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Visibly Pushdown Games

Christof Loding!* P. Madhusudan?-** Olivier Serre!-*

L LIAFA, Université Paris VII, France
2 University of Pennsylvania

Abstract. The class of visibly pushdown languages has been recently
defined as a subclass of context-free languages with desirable closure
properties and tractable decision problems. We study visibly pushdown
games, which are games played on visibly pushdown systems where the
winning condition is given by a visibly pushdown language. We establish
that, unlike pushdown games with pushdown winning conditions, visi-
bly pushdown games are decidable and are 2EXPTIME-complete. We also
show that pushdown games against LTL specifications and CARET spec-
ifications are 3EXPTIME-complete. Finally, we establish the topological
complexity of visibly pushdown languages by showing that they are a
subclass of Boolean combinations of X3 sets. This leads to an alterna-
tive proof that visibly pushdown automata are not determinizable and
also shows that visibly pushdown games are determined.

1 Introduction

The theory of two-player games on graphs is a prominent area in formal verifica-
tion and automata theory. The peculiar acceptance conditions used in the study
of automata on infinite words and trees, result in a theory of infinite games that
serves as a simple and unified framework for various proofs and constructions in
automata theory. In particular, the determinacy theorem for these games and the
solvability of infinite games on finite graphs are closely related to the decidability
of the monadic second-order logic on trees [14, 16].

In formal verification, infinite games are useful in two contexts. First, the
model-checking problem for the p-calculus is intimately related to solving parity
games [6], the precise complexity of which is still open. Second, the theory of
games form a natural abstraction of the synthesis and control-synthesis problems,
where the aim is to synthesize a system that satisfies a given specification [9].

While most results in model checking involve problems on finite graphs, ab-
straction of data from software programs with procedures results in pushdown
models, where the stack is required to maintain the call-stack of the program.
Formal verification of these models against regular specifications is however
tractable since emptiness of pushdown automata is decidable. In fact, a variety of
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program analysis questions, static code analysis, and compiler optimization can
be reduced to reachability in pushdown models [10] and contemporary software
model-checking tools such as SLAM [3] implement these decision procedures.

Although checking software models against regular specifications is useful,
there are important context-free requirements—specification of pre-post condi-
tions for procedures, security properties that require stack inspection, etc. Re-
cently, a temporal logic called CARET [1] has been defined which allows specifi-
cation of such context-free properties and yet preserves decidability of pushdown
model-checking.

In [2], the class of wvisibly pushdown languages (VPL) is proposed as an au-
tomata theoretic generalization of CARET. These languages are accepted by vis-
ibly pushdown automata (VPA), which are pushdown automata whose stack-
operations are determined by the input. Like the class of regular languages,
VPL is closed under all Boolean operations; moreover, decision problems such
as inclusion, which are undecidable for context-free languages, are decidable for
VPL. VPL includes the class of languages defined by CARET and forms a robust
subclass of context-free languages [2].

Turning back to games, pushdown games with parity winning conditions are
known to be decidable [15]. This shows that pushdown games with any external
w-regular winning condition can also be solved. However, it is easy to see that
solving pushdown games against pushdown winning conditions is undecidable. In
[5] a new winning condition for pushdown games was proposed, which declares
a play winning if and only if along the play, the stack is repeatedly bounded (i.e.
there is some stack depth n such that the stack was below depth n infinitely
often). The main motivation for this winning condition was that it defined a
class of plays that was in the X3 level of the Borel hierarchy (w-regular winning
conditions define only sets that are in the Boolean closure of ¥3). It was shown
that solving these games was decidable. Note that for any pushdown game, if we
label the push transitions, pop transitions, and internal transitions differently,
then the set of repeatedly bounded plays is a visibly pushdown language.

Since visibly pushdown automata have a decidable model-checking problem
and since the set of repeatedly bounded words is a VPL, a natural question
arises: given a visibly pushdown game graph G and a VPL L describing the set
of winning plays, is the game problem (G, L) decidable? The main result of this
paper is that this problem is decidable and is 2EXPTIME-complete. Thus, the
tractability of visibly pushdown languages extends to the game problem as well.

