ0 we have that m′ = up(m, (p, can . . . a1)) =
(p, c, S1, SΩ(p))πn . . . π1. Thus m′ is consistent.

Consider the second clause. As m is consistent, the position πn−1 is win-
ning, and (Rn

1 , Rn
2 ) ∈ sel(πn−1, qn, an), that is, there is in G̃(σ̃0) some path

πn−1 → CS(πn−1, q, an) → CM(πn−1, q, an, S1, S2) → (q, an, S1, S
′
2) and a

path from (q, an, S1, S
′
2) to (qn, an, R

n
1 , R

n
2 ) without passing through a push

edge. By definition of G̃ we get that Rn
1 = S1 and Rn

2 equals either S2 or S1.
By definition of σ0 we have p ∈ Rn

Ω(p). Thus p belongs either to Rn
1 or S2.

Hence (p, an−1, R
n−1
1 , R) is a successor of CM(πn−1, qn, an, Rn

1 , S2). There-
fore (p, an−1, R

n−1
1 , R) is winning for player 0. Since by consistency of m we

have that (Rn−1
1 , Rn−1

2 ) ∈ sel(πn−2, qn−1, an−1), we deduce that (Rn−1
1 , R) ∈
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sel(πn−2, qn−1, an−1). Thus m′ is consistent. Moreover, we deduce that
h(m′) ≤ h(πn−1) = h(tail(m)) and if m is glued or Ω(p) = 1 then p ∈ S1 = Rn

1

and it follows that the edge CM(πn−1, qn, an, S1, S2) → (p, an−1, R
n−1
1 , Rn−1

1 )
is labeled by 1, and we have h(m′) < h(πn−1) = h(tail(m)). �

Lemma 28 Consider two positions i < j such that |mi| = |mj| and such
that |mk| ≥ |mi| for all i ≤ k ≤ j. We have that h(mi) ≥ h(mj). Moreover
if a state of priority 1 appears between i + 1 and j then h(mi) > h(mj) and
mj is glued.

Proof

Let k1 = i ≤ k2 ≤ . . . ≤ kn = j indexes such that |mkl
| = |mi| for

l = 1 . . . n. By hypothesis and from Lemma 27 we have for every l = 2 . . . n
that mkl−1 is of the form πmk(l−1)

, for some π. From Lemma 27, we deduce
that h(mi) ≤ h(mj).

To show the second claim, first observe that by easy induction using
Lemma 27 we have that if mk is glued for some i < k < j then mj is also
glued.

We proceed with the proof of the second claim by induction on the dis-
tance between i and j. If j = i + 2 and 1 appears between i + 1 and i + 2
then either Ω(qi+1) = 1 and by Lemma 27 we have mi+1 = πmi is glued; or
Ω(qj) = 1. Whatever the case, Lemma 27 provides h(mi) > h(mj) and mj

is glued. Suppose now that the distance is bigger. If there is i < k < j with
|mk| = |mi| then we get the lemma by induction assumption applied to (i, k)
and (k, j). If not then we know that all the memories between i + 1 and
j − 1 are of size at least |mi+1|. Hence, we can use the induction assumption
there. We conclude with the help of Lemma 27. �

Lemma 29 The strategy σ0 is winning.

Proof

To show that σ1 is winning consider, a play (q1, u1), (q2, u2), . . . respecting
σ0 and let m1, m2, . . . , be the associated memories.

Assume that the stack is bounded. As, by Lemma 27, the size of memory
at a position is the same as the size of stack at this position, we have that
there is a size of memory that is infinitely repeated. Let N be the smallest
size infinitely repeated. Therefore, there is a sequence of positions i1, i2, . . .
such that |mij | = N for all index ij and such that |mk| ≥ N for all k ≥ i1.
By Lemmas 28 we have that h(mij ) ≤ h(mij+1

) and the inequality is strict if
there is a state of priority 1 between ij + 1 and ij+1. As < is well-founded,
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it is not possible that there are infinitely many states of priority 1 in the
sequence. Therefore the co-Büchi condition is satisfied. �

7 co-Büchi and unboundedness

In this section we consider pushdown games with the condition: “red states
appear only finitely often and the stack is unbounded”. Formally, we have a
priority function Ω assigning to the states of the game priorities 1 or 2. The
set of winning paths is:

Acc(Ω ∧ U) = AccΩ ∩ AccU

Fix a pushdown game G defined by a pushdown system 〈Q, Γ, ∆〉, a parti-
tion of states (Q0, Q1) and a priority function Ω : Q → {1, 2}. We will reduce

the problem of solving this game to that of solving a finite parity game G̃.
The game G̃ is presented below. For clarity it has coloring attached to edges
not to vertices.

(p, a, R1, R2)

CS(p, a, R1, R2, q, b)

CM(p, a, R1, R2, q, b, S1, S2)

(q, b, S1, SΩ(q)) (s1, a, R1, R1) (s2, a, R1, R2)

tt ff

Ω(q) 1 3

The positions of the game are as in the picture for every p, q ∈ Q, a, b ∈
Γ and R1, R2, S1, S2 ⊆ Q. From (p, a, R1, R2) the edge to tt is when we
have pop(q) ∈ ∆(p, a) and q ∈ RΩ(q). The edge to ff is when we have
pop(q) ∈ ∆(p, a) and q 6∈ RΩ(q). The edge to CS(p, a, R1, R2, q, b) is when
we have push(q, b) ∈ ∆(p, a). From a position CS(p, a, R1, R2, q, b) there
is an edge to CM(p, a, R1, R2, q, b, S1, S2) for every S1, S2 ⊆ Q. From a
position CM(p, a, R1, R2, q, b, S1, S2) there is an edge, called push edge to
(q, b, S1, SΩ(q)), and edges to (s1, a, R1, R1) and (s2, a, R1, R2) for every s1 ∈
S1 and every s2 ∈ S2, respectively.
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The positions for player 0 are all the (p, a, R1, R2) where p ∈ Q0, all the
positions of the form CS(. . .) and the position ff . The other positions are
for player 1.

The following theorem shows the correspondence between G and G̃.

Theorem 30

For every a ∈ Γ, q ∈ Q and R ⊆ Q:

(q, a) ∈ W0(G(R)) iff (q, a, R, R) ∈ W0(G̃)

The proof will follow from Lemmas 35 and 41.
We will start with the left to right implication.

7.1 Direct

We take a memoryless strategy σ̃1 for player 1 in G̃. We assume that σ̃1 is
winning from all the positions winning for player 1. We translate σ̃1 into a
strategy σ1 for player 1 in G.

Recall that G̃(σ̃1) is the game restricted to positions from where σ̃1 is

winning and to edges permitted by σ̃1. Let Ẽ be the set of edges of G̃(σ̃1).

Every path in G̃(σ̃1) is winning for player 1, hence for every position π in
it there is a finite number of edges of priority 2 that can be reached without
going through an edge of priority 1. Let h(π) be this number.

Definition 31 For a position π = (p, a, R1, R2) in G̃ we define two sets:

T1(π) ={s : ∃q ∈ Q, b ∈ Γ, S1, S2 ⊆ Q.

π → CS(π, q, b) → (CM(π, q, b, S1, S2) →
1 (s, a, R1, R1))

is a path in G̃(σ̃1)}

T2(π) ={s : ∃q ∈ Q, b ∈ Γ, S1, S2 ⊆ Q.

π → CS(π, q, b) → (CM(π, q, b, S1, S2) →
3 (s, a, R1, R2))

is a path in G̃(σ̃1)}

We denote by Residues the set Q×Γ×2Q ×2Q. Using σ̃1, we construct a
strategy with memory σ1 = 〈ϕ, up, m0〉 for player 1 in G(R). The memory’s
domain will be M = (Residues)∗ and the update function will use this mem-
ory as a stack. At the beginning of the play the initial state of the memory
is m0 = (q, a, R, R).

Definition 32 We define a strategy σ1 = 〈ϕ, up, m0 = (q, a, R, R)〉 for player
1 in G(R) from (q, a). Suppose that the current position of the play in G
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is (qn, anu) and the current state of memory is m = πn . . . π1 where πi =
(qi, ai, R

i
1, R

i
2), for i = 1 . . . n.

• If the move from πn to CS(qn, an, R
n
1 , Rn

2 , p, c) is possible in G̃(σ̃1) then
we set

up(m, (p, canu)) = (p, c, S1, SΩ(p))πn . . . π1

where S1 = Q \ T1(πn) and S2 = Q \ T2(πn). Note that Ω(p) ∈ {1, 2}.

If qn ∈ Q1 then additionally we define:

ϕ(m, (qn, anu)) = (p, canu)

• If the move from πn to ff is possible in G̃(σ̃1) and if n > 1 then for p
such that p 6∈ Rn

Ω(p) and pop(p) ∈ ∆(qn, an) we set:

up(m, (p, u)) = (p, an−1, R
n−1
1 , R)πn−2 . . . π1

where R = Rn−1
2 if p ∈ T2(πn−1), and R = Rn−1

1 otherwise.

If qn ∈ Q1 then we take some arbitrary p 6∈ Rn
Ω(p) and define :

ϕ(m, (qn, anu)) = (p, u)

For all other cases the update function and the strategy function are not
defined.

It is not easy to give the intuitions behind this definition. Basically the
strategy σ1 follows the strategy σ̃1. The problem is that in G̃ we do not have
a stack so when in G the play makes a pop, in G̃ we expect to arrive at the
state ff which is winning for player 1. In this case we need to know that we
can continue (and win) in G. The role of the sets T1(π) and T2(π) is precisely
to guarantee this.

Definition 33 Consider a memory m = πn . . . π1 where πi = (qi, ai, R
i
1, R

i
2),

for i = 1 . . . n. We say that m is consistent if all πi are positions of G̃(σ̃1)
and Ri+1

1 = Q \ T1(πi) and Ri+1
2 = Q \ T2(πi) or Ri+1

2 = Q \ T1(πi) for all
i = 1, . . . , n − 1. We say that m is proper if Rn

2 = Q \ T2(πn−1). The height

of m is h(m) = h(πn). The size of m, denoted |m| is n, i.e., the number of
elements in m.

The following lemma abstracts important properties of the strategy σ1.
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Lemma 34 Suppose that while playing according to strategy σ1 a position
(qn, an . . . a1) is reached with a consistent memory m = πn . . . π1 where πi =
(qi, ai, R

i
1, R

i
2) for i = 1, . . . , n. The next move in G(σ1) is to one of the

following positions:

(p, can . . . a1). We have that the updated memory is m′ = (p, c, S1, S2)πn . . . π1

and it is consistent. Moreover if Ω(p) = 2 then h(m′) < h(m) and m′

is proper.

(p, an−1 . . . a1). We have that the updated memory is of the form m′ =
(p, an−1, S1, S2)πn−2 . . . π1 and it is consistent. In the case when m
is proper and Ω(p) = 2 we have h(m′) ≤ h(πn−1) and if additionaly
tail(m) is proper then m′ is proper.

Proof

Consider the first clause. As m is consistent then πn is winning. If there
is a move from (qn, an . . . a1) to (p, can . . . a1) in G(σ1) then push(p, c) ∈
δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1 and the move is suggested by
the strategy σ1. In both cases we have some path πn → CS(πn, p, c) →

CM(πn, p, c, S1, S2) →0 (p, c, S1, SΩ(p)) in G̃(σ̃1). Therefore (p, c, S1, SΩ(p))
is a winning position for player 1. From the definition of the strategy
σ1 we have that m′ = up(m, (p, can . . . a1)) = (p, c, S1, SΩ(p))πn . . . π1 with
S1 = Q \ T1(πn−1) and S2 = Q \ T2(πn−1). Thus m′ is consistent. More-
over, if Ω(p) = 2 then m′ is proper by definition. In this case there is also a

path from πn to (p, c, S1, S2) in G̃(σ̃1) with an edge labeled by 2 and no edge
labeled by 1. Hence h(m′) = h(p, c, S1, S2) < h(πn) = h(m).

Consider the second clause. If there is a move from (qn, an . . . a1) to
(p, an−1 . . . a1) in G(σ1) then pop(p) ∈ δ(qn, an) and either qn ∈ Q0 or
qn ∈ Q1 and the move to ff is suggested by the strategy σ1. In both
cases we have by definition of σ1 that m′ = (p, an−1, R

n−1
1 , R)πn−2 . . . π1

where R is either Rn−1
1 or Rn−1

2 , and p 6∈ Rn
Ω(p). By consistency of m

we have that p ∈ T1(πn−1) if Ω(p) = 1, otherwise p belongs either to

T1(πn−1) or T2(πn−1). Therefore (p, an−1, R
n−1
1 , R) is a position of G̃(σ̃1).

By consistency of m we have also that Rn−1
1 = Q \ T1(πn−2), and Rn−1

2

equals either to Q \ T1(πn−2) or Q \ T2(πn−2) . Thus m′ is consistent.
Moreover if m is proper and Ω(p) = 2 then p ∈ T2(πn−1) and by def-
inition of σ1 we get m′ = (p, an−1, R

n−1
1 , Rn−1

2 )πn−2 . . . π1 and it follows
that h(m′) ≤ h(πn−1) = h(tail(m)). If additionaly tail(m) is proper then
Rn−1

2 = Q \ T2(πn−2), hence m′ is proper. �

Lemma 35 Strategy σ1 is winning.
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Proof

To show that σ1 is winning consider a play (q1, u1), (q2, u2), . . . respecting σ1;
let m1, m2, . . . , be the associated memories. If a state of priority 1 appears
infinitely often on the play then it is winning for player 1.

If not then we will need one observation. For a memory m = πn . . . π1

define θ(m) = max{k + h(πk) : k = 1, . . . , n}. From Lemma 34 it follows
that for every position i:

if mi is proper and Ω(qi+1) = 2 then θ(mi) ≥ θ(mi+1) (2)

Indeed, assume that mi = πn . . . π1. From Lemma 34 we have the follow-
ing inequalities :

if |mi| < |mi+1| then mi+1 = πn+1mi and

θ(mi+1) = max(n + 1 + h(πn+1), θ(mi))

≤ max(n + h(mi), θ(mi)) = max(n + h(πn), θ(mi)) = θ(mi)

if |mi| > |mi+1| then mi+1 = π′
n−1 . . . π1 and

θ(mi+1) = max(n − 1 + h(π′
n−1), θ(πn−2 . . . π1))

≤ max(n − 1 + h(π′
n−1), θ(mi))

≤ max(n − 1 + h(πn−1), θ(mi)) = θ(mi).