The main technical challenge in handling visibly pushdown games is that the
specification automaton, which is a VPA, is not, in general, determinizable [2].
This prevents us from taking a product with the game graph to reduce it to a
pushdown game with internal winning conditions. We invent a new kind of VPA,
called stair VPA, in which the winning condition is interpreted only at certain
points along the run, and the states met at other points are ignored. The 7’th
letter of a word belongs to this evaluation set if for no j > 4, the stack depth
at j is less than that at i. We then show that for every (nondeterministic) VPA,
there exists an equivalent deterministic stair VPA. We take the product of the



game graph with the deterministic stair VPA, and show how pushdown games
with stair winning conditions can be solved.

The above result yields a 3EXPTIME decision procedure for pushdown games
against CARET specifications. However, this high complexity is not due to the
context-free nature of the specification, as we show the surprising result that
pushdown games against LTL specifications is already 3EXPTIME-hard. We also
establish that solving pushdown games against nondeterministic VPA (or even
nondeterministic Biichi automata) specifications is 2EXPTIME-hard.

Finally, we show that the class VPL is contained in the Boolean closure of
33, B(X3). This is one level higher than the class B(X¥2) which contains all
regular w-languages. As a consequence, we get an alternative proof that visi-
bly pushdown automata cannot be determinized and also establish that visibly
pushdown games are determined (i.e. from any position in the game, one of the
players must have a winning strategy).

2 Preliminaries

For a finite set X we denote the set of finite words over X by X*, the set of infinite
words (w-words) over X by X, and the empty word by e. For o € X* U X¥
and n € N we write a(n) for the nth letter in o and «f,, for the prefix of length
n of a, i.e., afp=¢ and af,= «(0)---a(n — 1) for n > 1.

A pushdown alphabet is a tuple A= (Ac, A, Ajng) that comprises three
disjoint finite alphabets—A. is a finite set of calls, A, is a finite set of returns,
and Ajy is a finite set of internal actions. For any such A, let A = A UA, U Ajys.

We define visibly pushdown systems over A. Intuitively, the pushdown system
is restricted such that it pushes onto the stack only when it reads a call, pops
the stack only at returns, and does not use the stack on internal actions. The
input hence controls the kind of operations permissible on the stack—however,
there is no restriction on the symbols that can be pushed or popped.

Definition 1 (Visibly pushdown system [2]). A visibly pushdown system
(VPS) over (A, Ay, Aint) is a tuple S = (Q, Qin, I, A) where Q is a finite set of
states, Q;n C Q is a set of initial states, I' is a finite stack alphabet that contains
a special bottom-of-stack symbol L and A C (Q x A, x Q x (I'\ {L})) U (Q x
A xT'x Q)U(Q X Aing X Q) is the transition relation.

A stack is a nonempty finite sequence over I' ending in the bottom-of-stack
symbol L; let us denote the set of all stacks as St = (I'\{L})*.{L}. A transition
(g,a,q',7), where a € A, and v # 1, is a push-transition where on reading a,
~ is pushed onto the stack and the control changes from state g to ¢’. Similarly,
(g,a,7,q") is a pop-transition where 7 is read from the top of the stack and
popped (if the top of stack is L, then it is read but not popped), and the control
state changes from ¢ to ¢’. Note that on internal actions, there is no stack
operation.

The configuration graph of a Vps § is the graph Gs = (Vs, Es), where
Vs = {(q,0) | ¢ € Q,0 € St}, and Es is the set that contains all triples
((g,0),a,(q',0")) € Vs x A x Vs, that satisty the following:



[Push] If a is a call, then 3y € I" such that (¢,a,q’,v) € A and o' =v.0.

[Pop] If a is a return, then 3y € I" such that (g,a,v,q") € A and either v # L
and o =~v.0/,ory=1Land o =0’ = L.

[Internal] If a is an internal action, then (g,a,q’) € A and o = o’.

For a word @ = ajagas--- in A, a run of S on « is a sequence p =
(90,00)(q1,01)(g2,02) - -- € V& of configurations, where ¢y € Qin, 09 = L and
((¢i,04), @, (gi+1,0i11)) € Es for every i € N.