Which proves the observation.
Consider now the position i after which no state of priority 1 appears.

Take a position k > i such that |mk| ≤ |mj | for all j > k. By induction,
using Lemma 34 we get that after k all the memories of size bigger than
|mk| are proper. By (2) we have that all the memories after k have their size
bounded by θ(mk) because |mj| ≤ |mj | + h(mj) ≤ θ(mj) ≤ θ(mk). But, by
Lemma 34 the size of the stack at a position is the same as the size of the
memory at this position. Hence, the play is winning as the size of the stack
is bounded. �

7.2 Reciprocal

For the implication in the other direction we take a memoryless winning
strategy σ̃0 for player 0 in G̃. We assume that the strategy is winning from
every winning vertex for player 0. We will construct a winning strategy for
player 0 in G.

Recall that G̃(σ̃0) denotes the game restricted to positions from where σ̃0

is winning and to edges permitted by σ̃0.
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Every path in G̃(σ̃0) is winning. Hence for a position π there is a finite
number of edges of priority 1 that can be reached from π; denote this number
by τ1(π). There is also a finite number of edges labeled 3 reachable without
crossing an edge labeled 2 or 1. Denote this number by τ3(π). Let the height

of a position π be a pair h(π) = (τ1(π), τ3(π)). We will compare heights using
lexicographic ordering 4 on pairs. We also use the relation (τ1, τ3) 41 (τ ′

1, τ
′
3)

which holds if τ1 ≤ τ ′
1.

Definition 36 We define a strategy σ0 using σ̃0 as follows. Suppose that
the current position in the play in G is (qn, an . . . a1) and the current memory
is m = πn . . . π1 where ∀i. πi = (qi, ai, R

i
1, R

i
2).

• If in G̃(σ̃0) there is a sequence:

πn → CS(qn, an, R
n
1 , Rn

2 , p, c) → CM(qn, an, R
n
1 , Rn

2 , p, c, S1, S2)

then we define

up(m, (p, can . . . a1)) = (p, c, S1, SΩ(p))πn . . . π1

Moreover if qn ∈ Q0 then we put:

ϕ(m, (qn, an . . . a1)) = (p, can . . . a1)

• If in G̃(σ̃0) there is edge πn → tt then for every p ∈ Rn
Ω(p) such that

pop(p) ∈ ∆(qn, an) we have

up(m, (p, an−1 . . . a1)) = (p, an−1, R
n−1
1 , R)πn−2 . . . π1

where R = Rn−1
1 if Ω(p) = 1 or Rn

2 = Rn
1 , and R = Rn−1

2 otherwise.
Moreover if qn ∈ Q0 then we take p with Ω(p) = 1 if possible and define

ϕ(m, (qn, an . . . a1)) = (p, an−1 . . . a1)

For all other cases the update function and the strategy function are unde-
fined.

Definition 37 We say that a pair of sets of states (S1, S2) is selected for a
position π = (p, a, R1, R2) and q ∈ Q, b ∈ Γ, denoted (S1, S2) ∈ sel(π, q, b) if

there exist q′ ∈ Q, and S ′
2, S

′′
2 ⊆ Q such that in G̃(σ̃0) there is a sequence:

π → CS(p, a, R1, R2, q
′, b) → CM(p, a, R1, R2, q

′, b, S1, S
′
2) → (q′, b, S1, S

′′
2 )

and (q, b, S1, S2) is reachable from (q′, b, S1, S
′′
2 ) without passing through a

push edge.
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Definition 38 Consider a memory m = πn . . . π1 where πi = (qi, ai, R
i
1, R

i
2),

for i = 1ldotsn. We say that m is consistent if all πi are positions of G̃(σ̃0)
and for all i = 1, . . . , n − 1 we have (Ri+1

1 , Ri+1
2 ) ∈ sel(πi, qi+1, ai+1). We say

that m is glued if Rn
1 = Rn

2 . The height of m is h(m) = h(πn). The size of m,
denoted |m| is n, i.e., the number of elements in m. We denote by tail(m)
the memory πn−1 . . . π1.

Lemma 39 Suppose that while playing according to strategy σ0 a position
(qn, an . . . a1) is reached with a consistent memory m = πn . . . π1 where πi =
(qi, ai, R

i
1, R

i
2). The next move in G(σ0) is to one of the following positions:

(p, can . . . a1). The updated memory is m′ = (p, c, S1, SΩ(p))πn . . . π1 and it is
consistent. Moreover h(m′) 41 h(m) and if Ω(p) = 1 then h(m′) ≺1

h(m) and m′ is glued.

(p, an−1 . . . a1). The updated memory is m′ = (p, an−1, R
n−1
1 , R)πn−2 . . . π1

and it is consistent. Moreover h(m′) ≺ h(tail(m)). If m is glued or
Ω(p) = 1 then h(m′) ≺1 h(tail(m)) and m′ is glued. If tail(m) is glued
then m′ is glued.

Proof

Consider the first clause. As m is consistent then πn is winning. If there
is a move from (qn, an . . . a1) to (p, can . . . a1) in G(σ0) then push(p, c) ∈
δ(qn, an) and either qn ∈ Q0 or qn ∈ Q1 and the move is suggested by
the strategy σ0. In both cases we have some path πn → CS(πn, p, c) →

CM(πn, p, c, S1, S2) →
Ω(p) (p, c, S1, SΩ(p)) in G̃(σ̃0). Therefore (p, c, S1, SΩ(p))

is a winning position for player 0 and (S1, SΩ(p)) ∈ sel(πn, p, c). From the
definition of the strategy σ0 we have that m′ = up(m, (p, can . . . a1)) =
(p, c, S1, SΩ(p))πn . . . π1. Thus the memory m′ is consistent. As the edge
CM(πn, p, c, S1, S2) → (p, c, S1, SΩ(p)) is labeled by Ω(p) we can deduce that
h(m′) 41 h(m) and if Ω(p) = 1 then h(m′) ≺1 h(m) and m′ is glued.

Consider the second clause. As m is consistent, the position πn−1 is
winning, and (Rn

1 , Rn
2 ) ∈ sel(πn−1, qn, an), that is, there is in G̃(σ̃0) some

path πn−1 → CS(πn−1, q, an) → CM(πn−1, q, an, S1, S2) → (q, an, S1, S
′
2) and

a path from (q, an, S1, S
′
2) to (qn, an, R

n
1 , Rn

2 ) without passing through a push

edge. By definition of G̃ we get that Rn
1 = S1 and Rn

2 equals either S2

or S1. By definition of σ0 we have p ∈ Rn
Ω(p). Thus p belongs either to

Rn
1 or S2. Hence (p, an−1, R

n−1
1 , R) is a successor of CM(πn−1, qn, an, R

n
1 , S2)

(through an edge labeled by 1 or 3). Therefore (p, an−1, R
n−1
1 , R) is winning

for player 0 and h(m′) ≺ h(πn−1) = h(tail(m)). Since by consistency of m we
have that (Rn−1

1 , Rn−1
2 ) ∈ sel(πn−2, qn−1, an−1), we deduce that (Rn−1

1 , R) ∈
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sel(πn−2, qn−1, an−1). Thus m′ is consistent. Moreover if Ω(p) = 1 or m is
glued then p ∈ Rn

1 and by definition of σ0 we have R = Rn−1
1 . Hence we

have in this case h(m′) ≺1 h(πn−1) and m′ is glued. If tail(m) is glued then
R = Rn−1

1 = Rn−1
2 so m′ is glued.

�

Lemma 40 Consider two positions i < j such that |mi| = |mj | and for every
index i < k < j : |mk| ≥ |mi|. We have that h(mi) ≻ h(mj). Moreover if a
state of priority 1 appears between i + 1 and j then h(mi) ≻1 h(mj).

Proof

Let k < j be the greatest index such that |mk| = |mj |. If k 6= i then by
induction we get corresponding results for i and k. From hypothesis and
Lemma 39 it follows that mj−1 has the form πmk, for some π. By Lemma 39
we have : h(mj) ≺ h(tail(mj−1)) = h(mk) ≺ h(mi).

To show the second claim, first observe that by easy induction using
Lemma 39 we have that if mi is glued then mj is glued. We proceed with
the proof of the second claim by induction on the distance between i and j.

If j = i+2 and 1 appears between i+1 and i+2 then either Ω(qi+1) = 1
and by Lemma 39 we have mi+1 is glued; or Ω(qj) = 1. Whatever the case,
Lemma 39 provides h(mj) ≺1 h(mi) and mj is glued.

Suppose now that the distance is bigger. If there is i < k < j with
|mk| = |mi| then we get the lemma by induction assumption applied to (i, k)
and (k, j). If not then we know that all the memories between i + 1 and
j − 1 are of size at least |mi+1|. Hence, we can use the induction assumption
there. We conclude with the help of Lemma 39. �

Lemma 41 The strategy σ0 is winning.

Proof

To show that σ0 is winning consider a play (q1, u1), (q2, u2), . . . respecting σ0;
let m1, m2, . . . , be the associated memories.

By Lemma 40 there can be only finitely many occurrences of memory
of a given size, in other words, the size of memory is unbounded. As, by
Lemma 39, the size of memory at a position is the same as the size of stack
at this position, we have that the size of the stack in the play is unbounded
too.

It remains to show that there is only finite number of states of priority 1
in the play. Consider the sequence of positions i1, i2, . . . such that ij is the
last position where the memory of size |mij | occurs. By Lemmas 39 and 40
we have that h(mij ) <1 h(mij+1

) and the inequality is strict if there is a state
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of priority 1 between ij +1 and ij+1. As 41 is well-founded, it is not possible
that there are infinitely many states of priority 1 in the sequence. �

8 Büchi and unboundedness

In this section we consider pushdown games with the condition: “green states
appear infinitely often and the stack is unbounded”. Formally, we have a
priority function Ω assigning to the states of the game priorities 0 or 1. The
set of winning paths is:

Acc(Ω ∧ U) = AccΩ ∩ AccU

Fix a pushdown game G defined by a pushdown system 〈Q, Γ, ∆〉, a par-
tition of states (Q0, Q1) and a priority function Ω : Q → {0, 1}. We will solve
this game by reducing it to a finite game.

8.1 All the strategies for such a game may need an

infinite memory

The following example hints why we do the reduction in two steps. The
example shows that in games with Acc(Ω ∧ U) condition, all the strategies
for player 0 may need infinite memory.
Example: Consider the pushdown system A = 〈Q, Γ, ∆〉 where : Q = {p, q},
Γ = {a,⊥} and

∆ = {(p,⊥, push(q, a)), (q, a, push(q, a)), (q, a, pop(q)), (q, a, pop(p))}

From state p on letter ⊥ the automaton pushes a and goes to state q. Then
it can push and pop letters a until it decides to change state back to p. If it
arrives at p with a stack other than ⊥, it is blocked.

We assume that all the states belong to player 0, i.e., Q0 = Q and Q1 = ∅.
We take the Büchi condition Ω(p) = 0 and Ω(q) = 1. Thus Acc(Ω ∧ U) is
the set of plays where the stack is unbounded and state p is visited infinitely
often, which in this case means that the stack must contain only ⊥ infinitely
often. Therefore in order to win player 0 needs to go from the configuration
(p,⊥) to a configuration (q, ai⊥) and back to (p,⊥) repeatedly for bigger and
bigger i. It is easy to see that any such strategy requires infinite memory as
being in the configuration (p,⊥) player 0 needs to memorize which height he
wants to reach next.
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Finally note that in the same pushdown game but with strict unbound-
edness condition instead of unboundedness, player 0 has no winning strategy.
�

Because of the complications presented in the example, the first step in
solving G is to reduce it to another pushdown game G∗ as depicted below.

8.2 Reduction

This game has two modes so as to let player 1 to verify that player 0 can
win the play in mode B with the Büchi condition or in mode U with the
unboundedness condition. Only Player 1 can change the mode and he can
do it anytime. However if he changes it infinitely often, he looses.

U?(p, au)

B?(p, au)

B(p, au)

B?(q, bau) B?(q′, u)

U(p, au) U?(q, bau)

U?(q′, u)

Formally, for every mode K ∈ {B, U} and for every configuration (p, u)
in the pushdown game G, there is in G∗ an edge from K?(p, u) to K(p, u)
and to K(p, u), where K denotes the “other letter”. For every edge from
(p, u) to (q, v) in G, there is an edge in G∗ from K(p, u) to K?(q, v).

All the positions with an interrogative key K? are for player 1. A position
K(p, u) is for player 0 in G∗ if and only if (p, u) is for player 0 in G. The accep-
tance condition consists of the sequences K1?(p1, u1)K2(p1, u1)K2?(p2, u2) . . .
such that either (p1, u1)(p2, u2) · · · ∈ Acc(Ω∧U) or there are infinitely many
i such that Ki = B and Ki+1 = U .

Theorem 42

Player 0 has a winning strategy from a position (p, u) in G iff he has a

winning strategy from positions B?(p, u) and U?(p, u) in G∗.

Proof

A winning strategy σ0 for player 0 in G induces a winning strategy for
player 0 in G∗. It is enough that player 0 doesn’t take account of the mode
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chosen by player 1 and just plays σ0. The strategy guarantees that the stack
will be unbounded and that a state of priority 0 will appear infinitely often.
Hence, no matter in what mode the play will stay, player 0 will win.