A wvisibly pushdown automaton (VPA) over (A., A, Aing) is a tuple M =
(Q,Qin, I, A, 2) where (Q,Qin, I, A) is a VPS, and {2 is an acceptance condi-
tion. In a Biichi VPA, 2 = F C @ is a set of final states, while in a parity VPA,
:Q—N.

For a run p = (qo,00)(q1,01)(g2,02) -+, we consider the set inf(p) C Q
which is the set of all states that occur in p infinitely often. A word o € A% is
accepted by a Biichi VPA if there is a run p over o which infinitely often visits
F,ie.,if inf(p)NF # 0. A word a € A¥ is accepted by a parity VPA if there is a
run p over « such that the minimal color visited infinitely often by p is even, i.e.,
if the minimal color in 2(inf(p)) = {£2(¢) | ¢ € inf(p)} is even. The language
L(M) of a VPA M is the set of words accepted by M.

A VPA is deterministic if it has a unique initial state g;,, and for each in-
put letter and configuration there is at most one successor configuration. For
deterministic VPAs we denote the transition relation by 4 instead of A and write
0(g,a) = (¢',7) instead of (q,a,q’,v) € § if a € A, 6(q,a,7) = ¢ instead of
(q,a,7,¢') €§if a € A, and 6(q,a) = ¢’ instead of (q,a,q’) € § if a € Ajps.

Infinite two-player games. Let A be a finite alphabet. A game graph G over A
is a graph G = (V, Vg, Va, E) where (V, E) is a deterministic graph with edges
labeled with letters of A (i.e. E C V x Ax V such that if (v,a,v1), (v,a,vs) € E,
then v; = vg), and (Vg, Va) partitions V' between two players, Eve and Adam.
An infinite two-player game is a pair G = (G, 2), where the winning condition
{2 can be of two kinds: An internal winning condition {2 is a subset of V¢ and
an external winning condition {2 is a subset of A¥.

The players, Eve and Adam, play in G by moving a token between positions.
A play from some initial node vy proceeds as follows: the player owning vy moves
the token to some vertex vy along an edge of the form eq = (v, ap,v1) € E. Then
the player owning v; moves the token to vy along an edge ey = (v1, a1, v2), and
so on, forever. If one of the players cannot make a move, the other player wins.
Otherwise, the play is an infinite sequence A = vgagviay --- € (V.A)* in G. For
internal winning conditions, Eve wins \ if vgvivg -+ € §2, and Adam wins it
otherwise. If (2 is an external winning condition, Eve wins A if agajas -+ € 2,
and Adam wins it otherwise. A partial play is any prefix of a play.

A strategy for Eve is a function assigning to any partial play ending in some
node in v € Vi an edge (v,a,v’) € E. Eve respects a strategy f during some
play A = wgagviay --- if for any ¢ > 0 such that v; € Vi, (vi,ai41,0i41) =
f(voagviay - - - v;). Finally, a strategy f is said to be winning from some position
v, if any play starting from v where Eve respects f is winning for her.



A wisibly pushdown game H = (S, Qg, Qa, M) consists of a VPS S, a VPA
M (both over a common pushdown alphabet A), and a partition (Qg, Q a) of
the state set @ of S. H defines the game Gy = (G, £2), where G = (V, Vg, Va, E),
(V, E) is the configuration graph of S, Vg = {(¢,0) | ¢ € Qr}, and Vo = {(q,0) |
q € Qa}. The set {2 is the external winning condition 2 = L(M).

We can now state the main problem we address in this paper: Given a visibly
pushdown game H = (S,Qg, Qa, M) and a state p;, of S, is there a strategy
for Eve that is winning for her from the position (p;y, L), in the game G?

3 Deterministic Stair VpraAs

Visibly pushdown automata over w-words cannot be determinized [2]. In this
section, in order to obtain a determinization theorem, we propose a new mode
of acceptance for Vras. Instead of evaluating the acceptance condition on the
whole run, we evaluate it only on a subsequence of the run. This subsequence
is obtained by discarding those configurations for which a future configuration
of smaller stack height exists. The sequence thus obtained is non-decreasing
with respect to the stack height, and hence we dub VPAs using this mode of
acceptance as stair VPAs (denoted STVPA). The main theorem of this section
is that for every nondeterministic Biichi VPA, we can effectively construct an
equivalent deterministic parity STVPA.

For Y C N and p € X“ (for some set X) we define the subsequence pl|y €
X*U XY of p induced by Y as follows. Let ng < n; < ng < --- be an ascending
enumeration of the elements in Y. Then ply= p(no)p(ni)p(ng) - --.

For w € A* we define the stack height sh(w) inductively by sh(e) = 0 and

sh(u) if a € Ajns,
sh(ua) = { sh(u)+1 ifa € A,
max{sh(u) — 1,0} if a € A,.

For o € A% define Steps, = {n € N|Vm >n : sh(al,,) > sh(al,)}. Note that
Steps,, is infinite for each o € A“.

Let Lywm denote the set of all minimally well-matched words—the words of
the form cwr € A*, where the last letter » € A, is the matching return for the
first letter ¢ € A, (formally, ¢ € A, r € A,, sh(w) = 0 and for any prefix w’ of
w, sh(cw’) > 0).

For any word a € A%, we can group maximal subwords of « which are in
Liwm, and get a unique factorization o = wiws ... where each w; € Lywm U A.
It is easy to see that if w; = ¢, for some ¢ € A., then there is no j > i such
that w; = r, for some r € A,. In fact, the points at which the word factorizes is
exactly Steps,, i.e. n € Steps,, iff Fi > 0: |wy ... w;| = n.

To define acceptance for STVPAs, we evaluate the acceptance condition at
the subsequence p|sseps, for any run p on a, i.e. at the positions after each prefix
wy ... w;, where ¢ € N,



Definition 2 (Stair VPA). A (nondeterministic) stair VPA (STVPA) M =
(Q,Qin, I, A, 2) over (A¢, A, Aint) has the same components as a VPA. A word
a € AY is accepted by M if there is a run p of M on a such that p|sieps,, satisfies
the acceptance condition 2 of M. The language accepted by M is L(M) = {a €
AY | M accepts a}.

Ezample 1. Let Ly, = {a € AY | H¥YmIn > m : sh(al,) = £} (with
Aint =0, A, = {r}, and A, = {c}) be the set of all repeatedly bounded words.
As shown in [2] there is no deterministic VPA for this language. Now consider
the parity STVPA M.y, with states g1, g2, initial state ¢i, stack alphabet I' =
{7, L}, coloring function 2(q;) = 1, 2(¢g2) = 2, and transition function (g, c) =
0(q2,¢) = (q1,7v) and &(q1,7r,7v) = §(g2,7,7v) = 6(q1,7, L) = 6(g2,7, L) = go. For
a run p of this STVPA the sequence p|sieps contains infinitely many ¢y iff the
input contains infinitely many unmatched calls and thus L(M,p) = L.

We aim at proving that for each nondeterministic Biichi VPA M there is an
equivalent deterministic parity STVPA D. Let a € A¥ and let the factorization
of a be o = wyws.... A stair VPA reading « can refer to the states after each
w; only. In order to capture the way M acts on a subword w;, we use summary
information which, intuitively, describes all possible transformations M can un-
dergo when reading the word w;. For this purpose let M = (Q, Qin, I, A, F) and
set Tp = 2@{011XQ The transformation T, € 7g induced by w; is defined
as follows: (¢, f,q’) € Ty, iff there is a run of M on w; leading from (g, L) to
(¢',0), for some o € St, with f = 1 iff this run meets some state in F. Note
that the initial stack content does not matter if w; € A. U Ajnt U Linwm, and if
w; € Ay, we know that when w; occurs in «, the stack must be empty.