From a winning strategy σ∗
0 for player 0 in G∗, we construct a strategy σ0

for player 0 in G, with a memory keeping the greatest height of stack reached
so far. First, we use σ∗

0 in Büchi mode, until we reach a state of priority 0.
Then, we simulate player’s 1 switch to unboundedness mode and simulate σ∗

0

until the play does reach the stack of height bigger than the maximum so far.
Next, once again we switch to Büchi mode etc. This way we visit infinitely
often the states of priority 0 and we are sure that the stack is unbounded. �

8.3 Simulation

From the pushdown game G∗, we construct a finite-state Büchi game G̃ with
coloring on edges as follows :

CSB(p, a, R0, R1, q, b)

CMB(p, a, R0, R1, q, b, S0, S1)

B?(s1, a, R0, R1)

B?(s0, a, R0, R0)

B?(q, b, S0, SΩ(q))

B(p, a, R0, R1)

B?(p, a, R0, R1) U(p, a, R0, R0)

tt

ff

0

1

0

Ω(q)
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CSU(p, a, R0, R1, q, b)

CMU(p, a, R0, R1, q, b, S0, S1)

U?(s1, a, R0, R1)

U?(s0, a, R0, R0)

U?(q, b, S0, S1)

U(p, a, R0, R1)

U?(p, a, R0, R1) B(p, a, R0, R0)

tt

ff

0

1

0

0

We define sets Mode = {B, U} and Residues = Q × Γ × 2Q × 2Q. As

depicted, the set of positions Ṽ of G̃ consists of:

K(η), K?(η), CSK(η, q, b), CMK(η, η′), tt , ff

for all K ∈ Mode, η, η′ ∈ Residues , q ∈ Q, b ∈ Γ.
Among them positions for player 0 are:

CSK(η, q, b), ff , K(η′)

for all K, η, q, b and η′ with the state in η′ from Q0. The remaining positions
are for player 1.

From B(p, a, R0, R1) the edge to tt is when we have pop(q) ∈ ∆(p, a)
and q ∈ RΩ(q). The edge to ff is when we have pop(q) ∈ ∆(p, a) and
q 6∈ RΩ(q). From U(p, a, R0, R1) the edge to tt is when we have pop(q) ∈
∆(p, a) and q ∈ R1. The edge to ff is when we have pop(q) ∈ ∆(p, a) and
q 6∈ R1. From K(p, a, R0, R1) the edge to CSK(p, a, R0, R1, q, b) is when
we have push(q, b) ∈ ∆(p, a). From a position CSK(p, a, R0, R1, q, b) there
is an edge to CMK(p, a, R0, R1, q, b, S0, S1) for every S0, S1 ⊆ Q. From
a position CMK(p, a, R0, R1, q, b, S0, S1) there is an edge, called push edge

to (q, b, S0, SΩ(q)), and edges to (s0, a, R0, R0) and (s1, a, R0, R1) for every
s0 ∈ S0 and every s1 ∈ S1, respectively.

The winning condition is a parity condition defined by the priorities on
edges as in the figure.
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Theorem 43

For every p ∈ Q, a ∈ Γ and R ⊆ Q:

K(p, a) ∈ W0(G
∗(R)) iff K(p, a, R, R) ∈ W0(G̃)

8.4 Direct implication :

We prove for every state p ∈ Q, every letter a ∈ Γ every subset R ⊆ Q, we
have :

K(p, a, R, R) ∈ W1(G̃) ⇒ K(p, a) ∈ W1(G
∗(R))

Let σ̃1 be a memoryless winning strategy for player 1 from every position
in W1(G̃). Strategy σ̃1 defines a game where only player 0 plays, denoted by

G̃(σ̃1). This game is a restriction of the game G̃ to the vertices where σ̃1 is
winning and to the edges suggested by σ̃1. Hence every position of player 1
has only one successor and every infinite path is winning for player 1.

In the following, it will be useful to consider strongly connected compo-
nents of G̃(σ̃1). It’s important to remark that two positions connected by an

edge colored by 0, belong to different components of G̃(σ̃1).
Using σ̃1, we construct a strategy with memory σ = 〈Φ, up, m0〉 in G∗.

The memory will be M = (P̃ os)∗ and the update function up will use it as

a stack over alphabet P̃ os. At the beginning of the play the initial state of
the memory is m0 = (K, (p, a, R, R)).

A position K?(η) for which the strategy is defined is called switching if
σ̃1(K?(η)) = K(η). A position K(p, a, R0, R1) is glued if R0 = R1.

Let h(π) be the number of strongly connected components of G̃(σ̃1) reach-
able from the position π.

We start with an auxiliary definition.

Definition 44 For every position π = K(q, b, R0, R1) of G̃(σ̃1) we define sets
Ti(π) for i ∈ {0, 1}:

T0(π) ={q′ : h(K?(q′, b, R0, R0)) < h(π)}∪

{q′ : h(K?(q′, b, R0, R1)) ≤ h(π) and K?(q′, b, R0, R1) switching}

T1(π) ={q′ : h(K?(q′, b, R0, R1)) ≤ h(π)}

Definition 45 We define σ1 using σ̃1 as follows. Suppose that the current
position in the play in G∗(S) is K(q, bu) and the current state of the memory
is ~m = πn . . . π1 where ∀i. πi = Ki(qi, ai, R

i
0, R

i
1) and q = qn, b = an:

• If the move from πn to CSK(qn, an, Rn
0 , Rn

1 , q
′, c) is possible in G̃(σ̃1)

then we set :

up(m, K(q′, cbu)) = K?(q′, c, S0, S1)πn . . . π1
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where the sets S0, S1 are such that we have :

σ̃1(CMK(qn, an, R
n
0 , Rn

1 , q
′, c,Q\T0(πn),Q\T1(πn))) = K?(q′, c, S0, S1).

If q ∈ Q1 then additionally we define :

φ(m, K(q, bu)) = K?(q′, cbu)

• If the move from πn to ff is possible in G̃(σ̃1) then for q′ such that
q′ /∈ Rn

1 and pop(q′) ∈ ∆(q, b) we set:

up(m, K?(q′, u)) = π′
n−1πn−2 . . . π1

where π′
n−1 = Kn−1?(q

′, an−1, R
n−1
0 , Rn−1

0 ) if the following inequality
h(Kn−1?(q

′, an−1, R
n−1
0 , Rn−1

0 )) < h(πn−1) holds. Otherwise we have
π′

n−1 = Kn−1?(q
′, an−1, R

n−1
0 , Rn−1

1 ).

If q ∈ Q1 then we take q′ with π′
n−1 of the first kind if possible, if not

then of the second kind and define.

φ(m, K(q, bu)) = K?(q′, u)

When the current position in the play in G∗(R) is L?(q, bu) and the current
state of the memory m = πn+1πn . . . π1 with πn+1 = K?(q, b, R0, R1) we have:

• if σ̃(πn+1) = K(q, b, R0, R1), then :

up(m, K(q, bu)) = K(q, b, R0, R1)πn . . . π1

φ(m, L?(q, bu)) = K(q, bu) if q ∈ Q1

• if σ̃(πn+1) = K(q, b, R0, R0), then :

up(m, K?(q, bu)) = K(q, b, R0, R0)πn . . . π1

φ(m, L?(q, bu)) = K(q, bu) if q ∈ Q1

Definition 46 From a position K(q, u), the associated memory m = πn . . . π1

where πi = Ki(qi, ai, R
i
0, R

i
1) is consistent if qn = q, u = an . . . a1 and

all πi are winning positions, Ri+1
0 = Q \ T0(πi) and Ri+1

1 = Q \ T0(πi) or
Ri+1

1 = Q \ T1(πi). Moreover Ri
0 = Ri

1 if Ki 6= Ki+1.
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Lemma 47 Suppose that while using strategy σ1 a position Kn(qn, an . . . a1)
is reached with consistent memory m = πn . . . π1, where πi = Ki(qi, ai, R

i
0, R

i
1).

The next two moves in G∗(σ1) are in one of the following patterns:

1. → Kn?(p, can . . . a1) → Kn(p, can . . . a1).