Now consider the sequence 7o = Ty, Ty, - - € 75. M accepts « iff we can
string together a consistent run using the summaries in 7, such that it visits F’
infinitely often. Formally, a word 7 € 74 is good if there exists p € @Q“ such that
p(0) € Qin and for all i € N, (p(2), fi, p(i+1)) € 7(i), for some f; € {0,1}, where
fi = 1 for infinitely many ¢ € N. Then it is easy to see that a € L(M) iff 7, is
good. Note that the set of all good words over 7g is in fact a regular w-language
over the alphabet 7. Hence we can build a deterministic parity automaton
St = (S, 8in, 9, £2) which accepts the set of all good words. Moreover, St can be
constructed such that § = 20UQI1eelQD [13].

We can also show that the summary information can be generated by a
deterministic VpPs. Formally, there is a deterministic VPs C' with output such
that on reading any finite word w;, if the factorization of w is wf ... wj},, C outputs
the transformation 77, on its last transition. Such a VPs C'is easy to construct:
the state-space of C' is T with initial state Idg = {(¢,0,¢) | ¢ € Q}. On reading
an internal action a € Ajy (or on reading a return when the stack is empty),
C updates its state from T to T o T, and outputs T,; on reading a call ¢ € A,
it pushes ¢ and the current state T' onto the stack, updates the state to Id,
and outputs T,; on reading a return r € A, when the stack is nonempty, it
pops 1" and ¢ € A, updates its state from 1" to T" o |, p(Tey 0 T 0 T} 5 ), and
outputs (¢ (Tec,y 0T 0Ty ). Here, T1 o T is defined to be the set of all triples



(q, f,q’) such that there are some elements (q, f1,q1) € T1, (q1, f2,¢) € T and
f =max{f1, fo}. The transformation T, ~ (resp. T ) is the one induced by the
transitions pushing v on reading ¢ (resp. popping « on reading r).

We are now ready to construct the deterministic parity STVPA D accepting
L(M). The state-space of D is Tg x S, and we will construct D such that after
reading any finite word w with factorization w = wi, ... w}, the second compo-
nent of D’s state is the state which Sz would reach on the word Ty ... Ty .
D inherits the parity condition from S7 and it is easy to see that the above
property ensures that D accepts L(M).

D simulates the VPS C on the first component and the second component
is updated using the outputs of C. In addition to the information stored on the
stack by C, when reading a call symbol ¢ € A., D also pushes onto the stack
the state it was in before the call symbol was read. When D reads a return
symbol and the stack is not empty, the second component needs to be updated
to (s, T) where s is the state S7 was in before it read the call corresponding to
the current return, and 7' is the summary of the segment from the corresponding
call to the current return. The state s is available on the top of the stack (since
D had pushed it at the corresponding call) and T corresponds to the output of
C; hence D can update the second component appropriately. We have:

Theorem 1. For each nondeterministic Biichi VPA M over A there exists a
deterministic parity STVPA D such that L(M) = L(D). Moreover, we can con-

struct D such that it has 2°(Q1) states, where Q is the state-space of M.

As Theorem 1 shows, evaluating the acceptance condition on p| Steps,, instead of
p increases the expressive power of deterministic VPAs. A nondeterministic VPA
can guess the positions of Steps, (and verify its correctness), and hence stair
acceptance does not change the expressive power of nondeterministic VPAs.

Theorem 2. For each nondeterministic parity STVPA M one can construct a
nondeterministic Biichi VPA M’ such that L(M) = L(M’).

4 Games

In this section, our main aim is to prove that the problem of solving visibly
pushdown games as stated at the end of Section 2 is in 2EXPTIME. Our first step
is to internalize the winning condition M by transforming it to a deterministic
stair VPA and then taking its product with the game graph defined by H. This
results in a game with a stair parity winning condition, which we then solve.
A stair parity game ST = (S, Qr, Qa, col) consistsof a VPS § = (Q, Qin, I, A),

a partition (Qg, Qa) of @, and a coloring function col : ) — N. The game defined
by ST is Gsr = (G,2) with G = (V, Vg, Va, E), where (V, E) is the configu-
ration graph of S, Vg = {(p,0) | p € Qr}, and Vo = {(p,0) | p € Qa}. The
set (2 is the internal winning condition £2 = {\ € V¥ | ming,;(A|steps, ) is even}
where min.,;(8) = min{i | 3°n s.t. col(B(n)) = i}. Here, Steps, is the nat-
ural adaption of the definition of Steps, to sequences of configurations, i.e,
Steps, = {n € N|Vm >n [ANm)| > [A(n)[}.



Note that the labeling of the edges in a stair parity game does not matter
and, in the sequel, we will ignore it.

To transform a visibly pushdown game H = (S,Qg,Qa, M) into a stair
parity game let D be some deterministic STVPA such that L(D) = L(M). Since
S and D are over the same pushdown alphabet zl we can take the synchronized
product S® D to get a pushdown system S’ (ignoring the acceptance condition).
We then have a stair parity game ST = (S', Qf, Q)s, col), where the partition of
the state-space is inherited from H and the coloring function is inherited from
the coloring function of D. Since D is deterministic one can easily show the
following proposition, where ¢;,, denotes the initial state of D.

Proposition 1. Let p;, € Q. Then (pin, L) is winning for Eve in Gy if and
only if ((Pin, qin), L) is winning for Fve in Ggsr.

Now we explain how to adapt the classical techniques for pushdown parity
games and its variants [15,4,11] in order to solve stair parity games.

Let ST = (S,Qr, @a, col) be a stair parity game, where S = (Q, Qin, [, A)
and let G = (V, Vg, Va, E) be the associated game graph. We construct a finite
game graph G with a parity winning condition, such that Eve has a winning
strategy in G iff she has a winning strategy in G. Intuitively, in G, we keep track
of only the control state and the symbol on the top of the stack. The interesting
aspect of the game is when it is in a control state p with top-of-stack v, and the
player owning p wants to push a letter 7' onto the stack. For every strategy of
Eve there is a certain set of possible (finite) continuations of the play that will
end with popping this 4/ symbol from the stack. We require Eve to declare the
set R of all states the game can be in after the popping of 7 along these plays.

Adam now has two choices—he can either continue the game by pushing ~'
onto the stack and updating the state (we call this a pursue move), or he can
pick some state p” € R and continue from that state, leaving v on the top of the
stack (we call this a jump move). If he does a pursue move, then he remembers
R and if there is a pop-transition on «/ later on in the play, the play stops right
there and Eve is declared the winner if and only if the resulting state is in R.

The crucial point to note is that the jump transitions along infinite plays
in G (i.e. plays that never meet a pop-transition with the stack being non-
empty) essentially skip words of L,wm, and hence the play really corresponds to
evaluating a play A in the pushdown game at Steps,. Therefore the stair parity
condition gets evaluated along the play and ensures correctness of the reduction.

Let us now describe the construction more precisely. The main nodes of G
are tuples in Q x I" x 29. A node (p,7, R) has color col(p) and belongs to Eve
iff p € Qg. Intuitively, a node (p,~, R) denotes that the current state of S is p,
v is the symbol on the top of the stack, and R is the current commitment Eve
has made, i.e. Eve has claimed that if a pop-vy transition is executed, then the
resulting state will be in R. The starting node is (p;n, L, 0).

In order to simulate an internal-transition (p,p’) € A, we have edges of
the form (p,v, R) — (p',7, R) in G. Also, if the stack is empty, pop-transitions
are handled like internal transitions: if (p, L,p’) € A, then there is an edge
(p, L,R) — (p', L,R) in G.



Pop-transitions are not simulated but are represented in G by edges to a
vertex # (winning for Eve) and a vertex ff (winning for Adam) to verify the
claims made by Eve. Recall that in (p,v, R) the set R represents the claim of
Eve that on a pop-v transition the next state will be in R. Hence, in G there is an
edge from (p,v, R) to tt if there is p’ € R and a pop-transition (p,v,p’) € A. If p
belongs to Eve, then this transition can be used by Eve to win the game because
she was able to prove that her claim was correct. If there is a pop-transition
(p,7,p") € A with p’ ¢ R, then there is an edge from (p,~, R) to ff, which can
be used by Adam to win (if p belongs to Adam) since Eve made a false claim.