We have that m′′ = Kn(p, c, S0, S1)πn . . . π1 and it is consistent. More-
over h(m′′) ≤ h(m) and the inequality is strict if Kn = U or Kn = B
and Ω(p) = 0. In the last case S0 = S1.

2. → Kn?(p, can . . . a1) → Kn(p, can . . . a1).

We have that m′′ = Kn(p, c, S0, S0)πn . . . π1 and it is consistent. More-
over h(m′′) < h(m).

3. → Kn?(p, an−1 . . . a1) → Kn(p, an−1 . . . a1).

We have that m′′ = Kn(p, an−1, S0, S1)πn−2 . . . π1 and it is consistent.
Moreover, h(m′′) ≤ h(πn−1) and if πn is glued, or Kn = B and Ω(p) = 0
then the inequality is strict and S0 = S1.

4. → Kn?(p, an−1 . . . a1) → Kn(p, an−1 . . . a1).

We have that m′′ = Kn(p, an−1, S0, S0)πn−2 . . . π1 is consistent and
h(m′′) < h(πn−1).

Proof

Consider the first two clauses. If we have a move Kn(qn, an . . . , a1) →
Kn?(p, can . . . a1) in G∗(σ1) then we have a move from πn to the position

CSKn
(qn, an, R

n
0 , Rn

1 , p, c) in G̃(σ̃1). By definition

m′ = up(m, Kn?(p, can . . . a1)) = Kn?(p, c, S0, S1)πn . . . π1

where S0 = Q \ T0(πn) and S1 = Q \ T1(πn). By the definition of S0, S1

we have that CMKn
(qn, an, Rn

0 , Rn
1 , p, c, S0, S1) → Kn?(p, c, S0, S1) is an edge

in G̃(σ̃1). Hence h(Kn?(p, c, S0, S1)) ≤ h(πn) and the inequality is strict if
Kn = U or Kn = B and Ω(p) = 0. In the last case S0 = S1.

For the first clause. If the next move from Kn?(p, can . . . a1) reaches
the position Kn(p, can . . . a1) then Kn?(p, c, S0, S1) → Kn(p, c, S0, S1) is an

edge in G̃(σ̃1). So h(Kn(p, c, S0, S1)) ≤ h(Kn?(p, c, S0, S1)). The memory
m′′ = Kn(p, c, S0, S1)πn . . . π1 is of the form as required and it is consistent.

For the second clause. If the next move from Kn?(p, can . . . a1) reaches
the position Kn(p, can . . . a1) then Kn?(p, c, S0, S1) → Kn(p, c, S0, S0) is an

edge in G̃(σ̃1). We have that h(Kn(p, c, S0, S0)) < h(πn). The memory
m′′ = Kn(p, c, S0, S0)πn . . . π1 is of the form as required and it is consistent.
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Consider the last two clauses. If we have a move Kn(qn, an . . . , a1) →

Kn?(p, an−1 . . . a1) then πn → ff is possible in G̃(σ̃1). By definition of G̃(σ̃1)
we have p 6∈ Rn

1 with pop(p) ∈ ∆(qn, an). The updated memory is:

m′ = up(m, K?(p, an−1 . . . a1)) = Kn−1?(p, an−1, S0, S1)πn−2 . . . π1

for S0 = Rn−1
0 and S1 = Rn−1

1 or S1 = Rn−1
0 . By consistency of mem-

ory m we have Rn
1 = T1(πn−1), hence h(Kn−1?(p, an−1, S0, S1)) ≤ h(πn−1).

If πn is glued then p ∈ Rn
0 = T0(πn−1). By definition of T0(πn−1), posi-

tion Kn−1?(p, an−1, S0, S1) is either glued or switching. If it is glued then
h(Kn−1?(p, an−1, S0, S1)) < h(πn−1).

For the third clause. If the next move from Kn?(p, an−1 . . . a1) reaches the

position Kn(p, an−1 . . . a1) then it means that in G̃(σ̃1) there is a move from
Kn−1?(p, an−1, S0, S1) either to Kn(p, an−1, S0, S1) or to Kn(p, an−1, S0, S0).
The first case is when Kn−1 = Kn the other when the equality does not hold.

If Kn−1 6= Kn then h(Kn−1(p, an−1, S0, S0)) < h(Kn−1?(p, an−1, S0, S1))
and we are done. Observe that this case happens if Kn−1?(p, an−1, S0, S1) is
switching.

If Kn−1 = Kn then we have that

h(Kn(p, an−1, S0, S1)) ≤ h(Kn−1?(p, an−1, S0, S1)) ≤ h(πn−1)

If Kn?(qn, an, R
n
0 , R

n
1 ) is glued, or Kn = B and Ω(p) = 0 then p ∈ T0(πn−1),

therefore the second inequality is strict and S0 = S1.
In both cases the memory m′′ = Kn(p, an−1, S0, S1)πn−2 . . . π1 is of re-

quired form and consistent.
For the fourth clause. If the next move from Kn?(p, an−1 . . . a1) reaches

Kn(p, an−1 . . . a1) then in G̃(σ̃1) there is a move from Kn−1?(p, an−1, S0, S1)
either to Kn(p, an−1, S0, S1) or to Kn(p, an−1, S0, S0).

The first case is when Kn−1 6= Kn. By memory consistency we have
then p /∈ Rn

0 = Rn
1 . Hence,p ∈ T0(πn−1) and as Kn−1?(p, an−1, S0, S1) is not

switching, we have:

h(Kn(p, an−1, S0, S1)) ≤ h(Kn−1?(p, an−1, S0, S1)) < h(πn−1)

If Kn−1 = Kn then

h(Kn(p, an−1, S0, S0)) < h(Kn−1?(p, an−1, S0, S1)) ≤ h(πn−1)

In both cases the memory m′′ = Kn(p, an−1, S0, S1)πn−2 . . . π1 is of required
form and consistent. �

To show that σ1 is a winning strategy for player 1, consider any play
K1?(q1, u1), K2(q2, u2), K3?(q3, u3) . . . respecting σ1. Let m1, m2, m3, . . . be
the associated memories.
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Definition 48 A size |m| of memory m = πn . . . π1 is the number of elements
in m. The height for memory m is h(m) = h(πn) where πn is the top element
of m. We denote by tail(m) the memory πn−1 . . . π1.

Lemma 49 If mi is glued and k is such that |mk| < |mi| and there are no
memories of size smaller than mk between i and k then mk is glued.

Proof

Using Lemma 47. By induction on the distance between i and k. �

Lemma 50 If there is either a change of mode between m2i−1 and m2i; or
K2i−1 = B and Ω(q2i−1) = 0, whereas |m2i| < |m2i−2| then m2i is glued and
h(m2i) < h(tail(m2i−2)).

Proof

From Lemma 47. Observe that m2i−1 has K2i−1? but m2i−2 and m2i have
keys without question marks. �

Lemma 51 If there is either a change of mode between m2i−1 and m2i; or
K2i−1 = B and Ω(q2i−1) = 0, whereas |m2i−2| < |m2i| then m2i is glued and
h(m2i−2) > h(m2i).

Proof

From Lemma 47. �

Lemma 52 Suppose that i < k are two even indices of two memories mi, mk

of the same size such that all the memories in between are strictly of bigger
size. We have h(mi) ≥ h(mk) and the inequality is strict if mk−2 is glued.

Proof

From Lemmas 51, 50 and Lemma 49. �

Lemma 53 Suppose that i < k are two even indices of two memories mi, mk

of the same size such that all the memories in between are of bigger or same
size. We have h(mk) ≤ h(mi) and the inequality is strict if there is either a
change of mode or a visit in Büchi of a state of priority 0 between associated
positions.

Proof

From Lemma 52 and by induction on the distance between indices of mem-
ories of same size than |mi|. �
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Lemma 54 There are finitely many changes of modes and states of priority
0 in Büchi mode in the play.

Proof

Suppose the contrary. First assume that there were infinitely many memo-
ries of the same size. Take the smallest size repeating infinitely often. Let
i1, i2, . . . be the even positions of memories of the chosen size. We have by
Lemma 53 h(mi1) ≥ h(mi2) ≥ . . . and the inequality is strict each time when
between mij−1

and mij there is a change of mode or a state of priority 0 in
Büchi mode.

If no size of memory repeats infinitely often then consider the sequence
i0, i0+2, i1 . . . of even indices such that mik is the last occurrence of a memory
of size k ; and therefore where mik+2 is the first occurrence of a memory of
size k +1 from which no memory of size less or equal than k is met. We have
by Lemma 51 and Lemma 53 that h(mi0) ≥ h(mi0+2) ≥ h(mi1) . . . and the
inequality is strict each time there is a change of mode between two positions
or there is a state of priority 0 in Büchi mode. This is impossible. �

Lemma 55 If K2i−2 = K2i−1 = K2i = U and Ω(q2i−1) = 0, whereas
|m2i−2| < |m2i| then h(m2i−2) > h(m2i).

Proof

From Lemma 47. �

Lemma 56 If the play remains in mode U from U(p, u) with a memory mi

such that every next memories mj is of bigger or same size than mi, then
h(mj) ≤ h(mi) − (|mj | − |mi|). Therefore we have that |mj| ≤ h(mi) + |mi|
and by consistency the height of the stack is bounded.

Proof

From Lemma 53 and Lemma 55. �

Corollary 57 Strategy σ1 is winning.

Proof

From Lemma 54 and Lemma 56. �

8.5 Reciprocal implication :

We prove for every state p ∈ Q, every letter a ∈ Γ every subset R ⊆ Q, we
have :

K(p, a, R, R) ∈ W0(G̃) ⇒ K(p, a) ∈ W0(G
∗(R))
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Let σ̃0 be a memoryless winning strategy for player 0 from every position
in W0(G̃). Strategy σ̃0 defines a game where only player 1 plays, denoted by

G̃(σ̃0). This game is a restriction of the game G̃ to the vertices where σ̃0 is
winning and to the edges suggested by σ̃0. Hence every position of player 0
has only one successor and every infinite path is winning for player 0.

Using σ̃0, we construct a strategy with memory σ0 = 〈Φ, up, m0〉 in G∗(R).

The memory will be M = (P̃ os)∗ and the update function up will use it as

a stack over alphabet P̃ os. At the beginning of the play the initial state of
the memory is m0 = (K(p, a, R, R)).

Let dist0(π) be the maximal distance from π up to a 0-colored edge or tt

in G̃(σ̃0). It is well defined since every position in G̃(σ̃0) is winning.

Definition 58 We say that a pair of sets of states (S0, S1) is selected for
a position π = K(p, a, R0, R1), q ∈ Q, b ∈ Γ and K ′ ∈ Mode, denoted

(S0, S1) ∈ selK ′(π, q, b) if there exists q′ ∈ Q, S ′
1, S

′′
1 ⊆ Q such that in G̃(σ̃0)

there is a sequence:

π → CSK((p, a, R0, R1, q
′, b) → CMK(p, a, R0, R1, q

′, b, S0, S
′
1)

→ K?(q′, b, S0, S
′′
1 )

and K ′(q, b, S0, S1) is reachable from K?(q′, b, S0, S
′′
1 ) without passing through

a push edge.

Definition 59 We define σ0 using σ̃0 as follows. Suppose that the current
position in the play in G∗(R) is K(q, bu) and the current state of the memory
is ~m = πn . . . π1 where ∀i. πi = Ki(qi, ai, R

i
0, R

i
1) and q = qn, b = an and

K = Kn :

• If the move from πn to CSK(qn, an, Rn
0 , Rn

1 , q
′, c) is possible in G̃(σ̃0)

then we set :

up(m, K(q′, cbu)) = K?(q′, c, S0, S)πn . . . π1

where CSK(qn, an, Rn
0 , Rn

1 , q
′, c) → CMK(qn, an, Rn

0 , Rn
1 , q

′, c, S0, S1) →

(q′, c, S0, S) is a path in G̃(σ̃0), and S equals either S1 if K = U ; or
SΩ(q) if K = B.

If q ∈ Q0 then additionally we define:

φ(m, K(q, bu)) = K?(q′, cbu)
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• If the move from πn to tt is possible in G̃(σ̃0) then for all q′ such that
q′ ∈ Rn

1 if Kn = U or q′ ∈ Rn
Ω(q′) if Kn = B, and pop(q′) ∈ ∆(q, b) we

set:
up(m, K?(q′, u)) = π′

n−1πn−2 . . . π1

where π′
n−1 = Kn−1?(q

′, an−1, R
n−1
0 , Rn−1

1 ) if Kn = U or Ω(q′) = 1.
Otherwise, π′

n−1 = Kn−1?(q
′, an−1, R

n−1
0 , Rn−1

0 )

If q ∈ Q0 then we take q′ with π′
n−1 of the second kind if possible, if

not then of the first kind and define.

φ(m, K(q, bu)) = K?(q′, u)

When the current position in the play in G∗(R) is L?(q, bu) and the current
state of the memory m = πn+1πn . . . π1 with πn+1 = K?(q, b, R0, R1) we have:

if the next move chosen by player 1 is K ′(q, bu), then we set :

up(m, K ′(q, bu)) = K ′(q, b, R0, S1)πn . . . π1

where S1 = R0 if K ′ = Kn, and S1 = R1 otherwise.

Definition 60 From a position K(q, u), the associated memory m = πn . . . π1

where πi = Ki(qi, ai, R
i
0, R

i
1) is consistent if qn = q, u = an . . . a1, all πi

are winning positions and for all i = 1, . . . , n − 1 we have (Ri+1
0 , Ri+1

1 ) ∈
selKi+1

(πi, qi+1, ai+1).

Lemma 61 Suppose that while playing according to strategy σ0 a position
Kn(qn, an . . . a1) is reached with consistent memory m = πn . . . π1, where
πi = Ki(qi, ai, R

i
0, R

i
1). Assume that Kn−1 = Kn. Then the next two moves

where player 1 does not change the mode, in G∗(σ0) are in one of the following
patterns:

• If Kn = B :

– → B?(p, can . . . a1) → B(p, can . . . a1). We have that the updated
memory m′′ = B(p, c, S0, S1)πn . . . π1 and it is consistent. More-
over dist0(m

′′) < dist0(m) if Ω(p) = 1.