The simulation of a push-transition takes place in several steps. For a node
(p,v, R) the player owning p first picks a particular push-transition (p,p’,v’) by
moving to the node (p,~, R, p’,7'), which belongs to Eve. Then Eve proposes a set
R’ C @ containing the states that she claims to be reached if v/ gets eventually
popped. She does this by moving to the node (p,~, R,p’,~’, R’), which belongs to
Adam. Now, Adam has two kinds of choices. He can do a jump move by picking
a state p”” € R’ and move to the node (p”,7, R). Or he can do a pursue move
by moving to the node (p’,+', R').

If G denotes the parity game played on G, we get the following result which
can be shown using similar methods as, e.g., in [15,4, 11].

Theorem 3. Let pi, € Q. Eve has a winning strategy from (pin, L) in the push-
down game Gst if and only if she has a winning strategy in G from (pin, L,0). In
addition, one can effectively build pushdown strategies for both players in Gsr.

As a corollary of Theorem 3, Proposition 1, and the fact that the transforma-
tion from Proposition 1 preserves pushdown strategies, we have the following:

Corollary 1. The problem of deciding the winner in a visibly pushdown game
is in 2EXPTIME and pushdown strategies can be effectively built for both players.

It is a well known result that there always exists memoryless winning strate-
gies in parity games [6,17]. Nevertheless, it is not the case for the preceding
winning conditions:

Proposition 2. There exist a stair parity (resp. visibly) pushdown game and a
configuration winning for Eve such that any winning strateqy for Eve from this
position requires infinite memory.

Visibly pushdown games are solvable in 2EXPTIME, as we showed above.
Let us now consider pushdown games where the alphabet A is a subset of 27
where P is a finite set of propositions. CARET is a temporal logic that can ex-
press a subclass of context-free languages which is contained in VPL [1, 2]. From
constructions in [1], it follows that for every CARET formula ¢ over 27 and a
partition A of 2% into calls, returns, and internal actions, we can construct a
Biichi visibly pushdown automaton of size 2°U#!) over A which accepts the pre-
cise set of strings that satisfy ¢. Hence, it follows that solving visibly pushdown
games against CARET specifications is in 3EXPTIME.



However, this high complexity is not due to the pushdown nature of the
specification nor due to the fact that we are dealing with w-length plays. If
we consider pushdown games against an LTL specification ¢, we can solve this
by first constructing a nondeterministic Biichi automaton accepting the models
of ¢ and then constructing an equivalent deterministic parity automaton for it
(resulting in an automaton whose size is doubly exponential in ). Then, we
can take the product of the pushdown game and this automaton, and solve the
resulting parity pushdown game in exponential time [15]. The whole procedure
works in 3EXPTIME. By a reduction from the word problem for alternating
doubly exponential space bounded Turing machines one can show that this is a
lower bound as well:

Theorem 4. Given a pushdown game and an LTL formula, checking whether
Eve has a winning strategy is 3SEXPTIME-complete.

We also establish the exact complexity of the following pushdown game problems:
Theorem 5.

— Giwen a pushdown game and a CARET formula, checking whether Eve has a
winning strategy is 3EXPTIME-complete.

— Given a pushdown game and a nondeterministic Biichi automaton, checking
whether Eve has a winning strategy is 2EXPTIME-complete.

— Given a visibly pushdown game graph and a nondeterministic Biichi VPA,
checking whether Fve has a winning strategy is 2EXPTIME-complete.

5 Topological Complexity

It is well known that the class of regular w-languages is contained in the Boolean
closure of the second level of the Borel hierarchy. Our goal is to show that this
topological complexity is increased only by one level when we pass to visibly
pushdown languages, i.e., we show that the class of visibly pushdown languages
is contained in the Boolean closure of the third level of the Borel hierarchy. For
more details on the definitions and results used in this section we refer the reader
to [7] for set-theory in general and to [12] for results related to w-languages.

For a set X we consider X*“ as a topological space with the Cantor topology.
The open sets of X“ are those of the form U - X% for U C X*. A set L C X% is
closed if its complement L~ = X \ L is open.

To define the finite levels of the Borel hierarchy we start with the class 37 of
open sets. For each n > 1, I1,, is the class of complements of ¥ ,-sets and X, 11 is
the class of countable unions of I, -sets. By B(X,,) we denote the class of finite
Boolean combinations of X,-sets (using union, intersection, and complement).

For Ly C X{, Ly C X§ we say L; reduces continuously to Lo if there is a
continuous mapping ¢ : X¥ — X§ such that ¢~ '(Ls) = Ly, i.e., a € Ly iff
() € Ly for all @ € X¢. A language L C X is called ¥,-complete if it is in
3n and every K € X, continuously reduces to L. The definition of IT,-complete
sets is analogous.



We show the result that any VPL L belongs to B(X3) by using the model
of stair VPA introduced in Section 3. Let L C A be a VPL and let M =
(Q, qin, I, 6, 2) be a deterministic parity stair VPA with L(M) = L. To show
that L is in B(X3), we define for each ¢ € @ the language L, containing all the
words « for which the run of M on « infinitely often visits ¢ on positions from
Steps,,, and show that L, belongs to Il3. The language L itself can be written
as a finite Boolean combination of the sets L, corresponding to the definition of
the parity acceptance condition: & € A% is in L iff o € L, for some ¢ with 2(q)
even and o ¢ Ly for all ¢ with 2(¢') < £2(q).

For the definition of L, we will use the following sets of finite words.

— For each g € @, let U, C A* be the set of all words w such that the run of
M on w ends in a configuration with state q.

— Let Uny = (Ac U Ajng U Linwm )™ be the set of all words without unmatched
returns.

— Let Up = (A U Ajng U Linwm)* be the set of all words of stack height 0.

We describe L, by stating that for each position m € N there is a position
n > m that is in Steps, and the prefix of a up to position n is in U,. The only
difficulty is to express that position n is in the set Steps,,. For this we distinguish
two cases (which are not mutually exclusive). Position n is in Steps,, if af, has
stack height 0 or if the suffix of « starting from position n does not contain any
unmatched returns. Formally, for & € A“ and n € N we get that n € Steps,, and
the run of M on «af, ends in a configuration with state ¢ iff « is in the set

Lgn = [(U, N A™).A4%] 0

(Up N A™). A% U ( () (A".Unne N A"/).Aw>

n’>n

The basic sets involved in this definition are of the form U.A¥ for U finite (since
we always intersect with the set of words up to a certain length). These sets are
open as well as closed. Since the class of closed sets is closed under countable
intersections and finite unions we obtain that L, is closed for each ¢ and n.

By adding the quantifications for m and n we obtain the following definition
of Lyt Lg = (Nen Unsm Lgn- It directly follows from the definition that L, is
in ITg and hence we obtain the following theorem.

Theorem 6. The class of w-VPLs is contained in B(X3).

One should note that there are nondeterministic Biichi VPAs accepting X3-
complete sets. The language L1, from Example 1 is shown to be X3-complete in
[5]. The complement of this language is IIs-complete and is also a VPL (since
visibly pushdown languages are closed under complement).

There are no complete sets for the class B(X3) but it is not difficult to see
that there are VPLs that are true B(X3)-sets in the sense that they are neither in
33 nor in Il3. A simple way to define such a language is to consider an alphabet
A with priorities assigned to the letters, i.e., there are k calls, k internal actions,
and k returns, respectively, and they are assigned numbers from 1 to k. If we



define L to be the language containing all v such that a|gsteps, satisfies the parity
condition w.r.t. the numbers assigned to the letters, then it is not difficult to see
that L is neither in 33 nor in IT3. But obviously L can be accepted by a STVPA
that moves on each letter to a state with the corresponding priority.
Furthermore, let us note that languages accepted by deterministic VPAs are
in B(X2). The proof is similar to the one showing that regular w-languages are in
B(X5) [12]. From this result we obtain an alternative proof that the language Ly,
cannot be accepted by a deterministic VPA, since L, is Xg-complete. Finally,
the results of this section imply that games with a VPL winning condition are
determined because games with Borel winning conditions are determined [8].
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