– → B?(p, an−1 . . . a1) → B(p, an−1 . . . a1). We have that m′′ =
B(p, an−1, R

n−1
0 , R)πn−2 . . . π1 and it is consistent. Moreover, R =

Rn−1
1 and dist0(m

′′) < dist0(tail(m)) if Ω(p) = 1.
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• If Kn = U :

– → U?(p, can . . . a1) → U(p, can . . . a1). We have that the updated
memory m′′ = U(p, c, S0, S1)πn . . . π1 and it is consistent.

– → U?(p, an−1 . . . a1) → U(p, an−1 . . . a1). We have that m′′ =
U(p, an−1, R

n−1
0 , Rn−1

1 )πn−2 . . . π1 and it is consistent. Moreover,
dist0(m

′′) < dist0(tail(m)).

Proof

For the first clause : As m is consistent πn is winning. By definition of
σ0 we have that πn = B(ηn) → CSB(ηn, p, c) → CMB(ηn, p, c, S0, S1) →Ω(p)

B?(p, c, S0, SΩ(q)) is a path in G̃(σ0). Therefore m′′ is consistent and if Ω(p) =
1 then between πn and B(p, c, S0, S1) there is an edge labeled by 1, thus
dist0(m

′′) < dist0(m).
For the second clause : As m is consistent we have that πn−1 is win-

ning, (Rn−1
0 , Rn−1

1 ) ∈ selKn
(πn−2, qn−1, an−1), and there is both in G̃(σ0) the

path πn−1 = B(ηn−1) → CSB(ηn−1, q, an) → CMB(ηn−1, q, an, R
n
0 , S) →Ω(p)

B?(q, an, R
n
0 , S ′) and a path from B?(q, an, R

n
0 , S ′) to B(qn, an, R

n
0 , Rn

1 ) with-

out passing through a push edge. By definition of G̃, Rn
1 equals either Rn

0

or S. By definition of σ0 we have p ∈ Rn
Ω(p). Thus p belongs either to Rn

0

or S. Hence B(p, an−1, R
n−1
0 , R) is a successor of CMB(ηn−1, q, an, R

n
0 , S).

Therefore m′′ is consistent. Moreover if Ω(p) = 1 then by definition of σ0

we have R = Rn−1
1 . Hence p ∈ S and the edge CMB(ηn−1, q, an, R

n
0 , S) →

B(p, c, Rn−1
0 , Rn−1

1 ) is labeled by 1, thus we have dist0(m
′′) < dist0(tail(m)).

For the third clause : As m is consistent πn is winning. By definition
of σ0 we have that πn = U(ηn) → CSU(ηn, p, c) → CMU(ηn, p, c, S0, S1) →

U?(p, c, S0, S1) is a path in G̃(σ0). Therefore m′′ is consistent.
For the fourth clause : As m is consistent we have that πn−1 is winning,

(Rn−1
0 , Rn−1

1 ) ∈ selKn
(πn−2, qn−1, an−1), and there is in G̃(σ̃0) the path πn−1 =

U(ηn−1) → CSU(ηn−1, q, an) → CMU(ηn−1, q, an, R
n
0 , S) → U?(q, an, Rn

0 , S ′)
and a path from U?(q, an, Rn

0 , S ′) to U(qn, an, Rn
0 , R

n
1 ) without passing through

a push edge. By definition of G̃, Rn
1 equals either Rn

0 or S. By definition of σ0

we have p ∈ Rn
1 . Thus p belongs either to Rn

0 or S. Hence U(p, an−1, R
n−1
1 , R)

is a successor of CMU (ηn−1, q, an, R
n
0 , S). Therefore m′′ is consistent. More-

over as in mode U we have by definition of σ0 that R = Rn−1
1 . It follows that

p ∈ S and the edge CMU(ηn−1, q, an, R
n
0 , S) → U(p, c, Rn−1

0 , Rn−1
1 ) is labeled

by 1, thus we have dist0(m
′′) < dist0(tail(m)).

�
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Lemma 62 While playing according to the strategy σ0 all the memories are
consistent.

Proof

From Lemma 61 �

Lemma 63 Suppose that i < k are two even indices of two memories mi, mk

of the same size such that all the memories in between are of strictly bigger
size and of same mode. We have always dist0(mk) < dist0(mi) in mode U .
In mode B, if there is no state of priority 0 between positions i and k, and
mi = (qi, a, R0, R1)πn . . . π1 then we have mk = (qk, a, R0, R1)πn . . . π1 and
dist0(mk) < dist0(mi). if there is not a visit of a state of priority 0 between
associated positions.

Proof

If the final mode is U :
By hypothesis and from Lemma 61 we get that mk−2 has the form πmi

for some π. By Lemma 62 mk−2 is consistent. Actually by Lemma 61 we
have : dist0(mk) < dist0(tail(mk−2)) = dist0(mi)

If the final mode is B :
By hypothesis and Lemma 61 we have mi+2 = B(qi+2, b, S0, S1)mi. By

induction we get that mk−2 = (qk−2, b, S0, S1)mi By Lemma 62 mk−2 is consis-
tent. From hypothesis and by Lemma 61 we get that qk ∈ S1 and by definition
of σ0 we have mk = (qk, a, R0, R1)πn . . . π1 and dist0(mk) < dist0(mi).

�

Lemma 64 Strategy σ0 is winning.

Proof

If the play is finite then by Lemma 62 and by definition of σ0, a state from
R is reached. If player 1 changes infinitely often the mode, he looses. Else,
every play respecting σ0 remains from some position in some mode. If the
final mode is U then by Lemma 63 the play cannot visit infinitely often con-
figurations of same height of stack. If the final mode is B then by Lemma 63
the play cannot avoid infinitely often positions whose the state is 0-colored.
�

9 Conclusions

In the framework of pushdown games we have introduced a new condition
expressing the fact that the stack is unbounded. Although this condition
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is related to the strict unboundedness condition from the paper of Cachat,
Duparc and Thomas [6], we believe it more natural. We have shown never-
theless that player 0 has a winning strategy with one condition iff he has one
with the other. This property extends to the case when these conditions are
considered in union with a parity condition. It stops being true for conditions
of the form AccΩ ∩ AccU .

We have proved that the problem of solving a pushdown game with
boolean combinations of Büchi and unboundedness conditions is EXPTIME-
complete. Unfortunately we were able to fit just parts of proofs of two cases
into the page limit. The omitted constructions are given in the appendix.
The complete proofs can be found in [3].

The proofs give strategies that are implementable using a stack. This is
useful as such strategies are finitely described, and could be used for instance
to define a controller.

We have given methods to decide the winner from a given position, but
only from one that has just one letter on the stack. One may be interested
in having a uniform version, that is a full description of the set of winning
positions. Using techniques of [14] one deduces from our algorithm an alter-
nating automaton recognizing the set of winning positions, which is in fact a
regular language. One may also note that this alternating automaton gives
a method to define strategies using a stack for any winning position.

Finally, let us comment on the restriction to Büchi and co-Büchi winning
conditions. We believe that the method presented here works for all parity
conditions and we hope to include the proof in the journal version of this
paper. At present we do not have the right notation to describe the general
construction in a readable way. Nevertheless we think that the Büchi/co-
Büchi case is sufficiently interesting as these kinds of conditions are enough
to encode LTL and CTL properties.
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